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Abstract

Deep neural networks trained on vast datasets achieve strong performance on diverse tasks.
These models exhibit empirical neural scaling laws, under which prediction error steadily im-
proves with larger model scale. The cause of improvement is unclear, as strong general perfor-
mance could result from acquiring general-purpose capabilities or specialized knowledge across
many domains. To address this question theoretically, we study model scaling laws for a
capacity-constrained predictor that optimally instantiates task-specific or general-purpose la-
tent circuits. For a data distribution consisting of power-law-distributed tasks, each represented
by a low-dimensional data manifold, general capabilities emerge abruptly at a threshold model
scale and decline in relative importance thereafter. Data diversity and model expressivity in-
crease general capabilities in distinct ways.

1 Introduction

A longstanding aim of artificial intelligence research has been to create artificial general intelligence
(AGI), a artificial system capable of strong or superhuman performance on a broad range of novel
tasks with no restriction as to domain, context, or objective (Legg and Hutter, 2007; Goertzel, 2014;
Chollet, 2019; Bubeck et al., 2023). Recently, a successful approach for creating generally capable
AI systems has been pretraining large language models (LLMs) on vast and diverse data corpora
(Radford et al., 2019; Brown et al., 2020; Achiam et al., 2023; Gemini Team et al., 2023). However,
the world’s complexity ensures that no pretraining corpus can include all situations a generally
capable AI system would need to handle. A pretrained AI system’s benefits and risks depend
crucially on whether it achieves strong performance primarily by accumulating domain-specific
knowledge for each pretraining task, or by learning a task-agnostic core of general intelligence.

Powerful AI agents with general-purpose capabilities could act effectively when given any task,
situation, or goal, unlocking extraordinary economic value, but also posing inherent dangers. For
example, the general-purpose capabilities of situational awareness, reasoning, and self-preservation
could lead a strong AI system with misaligned goals to deceive its human supervisors (Carlsmith,
2023; Hubinger et al., 2019; Greenblatt et al., 2024; Hubinger et al., 2024). Understanding when
general capabilities arise is therefore of great importance in AI safety.

Neural scaling laws are essential for understanding LLMs’ success. As the size of the model or
training dataset increases, prediction error steadily decreases, in accordance with empirical power
laws (Hestness et al., 2017; Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al., 2022).
Multiple theoretical models have been proposed to explain these observed scaling laws.
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One theoretical viewpoint treats a neural network as a nonparametric function approximator
that, when given access to additional degrees of freedom (DOF), resolves a low-dimensional data
manifold at increasingly fine resolution, yielding power-law scaling with an exponent inversely
proportional to the intrinsic data dimension (Sharma and Kaplan, 2022; Bahri et al., 2024). The
DOF can be interpreted either as model features or training data points, giving the same exponents
for model and data scaling. Furthermore, Bahri et al. (2024) showed that manifold approximation
also can be understood in terms of kernel regression with power-law random features (Maloney
et al., 2022; Bordelon et al., 2024; Paquette et al., 2024).

However, it is unclear how well the wide variety of tasks a generally capable AI system must
perform are described by a data distribution consisting of a single manifold. An alternative approach
instead models the data distribution as a set of tasks with a power-law frequency distribution
(Feldman, 2020; Feldman and Zhang, 2020; Hutter, 2021; Michaud et al., 2023; Cabannes et al.,
2023; Fonseca et al., 2024; Brill, 2024; Liu et al., 2025; Pan et al., 2025). A capacity-constrained
model optimally memorizes the correct behavior for the most important tasks in order, yielding a
power-law loss curve recapitulating the task distribution. One way to unify power-law-distributed
data with manifold approximation scaling was proposed by Brill (2024, 2025), who considered a
data model based on percolation on a hypercubic lattice. In this model, the resulting clusters have
both a power-law size distribution and a low-dimensional fractal representation in data space.

Scaling laws imply that an AI system’s pretraining loss decreases smoothly with increasing model
scale. However, this summary metric may combine multiple distinct causes. A priori, both task-
specific features and general-purpose capabilities could reduce the loss equally well. Furthermore,
predicting an AI system’s capabilities from its pretraining loss at a particular scale is not trivial.
Models may exhibit apparently emergent capabilities, such as in-context learning or mathematical
reasoning, that arise discontinuously after reaching a particular model scale (Brown et al., 2020;
Ganguli et al., 2022; Srivastava et al., 2022; Wei et al., 2022); but see (Schaeffer et al., 2023).
Furthermore, the relation between scale and capabilities remains important for understanding post-
trained systems built on a pretrained model. Post-training may primarily elicit a pretrained model’s
latent capabilities rather than inducing new ones, as suggested both because most computation and
data is used in pretraining and by empirical evidence (Zhou et al., 2023; Jain et al., 2023).

