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Abstract

Extracting informative representations from

videos is fundamental for effectively learning var-

ious downstream tasks. We present a novel ap-

proach for unsupervised learning of meaningful

representations from videos, leveraging the con-

cept of image spatial entropy (ISE) that quantifies

the per-pixel information in an image. We ar-

gue that local entropy of pixel neighborhoods and

their temporal evolution create valuable intrinsic

supervisory signals for learning prominent fea-

tures. Building on this idea, we abstract visual

features into a concise representation of keypoints

that act as dynamic information transmitters, and

design a deep learning model that learns, purely

unsupervised, spatially and temporally consistent

representations directly from video frames. Two

original information-theoretic losses, computed

from local entropy, guide our model to discover

consistent keypoint representations; a loss that

maximizes the spatial information covered by the

keypoints and a loss that optimizes the keypoints’

information transportation over time. We compare

our keypoint representation to strong baselines for

various downstream tasks, e.g., learning object

dynamics. Our empirical results show superior

performance for our information-driven keypoints

that resolve challenges like attendance to static

and dynamic objects or objects abruptly entering

and leaving the scene. 1

1. Introduction

Humans are remarkable for their ability to form represen-

tations of essential visual entities and store information to

effectively learn downstream tasks from experience (Cooper,
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1990; Radulescu et al., 2021). Research evidence shows that

the human visual system processes visual information in

two stages; first, it extracts sparse features of salient objects

(Bruce & Tsotsos, 2005); second, it discovers the interrela-

tions of local features for grouping them to find correspon-

dences (Marr, 2010; Kadir & Brady, 2001). For videos with

dynamic entities, humans not only focus on dynamic objects,

but also on the structure of the background scene if it plays

a key role in the information flow (Riche et al., 2012; Borji

et al., 2012). Ideally, we want a learning algorithm to extract

similar sparse representations that can be useful for various

downstream tasks. Notable research works in Computer

Vision (CV) and machine learning have proposed different

feature representations from pixels (Szeliski, 2010; Harris

et al., 1988; Lowe, 2004; Rublee et al., 2011; Mur-Artal

et al., 2015). In the deep learning era, convolutional neural

network architectures have proven superior to handcrafted

features, leading to new approaches for learning represen-

tations of Points of Interest (PoI) for tasks like localization

and pose estimation (DeTone et al., 2018; Ono et al., 2018;

Sarlin et al., 2019; Dusmanu et al., 2019; Sarlin et al., 2020).

Keypoints stand out as sparse PoI (Jiang et al., 2009; Alexe

et al., 2010) representing, e.g., objects (Xiongwei et al.,

2020), human joints (Kreiss et al., 2019), or structure use-

ful for learning control (Xiong et al., 2021). Many key-

point detectors are trained in a supervised way (Cao et al.,

2017). Unsupervised and self-supervised learning can com-

pensate the need for expensive human annotations (Wang

et al., 2020; Kim et al., 2019; Yang et al., 2020; Gopalakr-

ishnan et al., 2021; Chen et al., 2019). Current state-of-

the-art methods for unsupervised keypoint discovery focus

mainly on dynamic entities in videos (Kulkarni et al., 2019;

Minderer et al., 2019). Namely, these methods are trained

to reconstruct differences between frames, not effectively

representing the scene’s structure, while not easily disam-

biguating occlusions or consistently representing abruptly

appearing/disappearing objects in a video.

We introduce Maximum Information keypoiNTs (MINT),

an information-theoretic approach for unsupervised key-

point representation learning, treating keypoints as “trans-

mitters” of prominent information in a video. Our pro-

posed method relies on spatial information computed in

local neighborhoods (patches) around potential keypoints.

We argue that the image spatial entropy (ISE) (Brink, 1996),
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which quantifies the amount of local information of pixels

in an image, and its evolution in a video, provide a strong in-

ductive bias for learning keypoint representations related to

objects. Early works in CV pointed out the relation of image

entropy and object discovery (Kadir & Brady, 2001; Bruce

& Tsotsos, 2005; Li et al., 2010), but suffered from the need

of filtering and tuning for every new setting to compute an

accurate ISE (Razlighi et al., 2009). Contrarily, our deep

learning approach benefits from the approximation power of

deep convolutional networks that learn nonlinear relations

directly from image frames of a video leading to spatially

and temporally consistent representations, that further gen-

eralize well. MINT guides the spatio-temporal entropy

coverage by the keypoints in a video, relying on an original

formulation of unsupervised keypoint discovery with loss

functions that maximize the represented image information

entropy and the information transportation across frames

by the keypoints, relying on a simple spatial entropy model

and regularizers. Imposing spatio-temporal consistency of

the represented entities enables MINT to effectively recover

scene structure, allowing the subsequent simultaneous de-

tection and tracking of objects.

We provide qualitative and quantitative empirical results

on four different video-datasets against strong baselines for

unsupervised temporal keypoint discovery, unveiling the

superior representation power of MINT. To address the chal-

lenge of quantitative evaluation of unsupervised keypoint

discovery due to the absence of designated datasets, we

provide a set of new metrics and a benchmark based on

videos from CLEVRER (Yi et al., 2019). Moreover, we

provide results on two challenging datasets, MIME (Sharma

et al., 2018) and SIMITATE (Memmesheimer et al., 2019),

that contain realistic scenes of various difficulties (close-up

frames with dynamic interactions vs. high-res wide frames

with clutter). We show that MINT economizes the use of

keypoints, deactivating excessive ones when the information

is well contained, and dynamically activating them to repre-

sent new entities entering the scene temporarily. Finally, to

demonstrate the suitability of MINT as a representation for

control, we devise an imitation learning downstream task

on environments from MAGICAL (Toyer et al., 2020).

Contributions. In summary, we introduce: (1) an original

unsupervised keypoint representation learning approach us-

ing information-theoretic measures, via the classical concept

of ISE that inspired us to postulate keypoints as informa-

tion transmitters; (2) an entropy layer for computing spatial

image entropy efficiently; (3) an unsupervised way for rep-

resenting variable number of entities in videos by switching

on/off keypoints for covering spatio-temporal information;

and (4) a new set of evaluation metrics for an intuitive down-

stream task for benchmarking the performance of unsuper-

vised temporal keypoint discovery methods.

2. Maximum Information Keypoints

We propose an unsupervised method for keypoint discovery

in videos based on information-theoretic principles. Key-

points should adequately represent the scene and the dy-

namic changes in it. Starting from our original assumption

that a keypoint represents the spatial information of a patch

of an image frame, we leverage the classical concept of

ISE (Brink, 1996; Razlighi & Kehtarnavaz, 2009) to mea-

sure the amount of information represented by a keypoint.

We argue that keypoints should cover areas in the image

that are rich in information, while the number of keypoints

should dynamically adapt to represent new information. Fi-

nally, keypoints should consistently represent the same infor-

mation pattern spatio-temporally in a video. With this moti-

vation, we propose to maximize the information covered by

the keypoint representation in a video by introducing origi-

nal losses for unsupervised temporal keypoint discovery. We

mainly introduce two losses based on information-theoretic

measures: (1) An information maximization loss that encour-

ages the keypoints to cover areas with high spatial entropy

in a single frame. (2) An information transportation loss

that enables the keypoints to represent the same entity over

subsequent frames. We present these losses and theoretical

analyses supporting their design in the following.

