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Abstract

Deep neural networks trained on vast datasets achieve strong performance on diverse tasks.
These models exhibit empirical neural scaling laws, under which prediction error steadily im-
proves with larger model scale. The cause of improvement is unclear, as strong general perfor-
mance could result from acquiring general-purpose capabilities or specialized knowledge across
many domains. To address this question theoretically, we study model scaling laws for a
capacity-constrained predictor that optimally instantiates task-specific or general-purpose la-
tent circuits. For a data distribution consisting of power-law-distributed tasks, each represented
by a low-dimensional data manifold, general capabilities emerge abruptly at a threshold model
scale and decline in relative importance thereafter. Data diversity and model expressivity in-
crease general capabilities in distinct ways.

1 Introduction

A longstanding aim of artificial intelligence research has been to create artificial general intelligence
(AGI), an artificial system capable of strong or superhuman performance on a broad range of novel
tasks with no restriction as to domain, context, or objective (Legg and Hutter, |2007; Goertzel, [2014;
Chollet, 2019; [Bubeck et al., |2023). Recently, a successful approach for creating generally capable
AT systems has been pretraining large language models (LLMs) on vast and diverse data corpora
(Radford et al. |2019; |Brown et al., 2020; Achiam et al., 2023; Gemini Team et al., [2023)). However,
the world’s complexity ensures that no pretraining corpus can include all situations a generally
capable Al system would need to handle. A pretrained Al system’s benefits and risks may depend
crucially on whether it achieves strong performance primarily by accumulating domain-specific
knowledge for each pretraining task, or by learning a task-agnostic core of general intelligence.

Powerful Al agents with general-purpose capabilities could act effectively when given any task,
situation, or goal, unlocking extraordinary economic value, but also posing inherent dangers. For
example, the general-purpose capabilities of situational awareness, reasoning, and self-preservation
could lead a strong Al system with misaligned goals to deceive its human supervisors (Carlsmith),
2023; Hubinger et all |2019; |Greenblatt et al., 2024; Hubinger et al., 2024)). Understanding when
general capabilities arise is therefore of great importance in Al safety.
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Neural scaling laws are essential for understanding LLMs’ success. As the size of the model or
training dataset increases, prediction error steadily decreases, in accordance with empirical power
laws (Hestness et al., 2017; Kaplan et al., |2020; Henighan et al., [2020; Hoffmann et al., [2022).
Multiple theoretical models have been proposed to explain these observed scaling laws.

One theoretical viewpoint treats a neural network as a nonparametric function approximator
that, when given access to additional degrees of freedom (DOF), resolves a low-dimensional data
manifold at increasingly fine resolution, yielding power-law scaling with an exponent inversely
proportional to the intrinsic data dimension (Sharma and Kaplan, [2022; |Bahri et al., [2024). The
DOF can be interpreted either as model features or training data points, giving the same exponents
for model and data scaling. Furthermore, |Bahri et al.| (2024) showed that manifold approximation
also can be understood in terms of kernel regression with power-law random features (Maloney
et al.l 2022; [Bordelon et al., 2024; Paquette et al., [2024)).

However, it is unclear how well the wide variety of tasks a generally capable Al system must
perform are described by a data distribution consisting of a single manifold. An alternative approach
instead models the data distribution as a set of tasks with a power-law frequency distribution
(Feldman), 2020; Feldman and Zhang), 2020; Hutter, [2021; [Michaud et al., [2023; |(Cabannes et al.,
2023; Fonseca et al., 2024; Brill, 2024; |Liu et al.l [2025; Pan et al.l [2025). A capacity-constrained
model optimally memorizes the correct behavior for the most important tasks in order, yielding a
power-law loss curve recapitulating the task distribution. One way to unify power-law-distributed
data with manifold approximation scaling was proposed by Brill (2024, [2025), who considered a
data model based on percolation on a hypercubic lattice. In this model, the resulting clusters have
both a power-law size distribution and a low-dimensional fractal representation in data space.

Scaling laws imply that an Al system’s pretraining loss decreases smoothly with increasing model
scale. However, this summary metric may combine multiple distinct causes. A priori, both task-
specific features and general-purpose capabilities could reduce the loss equally well. Furthermore,
predicting an Al system’s capabilities from its pretraining loss at a particular scale is not trivial.
Models may exhibit apparently emergent abilities, such as in-context learning or mathematical
reasoning, that arise discontinuously after reaching a particular model scale (Brown et al., 2020;
Ganguli et al., 2022; |Srivastava et al., 2022; |Wei et al., 2022); but see (Schaeffer et al., 2023).
Furthermore, the relation between scale and capabilities remains important for understanding post-
trained systems built on a pretrained model. Post-training may primarily elicit a pretrained model’s
latent capabilities rather than inducing new ones, as suggested both because most computation and
data is used in pretraining and by empirical evidence (Zhou et al., 2023; Jain et al., [2023)).