Given that an AI system has a capability, it’s natural to search for the mechanisms that imple-
ment it. A major goal of mechanistic interpretability research is to decompose a neural network’s
internal operations into circuits, each implementing an interpretable algorithm involving interac-
tions among latent features (Olah et al., 2020; Wang et al., 2022; Conmy et al., 2023; Dunefsky
et al., 2024; Marks et al., 2024; Braun et al., 2025; Ameisen et al., 2025; Lindsey et al., 2025). From
a theoretical perspective, Vaintrob (2025) proposed a toy model of neural networks as a collection
of circuits. In this picture, each potentially learnable circuit is parameterized by a measure of its
size or complexity, and a measure of its independent contribution to the overall accuracy.

Multiple factors might arguably push an AI system to learn general capabilities rather than
specialized ones (cf. Hubinger et al., 2019). Intuitively, an AI system faced with diverse tasks
might more efficiently learn one expensive general-purpose circuit over numerous special-purpose
ones. Another factor with a less obvious effect is the model’s expressivity, or ability to fit complex
functions. A priori, increased expressivity could make both specialized and general capabilities
more efficient, so its relative effect is unclear. A quantitative description is needed to say more
about how data diversity and model expressivity affect general capabilities.

In this work, we investigate a mathematical model of an abstract capacity-constrained AI system
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that optimally balances specialized and general capabilities. To minimize prediction error on a data
distribution consisting of one or more tasks supported on distinct low-dimensional data manifolds,
the AI system draws from a latent population of circuits that provide either task-specific features
or general capabilities. We compute scaling laws with respect to model size for loss and for several
measures of general capabilities. A single task yields limited general capabilities. Power-law-
distributed tasks yield nontrivial general capabilities that emerge abruptly at a threshold model
scale and then decline in relative importance compared to task-specific features. Data diversity
and model expressivity enhance general capabilities in distinct ways.

2 Model

2.1 Setup

We consider a stylized AI system with N units of model capacity, with model capacity being some
nonnegative, additive scalar measure of the AI system’s size1. We assume the AI system is a
machine learning model trained to convergence in a regression setting. The AI system is capacity-
constrained, with access to unlimited amounts of computation and data for training, and fixed,
sufficient amounts of computation and contextual data for inference.

We model the data distribution as a set of one or more distinct data manifolds. Each manifold
corresponds to a separate task, defined by a continuous target function supported on that manifold.
We assume that different tasks may correspond to manifold of different sizes, and index them by
their rank k ∈ N in order of descending manifold size. Each task’s baseline loss is proportional to
its corresponding manifold’s size. We consider two data distribution models:

1. A single task corresponding to a D-dimensional manifold.

2. A power-law task distribution parameterized by rank-frequency distribution Lk ∝ k−(1+α),
where α > 0, with each task corresponding to a D-dimensional manifold.

For each task, we assume the AI system nonparametrically approximates the required function
using n DOF or effective features. That task’s loss contribution then scales as n−c/D for mean
squared error or cross-entropy loss (Sharma and Kaplan, 2022; Bahri et al., 2024). The constant c
measures model expressivity, with c ≥ 2 for a piecewise constant function approximator and c ≥ 4
for a piecewise linear function approximator. We assume any target function is a generic Lipschitz
continuous function, so that the inequality for c saturates as an equality.

2.2 Circuit distribution

To convert model capacity into DOF, the AI system internally implements one or more circuits.
We assume that there exists a latent population of potential circuits, from which the AI system
instantiates circuits optimally2. We characterize each circuit by a model capacity cost, Ncirc, and
the number of expected DOF it provides for each task, ncirc(k). We define a circuit’s efficiency
for task k to be the ratio ϵcirc(k) ≡ ncirc(k)/Ncirc. The latent circuit population is assumed to be

1For example, one might consider model capacity in terms of description length or neural network parameters.
2The latent population could be thought of as the elements of the platonic set of all relevant circuits, or more

concretely, as the set of circuits learned by a model with capacity M in the limit M → ∞.
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unbounded, so that the model is not constrained by available circuits to learn. Since DOF are
discrete, ncirc ≥ 1 for all circuits. We assume for simplicity that Ncirc ≪ N for all relevant circuits.

We consider two classes of potential circuits. First, a feature circuit computes a feature relevant
for approximating one task’s target function. In this usage, a “feature” might be, for example, a
basis function, cluster prototype, or memorized data point, and need not be human-interpretable.
All features are modeled as identically generic, with the same capacity cost NF and efficiency
ϵF. The number of DOF provided for task k′ by a feature circuit specialized for task k is then
nF(k

′) = ϵFNF1k. From now on, we choose units such that NF = ϵF = 1 and write nk to denote
the total number of DOF provided by feature circuits for task k.

Next, we consider a class of general circuits. These circuits implement capabilities of use on
any logically consistent and physically plausible task, even if all contingent facts about the world
were different. For example, general circuits might represent

• logical inference and probabilistic reasoning;

• in-context learning (Brown et al., 2020);

• mesa-optimization (Hubinger et al., 2019);

• situational awareness (Carlsmith, 2023; Berglund et al., 2023; Laine et al., 2024), including
self-knowledge (Betley et al., 2025);

• and/or core knowledge priors such as objectness and elementary physics; agentness and goal-
directedness; natural numbers and elementary arithmetic; and elementary geometry and
topology (Spelke and Kinzler, 2007; Chollet, 2019).