2.1. Image Spatial Entropy (ISE)

Our information-theoretic approach for unsupervised key-

point discovery requires quantifying the amount of infor-

mation each pixel location in a single frame carries. We

leverage the idea of computing the information of patches

in an image (local neighborhoods around a keypoint), us-

ing the classical concept of ISE (Razlighi & Kehtarnavaz,

2009). ISE provides the pixel-wise information in the spa-

tial domain of the image, and it has been greatly explored

in computer vision, e.g., in Markov Random Fields (Ra-

zlighi et al., 2009). Images can be considered as lattices

where pixels are random variables (Li, 2009). We compute

the discrete probability density of a pixel using the statis-

tics of the color intensities in its neighborhood, represented

by a normalized histogram of the neighboring pixel values

(Sabuncu, 2006). This way of computing ISE (Razlighi &

Kehtarnavaz, 2009) assumes that pixels in the image lattice

are i. i. d.and their entropy is computed using Shannon’s

definition (Shannon, 2001) based on the probability of each

pixel. To compute these histograms efficiently and to derive

the final ISE, we developed a computationally optimized

entropy layer as detailed in Appendix B.

Our entropy layer estimates the pixel-wise image spatial

entropy ISE H(I) for an RGB input image I ∈ R
H×W×3,

with H being the height and W the width of an image frame

with 3 color channels. H(I) consists of the local entropies

H(I(x, y)) computed at each pixel location (x, y) by es-
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Figure 1. The architecture of our keypoint model Φ(It) (Section 2.2) and the masked entropy (Section 2.2.1). For an input image It our

model Φ(It) outputs K feature maps f
(i)
t for each keypoint k

(i)
t , i ∈ {1, . . . ,K}. A heatmap h

(i)
t is generated for each keypoint, while

the active keypoints are aggregated to form the mask Mt. The entropy layer computes the entropy of the image H(It). Our ME loss

maximizes the percentage of the entropy in the masked entropy image. Red arrows show the backward gradient flow. Only the part

encircled by the dashed line is used during inference.

timating the entropy of the neighborhood region R(x, y)
centered at (x, y), using a normalized histogram-based dis-

crete probability function p(b, R(x, y)) for each color value

b in the region R(x, y) summed and normalized over the

color channels (details in Appendix B). The final per-pixel

local entropy is

H(I(x, y)) = −

255
∑

b=0

p(b, R(x, y)) log(p(b, R(x, y))). (1)

2.2. Entropy-driven Keypoint Discovery

We consider keypoints as a compact sparse representation

of images, which attend to prominent entities in a scene

(Szeliski, 2010). Keypoints should represent distinctive

information patterns overlaid on a set of neighboring pixels

(patches) in an image frame. We explicitly treat the keypoint

(at the center of a patch) as the information transmitter of

its neighborhood. Based on ISE (Razlighi & Kehtarnavaz,

2009), we compute the spatial entropy of each keypoint,

which allows for developing an end-to-end unsupervised

keypoint discovery approach using information-theoretic

measures. Maximizing the keypoint information acts as an

intrinsic inductive bias for learning to represent areas of

high entropy. Although a simple model to compute ISE

can lead to local entropy overestimation (Brink, 1996), we

show empirically (cf. Section 3) that when we regularize

the proposed losses effectively, we get useful, well-behaved

keypoint representations.

We define a keypoint discovery model Φ(It) (cf. Figure 1),

which is a deep neural network that discovers K keypoints

k
(i)
t , i ∈ {1, ...,K}, in an input color image It at time t.

It outputs K feature maps f
(i)
t , each corresponding to one

keypoint. The coordinates (xi, yi)t of the respective key-

point k
(i)
t are obtained with a spatial soft-argmax (Levine

et al., 2016). Besides predicting the coordinates, the model

also assigns an activation status s
(i)
t = {0, 1} per keypoint.

The activation status determines whether a keypoint is active

(s
(i)
t = 1) or not (s

(i)
t = 0) in a specific frame t, allowing the

network to decide on the ideal number of active keypoints.

Overall, a keypoint is defined by its coordinates and the ac-

tivation score k
(i)
t = (xi, yi, s

(i))t. To get the information

coverage, we define a differentiable heatmap h
(i)
t ∈ R

H×W

for each ith keypoint by thresholding a distance-based Gaus-

sian G
(i)
t centered at the coordinates of the keypoint (details

in Appendix A.3). As we want to maximize information

coverage by the keypoints spatio-temporally, we need to en-

sure that both the inter-frame and intra-frame information is

sufficiently transmitted. Inspired by information theory, we

derive novel losses that allow us to learn information-driven

keypoint representations while providing error bounds that

theoretically justify the design of those losses (Sabuncu,

2006; Yu et al., 2021).

2.2.1. MAXIMIZING KEYPOINT INFORMATION

With information maximization, we encourage keypoints

to represent image regions rich in information (high spatial

entropy). We want to enforce maximum collective spatial

information coverage by the keypoints for representing all

entities in a frame. For that, we introduce two losses: the

masked entropy (ME) loss and the masked conditional en-

tropy (MCE) loss.
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Figure 2. Masked conditional entropy (MCE) computation. Given

two consecutive images It−1 and It, we extract their spatial

entropies H(It−1) and H(It). The conditional spatial entropy

H(It|It−1) depends on the spatial entropy of both images. Multi-

plying the conditional spatial entropy by the aggregated mask Mt

gives the masked conditional entropy image. The MCE loss maxi-

mizes the percentage of the masked conditional spatial entropy.

The ME loss encourages maximum information cover-

age by the keypoints in a single frame. We use the

heatmap h
(i)
t of each keypoint k

(i)
t to retrieve the local

image information at time t. We filter out inactive key-

points by multiplying the heatmap with the activation status

s
(i)
t . Aggregating all heatmaps gives the aggregated mask

Mt = min(
∑K
i h

(i)
t ⊙ s

(t)
i , 1) (cf. Figure 1). With this

masking approach, we can consider keypoints as channels

of local information, and thus, we arrive at the following

proposition that bounds the spatial information loss by the

keypoints’ masking of the original image. The bound fol-

lows Fano’s inequality (Sabuncu, 2006; Scarlett & Cevher,

2019), and proves that maximizing the keypoints’ masked

spatial entropy indeed lowers the probability of error of the

information loss by this keypoint representation.

Proposition 2.1. Let IMt be the masked image at time t,
obtained by the operation IMt = It ⊙Mt, where ⊙ denotes

the Hadamard (i.e., element-wise) product. Let B be the

“vocabulary” of pixel intensities, and we assume that every

pixel in location (x, y) is uniform on B. The average error

probability P̄ε over all pixels N = H × W of the spatial

information approximated by IMt w.r.t. to the original image

It can be lower bounded by

P̄ε ≥ 1−

∑

x,y(H(IMt (x, y)))

N log |B|
−

log 2

log |B|
. (2)

Proof in Appendix C.1. We can assume that the upper bound

for the error probability remains 1, because of the activation

s of the keypoints, there is a probability that the masked

image is “empty”, i.e., all keypoints inactive. From Equa-

tion (2) we can see that the ME maximization lowers the

probability of error. This motivates the practical implemen-

tation of the ME loss LME(It) that optimizes the percent-

age of the masked entropy over all pixel locations (x, y),

∑

x,yH(It)⊙Mt w.r.t. the total image entropy
∑

x,yH(It)

LME(It) = 1−

∑

x,yH(It)⊙Mt
∑

x,yH(It)
(3)

= 1−

∑

x,yH(It)⊙min(
∑K
i=1 h

(i)
t ⊙ s

(i)
t , 1)

∑

x,yH(It)
.

