
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOCOVR: MULTIUSER INDOOR LOCOMOTION
DATASET IN VIRTUAL REALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding human locomotion is crucial for AI agents such as robots, particu-
larly in complex indoor home environments. Modeling human trajectories in these
spaces requires insight into how individuals maneuver around physical obstacles
and manage social navigation dynamics. These dynamics include subtle behaviors
influenced by proxemics - the social use of space, such as stepping aside to allow
others to pass or choosing longer routes to avoid collisions. Previous research
has developed datasets of human motion in indoor scenes, but these are often
limited in scale and lack the nuanced social navigation dynamics common in home
environments. To address this, we present LocoVR, a dataset of 7000+ two-person
trajectories captured in virtual reality from over 130 different indoor home environ-
ments. LocoVR provides accurate trajectory data and precise spatial information,
along with rich examples of socially-motivated movement behaviors. For example,
the dataset captures instances of individuals navigating around each other in narrow
spaces, adjusting paths to respect personal boundaries in living areas, and coordi-
nating movements in high-traffic zones like entryways and kitchens. Our evaluation
shows that LocoVR significantly enhances model performance in three practical in-
door tasks utilizing human trajectories, and demonstrates predicting socially-aware
navigation patterns in home environments. The dataset and evaluation code are
available at https://anonymous.4open.science/r/LocoVR-1B87/README.md.

1 INTRODUCTION

Predicting human trajectories is crucial for AI systems like home robots. While many outdoor
pedestrian trajectory datasets exist, they are not applicable to indoor settings due to differences in
geometric complexity, scale, and movement patterns. An ideal indoor dataset would include diverse
scenes and trajectories, but creating such a dataset at scale is challenging. Camera-based collection
methods often fail due to obstructions, while advanced 3D scanning methods are limited by high
costs and time constraints. Consequently, a comprehensive dataset of human locomotion in varied
indoor environments remains elusive, hindering the development of AI systems that can effectively
navigate and assist in home settings.

To overcome data collection challenges, we propose LocoVR, a dataset captured in virtual reality
(VR) that efficiently captures detailed spatial information, human-scene interactions, and human-
human social motion behaviors across diverse indoor environments. LocoVR captures task-focused
movements of two people in over 130 home settings, including their trajectories, head orientations,
and precise spatial data. Crucially, LocoVR captures motion proxemics - the social use of space,
such as yielding in narrow spaces, maintaining personal distances in shared areas, and coordinating
movements in high-traffic considering the Interpersonal Adaptation Theory Burgoon et al. (1995).
These proxemics-based motion behaviors, often missing in current datasets, serve as a form of
non-verbal communication, and are influenced by factors such as the relationship between individuals
and their cultural backgrounds Hall (1963); Watson (2014). Human social dynamics can provide
valuable insights for home robots to navigate domestic spaces more naturally while adhering to
implicit social norms.

Our goal is to understand and predict human trajectories in complex indoor environments by consid-
ering both geometric constraints and social proxemics. Geometrically, we aim to model how people
avoid obstacles and find efficient paths. Socially, we want to capture how individuals anticipate and
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react to other people’s movements, adjusting their trajectory to avoid collisions, maintaining personal
space, and minimizing path interference.

We demonstrate our dataset through three tasks: global path prediction, trajectory prediction, and
goal area prediction (Figure1). The first two tasks showcase the dataset’s capability to facilitate
geometrically and socially aware path predictions, while the last task demonstrates its versatility in
supporting a broad spectrum of applications. Our key contributions are outlined as follows.

1. Developing a VR system for the efficient and accurate collection of two-person trajectories across
diverse indoor environments.

2. Building the first large-scale indoor trajectory dataset featuring two-person motions, which
enhances task performance in unseen indoor scenes from both geometric and social perspectives.

3. Showcasing enhanced model performance trained on our dataset across three practical indoor
tasks, demonstrating geometrically and socially aware navigation patterns in home environments.

Figure 1: Overview of the data collection VR system, snippets of the LocoVR dataset, and the
dataset applications. We collected multi-person trajectories in 131 complex indoor scenes, including
trajectory with head orientation, precise geometry. In the dataset applications, predicted and past
trajectories are shown in red and blue, respectively.

2 RELATED WORK

2.1 DATASETS FOR SOCIAL NAVIGATION

Datasets for social robot navigation can be categorized based on their scene types and the nature of the
robot or human agent involved. Studies such as Rudenko et al. (2020); Schreiter et al. (2024); Finean
et al. (2023); Manso et al. (2020) provide datasets collected in controlled lab settings where robots
coexist with humans. While these datasets offer valuable insights into human-robot interactions in
indoor settings, their scene structure is simplistic, and the number of unique scenes is limited, which
reduces their capability on diverse real-world indoor settings. On the other hand, datasets like SIT
Bae et al. (2024), SACSON Hirose et al. (2023), JRDB Vendrow et al. (2023), and Socnav1 Manso
et al. (2020) capture interactions in crowded public spaces by robots or human equipped with cameras
and Lidar. Despite their richness in capturing diverse interactions, the open and unstructured nature of
these scenes poses challenges for generalizing the findings to indoor settings. Furthermore, the partial
observation of scene structures limits their application for indoor navigation tasks, such as global
path planning. Datasets such as those proposed by Zhou et al. Zhou et al. (2012), Robicquet et al.
Robicquet et al. (2016), Ess et al. Ess et al. (2007), and Kothari et al. Kothari et al. (2021) used aerial
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cameras to capture human trajectories and surrounding scene images. They provide complementary
data on human trajectories and scene geometry across a wide range of environments, enabling the
study of crowd dynamics. However, their applicability to indoor scenes is limited due to differences
in scene structure, spatial constraints, and interaction dynamics within enclosed spaces.

2.2 DATASETS FOR HUMAN MOTION SYNTHESIS AND GENERATION

Understanding human motion is important for various research problems, such as synthesizing motion
for 3D environments. Prior work has studied the 3D human motion problem and built datasets to sup-
port research in this domain. One line of research has explored human-scene interactions and focused
on understanding how environmental constraints affect human behavior, such as GIMO (Zheng et al.,
2022; Guzov et al., 2021; Zhang et al., 2022). A challenge faced by human-scene interaction datasets
is capturing scene variation is difficult and expensive. To address this challenge, prior research Wang
et al. (2022); Cao et al. (2020) has worked on synthesizing human motions in virtual environments and
game engines or generating human motions with generative AI models. However, these synthesized
motions do not necessarily follow human behavior principles, especially when social motion behav-
iors are involved. Additionally, the existing datasets focus mainly on single-person motions though
understanding multi-person social motion behavior is critical for many practical applications, such as
human-robot collaboration. Moreover, existing human motion datasets provide limited locomotion
data needed to understand room-scale human motion dynamics, as they primarily focus on capturing
fine-grained details of individual actions, such as opening a fridge. To fill these research gaps, we
introduce LocoVR, a novel dataset comprising two-person trajectories with social motion behaviors,
collected using VR to allow a large number of trajectories across diverse indoor scene variations.