It seems likely that general capabilities could vary widely in complexity and utility. Since
there is no reason to assume a preferred efficiency scale for general circuits, we approximate the
population’s marginal efficiency as a power law, dϵG = dnG/dNG = ϵ0n

−γ
G . The efficiency prefactor

ϵ0 > 0 and exponent γ > 0 are free parameters. Since ϵF = 1 is fixed, ϵ0 determines the efficiency
of general circuits compared to feature circuits. We assume that a general circuit’s value is (in
expectation) equal for all tasks, so that nG is independent of k. This gives

NG =

∫
ϵ−1
0 nγ

G dnG = mn1+γ
G , (1)

where m ≡ (ϵ0(1 + γ))−1.
In Fig. 1, we illustrate the assumed latent circuit population graphically as an “efficiency spec-

trum”, inspired by Vaintrob (2025). Each circuit’s efficiency is given by its slope ncirc/Ncirc. As we
will see below, DOF contributed by different circuits may combine nonlinearly to reduce the loss. If
these nonlinear interactions were neglected, the optimal capacity-constrained model would imple-
ment circuits in descending efficiency order. Therefore, the efficiency spectrum can be interpreted
as a rough guideline as to each circuit’s importance.

We want to measure to what extent the AI system uses general capabilities. We define two
metrics measuring distinct but related quantities. First, to measure the fraction of model capacity
devoted to general circuits, we define the capacity fraction,

NG

N
=

NG

NF +NG
. (2)
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Figure 1: Cartoon diagrams representing efficiency spectra of the latent circuit population, with slope
ϵcirc = ncirc/Ncirc. Blue crosses show (overlapping) feature circuits and orange circles show general circuits.
Left: Efficiency spectrum for a single task. Right: Efficiency spectrum for a power-law task distribution.
The general circuits appear identical on both sides, as they have the same value for all tasks.

Second, to measure the expected fraction of DOF attributable to general circuits, we define the
DOF fraction, 〈nG

n

〉
= Etask

[
nG

nF(task) + nG

]
. (3)

For the power law setting, the DOF fraction is computed as

〈nG

n

〉
=

1∑∞
k k−(1+α)

∞∑
k

nG

nk + nG
k−(1+α) =

1

ζ(1 + α)

∞∑
k

nG

nk + nG
k−(1+α), (4)

where ζ(s) is the Riemann zeta function.

2.3 Single task

For a single-task data distribution, the loss is (up to an overall constant factor),

L = max(1, nF + nG)
−c/D, (5)

where the max function sets the loss to that of a random predictor if both nF and nG are 0. The
capacity constraint is,

N = nF +mn1+γ
G . (6)

Intuitively, if ϵ0 < 1, feature circuits dominate, giving an optimal value of nG = 0. If ϵ0 > 1,
general circuits dominate until their marginal efficiency decreases enough that feature circuits take
over. To see this quantitatively, we examine the only three possible cases. First, only feature
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circuits could be learned, so that nG = 0, giving nF = N and L = N−c/D. Next, only general
circuits could be learned, so that nF = 0, giving nG = (N/m)1/(1+γ) and L = (N/m)−c/D/(1+γ).
Finally, both feature circuits and general circuits could be learned. To solve for nF and nG, we use
the method of Lagrange multipliers. The Lagrangian is

L1 = (nF + nG)
−c/D − λ(nF +mn1+γ

G −N). (7)

In Appendix A, we solve for the optimal values of nG and nF. The solution is

nG = [m(1 + γ)]−1/γ = ϵ
1/γ
0 , (8)

nF = N − (1 + γ)−1ϵ
1/γ
0 . (9)

It follows that

L =

(
N +

γ

1 + γ
ϵ
1/γ
0

)−c/D

. (10)

Eq. 8, along with the constraints 1 ≤ nG ≤ N , implies that feature circuits and general circuits

can only coexist when ϵ0 ≥ 1 and N ≲ (1+γ)mϵ
(1+γ)/γ
0 . Of allowed cases, whichever one minimizes

the loss determines the overall behavior. If ϵ0 < 1, then ⟨nG/n⟩ = 0 exactly. If ϵ0 ≥ 1, then for

large N , nG = ϵ
1/γ
0 is a constant and ⟨nG/n⟩ → 0.

2.4 Power-law task distribution

Next, we study a power-law task distribution. The loss is

L =
∞∑
k=1

Lk =
∞∑
k=1

max(1, nk + nG)
−c/D 1

ζ(1 + α)
k−(1+α), (11)

and the capacity constraint is

N =
∞∑
k=1

nk +mn1+γ
G . (12)

Since k−(α+1) is monotonically decreasing, the optimal allocation of the nk must be monotoni-
cally non-increasing. Since the nk are nonnegative and discrete, there exists a break at some rank
kbr such that nk > 0 for all k < kbr and nk = 0 for all k > kbr. At equilibrium, the marginal loss
reduction due to features learned for any two tasks of rank ki, kj < kbr must be equal, yielding

nki + nG

nkj + nG
=

(
ki
kj

)− 1+α
1+c/D

. (13)