The MCE loss encourages the keypoints to pay special

attention to dynamic entities when the available number

of keypoints is insufficient for covering the information

in a sequence of frames. The conditional entropy of an

image It at time t given a reference image It−1 at time

t − 1 measures the information change of pixels, indicat-

ing moved objects. Optimizing the conditional entropy

H(It|It−1) in a sequence of images encourages the key-

point detector to attend to moving objects (cf. Figure 2).

The spatial conditional entropy can be computed by sub-

tracting the reference image entropy from the joint entropy

of two images H(It|It−1) = H(It, It−1)−H(It−1), where

H(It, It−1) ≈ max(H(It),H(It−1)) following

Lemma 2.2. The joint spatial entropy of two images I1
and I2 can be approximated by H(I1(x, y), I2(x, y)) ≈
max(H(I1(x, y)),H(I2(x, y))), ∀(x, y), since the per

pixel maximum of the marginal entropies is a lower bound

of the joint entropy.

Proof in Appendix C.2. Accordingly, we can bound the

information loss by the keypoints in a sequence of frames.

Corollary 2.3. Following Proposition 2.1, we can bound

the average probability of error P̄ cond
ε of the conditioned

masked images between timestep t− 1 and t as

P̄ cond
ε ≥ 1−

∑

x,yH(IMt (x, y)|IMt−1(x, y))

N log |B|
−

log 2

log |B|
. (4)

Following Equation (4), we observe that the MCE maximiza-

tion lowers the probability of error of the conditional spatial

information loss between frames, leading to the practical

implementation of the MCE loss, similarly to the ME loss.

The MCE loss LMCE(It, It−1) maximizes the percentage of

total masked conditional entropy
∑

x,yH(It|It−1)⊙Mt to

the total conditional entropy
∑

x,yH(It|It−1)

LMCE(It, It−1) = 1−

∑

x,yH(It|It−1)⊙Mt
∑

x,yH(It|It−1)
. (5)

2.2.2. MAXIMIZING KEYPOINT INFORMATION

TRANSPORTATION

Keypoints should transmit information about the same en-

tity over time. Temporal consistency means aligning each

keypoint to the same information pattern across its occur-

rences. Thus, we propose the operation of information
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Figure 3. IT for keypoint k(i). Removing the heatmap masks of

the ith keypoint at times t−1 (orange circle) and t (red cricle) from

the spatial entropy H(It−1) of the image It−1 gives the source

entropy H(S
(i)
t ). Implanting the local entropy of the keypoint

at time t from the current frame H(It) (magenta circle) into the

conditional entropy H(It|It−1) (weighted by κ) after removing

the heatmap mask of the keypoint at time t (red cricles) gives

the target spatial entropy H(T
(i)
t ). The reconstructed information

after transportation H(R
(i)
t ) is the sum of target and source entropy.

The objective of IT is to maximize the mutual information between

the reconstructed entropy and the entropy of the current frame

I(It, R
(i)
t ).

transportation (IT) based on ISE, contrarily to methods that

rely on image reconstruction performing feature transporta-

tion (Kulkarni et al., 2019).

In a temporal sequence of frames, we can perform keypoint

IT by reconstructing the image spatial entropy of the current

frame H(It) using the image entropy of the previous frame

H(It−1) (cf. Figure 3). Let’s consider the ith keypoint at

time step t (coordinates are omitted for avoiding verbosity).

Its associated heatmap h
(i)
t is a mask on the entropy image

that allows localizing the spatial information conveyed by

the ith keypoint. We can construct a source entropy image

H(S
(i)
t ) by subtracting the local entropy of the ith keypoint

in frames t − 1 and t from the entropy image H(It−1),

i.e., H(S
(i)
t ) = H(It−1) ⊙ (1 − h

(i)
t−1) ⊙ (1 − h

(i)
t ). The

conditional spatial entropy of the two frames H(It|It−1)
represents the amount of pixel-wise information needed

to quantify the information of H(It) given H(It−1). Im-

planting the keypoint’s spatial entropy covered by h
(i)
t onto

the conditional image entropy H(It|It−1), that contains all

conditional information except for the information trans-

mitted by the ith keypoint, forms the target image entropy

H(T
(i)
t ) = H(It) ⊙ (h

(i)
t ) + κH(It|It−1) ⊙ (1 − h

(i)
t ).2

The reconstruction of the image entropy H(It) results from

the pixel-wise sum of the source and target image entropies

H(R
(i)
t ) = H(S

(i)
t ) +H(T

(i)
t ). The transportation loss is

computed independently per keypoint, and enforces each

2The factor κ ≤ 1 encourages the network to concentrate more
on transportation than reconstruction.

keypoint to consistently represent the same information pat-

tern spatio-temporally. The reconstruction process of our IT

leads us to the following proposition, showing that maximiz-

ing the mutual information (MI) between the per keypoint

reconstructed information and the original image entropy

lowers the probability of error due to information loss.

Proposition 2.4. Following Fano’s inequality (Sabuncu,

2006; Scarlett & Cevher, 2019), we prove that the aver-

age error probability of the transportation of the ith key-

point P
IT(i)
ε , assuming each keypoint transportation inde-

pendently, is lower bounded by

P̄ IT(i)
ε ≥ 1−

∑

x,y I(It(x, y), R
(i)
t (x, y))

N log |B|
−

log 2

logB
. (6)

Proof in Appendix C.3. From Equation (6), we deduce that

for optimizing the ith keypoint’s IT, we should maximize the

MI I(It, R
(i)
t ). This motivates our practical implementation

of the IT loss for all keypoints, and we construct the IT loss

through the difference H(It) − I(It, R
(i)
t ) normalized by

the area of the heatmap Ah (equal for all keypoints). Mini-

mizing H(It) − I(It, R
(i)
t ) maximizes MI, as dictated by

Proposition 2.4. We found that normalizing with Ah helps

having a better loss scale. We also regularize the excessive

keypoint movement by minimizing the norm of the distance

traveled by each keypoint d
(i)
t = ||(xi, yi)t − (xi, yi)t−1||

2
2

(scaled by a weight md). The practical implementation of

the IT loss for all keypoints becomes

LIT(It, It−1) =

K
∑

i=1

∑

x,yH(It)− I(It, R
(i)
t )

Ah
+md ·d

(i)
t .

(7)

2.2.3. THE MINT LOSS & AUXILIARY LOSSES

The overlapping loss provides an auxiliary supervisory sig-

nal that spreads the keypoints over the image, encouraging

them to cover distinctive regions. The sum of the Gaussians

G
(i)
t (cf. Appendix A.3) around the keypoints k

(i)
t helps to

estimate their overlap. The overlapping loss,

Lo =
1

K
min(max(

K
∑

i

G
(i)
t )− β, 0) , (8)

minimizes the maximum of the aggregated Gaussians nor-

malized by the number of keypoints K with a lower bound

β to allow some occlusions and avoid over-penalization.

The active status loss encourages the model to deactivate

unnecessary keypoints, i.e., setting the status st to 0, by

minimizing the normalized sum of active keypoints while

maximizing ME. The interplay of the losses allows the

method to eventually reach a trade-off between the number

of active keypoints and covered spatial entropy.
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Figure 4. Qualitative results on CLEVRER for Task I (object detection and tracking) and Task II (learning dynamics). Our method is able

to assign keypoints to all objects, independently of whether they move or not, and follows their trajectory. The number of keypoints is

dynamically adjusted to the number of objects. Future states, the predicted keypoint and trajectories, are transparent.