2.3 VR SYSTEMS FOR HUMAN MOTION ANALYSIS

VR technologies including motion tracking systems have been extensively used to study human-scene
interactions and behavior across various domainsLee et al. (2023); Takahashi et al. (2021); Simeone
et al. (2017); Brookes et al. (2020), including sports strategy evaluation Wang et al. (2024b), road
crossing studies Gallo et al. (2024), and navigation in crowded environments Yun et al. (2024). These
applications have demonstrated their versatility in replicating real-world scenarios while ensuring
safety and repeatability. Datasets specifically developed for VR-based studies focus on distinct
scenarios, such as road crossing Wu et al. (2023) and object-approaching tasks Araújo et al. (2023).
While these datasets facilitate task-specific behavioral analyses, they lack representation of complex
indoor locomotion scenarios involving intricate geometry and multi-person interactions. To address
this gap, we introduce a VR system that delivers an immersive locomotion experience across diverse
indoor scenes, offering a novel dataset and valuable insights to advance research on human locomotion
and interactions in complex indoor environments.

3 LOCOVR DATASET

3.1 OVERVIEW

Table 1 summarizes the statistics of existing human trajectory and motion datasets and LocoVR.
Our dataset contains 2500K frames of human trajectories in 131 scenes (see Figure 2 for examples).
The number of scenes surpasses all the real human motion datasets. We collected two-person
trajectories that are geometrically and socially aware, which is not included in most of the compared
datasets. The number of trajectories is 7071 in total (see Appendix I for detailed statistics of
LocoVR). LocoVR facilitates the enhancement of task performances from both geometric and social
perspectives in unseen, complex, and confined indoor environments. Also, it includes body tracker
data on head/waist/hands/feet as auxiliary information. These additional observations could facilitate
a deeper understanding of human locomotion and enhance model performance.

3.2 DATA COLLECTION

Figure 1 shows our data collection system. The data collection experiment has been approved by the
IRB at our institution under protocol # anonymized. During the experiment, two people wore VR
headsets to see a shared virtual environment where they could interact with each other and perform
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Table 1: Statistics of existing human motion datasets and our LocoVR dataset.
Dataset Frame

Scene Subject

Count Geometry Location Pos/Pose Multi Motion∗ Target− action

HPS (Guzov et al., 2021) 300K 8 ✓(3D mesh) Out/Indoor 3D ✓ Real Daily actions

EgoBody (Zhang et al., 2022) 153K 15 ✓(3D mesh) Indoor 3D ✓ Real Daily actions

PROX (Hassan et al., 2019) 100K 12 ✓(3D mesh) Indoor 3D Real Daily actions

GIMO (Zheng et al., 2022) 129K 19 ✓(3D mesh) Indoor 3D, Gaze Real Daily actions

Grand Station (Zhou et al., 2012) 50K 1 ✓(Aerial image) Outdoor 2D ✓ Real Trajectory

SDD (Robicquet et al., 2016) 929K 6 ✓(Aerial image) Outdoor 2D ✓ Real Trajectory

ETH (Ess et al., 2007) 50K 2 ✓(Aerial image) Outdoor 2D ✓ Real Trajectory

THOR (Rudenko et al., 2020) 360K 3 ✓(3D point cloud) Indoor 2D ✓ Real Trajectory

JRDB (Vendrow et al., 2023) 636K 30 ✓(3D point cloud) Out/Indoor 3D ✓ Real Trajectory

GTA-IM (Cao et al., 2020) 1000K 10 ✓(3D mesh) Indoor 3D Synthetic Trajectory

HUMANISE (Wang et al., 2022) 1200K 643 ✓(3D mesh) Indoor 3D Synthetic Daily actions

CIRCLE (Araújo et al., 2023) 4300K 9 ✓(3D mesh) Indoor 3D Real Daily actions

THOR-MAGNI (Schreiter et al., 2024) 1260K 4 ✓(3D mesh) Indoor 3D, Gaze ✓ Real Trajectory, Daily actions

LocoVR (Ours) 2500K 131 ✓(3D mesh) Indoor 3D, Head ✓ Real Trajectory, Social motion

∗“Real” refers to real human motions and walking behaviors captured via video or motion capture; “Synthethic” refers to synthesized human
motions and behaviors via animation techniques.

Figure 2: LocoVR includes 131 scenes with detailed spatial information, like photorealistic textures,
3D geometry, and semantics. Blue and red curves show two people’s trajectories in one session.

tasks that required walking. The participants’ movements were recorded in real-time by motion
capture and mapped onto virtual avatars that move in the same way as the participants to help them
keep social awareness. The advantages of our system include: (1) scene variation is fast and easy
by switching the virtual scenes such that human trajectory data in a large variety of scenes can be
collected; (2) accurate spatial information can be obtained by recording the spatial data in digital
format; (3) participants can walk naturally and produce locomotion data recorded in VR as the virtual
room has been well aligned with the physical space; (4) geometrically and socially aware motion
behaviors can be accurately and easily controlled and replicated in a virtual space.

The data collection was conducted in a 10m by 10m open indoor room in the physical space, where
participants walked within similarly sized virtual rooms. In the experiment, each person was assigned
a unique goal, represented by a virtual marker that only they could see. Once they reached their goal,
a new goal appeared in a different location, starting a new round of the task. The new goal appeared
at a random location, which was at least 2m away from the previous goal position, to prevent short
trajectories. This process repeated around 5 minutes per scene to allow the participants to fully
explore the virtual environment and add variations to the collected trajectory data. See Appendix F
for more details of the data collection setup.
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4 EVALUATION

We evaluate our dataset by demonstrating its usage in the following trajectory-based indoor tasks:

1. Global path prediction: This task estimates a static global path from a start to a goal, applicable to
goal-conditioned human path prediction or global path planning for robots. The task demonstrates
the capability of our dataset to learn physically and socially plausible human trajectory, including
social motion behaviors such as maintaining social distance when passing or choosing longer routes
to avoid others. The input includes the past trajectories of two people, p1 and p2 (length=1.0s,
interval=0.067s), past heading directions of p1 and p2 (length=1.0s, interval=0.067s), scene map,
and goal position. The output is a static path from the start to the goal.

2. Trajectory prediction: This task predicts short-term future trajectories based on past movement
data and is used to develop policies for robots to avoid collisions with other humans. By training
on our dataset, trajectory prediction models can consider the movements of others in indoor
environments where the space is small and where obstacles have a significant impact on path
choice. The input contains the past trajectories of p1 and p2 (length=1.0s, interval=0.067s), past
heading directions of p1 and p2 (length=1.0s, interval=0.067s), and the scene map. The output is
time-series future trajectories of p1 and p2 (length=3.0s, interval=0.067s).

3. Goal prediction: This task predicts the goal position based on past trajectory and can be used in
applications where robots or AI predict potential goals as people begin to move toward their next
task location. We demonstrate that the goal prediction model trained on our dataset effectively
narrows down the goal candidates by considering scene geometry and past trajectory. The input
are the past trajectory and heading directions of p1 (length=6.0s, interval=0.067s) and the scene
map. The output is a predicted goal position. Note that the arrival time at the goal is not given.

In these tasks, it is crucial to consider how human trajectories are influenced by goal positions,
the movements of other people, and scene geometry. Particularly, geometry is a dominant factor
affecting human trajectories in complex indoor environments. Although there are geometry-aware
trajectory prediction models like NSP Yue et al. (2022), Goal-GAN Dendorfer et al. (2020), and
SoPhie Sadeghian et al. (2019), they often compress geometric features into small sets, losing the
detailed structure of the entire scene. As a result, these models struggle to learn how humans move in
complex indoor geometries. To address this, we employed U-Net-based models (a simple U-Net and
Ynet(Mangalam et al., 2021)) to preserve the scene geometry. Details of the benchmark models for
each task are described in the following sections. Additionally, in the tasks, we incorporated both
the trajectories and heading directions (front direction of head poses) of individuals to maximize
prediction performance, as head direction data are available in all benchmark datasets, including
LocoVR, GIMO, and THOR-MAGNI.