Given that an Al system has a capability, it’s natural to search for the mechanisms that imple-
ment it. A major goal of mechanistic interpretability research is to decompose a neural network’s
internal operations into circuits, each implementing an interpretable algorithm involving interac-
tions among latent features (Olah et al.l |2020; |Wang et al., 2022; |Conmy et al., [2023; |Dunefsky
et al., 2024; Marks et al., 2024; Braun et al., 2025} |Ameisen et al., 2025} |Lindsey et al., 2025)). From
a theoretical perspective, [Vaintrob| (2025) proposed a toy model of neural networks as a collection
of circuits. In this picture, each potentially learnable circuit is parameterized by a measure of its
size or complexity, and a measure of its independent contribution to the overall accuracy.

Multiple factors might arguably push an Al system to learn general capabilities rather than
specialized ones (cf. Hubinger et all 2019). Intuitively, an AI system faced with diverse tasks
might more efficiently learn one expensive general-purpose circuit over numerous special-purpose
ones. Another factor with a less obvious effect is the model’s expressivity, or ability to fit complex



functions. A priori, increased expressivity could make both specialized and general capabilities
more efficient, so its relative effect is unclear. A quantitative description is needed to say more
about how data diversity and model expressivity affect general capabilities.

In this work, we investigate a mathematical model of an abstract capacity-constrained Al system
that optimally balances specialized and general capabilities. To minimize prediction error on a data
distribution consisting of one or more tasks supported on distinct low-dimensional data manifolds,
the AI system draws from a latent population of circuits that provide either task-specific features
or general capabilities. We compute scaling laws with respect to model size for loss and for several
measures of general capabilities. A single task yields limited general capabilities. Power-law-
distributed tasks yield nontrivial general capabilities that emerge abruptly at a threshold model
scale and then decline in relative importance compared to task-specific features. Data diversity
and model expressivity enhance general capabilities in distinct ways.

2 Model

2.1 Setup

We consider a stylized Al system with N units of model capacity, with model capacity being some
nonnegative, additive scalar measure of the Al system’s sizeﬂ We assume the Al system is a
machine learning model trained to convergence in a regression setting. The Al system is capacity-
constrained, with access to unlimited amounts of computation and data for training, and fixed,
sufficient amounts of computation and contextual data for inference.

We model the data distribution as a set of one or more distinct data manifolds of equal di-
mension. Each manifold corresponds to a separate task, defined by a continuous target function
supported on that manifold. We assume that the manifolds may have different sizes, determining
the relative importance of each task. We index tasks by their rank £ € N in order of descending
manifold size. Each task’s baseline loss is proportional to its corresponding manifold’s size and can
be written as a function of k. We consider two data distribution models:

1. A single task corresponding to a D-dimensional manifold.

2. A power-law task distribution parameterized by rank-frequency distribution Lj o f—(+e)
where a > 0, with each task corresponding to a D-dimensional manifold.

For each task, we assume the Al system nonparametrically approximates the required function
using n DOF or effective features. That task’s loss contribution then scales as n=%P for mean
squared error or cross-entropy loss (Sharma and Kaplan, [2022; Bahri et al., [2024). The constant ¢
measures model expressivity, with ¢ > 2 for a piecewise constant function approximator and ¢ > 4
for a piecewise linear function approximator. We assume any target function is a generic Lipschitz
continuous function, so that the inequality for ¢ saturates as an equality.

2.2 Circuit distribution

To convert model capacity into DOF, the AI system internally implements one or more circuits.
We assume that there exists a latent population of potential circuits, from which the AI system

!For example, one might consider model capacity in terms of description length or neural network parameters.



instantiates circuits optimallyﬂ We characterize each circuit by a model capacity cost, Neire, and
the number of expected DOF it provides for each task, ncic(k). We define a circuit’s efficiency
for task k to be the ratio €ciyc(k) = ncire(k)/Neire. The latent circuit population is assumed to be
unbounded, so that the model is not constrained by available circuits to learn. If many circuits
contribute to each task, it is reasonable to approximate n as a continuous quantity, and we generally
do so throughout this work. When on occasion it matters that DOF are discrete, we require that
Neire = 1 for all circuits. We assume for simplicity that Ny << N for all relevant circuits.

We consider two classes of potential circuits. First, a feature circuit computes a feature relevant
for approximating one task’s target function. In this usage, a “feature” might be, for example, a
basis function, cluster prototype, or memorized data point, and need not be human-interpretable.
All features are modeled as identically generic, with the same capacity cost Ng and efficiency
ér. The number of DOF provided for task &’ by a feature circuit specialized for task k is then
np(k') = ez Nply. From now on, we choose units such that Np = ep = 1 and write ng to denote
the total number of DOF provided by feature circuits for task k.

Next, we consider a class of general circuits. These circuits implement capabilities of use on
any logically consistent and physically plausible task, even if all contingent facts about the world
were different. For example, general circuits might representﬂ

e logical inference and probabilistic reasoning;
e in-context learning (Brown et al., 2020);
e mesa-optimization (Hubinger et al., [2019));

e situational awareness (Carlsmith, 2023; Berglund et al.l [2023; [Laine et al., 2024), including
self-knowledge (Betley et al., [2025);

e and/or core knowledge priors such as objectness and elementary physics; agentness and goal-
directedness; natural numbers and elementary arithmetic; and elementary geometry and
topology (Spelke and Kinzler, [2007; (Chollet, [2019)).