Table 1. Quantitative evaluation of keypoint detection and tracking on CLEVRER (Yi et al., 2019).

Method DOP ⇑ TOP ⇑ UAK ⇓ RAK ⇓

MINT w/o Reg. (ours) 0.918 ± 0.073 0.897 ± 0.078 6.793 ± 1.956 2.478 ± 0.865
MINT (ours) 0.855 ± 0.118 0.838 ± 0.121 0.889 ± 0.639 1.123 ± 0.448
Transporter 0.787 ± 0.113 0.745 ± 0.119 18.417 ± 1.639 1.157 ± 0.323

Transporter-modified 0.832 ± 0.107 0.794 ± 0.114 16.267 ± 2.349 1.764 ± 0.671
Video Structure 0.567 ± 0.256 0.543 ± 0.253 18.104 ± 3.538 1.922 ± 0.652

Table 2. Prediction success rate on CLEVRER (Yi et al., 2019).

Method 1-step prediction 2-steps prediction 3-steps prediction

MINT (ours) 0.844 ± 0.116 0.827 ±0.126 0.811±0.132
Transporter 0.746 ± 0.116 0.716 ± 0.120 0.692 ± 0.122

Transporter-modified 0.814 ± 0.099 0.791 ± 0.106 0.769 ± 0.110
Video Structure 0.734 ± 0.124 0.719 ± 0.125 0.699 ± 0.127

The active status loss optimizes

Ls =
1

K

K
∑

i

s
(i)
t . (9)

The overall MINT loss LMINT is a weighted combination

of all losses (with a dedicated weight λ per loss), with the

weight of the status loss reversed to schedule it according to

the percentage of ME,

LMINT =λMELME + λMCELMCE + λITLIT

+ λoLo + (1− LME)λsLs .
(10)

Further information about the hyperparameters are available

in Appendix E.2.

3. Experiments

We evaluate MINT on four datasets ranging from videos of

synthetic objects – CLEVRER (Yi et al., 2019) and MAGI-

CAL (Toyer et al., 2020) – to realistic human video demon-

strations – MIME (Sharma et al., 2018) and SIMITATE

(Memmesheimer et al., 2019). Our experiments show the

efficacy of our method as a representation for different tasks,

and we provide quantitative results w.r.t. evaluation metrics

(for object detection and tracking on CLEVRER) for sev-

eral downstream tasks (learning dynamics on CLEVRER,

imitation learning on MAGICAL), and qualitative results

on the challenging datasets of MIME and SIMITATE.

We compare against baselines for unsupervised end-to-end

keypoint representation learning from videos. To the best of

our knowledge, the only baselines in this context (cf. Sec-

tion 4) are Transporter (Kulkarni et al., 2019) and Video

Structure (Minderer et al., 2019). Additionally, we include

Transporter-modified, a modified version with a smaller

receptive field that we designed for comparison. Further, we

compare to MINT without the regularization terms (MINT

w/o Reg.), and an end-to-end CNN-based feature extrac-

tion. We report statistics for all quantitative results over 5

seeds. An extensive ablation study of MINT is provided in

Appendix E.1 and baselines are discussed in Appendix E.3.

Downstream task I: Object detection and tracking. Cap-

turing scene structure requires detecting all objects in an

image, while object tracking is essential for representing

the scene’s dynamics. MINT can successfully train a spatio-

temporally consistent keypoint representation on videos,

leading to its natural application for object (static/dynamic,

appearing/disappearing) detection and tracking.

We use CLEVRER (Yi et al., 2019), a dataset for visual

reasoning with complete object annotations, containing

videos with static and dynamic objects, with good vari-

ability in scenes, as a testbed. To quantitatively assess the

performance of MINT, we developed evaluation metrics for

CLEVRER. We propose the percentage of the detected ob-

ject (DOP) and the percentage of tracked objects (TOP)

as two metrics, with higher values corresponding to better

keypoint detection and tracking. A keypoint detects an ob-

ject if it lies on its mask, and tracks it, if it detects the same

6
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Figure 5. Come-and-go scenario in MIME. The hand enters after

the start of the video and departs before the end. We plot the

number of active keypoints w.r.t. time. Transporter (Kulkarni

et al., 2019) has a fixed number of keypoints. Video structure

(Minderer et al., 2019) increases the number of active keypoints

when the hand appears, but struggles when it disappears. MINT

uses a suitable number of keypoints.

object in two consecutive frame. Assigning keypoints to ar-

eas already represented by other keypoints or empty spaces

signals bad keypoint detection. To evaluate these cases, we

define two additional metrics for the redundant keypoint

assignment (RAK) and unsuccessful keypoint assignment

(UAK), with lower values corresponding to better detection.

The metrics are described in detail in Appendix D.

We train all keypoint detectors on a subset of 20 videos

from CLEVRER and test them on 100. The train-test split

emulates a low-data regime and tests the methods’ gen-

eralization abilities. As seen in Table 1, MINT w/o Reg.

detects more objects (DOP) and tracks them better (TOP),

showing the benefit of our information-theoretic losses. The

proposed MINT model exhibits the best trade-off between

superior performance against the baselines on all metrics,

and better handling of keypoint assignment (UAK and RAK)

than MINT w/o Reg. This is due to the computation of the

supervisory entropy signal being overestimated, but the reg-

ularizers balance this effect. See visual comparisons in

Figure 4 or in the video results,3 and more discussion about

the ablations in Appendix E.1.

Downstream task II: Learning dynamics. Proper object

detection allows us to learn the underlying dynamics that

evolve in a scene. We test the representation power of the

discovered keypoints by training a prediction model (i.e.,

a model predicting the next state of the objects) using the

pre-trained keypoint detectors from Task I (using the best

seed for each method). The prediction model treats the

keypoints as graph nodes in an Interaction Network (IN)

(Battaglia et al., 2016) to model the relational dynamics

(cf. Appendix E.4). We train the prediction model to fore-

cast the future positions of the keypoints given a history

3Videos on the website https://sites.google.com/
view/mint-kp.

M
IN

T 
(o

ur
s)

Tr
an

sp
or

te
r

Vi
de

o 
St

ru
ct

ur
e 

Frame 0 Frame 10 Frame 30 Frame 40

Figure 6. Crowded scene from SIMITATE with a human moving

in a room. All methods can track the human successfully, but only

MINT can keep keypoints on the static objects consistently (green

ellipses), while the baselines lose track of them (red ellipses).

of four-time steps. We compare the prediction against the

ground truth position of the object in the predicted frame

using CLEVRER (Yi et al., 2019). We report in Table 2

the ratio of successfully predicted objects (i.e., a predicted

keypoint lying on the same object in the next frame) to the

ground truth number of objects in the next time step. The

comparison demonstrates that keypoints detected by our

method represent the scene better than the baselines and

help to predict the next state. Figure 4 shows the prediction

performance using different keypoint detectors.

Downstream task III: Object discovery in realistic scenes.

Our method addresses challenging aspects beyond synthetic

datasets. We evaluate the keypoint detectors on two addi-

tional datasets: (1) MIME (Sharma et al., 2018): a collection

of close-up videos of human hands manipulating objects,

and (2) SIMITATE (Memmesheimer et al., 2019): a video

dataset of humans performing manipulation tasks in wide-

view cluttered scenes. Since no annotations are provided in

these datasets, we perform only qualitative analysis.