4.1 DATASETS

4.1.1 TRAINING DATASETS

We evaluated LocoVR and two existing datasets as a benchmark. Given the absence of datasets
specifically focusing on locomotion in complex indoor scenes, we chose GIMO and THOR-MAGNI
as training data because they closely align with LocoVR and are suitable for our tasks.

LocoVR: LocoVR is our main contribution, and it was collected using our VR system. The dataset
includes over 7000 trajectories in 131 indoor environments. We split it into training (85%) and
validation sets (15%).

GIMO Zheng et al. (2022): GIMO is an indoor daily activity dataset containing trajectory data with
heading information in real complex indoor environments, while it has limited scene variations and
only single-person data. We extracted the locomotion data and excluded trajectories that were too
short (< 2s), resulting in 187 trajectories in 19 scenes. We divided the dataset into training (85%)
and validation sets (15%).

THOR-MAGNI Schreiter et al. (2024): THOR-MAGNI is an indoor multi-person trajectory dataset
that contains a number of trajectories comparable to our dataset, including heading information.
However, it includes only four types of scene maps, which are similar to each other. To align the data
format with our test data, we extracted trajectory segments between goals and then picked up pairs of
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trajectories from multi-person trajectories within the same scene. We excluded short trajectories (<
2s) and trajectory pairs that included a time jump in either trajectory. As a result, we obtained around
10,000 trajectories in 4 scenes and divided them into training (85%) and validation sets (15%).

4.1.2 TESTING DATASET

LocoReal: To test the models on real-world data, we built a human trajectory dataset collected in
a physical room space. To collect this dataset, we invited two participants to walk in a room that
contained furniture. Each participant’s movements were tracked and recorded by a motion capture
system. They were then given a list of goals and asked to reach each goal in sequence, one after
another. This allowed us to record the full trajectories of their motion including social behaviors
necessary to navigate around the furniture and in 4 tight spaces. See Appendix G for the details.

4.2 IMPLEMENTATION DETAILS

In our evaluation, all the positional information, such as trajectory or goal position, is handled in 2D
images. We use binary maps as scene maps, with 1 indicating the area between -0.3m to 0.3m height
above the floor level and 0 for all the other areas. The map size is 256 pixels by 256 pixels in the image
and 10m by 10m in the physical world. All the training data are augmented by horizontal flipping and
rotation with 90, 180, and 270 degrees, increasing the number of training data by eight-fold. We also
augmented the data in a time-series direction to obtain different sets of past trajectories and ground
truth future trajectories. We define a fixed length time window and slide it with a certain interval to
obtain sets of augmented trajectories. See Appendix H for the details.

4.3 GLOBAL PATH PREDICTION

4.3.1 BENCHMARK MODELS

A* (Hart et al., 1968) + U-Net Ronneberger et al. (2015): A* is an algorithm that finds the optimal
path using a cost map, minimizing the total cost from the start to the goal. While it is commonly used
for robots to find the shortest path to the goal, we use it to find a human-like path by incorporating the
cost map created based on probabilistic path distributions derived from a model trained on the datasets.
Specifically, we trained the model with a simple U-Net structure using the training datasets (LocoVR,
GIMO, THOR-MAGNI). The model’s input and output have been explained in Section 4. To obtain
the cost map, first take the reciprocal of the model’s output and then multiply it by the obstacle map to
incorporate obstacle information. Additionally, we used two types of non-learning-based cost maps
as benchmarks: MAP and DISTMAP. MAP is based on the scene map, where the cost is 1 in obstacle
areas and 0 elsewhere. DISTMAP is based on the distance from the nearest obstacle, defining the cost
as 1/(1 + d), where d is the distance from the obstacle in pixels (with a maximum value of d = 10).

Ynet (Mangalam et al., 2021): Ynet is a state-of-the-art technique for goal-conditioned human
trajectory prediction. It can generate long-term trajectories considering complex scene geometry
based on multiple U-Net framework. While Ynet predicts a dynamic trajectory to the goal, we convert
into a static global path by projecting the trajectory onto an image to match the benchmark’s output.

4.3.2 METRICS

We adopted an evaluation metric based on Chamfer distance to assess the differences between the
predicted and ground-truth paths. This metric calculates the distance from each pixel in the predicted
path to the nearest pixel in the ground-truth path. We employed the mean and maximum of these
distances across all pixels in the path and converted them to meters.

4.3.3 RESULTS

Quantitative results: Table 2 presents the evaluation results based on two metrics. A* with the U-Net
trained with LocoVR demonstrated significantly superior performance compared to the benchmarks
that include models trained on GIMO and THOR-MAGNI. It is also shown that Ynet trained on
LocoVR presents better accuracy than the other two datasets. This is mainly due to the difference in
scalability of the datasets, including a number of trajectories and scenes. In GIMO, both the number
of trajectories and scenes are limited, whereas THOR-MAGNI has many trajectories but includes
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only 4 scenes, leading to low generalization ability to new scenes not present in the training data. On
the other hand, LocoVR ensures high performance even in unseen scenes owing to its high scalability
in data amount and scene variation. See Table 5 in Appendix C for details.

Table 2: Mean and Max Chamfer distance between predicted and ground-truth paths grouped by
distance to the goal. The table reports averaged value over three trials ± SD.

Method
Mean Max

0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d 0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d

Ynet (GIMO) 0.08±0.003 0.22±0.012 0.51±0.011 0.17±0.003 0.46±0.022 1.11±0.016

Ynet (THOR-MAGNI) 0.10±0.003 0.30±0.006 0.65±0.014 0.19±0.004 0.56±0.008 1.29±0.023

Ynet (LocoVR) 0.09±0.002 0.18±0.004 0.42±0.050 0.18±0.002 0.37±0.005 0.92±0.089

A* + MAP 0.10±0 0.27±0.000 0.40±0.000 0.22±0.000 0.58±0.000 0.89±0.000

A* + DISTMAP 0.102±0 0.18±0.000 0.26±0.000 0.24±0.000 0.46±0.000 0.66±0.000

A* + U-Net (GIMO) 0.09±0.002 0.23±0.006 0.36±0.011 0.20±0.004 0.53±0.013 0.84±0.024

A* + U-Net (THOR-MAGNI) 0.07±0.001 0.21±0.007 0.30±0.005 0.17±0.001 0.45±0.014 0.71±0.015

A* + U-Net (LocoVR) 0.06±0.001 0.12±0.002 0.19±0.003 0.15±0.001 0.29±0.004 0.50±0.014

Qualitative results: Figure 3 shows the result of global path prediction by A* with U-Net trained on
each dataset, in four different scenes. In each image, the yellow distribution indicates lower values
in the cost map that guides the global path prediction. The green and blue lines represent the past
trajectories of p1 and p2, respectively. The orange circle indicates p1’s goal position. The light green
and red lines denote the groundtruth and predicted global path of p1.