Eq. 13 is solved by the ansatz, introducing variables a > 0 and b < 1,

nk =

{
akb−1 − nG, k < kbr

0, k ≥ kbr.
(14)
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It follows from Eq. 13 and Eq. 14 that

b = 1− 1 + α

1 + c/D
=

c/D − α

1 + c/D
. (15)

To find the optimal values of a, kbr and nG, we again use the method of Lagrange multipliers.
The Lagrangian is

L(a, kbr, nG, λ) =

kbr∑
k=1

max
(
1, akb−1

)−c/D 1

ζ(1 + α)
k−(1+α) +

∞∑
k=kbr

max(1, nG)
−c/D 1

ζ(1 + α)
k−(1+α)

− λ

(
kbr∑
k=1

(
akb−1 − nG

)
+mn1+γ

G −N

)
.

(16)

As before, there are three possible cases: the optimal model instantiates only feature circuits
(Case F); only general circuits (Case G); or both (Case FG). As before, the case that minimizes
the loss determines the overall behavior, and the overall loss is given by min (LF, LG, LFG).

2.4.1 Case F: feature circuits only

This case is equivalent to the model scaling setting previously studied by Brill (2024). However, the
derivation presented here employs fewer approximations than Brill (2024), yielding a more exact
loss curve prefactor. With feature circuits only, the Lagrangian is

LF(a, kbr, λ) =

kbr∑
k=1

(
akb−1

)−c/D 1

ζ(1 + α)
k−(1+α) +

∞∑
k=kbr

1

ζ(1 + α)
k−(1+α) − λ

(
kbr∑
k=1

akb−1 −N

)
.

(17)
In Appendix B, we solve for the optimal a and kbr using Lagrange multipliers. We obtain

a = Ck1−b
br , (18)

where C = (1 + c/D)1/(c/D), and

1

b
kbr

(
1− k−b

br

)
=

N

C
. (19)

Eq. 19 has no closed-form solution. We obtain the approximations for kbr in limiting cases and
for large N , where W (x) denotes the Lambert W function,

kbr ≈


N/C 0 < b < 1, |b| ∼ 1,

W (N/C)−1(N/C) |b| ≪ 1,

(|b|N/C)1/(1+|b|) b < 0, |b| ≫ 1.

(20)

The expression for the loss is then,
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LF =

[
1 +

(
α

1 + c/D

)
N/C

kbr

]
k−α
br (21)

∝


N−α 0 < b < 1, |b| ∼ 1,

W (N/C)1+αN−α |b| ≪ 1,

N−c/D b < 0, |b| ≫ 1,

(22)

The full expressions including prefactors are given in Eq. 45.

2.4.2 Case G: general circuits only

With only general circuits, the Lagrangian simplifies to

LG(nG, λ) =
∞∑
k=1

n
−c/D
G

1

ζ(1 + α)
k−(1+α) − λ

(
mn1+γ

G −N
)

= n
−c/D
G − λ

(
mn1+γ

G −N
)
. (23)

It follows that nG = (N/m)1/(1+γ) and LG = (N/m)−c/D/(1+γ), as for a single task.

2.4.3 Case FG: both feature and general circuits

If both feature circuits and general circuits are instantiated, the Lagrangian simplifies to

LFG(a, kbr, nG, λ) ≈
(
αa−c/D − λa

) kbbr − 1

b
+ n

−c/D
G k−α

br − λ
(
mn1+γ

G − (kbr − 1)nG −N
)
. (24)

In Appendix C, we solve for the optimal a, kbr, and nG. Again, there is no closed-form solution,
and we obtain

a = nGk
1−b
br , (25)

kbr =
α

1 + α

(
1 +m(1 + γ)nγ

G

)
, (26)

N = nG

kbr
(
1− k−b

br

)
b

− (kbr − 1) +mnγ
G

 , (27)

We use the same approximations employed in Sec. 2.4.1 and consider large N to obtain approx-
imate expressions for nG. We obtain

nG ∝


(N/m)1/(1+γ) 0 < b < 1, |b| ∼ 1,

W (const ·N) · (N/m)1/(1+γ) |b| ≪ 1,

(N/m)1/(1+γ−bγ) b < 0, |b| ≫ 1.

(28)

8



The full expressions including prefactors are given in Appendix C, in Eq. 59, Eq. 61, and Eq. 64.
The resulting expression for the loss is

LFG ≈ α

(
1− b

R

)1+α
(
γ +

N

mn1+γ
G

)(
mn1+γ

G

)−α
n
−(c/D−α)
G (29)

∝


(N/m)

− c/D−α
1+γ N−α 0 < b < 1, |b| ∼ 1,

(γ +W (const ·N))W (const ·N)
c/D−α
1+γ

+α · (N/m)
− c/D−α

1+γ N−α |b| ≪ 1,

N−c/D b < 0, |b| ≫ 1.

(30)

The full expressions including prefactors are given in Appendix C, in Eq. 65, Eq. 66, and Eq. 67.