In MIME, the human hand enters and leaves the scene

abruptly, allowing to evaluate MINT in come-and-go sce-

narios as shown in Figure 5. MINT only activates the nec-

essary number of keypoints, while Transporter uses a static

number, and Video structure fails to deactivate the exces-

sive keypoints when the hand disappears. Figure 5 shows

the number of active keypoints over time, revealing our

method’s superior performance for the number of keypoints

and the qualitative representation of objects in the scene.

The qualitative results for SIMITATE in Figure 6, on the

other hand, show that only MINT can disambiguate be-

tween static and dynamic objects, tracking human move-

ment, while maintaining the structure of the keypoints rel-

atively constant over the static objects. The baselines rely

on reconstructing the movement, failing to represent the

scene’s structure. The qualitative results reveal the need for

the conditional entropy loss (forcing attention on moving

objects when the number of available keypoints is restricted)

and the information transportation loss (ensuring the spatio-

temporal consistency). We further include ablation study

7
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Table 3. Average score for imitation learning on MAGICAL (Toyer et al., 2020). Higher values are better.

Method MoveToRegion MoveToCorner MakeLine
Demo TestJitter Demo TestJitter Demo TestJitter

MINT (ours) 1.00 ± 0.00 0.86 ± 0.31 1.00 ± 0.00 0.80 ± 0.34 0.2 ± 0.22 0.06 ± 0.14
CNN 1.00 ± 0.00 0.84 ± 0.32 0.74 ± 0.35 0.30 ± 0.38 0.00 ± 0.00 0.01 ± 0.06

Figure 7. Keypoint-based imitation learning in MAGICAL. The

figure showcases the MoveToCorner environment, where our

agent’s objective is to move the purple object to the top-left corner.

Our approach, MINT, enables the agent to observe keypoints that

describe the environment and predict the next action accurately.

We demonstrate the effectiveness of our method by training the

agent to imitate expert trajectories. The visualization overlays

MINT keypoints on sample frames from a successful rollout.

results on both realistic datasets in Appendix E.1.

Downstream task IV: Imitation learning. Imitation learn-

ing from video frames is a long-standing challenge for con-

trol. Keypoints can define a low-dimensional representation

that could reduce the computational burden considerably.

In this experiment, we investigate the suitability of our key-

point representation for control tasks, like imitation learning

in MAGICAL (Toyer et al., 2020) (cf. Figure 7). We first

pretrain MINT on 24 demonstration videos from different

tasks. Then, we fix the keypoint detector and train an agent

to mimic the demonstrated actions, using an IN (Battaglia

et al., 2016), followed by a fully-connected layer that de-

codes the actions (cf. Appendix E.4). The agent uses as

input the observed keypoints from four frames. We also

found it useful to predict the next state as an auxiliary task.

We compare the MINT-based agent against an agent that

uses a CNN to extract features directly from pixels. The

CNN agent is trained from scratch for each environment

(cf. Appendix E.5). We consider three environments with

different levels of difficulty; MoveToRegion: move an agent

to a specific region, only the agent is involved (easy). Move-

ToCorner: move an object to the top-left corner, one object

and the agent are involved (medium). MakeLine: place

multiple objects in a line, four objects and the agent are

involved (hard). We evaluate the learned policy on environ-

ment instances from demonstrations (Demo) and randomly

initialized (TestJitter). The results in Table 3 reveal that a

pretrained keypoint model with MINT is suitable for con-

trol, achieving comparable or even superior performance

to a task-specific CNN-based agent (cf. Appendix E.5 for

more details).

We hypothesize that there is still room for improvement to

unleash the potential of MINT sparse keypoint represen-

tation for control. One viable option is to use a more ex-

pressive network architecture (e.g., graph attention network)

that may provide a better representation of the keypoint-

induced graph. Another promising direction is to boost a

reinforcement learning agent with the imitation learning

policy. However, this is out of the scope of the current work.

Limitations. Our method relies on ISE after filtering high-

frequency color changes. As a result, the method has diffi-

culties in recognizing transparent objects and objects with

the same color as the background. We plan to investigate

the integration of implicit representation learning to coun-

teract this issue. Another limitation is the interpretation

of the keypoints in the three-dimensional space. The cur-

rent method operates on images and does not provide 3D

information. Adding depth information or extending to a

multi-view setting are options for future improvements. Our

method can use high-level features from a pretrained en-

coder to estimate the entropy, which may solve the current

limitations. However, while we treated pixels as discrete

random variables with RGB values, high-level features lie

on a continuous latent space and, therefore, would require

variational inference techniques. This direction would re-

quire a new treatment compared to our current analysis that

relies on discrete probability theory, which goes beyond

the scope of the current paper that lays the ground for such

future work.

4. Related Work

Representation learning. The idea of extracting sparse

feature representations of high-dimensional visual data is

dominant in computer vision and machine learning research

(Harris et al., 1988; Lowe, 2004), and connects to the func-

tioning of the human visual system (Marr, 2010). Such

sparse representations are generally known as PoI, which

are 2D locations that are stable and repeatable under various

lighting conditions and viewpoints (DeTone et al., 2018).

Traditional geometric computer vision methods relied on the

extraction of hand-crafted feature descriptors (Lowe, 2004;

Rublee et al., 2011) for tasks like localization (Schmid et al.,

2000; Mur-Artal et al., 2015). In the deep learning era,

CNN architectures have proven superior to handcrafted fea-

tures (Yi et al., 2016; DeTone et al., 2018; Song et al., 2020;

Zheng et al., 2017). Deep approaches extract clouds of PoI

that are useful for correspondence searching in visual place

recognition from different viewpoints (Hausler et al., 2021),

or pose-estimation for control (Florence et al., 2019). Re-

lated to our method are object-centric approaches (Singh

et al., 2021; Locatello et al., 2020; Dittadi et al., 2022),
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which aim to learn abstract representations for objects in a

scene. Our approach to keypoint discovery, alongside our

metrics, are directed at learning and evaluating keypoints as

an object-centric representation.

Image information entropy. Our work draws inspiration

from classical approaches in saliency detection in images

that use local information to detect salient entities (Kadir

& Brady, 2001; Bruce & Tsotsos, 2005; Fritz et al., 2004;

Renninger et al., 2004; Borji & Itti, 2012). Bruce & Tsot-

sos (2005) proposes that regions with high self-information

typically correspond to salient objects, and Alexe et al.

(2010) quantified objectiveness by self-information approxi-

mated via center-surround feature differences. Extracting

sparse feature representations of high-dimensional visual

data is also dominant in CV (Harris et al., 1988; Lowe, 2004;

DeTone et al., 2018). Traditional CV methods relied on the

extraction of hand-crafted feature descriptors (Lowe, 2004;

Rublee et al., 2011; Schmid et al., 2000; Mur-Artal et al.,

2015). Notably, image information entropy has additional

applications in various CV problems, like image registra-

tion (Sabuncu, 2006), active vision (Ferraro et al., 2002),

medical image analysis (Hržić et al., 2019), nuclear detec-

tion (Hamahashi et al., 2005), image compression (Minnen

et al., 2018), and image randomness (Wu et al., 2013). Our

method proposes information-theoretic losses based on the

ISE (Brink, 1996; Razlighi & Kehtarnavaz, 2009). The use

of ISE was prevalent in CV applications for image recon-

struction (Gull & Daniell, 1978) and in Markov Random

Fields (Li, 2009; Razlighi et al., 2009).