While the cost maps of learning-based methods emphasize expected future paths regions, those in
GIMO and THOR-MAGNI are not clear and continuous, hindering the prediction of smooth, human-
like paths. This limitation stems from the restricted scene variations in GIMO and THOR-MAGNI,
leading to poor performance in unseen environments. In contrast, the LocoVR dataset, with its
large-scale diversity, enables the prediction of geometry-aware smooth paths, even in complex and
previously unseen environments.

Furthermore, LocoVR also demonstrates its ability to predict social motion behaviors. In scene 1 and
2 where p2 is walking on the p1’s shortest route to the goal, only the model with LocoVR accurately
predicts a detour route to avoid interrupting p2. In contrast, other models predict shorter routes that
lead to potential collisions with p2. In scenes 3 and 4, where p1 and p2 pass each other in a narrow
space, the model trained on LocoVR predicts paths that maintain a social distance from p2’s potential
trajectory, closely matching the ground truth. Specifically, in scene 3, p1 curves closer to the wall to
keep distance from p2, while in scene 4, p1 steps aside to create space for p2 to pass. This is attributed
to LocoVR’s capability to learn social motion behaviors across diverse scenes.

4.4 TRAJECTORY PREDICTION

4.4.1 BENCHMARKS

U-Net Ronneberger et al. (2015): We evaluated a simple model with a U-Net structure trained using
the datasets (LocoVR, GIMO, THOR-MAGNI). Past trajectories and heading directions of p1 and p2
and the scene map are concatenated and fed to the model, then the U-Net structured encode-decoder
outputs probabilistic distribution of dynamic trajectory for p1 and p2 represented by images.

Ynet (Mangalam et al., 2021): Here, we evaluate performance on dynamic trajectory prediction
using Ynet trained on the datasets (LocoVR, GIMO, THOR-MAGNI). Ynet is a single-person
trajectory predictor; we use the past trajectory of p1 and the scene map as the input. The output is the
probabilistic distribution of dynamic trajectory for p1 represented by images.

4.4.2 METRICS

We use ADE (Average Displacement Error), a commonly used metric, to evaluate the performance of
trajectory synthesis. ADE refers to the mean squared error over all the time correspondence points on
predicted and ground-truth trajectories. The ADE scale is represented in meter units.
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Figure 3: Predicted global paths with cost maps (intense yellow represents low-cost areas). A*
generates the optimal path that minimizes the cost along the way. With LocoVR, the cost map
concretely guides human-like paths (red line) that are capable of avoiding collision with obstacles
and other people’s paths, which align with the groundtruth paths (green line).

4.4.3 RESULTS

Quantitative results: Table 3 reports the performance of trajectory prediction over time. As can be
seen, both Ynet and U-Net trained on LocoVR outperform those trained on other datasets. This is
mainly due to the difference in scalability as described in the global path prediction section: fewer
scene variations or the limited number of trajectories with GIMO and THOR-MAGNI result in a
lack of generalization performance on new scenes. Additionally, social motion behavior, which is
not contained in GIMO, is a factor that affects performance in the two-person setting. See Table 6 in
Appendix C for details.

Table 3: ADE (Average Displacement Error) between predicted and ground-truth time-series trajecto-
ries. The table reports averaged error [m] in all of the trajectories over three trials ± SD.

Method 0s ≤ t ≤ 1s 1s ≤ t ≤ 2s 2 ≤ t ≤ 3s

Ynet (GIMO) 0.28±0.010 0.53±0.011 0.81±0.013

Ynet (THOR-MAGNI) 0.62±0.026 0.89±0.052 0.88±0.042

Ynet (LocoVR) 0.21±0.006 0.40±0.013 0.61±0.011

U-Net (GIMO) 0.19±0.009 0.34±0.010 0.55±0.013

U-Net (THOR-MAGNI) 0.59±0.004 0.92±0.011 1.14±0.016

UNet (LocoVR) 0.11±0.000 0.24±0.004 0.44±0.010

Qualitative results: Figure 4 shows the result of trajectory prediction with U-Net. The model
trained on LocoVR is able to predict a trajectory, taking into account both the obstacles and the other
person’s movement. In contrast, predicted trajectory distribution with GIMO is spread to multiple
directions, resulting in collisions with other people since GIMO does not include multi-person data.
With THOR-MAGNI, the predicted trajectory becomes stuck along the way due to its unstable
performance in unseen scenes.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Predicted trajectory and probabilistic distribution using U-Net. U-Net trained on LocoVR
predicts p1’s trajectory that smoothly proceeds with no collision with obstacles or other people.

4.5 GOAL PREDICTION

4.5.1 BENCHMARK MODELS

U-Net Ronneberger et al. (2015): We applied a simple U-Net model to predict goals. Inputs are past
trajectories of p1 and the scene map; the output is the probabilistic distribution of p1’s goal position.

RANDOM: We evaluated two types of random sampling of goals according to the metric defined
below. One method randomly determines the goal position to assess goal position accuracy, while the
other randomly selects goal objects to evaluate object prediction accuracy.

NEAREST: This benchmark determines the goal position based on a person’s current position, using
two different methods according to the metrics. One samples the goal within 1.5m from the person’s
current position, while the other selects goal objects based on their distance from the current position.

4.5.2 METRICS

Goal position error: It is defined as the distance between the true goal position and the predicted
goal position used to measure the basic performance of goal prediction.

Object prediction accuracy: In the testing dataset (LocoReal), the goal position is on one of the 20+
objects in the scene map, so we evaluate the rate of predicting the correct goal object. We sampled
the best three objects based on confidence and evaluated the rate it includes the true goal object.

4.5.3 RESULTS

Quantitative results: Table 4 presents the performance of the models evaluated on the two metrics.
Compared to RANDOM and NEAREST, the models trained on each dataset exhibit better perfor-
mance. Notably, the model trained with LocoVR significantly outperforms those trained on other
datasets owing to the dataset scale. See Table 7 in Appendix C for details. Performance along the
distance to the goal tends to improve as the distance decreases. Note that the narrowing of the goal
area cannot be attributed to the time duration to the goal, as the arrival time is not provided in this
task. It is assumed that proximity to the goal correlating with longer trajectories offer additional clues
for narrowing down the goal location.

Table 4: Performance on goal position prediction and goal object prediction. The table reports
averaged performance in all of the trajectories over three trials ± SD.

Method
Goal position error Object prediction accuracy

0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d 0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d

RANDOM 3.70±0.02 3.75±0.02 3.76±0.03 15.5±1.0 16.1±0.5 15.3±1.2

NEAREST 1.76±0.00 3.89±0.00 4.73±0.00 42.7±0.0 0.5±0.0 0.0±0.0

U-Net (GIMO) 1.58±0.32 2.47±0.06 3.35±0.23 49.2±6.7 17.8±2.0 3.9±0.8

U-Net (THOR-MAGNI) 1.82±0.04 3.29±0.04 4.23±0.09 40.1±1.3 18.9±0.6 9.5±1.6

U-Net (LocoVR) 0.83±0.03 1.89±0.02 3.45±0.04 72.2±2.6 40.1±2.0 13.5±2.7
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Qualitative results: Figure 5 shows the results of object prediction. In LocoVR, as the trajectory
progresses, the probability distribution of the goal area narrows down near the true goal object. This is
due to the model learning from the dataset a policy that narrows down the goal area based on the areas
already passed and the current heading direction. On the other hand, GIMO and THOR-MAGNI do
not include a sufficient number of trajectories or scenes to learn a policy applicable to unseen scenes,
resulting in the probability distribution of the goal area not being appropriately narrowed down.