3 Experiments

We performed numerical experiments to explore the model’s properties for the setting of power-law-
distributed data and verify our analytical approximations. The loss function given by Eq. 11 was
numerically optimized with gradient descent using PyTorch (Paszke, 2019). For all experiments,
the parameters were a vector of nk values, truncated to a length of 5000, and a scalar value of nG,
with the values of c/D, α, ϵ0, γ, and N specified as hyperparameters.

To enforce the capacity constraint given by Eq. 12, an auxiliary term was appended to the loss,

Laux = δ|L|

∣∣∣∣∣N̂ −N

N

∣∣∣∣∣ , (31)

where δ is a hyperparameter setting the constraint strength, |L| is the loss magnitude at the current
step (computed with a stop gradient), and N̂ is the value of N computed from the parameters. For
all experiments, δ = 5.0 was used.

To enforce the bounds nG > 0 and nk > 0 for all k during optimization, each parameter was
wrapped with a soft maximum constraint of the form Softplus(n). Similarly, to clamp nk+nG to a
minimum of 1, a soft constraint of the form Softplus(n− 1) + 1 was applied. When reporting final
metrics, these soft constraints were replaced with hard maximum constraints.

For all experiments, training was performed for 2× 104 steps using the AdamW optimizer with
a learning rate of 1.0, no weight decay, and a cosine annealing learning rate decay schedule with
Tmax equal to the number of steps (Kingma and Ba, 2014; Loshchilov and Hutter, 2017, 2016). If
not otherwise mentioned, PyTorch default hyperparameters were used.

Fig. 2 and Fig. 3 show the experimental results. The top panels of Fig. 2 show model scaling
curves for nG and L, overlaid with the corresponding analytical approximations for appropriate
limits. The analytical curves agree well with the numerical results. The bottom panels of Fig. 2
show how the capacity fraction and DOF fraction scale with N . Fig. 3 shows how these metrics
change when keeping N fixed and instead varying either c/D or α.

4 Discussion

Although the presented model is quite simple, it displays a number of interesting properties.
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Figure 2: Model scaling curves with power-law distributed data. Points connected by dotted lines show
numerically optimized results, and solid lines show analytical approximations. Top left: DOF from general
circuits vs. N . Top right: loss vs. N . Bottom left: capacity fraction vs. N . Bottom right: DOF fraction
vs. N . All results computed using α = 1, ϵ0 = 0.01, and γ = 0.5.

4.1 General capabilities require training task diversity

For a data distribution consisting of a single task, the amount of general capabilities learned has a
constant upper bound, which may be none (Sec. 2.3). In particular, for any general capabilities to
be learned, the most efficient general circuits must actually be more efficient than feature circuits,
with ϵ0 > ϵF. By contrast, a power-law task distribution can support general capabilities (Sec. 2.4).
In the power-law task setting, the absolute level of general capabilities increases indefinitely with
model scale, as indicated by the scaling of nG in Fig. 2a.

4.2 General capabilities emerge abruptly

General capabilities are discontinuous with model scale. As shown in Fig. 2, below a threshold
model scale at which the first general circuit is learned, nG = 0 and the model has no general
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Figure 3: Data diversity and model expressivity increase general capabilities. Left: ⟨nG/n⟩ vs. α for
c/D = 1 and several γ values. Right: ⟨nG/n⟩ vs. c/D for α = 1 and several γ values. Results computed
numerically using ϵ0 = 0.01 and N = 1× 105.

capabilities. Above that threshold scale, the fraction of the model devoted to general capabilities
jumps up abruptly. This behavior may resemble the abrupt emergence of general-purpose abilities,
such as in-context few-shot learning, reported in LLMs (Brown et al., 2020).

4.3 General capabilities unlock steeper scaling laws

As is visible in Fig. 2b, the emergence of general capabilities is accompanied by a break in the loss
curve where the loss begins to decrease faster. The observed break corresponds to the turnover
from learning only feature circuits (Sec. 2.4.1) to learning both feature circuits and general circuits
(Sec. 2.4.3). A steeper scaling law occurs because general circuits can decrease the loss on multiple
tasks in parallel. The appearance of a strong break requires c/D > α.

4.4 General capabilities decrease proportionally with model scale

After general capabilities emerge, their relative importance diminishes as the model scale increases
further. This pattern occurs similarly for the capacity fraction (Fig. 2c) and DOF fraction (Fig. 2d).
It arises because the marginal efficiency of the remaining general circuit population decreases as
more of them are learned, and feature circuits are relied on proportionally more. As a result, the
AI system’s reliance on general capabilities decouples from its loss. With increasing scale, less of
the loss improvement is attributable to general capabilities. Notably, this occurs even though we
assume a training procedure with access to an arbitrary amount of training computation and data.

4.5 Data diversity strongly enhances general capabilities

Data diversity has a strong effect on general capabilities. As shown in Fig. 3a, the DOF fraction
increases sharply as α approaches 0. This limit corresponds to the task distribution becoming
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more uniform. This toy model therefore suggests that methods to artificially enhance data di-
versity, such as pruning examples of common tasks or oversampling examples of rare ones, could
disproportionately increase general capability learning.