Keypoint learning. Keypoints represent a class of PoI that

have a semantic entity, e.g., representing objects (Duan et al.,

2019), or human joints (Cao et al., 2017; McNally et al.,

2022), but most methods rely on explicit annotations of

keypoint locations. Related to our work are unsupervised

methods for keypoint detection. Jakab et al. (2018) use

an autoencoder architecture with a differentiable keypoint

bottleneck trained on the difference between a source and a

target image, trying to restrict the information flow. MINT

also uses a differentiable keypoint representation, but it op-

erates on the output of an hourglass architecture. Our results

suggest that learning to redistribute the information after

compression is beneficial for keypoint discovery (Newell

et al., 2016). Minderer et al. (2019) use a similar architec-

ture as Jakab et al. (2018) but operate on video sequences

for detecting keypoints, using the intensity of the bottleneck

heatmap as an indicator of the importance of a keypoint.

Setting up a threshold on the intensity is challenging and

domain-specific. Contrarily, we learn a binary classifica-

tion of active/inactive keypoints and optimize the number

of keypoints used in every frame. Kulkarni et al. (2019)

propose feature transportation in the keypoint bottleneck of

Jakab et al. (2018) before reconstruction. MINT performs

information transportation and waives the need for image

reconstruction, which would require an additional appear-

ance encoder and a reconstruction decoder from keypoints.

Gopalakrishnan et al. (2021) devised a three-stage architec-

ture that first learns a spatial feature embedding, then solves

a local spatial prediction task related to object permanence,

and finally converts error maps into keypoints. However,

this method operates on single images and does not consider

the temporal consistency of the extracted keypoints. MINT,

on the other hand, is a parameter-efficient single model that

provides spatio-temporally consistent keypoints in videos.

To the best of our knowledge, (Kulkarni et al., 2019; Min-

derer et al., 2019) are the only comparable methods that

set the state-of-the-art for unsupervised temporal keypoint

discovery, also proven by their successful adoption for be-

havior recognition (Sun et al., 2022), causal discovery (Li

et al., 2020), and control (Bechtle et al., 2023).

In Appendix G, we also discuss the use of information-

theoretic measures in deep learning.

5. Conclusion

We presented MINT, a novel unsupervised keypoint repre-

sentation learning method from videos using entropy-based

intrinsic supervisory signals. We treat keypoints as transmit-

ters of information, and defined a deep model that learns con-

sistent keypoint representations from video frames, thanks

to two original losses; an information maximization loss

and an information transportation loss. These losses drive

the keypoints to cover areas of high spatial entropy, while

ensuring spatio-temporal keypoint consistency. Auxiliary

losses enable MINT to learn to switch on/off keypoints

when required to preserve the information flow. Our experi-

mental evaluation showcased the superior performance of

our method on various downstream tasks, ranging from ob-

ject detection to dynamics prediction and imitation learning.

Moreover, we showed qualitatively that MINT tackles key

challenges in realistic scenarios, such as attending to static

and dynamic objects and handling appearing/disappearing

entities. Overall, we proposed a method for learning reason-

able keypoint representations from videos purely unsuper-

vised, with promising results for future applications.
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Appendix

The appendix provides additional details on the architecture, the entropy layer, proofs, the description of evaluation metrics

for object detection and tracking task, additional experimental analysis with implementation details and discussions, and an

extended related work section. Moreover, we provide video results on the project website4 and the code5.
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A. Architecture

This section contains additional information about the model architecture in Section 2.2, implementation details on how to

get the keypoint coordinates from the feature map, and the heatmaps for keypoints to ensure reproducibility.

A.1. Keypoint Model

The backbone of our model is an hourglass architecture (Newell et al., 2016), followed by a soft-argmax operator to receive

the coordinates of the keypoints. Keypoints provide a low-dimensional representation of high-dimensional RGB images.

Therefore, many keypoint detection techniques are inspired by the autoencoder architecture (Goodfellow et al., 2016)

which uses the bottleneck to consolidate the information into a reduced dimensionality for keypoint extraction (Minderer

et al., 2019; Kulkarni et al., 2019). Instead, we suggest taking an hourglass architecture (Newell et al., 2016) which

upscales the compressed information again and outputs several feature maps with high activation in places with eminent

information (Ewerton et al., 2021; Xu & Takano, 2021; Newell et al., 2016). This allows the network to predict the

information at the original image size yielding finer resolution of the coordinates and correspondence to the original pixels.

Our keypoint detector consists of an hourglass convolutional neural network with three convolutional layers, with kernel sizes

of 5, 3, 3 and strides of 3, 2, 2, respectively. The upsampling part of the model consists of three transposed convolutional

layers, with kernel sizes of 3, 3, 3 and strides of 1, 2, 2. The number of input and output channels for each layer depends on

the number of keypoints K and the number of input image channels C, see Table 4. The result is passed through a softplus

layer to ensure the positivity of the feature maps. Lastly, we append a spatial soft-argmax layer (see Appendix A.2) to get

the coordinates of the keypoints from the feature maps fi. We initialize all the convolutional layers with Xavier’s normal

initialization (Glorot & Bengio, 2010) and add a leaky ReLU activation and a batch normalization layer after each of them.

We normalize the input to the range [−0.5, 0.5]. The total number of the parameters is 58, 725 for the input of size 320×420.

Table 4. Architecture details for an RGB image of 320× 480 and K = 25 keypoints. There is a leaky ReLU layer and a BatchNorm2d

layer (50 parameters) after each convolutional layer.

Layer (type) Input channels Output channels Kernel size Stride Output shape # params

Normalize-1 C C - - [3, 320, 480] 0

Conv2d-1 C K 5 3 [25, 79, 106] 1,900

Conv2d-2 K K 3 2 [50, 26, 35] 5,650

Conv2d-3 K 2K 3 2 [50, 26, 35] 11,300

ConvTranspose2d-1 2K 2K 3 1 [50, 53, 71] 22,550

ConvTranspose2d-2 2K K 3 2 [25, 107, 143] 11,275

ConvTranspose2d-3 K K 3 2 [25, 107, 143] 5,650

Softplus-14 K K - - = 0

SpatialSoftargmaxLayer-15 K K - - [25, 2] 0

Final output [25,3] total: 58,725

A.2. Feature Map to Keypoint

The coordinates of the keypoints are determined by the location of the maximum value in its corresponding feature map.

The argmax operator is not differentiable, so we opted to use a differentiable spatial soft-argmax as an alternative to extract

the keypoints coordinates from the feature maps. The spatial soft-argmax (Levine et al., 2016) takes K 2D feature maps

f (i), one for each keypoint ki, flattens the feature maps and computes the weights ωi for each pixel

wi =
ef

(i)−max(f(i))

∑

ef(i)−max(f(i))
. (11)

Before applying the softmax, we subtract the maximum value from the input, which does not change the output of the

softmax but helps for numerical stability. In order to map the weights to coordinates, we generate a mesh grid (xgrid, ygrid)
of x and y coordinates, with the same size as the input image. We flatten the mesh grid and compute the expected keypoint

coordinates [x̂i, ŷi] as the weighted sum of the coordinate grid with ωi. This process is visualized in Figure 8.
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Input feature map Flattened  in blue 
10*weights  in red

Expected coordinates 

Figure 8. Feature map to keypoint (spatial soft-argmax). The keypoint detector outputs a feature map f (i) for each keypoint k(i). The

spatial soft argmax operator polls the coordinates of the keypoint [xi, , yi] in a differentiable way by flattening a mesh grid of coordinates

and using the feature-map values as weights to vote for the coordinates of the maximum value.