Figure 5: Predicted goal positions and objects. In the left column with LocoVR, the predicted goal
area distribution (yellow color) is narrowed down as the trajectory proceeds. As a result, candidates
of the goal object are accurately predicted (right column).

5 LIMITATIONS AND FUTURE WORK

Although we have evaluated the prediction models through the data collected in real space (LocoReal),
the gaps could affect detailed human behaviors, such as walking speed or interpretation of non-verbal
communication through facial expressions. Investigating these impacts and comparing LocoVR
to fully synthetic datasets are important research questions for future work. While LocoVR is
designed to facilitate research on indoor human trajectories, it serves as a foundational resource for
exploring the relationships between motion patterns, goal positions, and indoor scene geometries.
Beyond its core purpose, LocoVR shows promise for extended tasks such as inferring indoor layouts
from trajectory data or predicting human actions by incorporating trajectory Takeyama et al. (2024).
Furthermore, it has potential applications in diverse fields, including robot navigation, AI agents in
VR, avatar control in both real-worldSchwarz et al. (2023) and VR environmentsWang et al. (2024a),
and human action predictionTakeyama et al. (2024). With its versatility, LocoVR is poised to drive
innovation across these domains and beyond.

6 CONCLUSION

To model geometrically and socially aware human trajectories in complex indoor environments, we
introduced the LocoVR dataset, which captures two-person social motion behaviors across 131 home
environments, including accurate trajectory and detailed spatial information. In the experiments,
we introduced three indoor tasks that utilize human trajectory: global path prediction, trajectory
prediction, and goal prediction. Experimental results showed that the models trained with LocoVR
outperformed other prior indoor datasets evaluated on the real-world test data. This indicates that
our dataset facilitates adaptation to unseen indoor environments with complex geometries and social
motion behaviors across a variety of tasks. Furthermore, these findings demonstrate the potential of
virtual environments for training models that generalize well to real-world applications. We envision
the data collection method to expand the variety of indoor scenes used for training and propose the
experiments as a standard benchmark for future research on human motion and trajectory analysis in
indoor settings.
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REPRODUCIBILITY STATEMENT

We performed three trials on the training and testing process to ensure the reproducibility of the
evaluations shown in the paper. Tables 2,3 and 4 report averaged ADEs over three trials ± standard
deviations. All the code and data used in our work can be found at https://anonymous.4open.
science/r/LocoVR_code_test-08E6/README.md
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A ETHICAL IMPLICATIONS

While our dataset provides valuable insights into adult locomotion patterns, it lacks sufficient
diversity in age groups and motor abilities. This homogeneity restricts the model’s generalizability to
individuals outside the able-bodied adult demographic. To address this limitation, future work should
focus on collecting data that encompasses a broader spectrum of ages and motor capabilities, such as
children, elderly individuals, and people with mobility impairments. This will allow the model to
develop a more comprehensive understanding of human movement and improve its ability to predict
trajectories across a wider range of scenarios.

B EXPERIMENTAL DETAILS

We use the Adam optimizer (Kingma & Ba, 2014) to train the U-Net models used in the experiments.
The learning rate is 5e-5, and the batch size is 16. Each model is trained for up to 100 epochs on a
single NVIDIA RTX 4080 graphics card with 8G memory.

In the U-Net models, time-series trajectory is handled in a multi-channel image format. Specifically,
the 2D coordinate of a position on a trajectory is plotted on a blank image (256 by 256 pixels) with a
Gaussian distribution, and the time-series data is contained in multi-channels. Similarly, the goal
position is encoded as an image and concatenated with the multi-channel trajectory image when fed
into the model.

Further details of U-Net models are described as follows.

Global path planning

• Input: (62×H×W)

– Past trajectory of p1 for 15 epochs (15×H×W)
– Past trajectory of p2 for 15 epochs (15×H×W)
– Past heading directions of p1 for 15 epochs (15×H×W)
– Past heading directions of p2 for 15 epochs (15×H×W)
– Goal position of p1 (1×H×W)
– Binary scene map (1×H×W)

• Output: (2×H×W)

– p1’s static future global path (goal conditioned) (1×H×W)
– p2’s static future global path (non-goal conditioned) (1×H×W)

• Groundtruth: (2×H×W)

– p1’s static future global path (1×H×W)
– p2’s static future global path (1×H×W)

• Loss: BCELoss between the output and ground-truth

• U-Net channels:

– encoder: 128, 128, 256, 256, 256
– decoder: 256, 256, 256, 128, 128

• Calculation time for training: 10-12 hours on LocoVR

Trajectory prediction

• Input: (61×H×W)

– Past trajectory of p1 for 15 epochs (15×H×W)
– Past trajectory of p2 for 15 epochs (15×H×W)
– Past heading directions of p1 for 15 epochs (15×H×W)
– Past heading directions of p2 for 15 epochs (15×H×W)
– Binary scene map (1×H×W)
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• Output: (90×H×W)
– p1’s future trajectory (45×H×W)
– p2’s future trajectory (45×H×W)

• Groundtruth: (90×H×W)
– p1’s future trajectory (45×H×W)
– p2’s future trajectory (45×H×W)

• Loss: BCELoss between the output and ground-truth
• U-Net channels:

– encoder: 128, 128, 256, 256, 256
– decoder: 256, 256, 256, 128, 128

• Calculation time for training: 20-22 hours on LocoVR

Goal prediction

• Input: (181×H×W)
– Past trajectory of p1 for 90 epochs (90×H×W)
– Past heading directions of p1 for 90 epochs (90×H×W)
– Binary scene map (1×H×W)

• Output: (1×H×W)
– p1’s goal position (1×H×W)

• Groundtruth: (1×H×W)
– p1’s goal position (1×H×W)

• Loss: BCELoss between the output and ground-truth
• U-Net channels:

– encoder: 256, 256, 512, 512, 512
– decoder: 512, 512, 512, 256, 256

• Calculation time for training: 30-35 hours on LocoVR

The scene map was sampled from the 3D room dataset (HM3D) by manually cutting the predefined
area and projecting the height map onto the aerial-view image that covers an area of 10m by 10m. The
height map is then thresholded at 0.2m and converted into the binary map representing the walkable
area.

C ABLATION STUDY

We conducted an ablation study on LocoVR to analyze the factors that leverage the strengths of the
dataset. Specifically, we imposed constraints on data scale, multi-person data usage, and heading
direction usage in this study.

To investigate the impact of dataset scale, we created two types of scaled-down datasets by removing
data from LocoVR, data-size-G and data-size-T. data-size-G is a dataset simulated to match the
scale of GIMO, with the number of scenes and trajectories reduced to 19 and 190, respectively, by
randomly selecting and removing data. data-size-T is a simulated dataset modeled after THOR-
MAGNI, containing 658 trajectories across 4 scenes. This dataset has fewer trajectories than the
actual THOR-MAGNI dataset because LocoVR does not have as many trajectories per scene (See
fig 10 in Appendix I). However, we attempted to maximize the number of trajectories within the
constraints of four scenes. In addition, we evaluated the impact on the performance by considering
the other person’s movement (wo/p2) and heading direction (wo/head).