4.6 Model expressivity moderately enhances general capabilities

Model expressivity also enhances general capabilities, but much more weakly. This behavior is
shown in Fig 3b, and can be interpreted as follows. If c is made larger (holding fixed the data
dimension D), the model can achieve lower loss while using the same model capacity. Model
capacity can then be more quickly allocated to more tasks’ circuits. In effect, model expressivity
indirectly increases general capabilities by increasing the accessible task diversity.

4.7 Limitations

This work studies a highly simplified and abstract toy model of AI systems. The analysis assumes
that an AI system is purely capacity-constrained, but constraints such as training data, training
computation, contextual data at inference time, or inference computation also could be important.
In addition, an optimal model is a useful assumption only if it can be approximated with practical
training procedures, requiring that complications such as circuit learnability and path-dependence
in training be negligible. While the simplified notions of model capacity and degrees of freedom
applied in this work suffice to predict qualitative phenomena, making specific quantitative predic-
tions would require connecting them to empirically measurable quantities such as neural network
parameters. Finally, it may be difficult to empirically constrain the parameters ϵ0 and γ that govern
the putative latent circuit population, independently from a trained AI system.
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A Single task derivation

For a single-task data distribution, the Lagrangian is

L1 = (nF + nG)
−c/D − λ(nF +mn1+γ

G −N), (7)

with the optimal values of nF and nG given by the equations,

∂L1

∂nF
= 0 = − c

D
(nF + nG)

−(1+c/D) − λ, (32)

∂L1

∂nG
= 0 = − c

D
(nF + nG)

−(1+c/D) − λm(1 + γ)nγ
G, (33)

∂L1

∂λ
= 0 = N − nF −mn1+γ

G . (34)

From Eq. 34, nF = N −mn1+γ
G , and from Eq. 32, λ = −(c/D)(nF + nG)

−(1+c/D). Substituting
into Eq. 33 gives

0 = − c

D
(N −mn1+γ

G + nG)
−(1+c/D)

[
1−m(1 + γ)nγ

G

]
, (35)

which has the solution

nG = [m(1 + γ)]−1/γ = ϵ
1/γ
0 , (8)

nF = N − (1 + γ)−1ϵ
1/γ
0 . (9)

It follows that

L =

(
N +

γ

1 + γ
ϵ
1/γ
0

)−c/D

. (10)
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Eq. 8, along with the constraints 1 ≤ nG ≤ N , implies that feature circuits and general circuits

can only coexist if ϵ0 ≥ 1 and N ≲ (1 + γ)mϵ
(1+γ)/γ
0 . Of allowed cases, whichever one minimizes

the loss determines the overall behavior. Combining the three cases yields

nG =


0 ϵ0 < 1,

(N/m)1/(1+γ) ϵ0 ≥ 1, N ≤ (1 + γ)mϵ
(1+γ)/γ
0 ,

ϵ
1/γ
0 ϵ0 ≥ 1, N > (1 + γ)mϵ

(1+γ)/γ
0 .

(36)

If ϵ0 < 1, then ⟨nG/n⟩ = 0 exactly. If ϵ0 ≥ 1, then for large N , ⟨nG/n⟩ = ϵ
1/γ
0

(
N + γ

1+γ ϵ
1/γ
0

)−1
,

so as N increases, ⟨nG/n⟩ approaches 0.

B Power-law task distribution derivation: Case F

B.1 Lagrange equations

With feature circuits only, the Lagrangian is,

LF(a, kbr, λ) =

kbr∑
k=1

(
akb−1

)−c/D 1

ζ(1 + α)
k−(1+α) +

∞∑
k=kbr

1

ζ(1 + α)
k−(1+α) − λ

(
kbr∑
k=1

akb−1 −N

)
(17)

This simplifies to

LF =

(
a−c/D

ζ(1 + α)
− λa

)
kbr∑
k=1

kb−1 +
1

ζ(1 + α)

∞∑
k=kbr

k−(1+α) + λN

≈
(
αa−c/D − λa

) kbbr − 1

b
+ k−α

br + λN, (37)

where we used the identity,

c

D
(1− b) = α+ b.

The optimal values of a and kbr are determined by the equations,

∂LF

∂a
= 0 =

(
−α

c

D
a−(1+c/D) − λ

) kbbr − 1

b
, (38)

∂LF

∂kbr
= 0 =

(
αa−c/D − λa

)
kb−1
br − αk

−(1+α)
br , (39)

∂LF

∂λ
= 0 = N − a

kbbr − 1

b
. (40)

Solving Eq. 38 and Eq. 39 for λ and equating the resulting expressions gives
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−α
c

D
a−(1+c/D) = α

(
a−(1+c/D) − 1

a
k
− c

D
(1−b)

br

)
, (41)

which reduces to

a = Ck1−b
br , (18)

where C = (1 + c/D)1/(c/D). Solving Eq. 40 for a and substituting into Eq. 18, we obtain

1

b
kbr

(
1− k−b

br

)
=

N

C
. (19)

B.2 Limiting cases

Eq. 19 has no closed-form solution, but we can find approximations in limiting cases. Table 1 lists
the most suitable limiting case for each combination of magnitudes of c/D and α. For brevity, we

denote K ≡ kbr

(
1− k−b

br

)
/b.