It seems likely that general capabilities could vary widely in complexity and utility. Since
there is no reason to assume a preferred efficiency scale for general circuits, we approximate the
population’s marginal efficiency as a power law, deg = dng/dNg = 60”67- The efficiency prefactor
€0 > 0 and exponent v > 0 are free parameters. Since ep = 1 is fixed, ¢y determines the efficiency
of general circuits compared to feature circuits. We assume that a general circuit’s value is (in
expectation) equal for all tasks, so that ng is independent of k. This gives

Ng = /eglné dng = mné;_y, (1)

where m = (eo(1 + 7))L
In Fig. [1} we illustrate the assumed latent circuit population graphically as an “efficiency spec-
trum”, inspired by [Vaintrob| (2025). In the graph, ngi. is plotted against Ngire, so that the slope

2The latent population could be thought of as the elements of the platonic set of all relevant circuits, or more
concretely, as the set of circuits learned by a model with capacity M in the limit M — oco.

3Circuits representing syntax (Pan et all [2025)) or modality-specific surface features (Brill, [2025) might also be
considered general. Our definition excludes them, because they would not be useful under a different contingent input
representation. That said, these could be interpreted as general capabilities with no change to the formal model.



X
o) X o)
o o
O ‘O
c c
oo o o
o o)
o) o ©og o) o %og
o o ) % o o ®
o °F oo O®
& o° ggoo
Ncirc Ncirc

Figure 1: Cartoon diagrams representing efficiency spectra of the latent circuit population, with slope
€cire = Neire/Neire- Blue crosses show feature circuits and orange circles show general circuits. Left: Efficiency
spectrum for a single task. All feature circuits overlap. Right: Efficiency spectrum for a power-law task
distribution, with @ = 1. Feature circuits overlap within each task, with nc;. proportional to that task’s
frequency. For both sides, the general circuits are drawn from an efficiency distribution with ¢y = 0.1 and
~ = 0.5. They appear identical on both sides, as they have the same value for all tasks.

between a point and the origin equals the corresponding circuit’s efficiency. As we will see below,
DOF contributed by different circuits may combine nonlinearly to reduce the loss. If these nonlin-
ear interactions were neglected, the optimal capacity-constrained model would implement circuits
in descending efficiency order. Therefore, the efficiency spectrum can be interpreted as a rough
guideline as to each circuit’s importance.

We want to measure to what extent the AI system uses general capabilities. We define two
metrics measuring distinct but related quantities. First, to measure the fraction of model capacity
devoted to general circuits, we define the capacity fraction,

No  __ No o)
N zknk—l—NG'

Second, to measure the expected fraction of DOF attributable to general circuits, we define the
DOF fraction,

() = B i ) ®

For the power law setting, the DOF fraction is computed as

nG - —(14a) _ 1 - nG —(14a) 4
<n> Sou k™ 1+a;nk+ng ((1+a)§nk+ng ’ (4)

where ((s) is the Riemann zeta function.



2.3 Single task

For a single-task data distribution, the loss is (up to an overall constant factor),

L = max(1, ng 4 ng) %P, (5)

where the max function sets the loss to that of a random predictor if both np and ng are 0. The
capacity constraint is,

N =np +mng . (6)

Intuitively, if ¢g < 1, feature circuits dominate, giving an optimal value of ng = 0. If ¢¢ > 1,
general circuits dominate until their marginal efficiency decreases enough that feature circuits take
over. To see this quantitatively, we examine the only three possible cases. First, only feature
circuits could be learned, so that ng = 0, giving np = N and L = N~%P. Next, only general
circuits could be learned, so that np = 0, giving ng = (N/m)Y/0+7) and L = (N/m)~¢/P/(+7),
Finally, both feature circuits and general circuits could be learned. To solve for ng and ng, we use
the method of Lagrange multipliers. The Lagrangian is

Ly = (np+ ng)_C/D — AMnp + mnéer — N). (7)

In Appendix [A] we solve for the optimal values of ng and np. The solution is

- 1
nG = [m(1+9)] 77 =g, (8)
N _ -1_1/v

np=N—(14+7) 1. 9)

It follows that
Y1y /D

L=(N+-—-¢/" . 10

< Ty > (10)

Eq. 8 along with the constraints 1 < ng < N, implies that feature circuits and general circuits

can only coexist when ¢y > 1 and N 2 (1 —{—’y)me(()l—‘ﬁ)/ 7. Of allowed cases, whichever one minimizes

the loss determines the overall behavior. If ¢y < 1, then (ng/n) = 0 exactly. If ¢ > 1, then for

1/v
0

large N, ng = ¢, ' is a constant and (ng/n) — 0.

2.4 Power-law task distribution

Next, we study a power-law task distribution. The loss is

o0 o0
1
L=Y L= max(1, ng +ng) P —v g0+, (11)
> va)
and the capacity constraint is

oo
N = an +mng”. (12)
k=1



Since k(@1 is monotonically decreasing, the optimal allocation of the n; must be monotoni-
cally non-increasing. Since the nj are nonnegative and discrete, there exists a break at some rank
kpr such that ng > 0 for all & < ky, and ng = 0 for all k > ky,. At equilibrium, the marginal loss
reduction due to features learned for any two tasks of rank k;, k; < ky, must be equal, yielding

1+«
_ k:\ ~Tre/D
Mk TG _ <Z> . (13)
ng; +na k;
Eq. [13]is solved by the ansatz, introducing variables a > 0 and b < 1,
Kt —ng, k<k
0, k > kyp.