Table 5 presents the result of the ablation study on global path prediction. Due to the constraints,
performance has deteriorated compared to the original LocoVR dataset. Notably, the reduction in
dataset scale has a significant impact on performance, underscoring the importance of dataset scale in
enhancing performance, which is a key strength of our dataset.
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Table 6 shows the ablation study on the trajectory prediction. The performance of LocoVR dete-
riorated when constraints were applied to the original LocoVR, highlighting the strengths of its
features.

Table 7 represents a result of the ablation study on the goal prediction. Similar to the two tasks
above, the performance improvement due to LocoVR’s features is also demonstrated in this table.
In data-size-G, the object prediction accuracy within d< 3m is comparable to that of the original
LocoVR, whereas it falls significantly short in other metrics. This is because the model trained on
data-size-G tends to rely on the current location due to the lack of training data, resulting in higher
accuracy when the goal is close to the current position.

Table 5: Global path prediction - Mean and Max Chamfer distance between predicted and ground-
truth paths grouped by distance to the goal.

Method
Mean Max

0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d 0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d

A* + U-Net (LocoVR data-size-G) 0.077 0.194 0.326 0.180 0.438 0.752

A* + U-Net (LocoVR data-size-T) 0.076 0.163 0.242 0.186 0.417 0.627

A* + U-Net (LocoVR wo/p2) 0.061 0.122 0.205 0.147 0.297 0.537

A* + U-Net (LocoVR wo/head) 0.063 0.134 0.238 0.150 0.321 0.614

A* + U-Net (LocoVR) 0.060 0.119 0.192 0.145 0.290 0.501

Table 6: Trajectory prediction - ADE (Average Displacement Error) between predicted and ground-
truth time-series trajectories.

Method 0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d

U-Net (LocoVR data-size-G) 0.274 0.496 0.775

U-Net (LocoVR data-size-T) 0.144 0.297 0.505

U-Net (LocoVR wo/p2) 0.113 0.254 0.470

U-Net (LocoVR wo/head) 0.122 0.254 0.446

U-Net (LocoVR) 0.111 0.238 0.441

Table 7: Goal prediction - Goal position error and goal prediction accuracy.

Method
Goal position error Object prediction accuracy

0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d 0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d

U-Net (LocoVR data-size-G) 0.923 2.165 3.791 73.5 28.9 7.0

U-Net (LocoVR data-size-T) 1.552 2.479 4.118 63.6 34.8 6.8

U-Net (LocoVR wo/head) 1.055 2.151 3.403 62.9 25.4 13.6
U-Net (LocoVR) 0.83 1.89 3.45 72.2 40.1 13.5

D ADDITIONAL EXPERIMENTS

D.1 TESTING ON GIMO

While the main paper utilized real-world trajectory data (LocoReal) as the test data, we conducted
an additional experiment to further validate the contribution of LocoVR using an alternative test
dataset. Given that THOR-MAGNI has fewer variational scenes, we selected GIMO as the test data.
In this experiment, GIMO was divided into 70% for training, 15% for validation, and 15% for testing,
ensuring that the scenes in the training, validation, and test sets were mutually exclusive. Additionally,
to mitigate potential bias in the test data, we performed five random splits to generate five different
datasets and averaged the results. Tables 8 through 10 illustrate the evaluation results for global path
planning, trajectory prediction, and goal prediction, respectively. The evaluation results demonstrate
that the model trained with LocoVR consistently outperforms those trained on other datasets. This
superior performance is attributed to the enhanced generalization capabilities provided by LocoVR’s
extensive coverage of scenes and trajectories.
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Table 8: Global path prediction - Mean and Max Chamfer distance between predicted and ground-
truth paths grouped by distance to the goal.

Method
Mean Max

0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d 0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d

A* + U-Net (GIMO) 0.131±0.0085 0.161±0.0199 0.180±0.0726 0.277±0.0246 0.399±0.0314 0.517±0.1733

A* + U-Net (THOR-MAGNI) 0.129±0.0106 0.151±0.0062 0.192±0.0742 0.277±0.0249 0.389±0.0256 0.515±0.1617

A* + U-Net (LocoVR) 0.129±0.0081 0.150±0.0113 0.166±0.0294 0.277±0.0266 0.384±0.0269 0.485±0.0851

Table 9: Trajectory prediction - ADE (Average Displacement Error) between predicted and ground-
truth time-series trajectories.

Method 0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d

U-Net (GIMO) 0.211±0.0420 0.382±0.0897 0.673±0.1737

U-Net (THOR-MAGNI) 0.795±0.0962 1.565±0.1111 2.356±0.1800

U-Net (LocoVR) 0.140±0.0209 0.253±0.0620 0.356±0.1605

Table 10: Goal prediction - Goal position error.

Method
Goal position error

0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d

U-Net (GIMO) 0.968±0.1583 2.403±0.5629 4.446±0.4472

U-Net (THOR-MAGNI) 1.766±0.0209 3.065±0.2679 5.332±0.5959

U-Net (LocoVR) 1.054±0.2392 2.100±0.7023 3.206±0.4658

D.2 INFLUENCE OF SCENE INFORMATION - BINARY OBSTACLE - HEIGHT - SEMANTICS

To explore the potential utility of the semantic and height information included in the scene map, we
conducted a small experiment to evaluate how replacing binary obstacle maps with 3D height maps
and semantic maps affects performance. Table11 presents the results of the global path prediction
task using the UNet+A* model. Each model was trained and tested on LocoVR with binary maps,
height maps, and semantic maps, over three trials. As shown in the table, the models trained with
height and semantic maps clearly outperformed those trained with binary maps. Although we do
not yet have a detailed analysis of these findings, they potentially suggest that human trajectories
could be influenced by object attributes inferred from height and semantic information. For instance,
participants might unconsciously maintain a distance from movable objects, such as chairs or doors, or
adjust their trajectories based on the visual clearance provided by different object types. For example,
walls, kitchen counters, and low tables offer varying degrees of vision clearance, with lower clearance
potentially exerting subtle psychological pressure on trajectory planning. A detailed analysis on
influence of variational scene information on the human trajectories could provide valuable insights
from the perspectives of cognitive and behavioral sciences.

Figure 6: Examples of binary (obstacle) map, height map, and semantic map
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Table 11: Global path prediction with binary/semantic/height maps - ADE (Average Displacement
Error) between predicted and ground-truth time-series trajectories. The table reports averaged
performance in all of the trajectories over three trials ± SD

Method 0m ≤ d ≤ 3m 3m ≤ d ≤ 6m 6m ≤ d

Binary map 0.138±0.0006 0.183±0.0024 0.286±0.0113

Semantic map 0.137±0.0004 1.70±0.0046 0.216±0.0278

Height map 0.136±0.0011 0.165±0.0068 0.201±0.0219

E SOCIAL MOTION BEHAVIOR

Typically, a person’s trajectory is influenced by the movements of others who are close by, as people
naturally consider how their motion behavior might impact others in close proximity and modify their
own motion behavior to accommodate others. Even when people are a bit farther apart, social motion
behaviors can still occur, such as navigating around each other to respect personal spaceBurgoon &
Hubbard (2005) or choosing a less direct route to avoid collision.