1. 0 < b < 1, |b| ∼ 1.

Expanding to first order in the small quantity (1− b), we obtain

K ≈ (kbr − 1) + (1− b) (kbr − ln kbr − 1) . (42)

2. |b| ≪ 1.

Expanding to leading order in b, we obtain

K ≈ kbr ln kbr

(
1− b

2
ln kbr

)
. (43)

Neglecting the correction term, Eq. 43 can be equivalently written as kbr = K/W (K) =
expW (K), where W (x) is the Lambert W function.

3. b < 0, |b| ≫ 1.

Assuming kbr is not too small, we can make the approximation

K ≈ −1

b
k1−b
br =

1

|b|
k
1+|b|
br . (44)

Using these approximations, we have, for large N ,

kbr ≈


N/C 0 < b < 1, |b| ∼ 1,

W (N/C)−1(N/C) |b| ≪ 1,

(|b|N/C)1/(1+|b|) b < 0, |b| ≫ 1.

(20)

The loss is then, using the above approximations and for large N ,
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Regime c/D α |b| b → C →
I

≪ 1
≪ 1 ≪ 1 c/D − α

eII ∼ 1 ∼ 1 −α
III ≫ 1 ≫ 1
IV

∼ 1
≪ 1 ∼ 1 (c/D)/(1 + c/D)

2V ∼ 1 ≪ 1 (c/D − α)/(1 + c/D)
VI ≫ 1 ≫ 1 −α/(1 + c/D)
VII

≫ 1
≪ c/D ∼ 1 1− (1 + α)/(1 + c/D)

1VIII ∼ c/D ≪ 1
1− α/(c/D)

IX ≫ c/D ≫ 1

Table 1: Parameter regimes in terms of variables c/D and α, listing the closest limiting approximation for
|b| and corresponding approximations for b and C.

LF = αa−c/D kbbr − 1

b
+ k−α

br

=

[
1 +

(
α

1 + c/D

)
N/C

kbr

]
k−α
br (21)

≈


Cα
[
1 + α

1+c/D

]
N−α 0 < b < 1, |b| ∼ 1,

Cα
[
1 + α

1+c/D · f(N)
]
N−α |b| ≪ 1,

α
|b|(|b|N)−c/D b < 0, |b| ≫ 1,

(45)

where

f(N) = W (N/C)1+α − 1 + c/D

α
.

The prefactor in Eq. 45 differs from the one in the approximate model scaling law derived by
Brill (2024). Eq. 45 is more accurate, as the model scaling law derived by Brill (2024) made an
additional approximation equivalent to C ≈ 1. Also, the prefactor here incorporates a factor of α
from the normalization.

C Power-law task distribution derivation: Case FG

C.1 Lagrange equations

If both feature circuits and general circuits are instantiated, the Lagrangian simplifies to

LFG(a, kbr, nG, λ) ≈
(
αa−c/D − λa

) kbbr − 1

b
+ n

−c/D
G k−α

br − λ
(
mn1+γ

G − (kbr − 1)nG −N
)
, (24)

and the optimal values of a, kbr, and nG are determined by the equations
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∂LFG

∂a
= 0 =

(
−α

c

D
a−(1+c/D) − λ

) kbbr − 1

b
, (46)

∂LFG

∂kbr
= 0 =

(
αa−c/D − λa

)
kb−1
br − αn

−c/D
G k

−(1+α)
br + λnG, (47)

∂LFG

∂nG
= 0 = − c

D
n
−(1+c/D)
G k−α

br − λm(1 + γ)nγ
G + λ(kbr − 1), (48)

∂LFG

∂λ
= 0 = N − a

kbbr − 1

b
−mn1+γ

G + (kbr − 1)nG. (49)

Each of Eq. 46, Eq. 47, and Eq. 48 can be solved for λ, giving the expressions

λ = −α
c

D
a−(1+c/D), (50)

λ = α

(
a−(1+c/D) − 1

a

(
nGk

1−b
br

)−c/D
)(

1− 1

a
nGk

1−b
br

)−1

, (51)

λ = − c

D
n
−(1+c/D)
G k−α

br

[
m(1 + γ)nγ

G − (kbr − 1)
]−1

. (52)

Equating Eq. 50 and Eq. 52 yields the relation

a

nGk
1−b
br

= Γ, (53)

where

Γ =

(
α

kbr

[
m(1 + γ)nγ

G − (kbr − 1)
]) 1

1+c/D

. (54)

Equating Eq. 50 and Eq. 51 yields

0 =

(
a

nGk
b−1
br

)1+c/D

−
(
1 +

c

D

)( a

nGk
b−1
br

)
+

c

D
, (55)

and the further substitution of Eq. 53 results in the equation

0 = Γ1+c/D −
(
1 +

c

D

)
Γ +

c

D
. (56)

By inspection, Γ = 1 is a solution. Furthermore, because the derivative (1 + c/D)(Γc/D − 1) is
positive for all Γ > 1 and negative for all 0 < Γ < 1, this solution is unique. It follows that

a = nGk
1−b
br , (25)

kbr =
α

1 + α

(
1 +m(1 + γ)nγ

G

)
. (26)
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Finally, Eq. 49, along with Eq. 25, yields

N = nG

kbr
(
1− k−b

br

)
b

− (kbr − 1) +mnγ
G

 . (27)

C.2 Limiting cases

As with Eq. 19, Eq. 27 does not have a simple closed-form solution for kbr. We approach it by
examining exact or approximate solutions for specific cases. We can simplify Eq. 27 by considering
approximations for limiting cases and keeping only dominant terms for large N .