It follows from Eq. [13| and Eq. [14] that

1+ ¢/D—«
b=1- = . 15
1+¢/D 1+4¢/D (15)
To find the optimal values of a, kp, and ng, we again use the method of Lagrange multipliers.
The Lagrangian is

kbr [o¢]
—c/D 1 1
_ b—1 —(1+a) —c/D —(14a)
L(a, kyy,ng, ) Zmax (1, ak ) 7{,(1_’_&)]4: + Z max(1, ng) 7{(1—&—04)]{

k=1 k:kbr

k;br
- A (Z <ak‘b_1 — ng) + mngr'y — N) .

k=1

(16)

As before, there are three possible cases: the optimal model instantiates only feature circuits
(Case F); only general circuits (Case G); or both (Case FG). As before, the case that minimizes
the loss determines the overall behavior, and the overall loss is given by min (Ly, Lg, Lrg).

2.4.1 Case F: feature circuits only

This case is equivalent to the model scaling setting previously studied by Brill (2024). However, the
derivation presented here employs fewer approximations than Brill| (2024)), yielding a more exact
loss curve prefactor. With feature circuits only, the Lagrangian is

kpy 00 .
—c/D 1 1
EF(‘% Kb, )\) = akb_l 7].@_(1"‘0‘) + 7]6.—(1—1-04) Y akb_l an
;( ) (14 a) k;kb ((1+a) ;
(17)
In Appendix [B], we solve for the optimal a and ky, using Lagrange multipliers. We obtain

where C = (1 + ¢/D)"/P) and



%kbr (1 . k:grb) - g (19)

Eq. [19] has no closed-form solution. We obtain the approximations for ky, in limiting cases and
for large N, where W (z) denotes the Lambert W function,

ko & Q W(N/C)"H(N/C) o] < 1, (20)
(|p|N/CHV D <0, |b] > 1.

The expression for the loss is then,

a N/C .,
Ly = [1+ (HC/D> - ]kbr (21)
N~ 0<b<1, b ~1,
x { W(N/C)HeN—  |b| < 1, (22)
N—¢/D b<0, b >1,

The full expressions including prefactors are given in Eq.

2.4.2 Case G: general circuits only

With only general circuits, the Lagrangian simplifies to

- /DL ey Ly
La(nag, A) ;n(} C(l-I—Oé)k A (mnG N)
= n(_;c/D - A (mngﬂ - N) . (23)
It follows that ng = (N/m)Y () and Lg = (N/m)~¢/P/047) as for a single task.

2.4.3 Case FG: both feature and general circuits

If both feature circuits and general circuits are instantiated, the Lagrangian simplifies to

kb —1 _
br +7”LGC/D

Lrg(a, by, ng, \) = (aa_C/D - Aa) kot — A (mng7 — (kpy — 1) ng — N) . (24)

In Appendix[C], we solve for the optimal a, ki, and ng. Again, there is no closed-form solution,
and we obtain



a= ngké;b7 (25)

(0]
For = 1 — (L+m(l+)ng), (26)
Ko (1 _ k;grb)
N = ng ; — (kpe = 1) +mnf | , (27)

We use the same approximations employed in Sec. and consider large N to obtain approx-
imate expressions for ng. We obtain

(N/m)Y/(0+7) 0<b<1, |b~1,
ng o { Wiconst - N) - (N/m)Y/0+7)  |p| <« 1, (28)
(N/m)1/ (1+r=b7) b<0, |b>>1.

The full expressions including prefactors are given in Appendix[C| in Eq. 59} Eq.[61} and Eq. [64]
The resulting expression for the loss is

1-0 Tt N @ _(¢/D-a
Lyg = « (R > ('y + mnHV) (mnéﬂ) nG( /D=e) (29)
G
_¢/D-«a

(N/m) 1 N~ 0<b<1, |b~1,
c/D7a+a _¢/D—« _ 30
X9 (v + W(const - N)) W(const - N) T+ "% . (N/m)” T+ N~® |h <1, (30)

N—¢/D b<0, b > 1.

The full expressions including prefactors are given in Appendix[C| in Eq. [65} Eq.[66 and Eq.[67]

3 Experiments

We performed numerical experiments to gain richer insight into the model’s properties and to verify
our analytical approximations. The experiments examined the setting of power-law-distributed
data defined by the loss function given by Eq. [11]and the capacity constraint given by Eq. The
loss function was numerically optimized with gradient descent using PyTorch (Paszke, 2019). For
all experiments, the parameters were a vector of n; values, truncated to a length of 5000, and a
scalar value of ng, with the values of ¢/D, «, €y, v, and N specified as hyperparameters. These
hyperparameters were varied across the experiments so that scaling curves in N could be studied
for a range of qualitatively different b values.