Our LocoVR dataset offers a unique perspective on social navigation dynamics within home environ-
ments by focusing on how people navigate shared spaces. Nearly half of the trajectories in our dataset
involve individuals coming within 1.5 meters of each other (as seen in Figure.16), capturing a range
of direct and indirect interpersonal space interactions. By analyzing the overlap of personal space
volumes, we can identify moments of close proximity that require mutual awareness and behavioral
adjustments. These interactions, while not as overt as handshakes or object exchanges, reveal subtle
yet crucial aspects of cohabitation. They showcase how individuals modify their movements in
response to another’s presence – slowing down, altering paths, maintaining respectful distances,
or yielding a path. This focus on spatial negotiation provides valuable insights into the unspoken
choreography of daily life that occurs when sharing living quarters.

Figure7 illustrate three types of social navigation dynamics between two individuals (p1 and p2) in
the real-world test dataset LocoReal. Each figure exemplifies different types of social navigation,
including maintaining social distance, stepping aside to allow others to pass, and choosing which
side of an object to pass on to avoid crossing paths. Also, We demonstrate our model’s capability
to perform social navigation by considering the trajectories of others. Each row shows the results
with and without using P2’s past trajectories as input, while each column represents a different
sample scene. We used the model A*+U-Net(LocoVR), presented in Section4.3.1, throughout this
experiment.

The dark green, light green, and red lines represent p1’s past trajectory, true future path, and the
predicted path by our model, respectively. The orange circle marks p1’s goal position. Additionally,
the blue line and light blue arrow indicate P2’s past trajectory and direction of movement, respectively.

Scene 1 to 3 depict scenes where p1 and p2 are about to cross paths. The groundtruth future path (light
green) shows that p1 maintains an appropriate social distance from p2’s path. Focusing the predicted
future trajectories by our model (red), the upper row of the figure shows that the model predicts a
path that overlaps with p2’s heading direction since the model is not able to obtain p2’s movement at
all. In contrast, the lower row demonstrates that the model generates a path that maintains a certain
distance from p2’s heading direction, similar to the ground truth. This indicates that the model has
effectively learned social navigation behavior from LocoVR dataset.

Scene 4 to 6 illustrate situations where p1 chooses longer paths to avoid interference with p2. The
ground truth future path of p1 demonstrates a choice that avoids potential proximity to p2 by selecting
a route where p2 is absent. In the upper row, where the model does not consider P2’s trajectory, the
predicted path generally follows the geometrically efficient route to the goal, which could potentially
overlap with p2’s movement area. In contrast, the lower row shows that the model prioritizes avoiding
potential proximity to p2, indicating that it has learned to account for social navigation behavior.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 7: Social navigation

F VR SYSTEM FOR DATA COLLECTION

F.1 SYSTEM STRUCTURE

The system receives real-time tracking data from the motion trackers worn by each participant. This
data is used to update the avatars in the virtual environment so they accurately reflect the poses and
movements of the participants. Each virtual avatar is represented by a SMPL mesh (Loper et al.,
2015), calibrated to match the proportions of each person’s body using FINAL-IK (Root Motion,
2024). To encourage movement and social motion related behaviors between the two participants,
the system generates a goal object that each person needs to reach as part of the data collection task.
This gives the participants a reason to move around and interact with each other in the virtual space,
resulting in social behaviors, such as waiting for someone to pass before proceeding or backtracking
for an oncoming person if the path is too narrow to allow them to cross.

F.2 VR HARDWARE

Using the HTC VIVE system (VIVE, 2023), we track the movements of two people as they explore a
virtual space. Each person wears a VR headset, holds a controller in each hand, and has three motion
trackers (VIVE pucks) on their body - two on the ankles and one on the torso, for a total of six tracked
points. This setup allows us to capture the full range of body movements as the participants interact
with the virtual environment and with each other. The HTC VIVE’s outside-in tracking system uses
the six tracked points on each person’s body to calculate their absolute pose and position with a high
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degree of accuracy. With a tracking frequency of 90 Hz and an accuracy within a few millimeters
(Holzwarth et al., 2021), the system can track small movements and gestures in real-time to provide a
highly responsive and immersive experience, thereby eliciting natural walking and social behaviors
necessary for collecting realistic data.

F.3 3D VIRTUAL ROOM DATA

We use the Habitat-matterport 3D dataset (Ramakrishnan et al., 2021) to create the virtual scenes.
The dataset includes more than 1K 3D indoor spaces, which are captures of actual rooms using the
Matterport 3D scanner (Matterport, 2023). Some of the scenes have semantic information added that
Matterport has manually labeled. We used 131 scenes with full 3D scene geometry and semantic
labels to collect our data.

F.4 ALIGNMENT OF VR AND THE REAL SPACE

The data collection was conducted in a VR lab (10m x 10m), which was larger than every virtual room
we used. Firstly, we aligned the centers of the virtual and the physical rooms so that the virtual room
was totally contained in the physical room. During data collection, goal positions were controlled to
appear in the predefined virtual room to make the participants walk safely without getting close to the
physical walls. If a participant got close to the physical walls, a virtual guardian appeared, indicating
to the participant that they were too close to the boundary of the virtual space. This is a built-in safety
feature of the VR headset we used.

G LOCOREAL: A DATASET FOR TESTING IN THE REAL WORLD

Although LocoVR is collected in highly realistic virtual environments and useful for learning human
trajectory considering the surrounding environment, it is a general concern that there might be a
difference in human perception between the physical and virtual space that results in performance
degradation when transferring from the virtual to the real world. To address the concern, we built
LocoReal, a human trajectory dataset in the physical space, which can be used as test data to show
that the model trained with LocoVR can be utilized in the real environment.

Collecting real-world human trajectory data was done in an empty room in a campus building. Two
participants walked to conduct a task in the room where several pieces of furniture were placed, and
their 3D motions and trajectories were captured by a motion capture system. The experiment was
conducted in 4 different layouts with 5 participants, resulting in 450 collected trajectories. Figure 8
illustrates the binary maps of the 4 scenes we collected in LocoReal.

Figure 8: Maps data of LocoReal dataset. We collected the dataset with 5 participants performing
tasks in the shown 4 different layouts of a physical room.
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H DATA AUGMENTATION

All the training data are augmented by horizontal flipping and rotation with 90, 180, and 270 degrees,
increasing the number of training data by eight-fold. We also augmented the data in a time-series
direction to obtain different sets of past trajectories and ground-truth future trajectories. We define a
fixed length time window and slide it with a certain interval to obtain sets of augmented trajectories.
Fig 9 shows an overview of the data augmentation strategy. Each task has a different strategy in data
augmentation.

For the global path prediction, the time window with a length of 10.0s (1.0s for past trajectory and
9.0s for future trajectory) slides with an interval of 0.67s to extract trajectory segments from the raw
trajectory. The duration of 10.0s is chosen to encompass the majority of trajectories in the dataset (as
shown in Figure 13), while a time step of 0.67 seconds is sufficient to capture human movement at
speeds of up to 3.0 m/s. A part of the trajectory segment that is out of the raw trajectory is padded
with the last value observed in the raw trajectory.

For the trajectory prediction, the time window with a length of 4.0s (1.0s for past trajectory and
3.0s for future trajectory) slides with an interval of 0.67s to extract trajectory segments from the raw
trajectory. We assume that 3.0s is an appropriate time range for future trajectory prediction, as this
task is non-goal-conditioned and affected by rapidly increasing positional uncertainty over time. Note
that all the trajectory segments are within the raw trajectory because the task focuses on trajectory
prediction in local areas on the way to the goal.