1. 0 < b < 1, |b| ∼ 1.

Using the approximation Eq. 42, we have

N ≈ nG

[
(1− b)(kbr − ln kbr − 1) +mnγ

G

]
≈ (1 +R)mn1+γ

G , (57)

where

R ≡ α(1 + γ)

1 + c/D
, (58)

and the expression for nG is

nG = (1 +R)−1/(1+γ)

(
N

m

)1/(1+γ)

. (59)

2. |b| ≪ 1.

Using Eq. 43, we have

N ≈ nG

[
kbr ln kbr − (kbr − 1) +mnγ

G

]
≈
[
α(1 + γ)

1 + α
ln

(
α(1 + γ)

1 + α
mnγ

G

)
− α(1 + γ)

1 + α
+ 1

]
mn1+γ

G

≈
[
1 +R ln

(
Rmnγ

G/e
)]

mn1+γ
G , (60)

and the expression for nG is

nG = (1 +R · f(N))−1/(1+γ)

(
N

m

)1/(1+γ)

, (61)
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where

f(N) =
γ

1 + γ
W

(
(1 + γ)N

Rγm
· exp

(
(1 + γ)(1 +R ln (Rm/e))

Rγ

))
− 1

R
. (62)

3. b < 0, |b| ≫ 1.

Using Eq. 44, we have

N ≈ nG

[
1

|b|
k1−b
br − (kbr − 1) +mnγ

G

]

≈ m−b

|b|

(
R

1− b

)1−b

mn1+γ−bγ
G , (63)

so that the expression for nG is,

nG =

(
|b|
m−b

)1/(1+γ−bγ))(1− b

R

)(1−b)/(1+γ−bγ)(N

m

)1/(1+γ−bγ)

. (64)

C.3 Loss curve

The loss is then, keeping only dominant terms for large N ,

LFG = αa−c/D kbbr − 1

b
+ n

−c/D
G k−α

br

=

[
1 +

α

kbr

(
N

nG
+ (kbr − 1)−mnγ

G

)]
n
−c/D
G k−α

br

≈
[

α

1 + α
m(1 + γ)

]−α(1 + α

1 + γ

)(
γ +

N

mn1+γ
G

)
n
−(αγ+c/D)
G

= α

(
1− b

R

)1+α
(
γ +

N

mn1+γ
G

)(
mn1+γ

G

)−α
n
−(c/D−α)
G (29)

For the case 0 < b < 1, |b| ∼ 1, we use Eq. 29 and Eq. 59 to obtain

L ≈ α

(
1− b

R

)1+α

(1 + γ +R)(1 +R)
c/D−α
1+γ

+α
(
N

m

)− c/D−α
1+γ

N−α. (65)

For the case |b| ≪ 1, we use Eq. 29 and Eq. 61 to obtain

L ≈ α

(
1− b

R

)1+α

(1 + γ +R · f(N))(1 +R · f(N))
c/D−α
1+γ

+α
(
N

m

)− c/D−α
1+γ

N−α, (66)
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with f(N) given by Eq. 62.
For the case b < 0, |b| ≫ 1, we use Eq. 29 and Eq. 64 to obtain, after some algebra,

L ≈ α

|b|
(|b|N)−c/D. (67)

Eq. 67 is the same as for Case F (Eq. 45), showing that our approximation in this limit is too
coarse to characterize the subdominant contribution from general circuits.

C.4 Threshold model scale

Putting the above results together, the overall loss is given by

L = min (LF, LG, LFG). (68)

.
At a threshold model scale Nth, the class or classes of instantiated circuits may abruptly tran-

sition if the case giving the minimum loss changes. A critical transition can only occur if the loss
curves of two cases intersect at a model scale Nth > 1. When 0 < b < 1, |b| ∼ 1, equating Eq. 45
and Eq. 65 yields

Nth = m(1 +R)1+R/b
[
R−1(1− b)2(1 + α)(1−α)/α

]R/b
. (69)

In the limit |b| ≪ 1, equating Eq. 45 and Eq. 66 yields

Nth = m(1 +R · fFG(Nc))
1+R/b

(
1 + γ +R · fFG(Nc)

1 + γ +R · fF(Nc)

)R/b [
R−1(1− b)2(1 + α)(1−α)/α

]R/b
, (70)

which could be solved numerically for Nth. When b < 0, |b| ≫ 1, Eq. 45 and Eq. 67 are identical,
indicating that our approximations in this limit are too coarse to compute Nth.

In the numerical experiments reported in Sec. 3, the analytical loss curves are combined using
Eq. 68, rather than using Eq. 69 or Eq. 70.
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