To enforce the capacity constraint given by Eq. an auxiliary term was appended to the loss,
N-N

Laux = 0| L] N

; (31)




where 0 is a hyperparameter setting the constraint strength, |L| is the loss magnitude at the current
step (computed with a stop gradient), and N is the value of N computed from the parameters. For
all experiments, § = 5.0 was used.

To enforce the bounds ng > 0 and ng > 0 for all £ during optimization, each parameter was
wrapped with a soft maximum constraint of the form Softplus(n). Similarly, to clamp ng +ng to a
minimum of 1, a soft constraint of the form Softplus(n — 1) 4+ 1 was applied. When reporting final
metrics, these soft constraints were replaced with hard maximum constraints.

For all experiments, training was performed for 2 x 10* steps using the AdamW optimizer with
a learning rate of 1.0, no weight decay, and a cosine annealing learning rate decay schedule with
Tmax equal to the number of steps (Kingma and Ba, 2014; Loshchilov and Hutter, 2017, [2016). If
not otherwise mentioned, PyTorch default hyperparameters were used.

Fig. 2] and Fig. [3] show the experimental results. The top panels of Fig. [2] show model scaling
curves for ng and L, overlaid with the corresponding analytical approximations for appropriate
limits. The analytical curves agree well with the numerical results. The bottom panels of Fig.
show how the capacity fraction and DOF fraction scale with N. Fig. [3| shows how these metrics
change when keeping N fixed and instead varying either ¢/D or a.

4 Discussion

Although the presented model is quite simple, it predicts a number of interesting qualitative prop-
erties that may have parallels in realistic Al systems. We study the model scaling laws that result
from allocating model capacity among neural circuits to optimally predict power-law-distributed
data. Scaling laws for power-law-distributed atomic tasks were initially studied by Hutter| (2021))
and extended by [Michaud et al.| (2023)). Motivated by percolation theory, Brill (2024) proposed the
data model that we consider in this work, in which tasks are represented by low-dimensional data
manifolds. [Pan et al.| (2025) further incorporated a universal syntax component when studying
data scaling laws for power-law-distributed knowledge clusters, but omitted syntax when studying
model scaling. The model scaling laws predicted by these works are similar to those presented in
Sec. for feature circuits only. The model presented here extends these prior works by making
novel predictions about the scaling laws of general capabilities. The key differentiating assumption
is that a capacity-constrained Al system can learn not only task-specific features but also general
circuits that have a heavy-tailed marginal efficiency distribution.

4.1 General capabilities require training task diversity

For a data distribution consisting of a single task, the amount of general capabilities learned has a
constant upper bound, which may be none (Sec. . In particular, for any general capabilities to
be learned, the most efficient general circuits must actually be more efficient than feature circuits,
with €g > ep. By contrast, a power-law task distribution can support general capabilities (Sec. .
In the power-law task setting, the absolute level of general capabilities increases indefinitely with
model scale, as indicated by the scaling of ng in Fig. 2| (top left). This property quantifies the
hypothesis that training on large and diverse datasets leads an Al system to develop neural circuits
implementing capabilities key to general intelligence (Olah et al., [2020; Bubeck et al., 2023).
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Figure 2: Model scaling curves with power-law distributed data. Points connected by dotted lines show
numerically optimized results, and solid lines show analytical approximations. Top left: DOF from general
circuits vs. N. Top right: loss vs. N. Bottom left: capacity fraction vs. N. Bottom right: DOF fraction
vs. N. All results computed using o = 1, ¢g = 0.01, and v = 0.5.

4.2 General capabilities emerge abruptly

General capabilities are discontinuous with model scale. As shown in Fig. [2| below a threshold
model scale at which the first general circuit is learned, ng = 0 and the model has no general
capabilities. Above that threshold scale, the fraction of the model devoted to general capabilities
jumps up abruptly to a finite value, with ng > 1. This abrupt transition corresponds to a shift
from a prediction strategy purely based on memorized features, to one also incorporating general
capabilities. A features-only strategy efficiently allocates model capacity to the most important
tasks. At small model scales, this effect dominates. However, as discussed in the next section,
general capabilities provide a faster loss decrease as the model size increases. An abrupt transition
therefore occurs at the scale at which it first becomes optimal to learn general capabilities.

This abrupt transition may relate to the emergent abilities observed in LLMs (Brown et al., 2020}
Wei et al., |2022)). Many reported examples of emergent abilities appear to involve general-purpose

11
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Figure 3: Data diversity and model expressivity increase general capabilities. Left: (ng/n) vs. « for
¢/D = 1 and several v values. Right: (ng/n) vs. ¢/D for @ = 1 and several v values. Results computed
numerically using ¢y = 0.01 and N =1 x 10°.

capabilities, such as in-context few-shot learning. The abrupt appearance of general capabilities
above a threshold model scale could plausibly lead to discontinuous performance improvements on
related downstream tasks. However, this interpretation needs several caveats. First, the presented
model describes how general capabilities vary with model scale, but emergent abilities of LLMs
might also depend on training computation, training dataset size, and data composition (Wei
et al.l [2022). Second, an AI system’s intrinsic capabilities may have a complex relationship with
measured performance on benchmark tasks. In particular, nonlinear or discontinuous evaluation
metrics can confound findings of emergent abilities (Schaeffer et al., |2023). Third, because the
toy model approximates the general-circuit population as continuous, it cannot make quantitative
predictions about emergence connected to learning discrete general circuits after the first one.