For the goal prediction, the time window with a length of 6.0s (for past trajectory) slides with an
interval of 0.67s to extract trajectory segments from the raw trajectory. We set 6.0 seconds as the
maximum length for past observations, as the primary objective is to predict the goal before it is
reached, making long observation periods unnecessary for evaluating goal prediction performance. A
part of the trajectory segment that is out of the raw trajectory is padded with the initial value observed
in the raw trajectory.

Figure 9: Data augmentations in the time direction

I LOCOVR DATASET STATISTICS

In this section, we describe the statistics of the trajectory data contained in LocoVR. We collected
trajectory data from 32 participants in total, resulting in 7071 trajectory sequences after data pre-
processing. Since we collected trajectories from two participants simultaneously, each participant’s
trajectory was counted separately. We removed short trajectories (less than 2m or 2s) and poor motion
tracking data in the data preprocessing phase.

I.1 STATISTICS ON THE DATA

Figure 10 shows the number of trajectories collected in each scene. The average number and standard
deviation over 131 scenes are 54.0 and 32.0, respectively. The number of trajectories differs across
scenes, resulting from the following factors. We collected a large number of trajectories in scenes
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where human interactions occur frequently (e.g., paths with a bottleneck). Also, the number of
trajectories is affected by the speed preferences of the participants. Given the same amount of time,
participants walking fast gave us more trajectories than participants who walked slowly. Further, the
stability of the motion-tracking performance also affected the number of trajectories since trajectories
with large tracking errors are removed in the data preprocessing.

Figure 11 Path efficiency is a metric used to evaluate the complexity of a trajectory, defined as the
ratio of the straight-line distance to the goal to the actual traveled distance. The mean path efficiency
in LocoVR is 0.81, comparable to that reported in THOR-MAGNI (Schreiter et al., 2024). Notably,
the data in THOR-MAGNI were collected in a single, controlled experimental setting designed to
emphasize the influence of surrounding objects or other pedestrians. In contrast, our dataset was
collected in diverse, naturally occurring home environments that were not controlled by experimenters.
Figure 12 shows the distance distributions of the trajectories. The figure shows that more than half

of the trajectories are longer than 4m. Since virtual rooms are usually smaller than 7m by 7m, the
distribution is reasonable to assume daily movements in a room. Figure 13 shows the travel time
distribution of the trajectories. It shows that more than half of the trajectories are longer than 5s,
which would be enough to learn locomotion in a single room.

Figure 14 shows the speed distribution of the trajectories. The mean value is around 0.8, indicating
the walking speed is relatively low compared to the open outdoor space since the scale of home
environments is smaller. Figure 15 depicts the number of peaks observed in the speed history
of individual trajectories. It shows that more than half of the trajectories exhibit two or more
peaks, indicating that participants frequently change their speed on their way to the goal. This
behavior is likely influenced by interactions with other participants or the narrow and complex indoor
environment. Figure 16 shows the minimum distance between two participants in each trajectory.
It is shown that approximately 25% of the trajectories are within 1m of the other participant, and
more than 70% are within 2m (See Figure 18). It indicates that many of the trajectories could be
influenced by the trajectories of the other participants when they are in close proximity, as people
typically consider how their behaviors might affect others when they are located close to other people.
In the rest of the cases where the participants were at least 2m away from each other, there could
still be social motion behaviors that involve passing through each other at a distance to respect other
people’s personal space or taking a less direct route to the goal to avoid the risk of physical conflict
with the other.

Figure 17 illustrates the distribution of closing speeds between participants. The relatively high
closing speeds, considering the room scale, suggest that participants need to remain attentive to the
movements of others.

Figure 10: Number of trajectories in each scene Figure 11: Path efficiency (straight-line distance
to the goal/traveled distance) in each trajectory.
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Figure 12: Travel distance in each trajectory Figure 13: Travel time in each trajectory

Figure 14: Speed of participants. Figure 15: Number of peaks in speed history in
each trajectory

Figure 16: Minimum distance between partici-
pants in each trajectory.

Figure 17: Closing speed between participants.

I.2 STATISTICS ON THE PARTICIPANTS

There were 32 participants in total, comprising 21 males and 11 females, with ages ranging from 18
to 42. From this pool, pairs were formed to conduct 25 experiments, each involving a unique pair
(Table12). The experiments included various combinations of male-male, female-female, and male-
female pairs, as well as pairs of friends and nonfriends, as shown in the Table13. As reactions between
pairs in close proximity could influenced by attributes and interpersonal relationships, further data
analysis may provide new insights into the relationship between these attributes, relationships, and
behavioral patterns. It could be an intriguing study from the perspective of cognitive and behavioral
sciences.
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Figure 18: Scene of participants approaching each other

Table 12: Participants demographics

Age
Number of participants

Male Female

Under 20 5 3

20 to 29 15 8

Over 30 1 0

Table 13: Diversity of pairs

Relationship
Number of participants

Male−Male Female− Female Male− Female

Friends 2 2 5

Nonfriends 9 1 6

I.3 WHY TWO PERSON ? - MOTIVATION OF TWO-PERSON EXPERIMENT

In contrast to conventional studies that focus on crowd dynamics in open public spaces, our research
emphasizes room-scale social motion behaviors between two individuals, particularly in confined
indoor spaces. For example, interpersonal behaviors such as proxemics, trajectory negotiation, and
mutual space adaptation are affected and induced by the narrow geometry. We consider this is a
fundamental study on the room-scale social motion behaviors, and believe this focus does not limit
the dataset’s utility. Researchers can build upon it to study two-person interactions in isolation or as a
basis for modeling interactions in more complex, multi-person environments. In addition, more than
two-person interaction could be considered as a rare scenario in home environments. For instance,
recent census data indicates that in the US, 60% of households consist of two people or fewer, and
80% consist of three people or fewer. Also, indoor home spaces are generally smaller than open
public spaces, and activities in such settings are often more individualized. As a result, residents
typically move independently rather than engaging in collaborative or coordinated movements within
the same space. This relevance underscores the practical utility of our dataset for studying interaction
dynamics that are directly applicable to real-world scenarios.

J INFLUENCE OF GAP BETWEEN VR AND THE REAL

We consider the virtual avatar an effective tool for addressing the VR/real-world gap. Additionally,
we introduced a filter to exclude data exhibiting inappropriate behaviors. In the following sections,
we discuss the impact of this gap.

(1) In our experiment, participants were aware that the virtual avatars were synchronized with real
humans sharing the same physical space. Also, the avatar enables participants to percept relative
position between their body and surrounding objects. These awareness discouraged socially or
physically inappropriate behavior, mitigating the potential impact of the VR/real gap, as demonstrated
in recent studies on VR locomotionYun et al. (2024); Simeone et al. (2017). In addition, we have
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introduced a filter to detect instances of users passing through virtual objects to remove such data
from the dataset.

(2) Our evaluation used locomotion data collected in physical spaces as test data. Models trained on
the LocoVR dataset outperformed those trained on other physically collected datasets (GIMO/THOR-
MAGNI), demonstrating that VR-collected data is effective when applied to real-world scenarios.

For the futurework, more expressive avatar to facilitate non-verbal communication during walk, or
user interaction cues such as haptic devices could further reduce the gap between VR/Real. We
anticipate that future advancements in VR technologies will further contribute to bridging this gap.
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