Process the Gaussian 
 

 

 

 

Distances Gaussian Heatmap

Figure 9. Keypoints to heatmap. We build the heatmap h(i) centered at the coordinates of a keypoint k(i) in a differentiable fashion. The

process starts by computing the distances between the center and all the pixels forming a 2D distances image. Inducing the distances into

Gaussian forms a multivariate Gaussian distribution G(i) over the image, whose mean is at the keypoint coordinates. Thresholding and

clamping the Gaussian gives the final heatmap, which represents a keypoint’s information coverage.

A.3. Keypoints to Heatmaps

The heatmaps mask out the information coverage areas of keypoints, and are essential to define our losses. We developed

a differentiable way to generate heatmaps from keypoint coordinates. The heatmap h(i) generation for a keypoint takes

coordinates as a pair of real numbers (xi, yi) ∈ R
2. We start by generating a pixel-coordinates array with the same width

and height as the original image H ×W × 2, where 2 denotes the coordinates of each pixel (x, y) ∈ N
H×W×2. Then we

compute the squared distance between the input and all the pixels ||(x, y) − (xi, yi)||
2
2. We use the squared distance to

generate a Gaussian distribution around the input coordinates G(i)(xi, yi) with a standard deviation σG(i) .

The heatmap defines the area and weighting of information belonging to each keypoint. The heatmap should be 1 around

the center of the keypoint, as the keypoint covers the information in this point completely, and descend gradually to 0
representing information out of reach of the keypoint. We achieve that by thresholding and clamping the Gaussian. We use a

threshold τ and a scaling factor η for the thresholded Gaussian to get the final heatmap hi. Table 6 provides more details on

the scale of these hyperparameters. The process is visualized in Figure 9.

B. Entropy Layer

The entropy layer (Section 2.1) is one of the main modules of our method. For an input image, the entropy layer outputs the

image spatial entropy that is the basis for computing our intrinsic supervisory signals for our representation learning method.

In this section, we provide additional implementation details. We split the explanation into two subsections: (1) the entropy

module definition in PyTorch (Paszke et al., 2019), and (2) the CUDA extension for the parallel execution.
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Region histogram 

 

Input image blurred image (smooth) Sharpened image (sharp)

Pre-processed image (division) Spatial entropy image

Figure 10. Entropy computation in the entropy layer (Appendix B), which consists of the entropy module and the CUDA extension. The

entropy module takes as input an RGB image (input image), blurs it to get a smoothed image (smooth image), and uses the result to

sharpen the input image (we get the sharp image). The final preprocessed image (division image) is the result of dividing the sharpened

image (sharp) by the blurred image (smooth). Further, the entropy module extracts non-overlapping patches and forwards them to the

CUDA extension. CUDA extension computes the region histograms for each region (patch) hist(b, R(x, y)), and uses the histogram to

compute the probability of each bin p(b, R(x, y)). The entropy of a pixel at location (x, y) is Shannon’s entropy of the region around

it H(I(x, y)) depending on the probabilities of the color values inside that region. The final spatial entropy image is formed by the

individual entropies of pixels. Our CUDA extension provides a highly efficient and parallelizable implementation for the process.

B.1. Entropy Module

The entropy module is a PyTorch (Paszke et al., 2019) module, which preprocesses an input image and forwards it to the

CUDA extension for efficient entropy computation. The input of the entropy module is an RGB image I ∈ R
H×W×3. The

input image is first processed to remove high-frequency color changes. The processing is completely vectorized to allow

efficient execution using PyTorch during training. The processing of the input image starts by blurring the image using an

average blur layer, followed by sharpening the result, and finally dividing the sharp image by the smooth image. Figure 10

shows an example of the intermediate steps of the entropy layer.

Before forwarding the processed image to the entropy function, we generate the neighborhood region R(x, y) for each pixel

location (x, y). These regions have square shape with the corresponding pixel (x, y) being the center. Instead of iterating

over all the pixels with for loops, we use the stridden operation to factorize the extraction of the regions. Using strides

to extract the regions aligns with how the image is stored in the memory and does not create overhead. These tricks are

essential for the efficiency of our entropy layer.

B.2. CUDA Extension

The CUDA extension is a high-efficient program for parallel image spatial entropy ISE computation, according to the

monkey model entropy (MME) (Brink, 1996; Razlighi & Kehtarnavaz, 2009), for which we need the histogram of the color

values. The naive histogram computation via vectorizing the code requires computing a pairwise distance matrix between

each pixel with every histogram bin, corresponding to multiplying the number of possible regions by 256. This causes

exploding GPU memory requirements (more than 50GB). Motivated by this observation, we present an efficient entropy

layer based on kernel density estimation in this work.

To estimate the value for each histogram bin b inside a region R(x, y) (patch) centered on pixel at location (x, y), we use

the kernel density estimator

f̂(b, x, y) =
∑

(xn,yn)∈R(x,y)

K(
I(xn, yn)− b

B
) , (12)

where I(xn, yn) is the pixel value at location (xn, yn) inside the regionR(x, y), andB is the bandwidth, used as a smoothing

parameter.
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We follow (Avi-Aharon et al., 2020) and use the derivative of the logistic regression function, the Sigmoid function σ(.), as

a kernel K(.), that is for a variable v

K(v) =
d

dv
σ(v) = σ(v)σ(−v) . (13)

The integral of the function f̂(b, x, y) defined in Equation (12) over the region gives the histogram value of the bin b in a

color channel c:

histc(b, R(x, y)) =
∑

(xn,yn)∈R(x,y)

[

σ(
Ic(xn, yn)− b− L/2

B
)− σ(

Ic(xn, yn)− b+ L/2

B
)

]

, (14)

where L = 1/256 is the bin size, so that each bin represents a color value. We get the probability of each color value by

dividing the sum of the histogram values by the size of the region |R| and the number of channels C

p(I(x, y)) = p(b, R(x, y)) =
1

C · |R|

∑

c∈{r,g,b}

histc(b, R(x, y)) . (15)

The entropy of the pixel in the center of the patch is

H(I(x, y)) = −
∑

(xn,yn)∈R(x,y)

p(I(xn, yn)) log(p(I(xn, yn))) (16)

= −
∑

b∈[0,255]

p(b, R(x, y))log(p(b, R(x, y))) . (17)

The entropy module uses our entropy function, implemented as an autograd function in PyTorch, to realize the CUDA

extension of the entropy computation. The input to the entropy function are the regions of the preprocessed images R(x, y).
The CUDA extension allocates a GPU block for each region, hence, the grid size equals to the number of all possible regions

for all images in the batch. The block size is 256 threads, i.e., a thread for each bin b. Each thread iterates over the whole

region and computes the histogram of its corresponding bin value b according to Equation (14). Then, it normalizes the

result by the region size and the number of channels to get the probability according to Equation (15). Finally, each thread

computes the entropy of the pixel (Equation (16)), which is equivalent to the sum of the entropy of the histogram bins

(Equation (17)).6

C. Proofs

C.1. Proof of Proposition 2.1

We can consider the network as an information channel similar to the information maximization principle (InfoMax)

(Linsker, 1988). The input of the network is the actual image It, and the output is the masked image IMt by the keypoints.

We want to minimize the average probability of error of how well the output IMt represents the information of the input It.
First, we will work on a pixel level to bound the probability of error in the intensity of the nth pixel at location (x, y) in

images IMt and It, denoted as P
(n)
ε = P(It(x, y) ̸= IMt (x, y)). Images can in general be considered as lattices, with pixels

being the random variables over intensities B (in our case these are the number of bins in the histogram as described in

Appendix B).