4.3 General capabilities unlock steeper scaling laws

As is visible in Fig. |2 (top right), the emergence of general capabilities is accompanied by a break
in the loss curve where the loss begins to decrease faster. The observed break corresponds to the
turnover from learning only feature circuits (Sec. to learning both feature circuits and general
circuits (Sec. . A steeper scaling law occurs because general circuits can decrease the loss on
multiple tasks in parallel. The appearance of a strong break requires ¢/D > a.

The scaling exponent depends strongly on the parameters ¢/D and a through the exponent b,
which controls the distribution of allocated DOF (Eq. . A value of b ~ 1 maximizes general
capabilities and yields a steep scaling law, while a large negative b minimizes general capabilities
and yields a shallow scaling law. For a given b value, Eq. shows that « effectively interpolates
the scaling exponent between the bounds set by ¢/D and a. The efficiency prefactor ¢ is largely
unimportant for determining the scaling exponent but plays a role in setting the threshold at which
general capabilities emerge and steeper scaling laws begin.

Assuming that the presented toy model usefully describes real Al systems, theory may suggest
realistic parameter values. |[Sharma and Kaplan| (2022) predict ¢ > 4 for neural networks using the
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ReLU activation function. [Brill| (2024) predicts values of D = 4 and a = 1 using a data model
based on percolation theory. In general, it seems natural for realistic values of ¢, D, and « all to
be of order unity, so that b ~ 0. We therefore conjecture that real Al systems are best modeled by
the transitional regime in which non-negligible general capabilities can only just be learned.

4.4 General capabilities decrease proportionally with model scale

After general capabilities emerge, their relative importance diminishes as the model scale increases
further. This pattern occurs similarly for the capacity fraction and DOF fraction (Fig. |2, bottom).
It arises because the marginal efficiency of the remaining general circuit population decreases as
more of them are learned, and feature circuits are relied on proportionally more. As a result, the
AT system’s reliance on general capabilities decouples from its loss. With increasing scale, less
of the loss improvement is attributable to general capabilities. Notably, this occurs even though
we assume a training procedure with access to an arbitrary amount of training computation and
data. An Al system’s performance on novel real-world tasks may be associated with its level of
general capabilities learned during pretraining and subsequently elicited through post-training. If
so, this suggests that scaling up model size would improve real-world performance less efficiently
than pretraining loss scaling laws may appear to imply.

4.5 Data diversity strongly enhances general capabilities

Data diversity has a strong effect on general capabilities. As shown in Fig. 3| (left), the DOF
fraction increases sharply as a approaches 0. This limit corresponds to the task distribution be-
coming more uniform. This toy model therefore suggests that methods to artificially enhance data
diversity, such as pruning examples of common tasks or oversampling examples of rare ones, could
disproportionately increase general capability learning.

4.6 Model expressivity moderately enhances general capabilities

Model expressivity also enhances general capabilities, but much more weakly. This behavior is
shown in Fig (3| (right), and can be interpreted as follows. If ¢ is made larger (holding fixed the
data dimension D), the model can achieve lower loss while using the same model capacity. Model
capacity can then be more quickly allocated to more tasks’ circuits. In effect, model expressivity
indirectly increases general capabilities by increasing the accessible task diversity.

4.7 Limitations

This work studies a highly simplified and abstract toy model of Al systems. The analysis assumes
that an Al system is purely capacity-constrained, but constraints such as training data, training
computation, contextual data at inference time, or inference computation also could be important.
In addition, the assumption of an optimal model is only useful if practical training procedures can
approximate one. This requires that complications such as circuit learnability and path-dependence
in training are negligible. While the simplified notions of model capacity and degrees of freedom
applied in this work suffice to predict qualitative phenomena, making specific quantitative predic-
tions would require connecting them to empirically measurable quantities such as neural network
parameters. Finally, it may be difficult to empirically constrain the parameters ¢y and ~ that govern
the putative latent circuit population, independently from analyzing a trained Al system.
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A Single task derivation

For a single-task data distribution, the Lagrangian is

Ly = (np+ng)"P = Xnp + mngrv — N), (7)

with the optimal values of ng and ng given by the equations,
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9Ly ¢ —(1+¢/D)

—— = —— ¢ —_ 2
oL, . _ ¢ —(1+¢/D) v

ong 0= i) (np +ng) Am(1 4 y)ng, (33)
0Ly 1

= 0=N—np — mnGJrV. (34)

From Eq. |34, np = N — mng7, and from Eq. A= —(¢/D)(ng + ng)~+¢/P) Substituting
into Eq. [33] gives

0= _%(N —mng +na) P [1—m(1 4+ y)nl] (35)

which has the solution

- 1
n = [m(1+7)] 77 =", ®
_ N _ -1 1/y

np=N—(1+~) "t/ @

It follows that
SRy /D

L= N+ = : 10

Eq. 8] along with the constraints 1 < ng < N, implies that feature circuits and general circuits

can only coexist if g > 1 and N 2 (1 + 7)meél+7)/ 7. Of allowed cases, whichever one minimizes

the loss determines the overall behavior. Combining the three cases yields

0 € <1,
ng = { (N/m)V+) g > 1, N < (1+~)me 7, (36)
6(1)/7 e0>1, N> (1 —i—’)/)me(()l—‘_v)m.

~1
If g < 1, then (ng/n) = 0 exactly. If ¢g > 1, then for large N, (ng/n) = 6(1)/7 (N + $65/7> ,
so as N increases, (ng/n) approaches 0.
B Power-law task distribution derivation: Case F

B.1 Lagrange equations

With feature circuits only, the Lagrangian is,

kbr oo k'br
—c/D 1 1
Le(a, ko, A) =Y (ak™! kT Y T A (Y ekt - N
rla, kpr, \) 2 (a ) ) +k:kb ) k:1a

()
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This simplifies to

a—c/D Kbr
_ -1 4 (1+a) N
Lr (C( Aa) E k AT ) E k™ + A

k=kp,
kP —1
A (aa_c/ b_ Aa) bT + kp + AN, (37)
where we used the identity,

%u—w:a+b

The optimal values of a and kp, are determined by the equations,

aEF C 7(1+ /D) k’g — 1
= 0= (—-a— ¢/D) _ )\) Dbr -~
da 0 ( “D” b (38)
Ly —¢/D b—1 —(14a)
D 0= (aa /D _ )\a) ko, w —ak, , (39)
OLF kg —1
— —0=N—qg—2 ~ 40
o “ (40)
Solving Eq. [38 and Eq. 39| for A and equating the resulting expressions gives
c _ c/D - c/D 1 —5(1-b)
—apa (I+e/D) — ¢ <a (I4e/D) _ gker ) , (41)
which reduces to
a=Chy", (IE)
where C' = (1 + C/D)I/(C/D). Solving Eq. 40| for a and substituting into Eq. we obtain
1 N
= e (1 - zﬂ) —- 19
b b br C ‘.'

B.2 Limiting cases

Eq. [I9 has no closed-form solution, but we can find approximations in limiting cases. Table [] lists
the most suitable limiting case for each combination of magnitudes of ¢/D and «. For brevity, we
denote K = ky, (1 - k‘grb) /b.

1.0<b<1, |b ~1.
Expanding to first order in the small quantity (1 — b), we obtain

K= (kbr — 1) + (1 - b) (kbr —Inky, — 1) . (42)
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2. b < 1.

Expanding to leading order in b, we obtain

K= kbr In kbr (1 — g In kbr) . (43)

Neglecting the correction term, Eq. can be equivalently written as kp, = K/W(K) =
exp W(K), where W (z) is the Lambert W function.

3.b<0, |0 >1.

Assuming ki, is not too small, we can make the approximation

P B
K~ — ki’ = mkbj' 3 (44)

Using these approximations, we have, for large NV,

N/C 0<b<1, |b ~1,
koe & ¢ W(N/C)"H(N/C) |b| < 1, (20)
(|p|N/CHV D <0, |b] > 1.

The loss is then, using the above approximations and for large IV,

kb, —1
Lp = Ola_C/D br + kl;ra

b
() Sl :
Co‘l+ﬁ}]\7“x 0<b<l1, |b~1,
SR LRl [ f(N)} N-° | <1, (45)
%(‘b‘N)—C/D b<0, |b>1,
where
14+¢/D

FV) = WN/C) e — 2

The prefactor in Eq. differs from the one in the approximate model scaling law derived by
Brill (2024). Eq. is more accurate, as the model scaling law derived by Brill (2024)) made an
additional approximation equivalent to C' =~ 1. Also, the prefactor here incorporates a factor of a
from the normalization.
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Regime | ¢/D a |b] b— C—
I <1 |[<1 ¢/D—a
II <1 ~1 ~1 e
11 >1 | >1 -
v <1l | ~1 (¢/D)/(1+¢/D)
\Y% ~1 ~1 | <1| (¢/D—-a)/(1+¢/D) 2
VI >1 [>1 —a/(1+¢/D)
VII <c¢/D| ~1|1-(1+4+a)/(1+¢/D)
VIII >1| ~c¢/D | K1 1
IX > c//D > 1 1 —a/(e/D)

Table 1: Parameter regimes in terms of variables ¢/D and «, listing the closest limiting approximation for
|b| and corresponding approximations for b and C.

C Power-law task distribution derivation: Case FG

C.1 Lagrange equations

If both feature circuits and general circuits are instantiated, the Lagrangian simplifies to

K —1 .
Lrc(a, ko, ng, A) = <aa*C/D — /\a> brT +ng /Dk];ro‘ - A (mnéﬂY — (kpy — 1) ng — N) ., (24)

and the optimal values of a, ky;, and ng are determined by the equations

0Lrq C _(1+¢/D) kb, — 1
= g — —_— ¢ - = 4

% 0 ( apa )\) b (46)
OLrc _ _ <oza’c/ b_ /\a> kit = ang P 4 ang, (47)
Okiby ' '
0Lrq C _—(14¢/D); —a

ong 0 De B = Am(1 4+ 7)ng + Ak — 1), (48)
oL B —1

Each of Eq. [46] Eq. [47] and Eq. 4§ can be solved for A, giving the expressions

A= —a%a_(l"’C/D), (50)
1 ¢/D 1 -1

A=« <a_(1+C/D) - = ( Gk‘l;b) > <1 - nc;k‘ll)rb> , (51)

A= —%na(lﬂ/mk&a [m(l +y)nd — (ke — 1)]71 (52)



Equating Eq. 50| and Eq. [52] yields the relation

a
kl*b = F’
NG Ry,

where

r— (g (1 + 1) — (e — 1)})”6”3 .

Equating Eq. [50] and Eq. [51] yields

14¢/D
a c a c
o= (o) gy (an) e
<ngkgr1> D (ngkgr1> D
and the further substitution of Eq. results in the equation

0:r1+C/D—(1 ﬁ)r <.
o)t D

(54)

By inspection, I' = 1 is a solution. Furthermore, because the derivative (1 + ¢/D)(T'%/P — 1) is

positive for all I' > 1 and negative for all 0 < I'" < 1, this solution is unique. It follows that

a:ngkér_b,
ke = —— (1 1 g
br—m( +m( +'Y)”G)-

Finally, Eq. [49] along with Eq. yields

- (1 _ k;grb)

N =ng b

— (kbr — 1) + mn'é

C.2 Limiting cases

(27)

As with Eq. Eq. 27 does not have a simple closed-form solution for k.. We approach it by
examining exact or approximate solutions for specific cases. We can simplify Eq. [27] by considering

approximations for limiting cases and keeping only dominant terms for large IN.

1.0<b<1, |b ~1.
Using the approximation Eq. we have

N =~ ng [(1 = b) (ko — Inkpy — 1) + mng;]
~ (1+ R)mng'v,
where
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R

and the expression for ng is

2. b < 1.
Using Eq. 3] we have

a(l+7)

14+¢/D’

m

N = ng [k:br Inkp, — (kpy — 1) + mné}

~

and the expression for ng is

_[all+y), (a(l+9)
[1+a m(

~ [1+ RIn (Rmnl,/e)]

1+«

+\ _ell+7)
G 1+«
mné?w,

1/(14)
nG:a+R)WHﬂ<N>

1+
+ 1} mng v

1/(14+)
nG = (14 R g0 ()
m b
where
()N <(1+v)(1+Rln(Rm/6))>)
N) = w . _
F(N) 147 < Rym P Ry
3.b<0, b >1.
Using Eq. 4], we have
N~ Ll (ke — 1 gl
~na 6] br — (kb — 1) + mng
m/ R\ 14y—b
< (755) e

so that the expression for ng is,

= (

[b]

m-b

)1/(1+'Yb7)) (

1-b

R
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C.3 Loss curve

The loss is then, keeping only dominant terms for large IV,

+ aC/D

N
[1 + kT)r < + (kpr — 1) — mné)] C/Dkgr

—c/D k;gr -

— (0%
Lpg = aa k.

nG
« /1 + N —(ay+¢/D)
~ 1 _
[1 o™ +’Y)] <1 +7> <7+ mnéﬂ) ngG
AN N 147\ "% —(¢/D-a)
) ) i) .
For the case 0 < b < 1, |b] ~ 1, we use Eq. [29[and Eq. [59| to obtain
c/D—«
1 _ b 14+« O‘+a N — Ty
L~ —_— 1 1 1+ — N~€,
(S0 e e () o
For the case |b| < 1, we use Eq. [29| and Eq. [61] to obtain
1-b 14+ ¢/D—a N _C/li;a

with f(N) given by Eq.
For the case b < 0, [b| > 1, we use Eq. [29] and Eq. [64] to obtain, after some algebra,

~ c/D
L~ ‘b’(|b|N) (67)

Eq. [67|is the same as for Case F (Eq. ., showing that our approximation in this limit is too
coarse to characterize the subdominant contribution from general circuits.

C.4 Threshold model scale

Putting the above results together, the overall loss is given by

L = min (Ly, Lg, Lrg)- (68)

At a threshold model scale Ny, the class or classes of instantiated circuits may abruptly tran-
sition if the case giving the minimum loss changes. A critical transition can only occur if the loss
curves of two cases intersect at a model scale Ny, > 1. When 0 < b < 1, |b| ~ 1, equating Eq.
and Eq. [65] yields

R/b
Nw = m(1+ R/ | R7Y1 — b)%(1 4 a)“—a)/a] " (69)
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In the limit |b| < 1, equating Eq. [45| and Eq. |66 yields

. R/b
Ny = m(1+ R+ fra(No)'+7/ (1117711; S ;FG((]]VV))> (R = 5)2(1+ @)/ M o)

which could be solved numerically for Ny,. When b < 0, |b] > 1, Eq. |45 and Eq. |67 are identical,
indicating that our approximations in this limit are too coarse to compute Nyy.
In the numerical experiments reported in Sec. [3] the analytical loss curves are combined using

Eq. rather than using Eq. [69 or Eq. [70]
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