Since the error event for the nth pixel is a binary event, it follows that P
(n)
ε is a binary probability. Therefore, the average

error probability over all pixels N of the image can be computed as

P̄ϵ =
1

N

N
∑

n

P (n)
ε , (18)

where N = H ×W is the total number of pixels, computed as the product of the height H and width W of the image.

6The entropy layer is opensourced in https://github.com/iROSA-lab/MINT
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On a pixel-level, following Fano’s inequality7 (Sabuncu, 2006; Scarlett & Cevher, 2019; Tandon et al., 2014) and assuming

that the nth pixel in position (x, y) in an image can take a value uniformly on B, we get

H(It(x, y)|I
M
t (x, y)) ≤ H2(P

(n)
ε ) + P (n)

ε log(|B| − 1) , (19)

where H2(α) = α log 1
α
+(1−α) log 1

1−α is the binary entropy function (with maximum entropy corresponding to α = 1
2 ),

and B is the support of the pixel value.

Equation (19) can be further bounded as H2(P
(n)
ε ) ≤ log 2, and |B| − 1 ≤ |B|. Moreover, since a pixel is uniform on |B| its

entropy can be considered H(It(x, y)) = log |B|. Therefore, we can further bound Equation (19) as

H(It(x, y)|I
M
t (x, y)) ≤ log 2 + P (n)

ε log(|B|) (20)

⇔H(It(x, y)|I
M
t (x, y))−H(It(x, y)) ≤ log 2 + P (n)

ε log(|B|)−H(It(x, y)) (21)

⇒I(It(x, y), I
M
t (x, y)) ≥ (1− P (n)

ε ) log(|B|)− log 2 (22)

⇔P (n)
ε ≥ 1−

I(It(x, y), I
M
t (x, y)) + log 2

log |B|
. (23)

The mutual information of two random variables is upper bounded by the minimum entropy of the marginals, therefore,

I(It(x, y), I
M
t (x, y)) ≤ min(H(It(x, y)),H(IMt (x, y))). But the masked image will by definition represent less infor-

mation than the original image, therefore, we have I(It(x, y), I
M
t (x, y)) ≤ H(IMt (x, y)). We can take the worse case

scenario and assume I(It(x, y), I
M
t (x, y)) ≈ H(IMt (x, y)) (Murphy, 2022). Therefore, Equation (23) becomes

P (n)
ε ≥ 1−

H(IMt (x, y))) + log 2

log |B|
, (24)

which bounds the error on the information carried by a pixel in the masked image.

To acquire the bound of the average error probability in Equation (18), we sum Equation (24) for all pixels and divide by N
to get

1

N

N
∑

n

P (n)
ε ≥

1

N

N
∑

n

1−

∑

x,yH(IMt (x, y)) +
∑N
n log 2

N log |B|
(25)

P̄ε ≥ 1−

∑N
n H(IMt (xn, yn))

N log |B|
−

log 2

log |B|
. (26)

C.2. Proof of Lemma 2.2

We first derive the complete proof for the relation H(X,Y ) ≥ max(H(X),H(Y )) ≥ 0 that holds for any two discrete

random variables, as also stated in (Murphy, 2022)-Equation(6.10). Then, we extend this proof for the case of joint ISE.

Let X,Y be two discrete random variables, and the respective entropies are lower-bounded H(X) ≥ 0, H(Y ) ≥ 0. The

joint entropy between the two random variables can be expressed as

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ) . (27)

As any conditional entropy is greater or equal to zero, we get H(X,Y ) ≥ H(X), and similarly H(X,Y ) ≥ H(Y ). If

H(X) ≥ H(Y ) then

H(X,Y ) ≥ H(X) ≥ H(Y ) . (28)

If H(Y ) ≥ H(X) then

H(X,Y ) ≥ H(Y ) ≥ H(X) . (29)

7Fano’s inequality uses information-theoretic measures to provide the relation between the average information loss from a noisy
channel and the probability of categorization error.
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Therefore, for discrete random variables, we get the lower bound of the joint entropy as

H(X,Y ) ≥ max(H(X),H(Y )) ≥ 0 . (30)

Following the previous derivation, when considering two images I1, I2 whose pixels are discrete random variables over

intensities B, we can lower bound the joint image spatial entropy by the pixel-wise maximum of the two marginal ISE

H(I1, I2)(x, y) ≥ max(H(I1(x, y)),H(I2(x, y))) . (31)

Given this lower bound we can approximate the joint ISE as

H(I1, I2)(x, y) ≈ max(H(I1(x, y)),H(I2(x, y))) . (32)

Remark. Approximating the joint entropy by the lower bound corresponds to the worst-case scenario for the MCE loss.

Hence, the approximation ensures better information reconstruction according to Corollary 2.3. Meanwhile, given that the

spatial mutual information of two images is upper bounded by the joint entropy, and since the maximization of the mutual

information optimizes the keypoint transportation over frames according to Proposition 2.4, approximating the joint entropy

by the lower bound corresponds to a higher probability of reducing the IT loss.

C.3. Proof of Proposition 2.4

Due to the process of information transportation of the keypoints, we try to reconstruct the information each keypoint carries.

Therefore, we can again leverage Fano’s inequality (Scarlett & Cevher, 2019), to provide a lower bound for the average

error probability of information transportation per keypoint.

We formalize our error probability of information transportation of the K keypoints as the per-pixel error event P IT
ε =

P(It(x, y) ̸= R
(i)
t (x, y)), i.e., aggregating the reconstruction from all keypoints. Therefore, from Fano’s inequality similar

to Equation (19), we have the per-keypoint inequality for each keypoint k(i)

H(It(x, y)|R
(i)
t (x, y)) ≤ H2(P

IT(i)
ε ) + P IT(i)

ε log(|B| − 1) . (33)

Following similar derivation steps as in Appendix C.1, we end up in the equivalent version of Equation (23)

I(It(x, y), R
(i)
t (x, y)) ≥ (1− P IT(i)

ε ) log(|B|)− log 2 ⇔ (34)

P IT(i)
ε ≥ 1−

I(It(x, y), R
(i)
t (x, y)) + log 2

log |B|
. (35)

Note that we assume the IT operation per keypoint, independently, and assuming that it is an exclusive event. Therefore,

every single transportation is bounded by Equation (35).

D. Evaluation Metrics for Object Detection and Tracking

Each keypoint should provide a representation of a feature in an object, and keypoints should be distinctive and distributed

over the scene. Keypoints assigned to empty spaces are considered unsuccessfully assigned. To judge the performance of

our method, we propose metrics that use the object masks provided by CLEVRER (Yi et al., 2019) over a set of test videos

V , each of which is of length T .

D.1. Percentage of the Detected Objects (DOP)

We consider an object detected if there is at least one keypoint on its mask Mobj . At each time frame, we count the

percentage of detected objects with respect to the ground truth (GT) number of objects and average these values over the

whole video. We get the final result by averaging the value over all the videos in the test dataset. Better detection corresponds

to a higher percentage of detected objects.
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MDOP =
1

V · T

V
∑

v=1

T
∑

t=1

Ndetected
NGT

, (36)

where Ndetected is the number of detected objects (at least one keypoint lies in the object mask)

Ndetected =
∑

obj∈O

[

K
∑

i=1

I((xi, yi) ∈Mobj)

]

> 0, (37)

with NGT being the ground truth number of objects and O is the set of all objects in the scene.

D.2. Percentage of Tracked Objects (TOP)

We consider an object tracked if there is at least one keypoint on its mask in the current and the previous timeframe. At each

time frame, we count the percentage of tracked objects with respect to the ground truth (GT) number of objects and average

these values over the whole video. We get the final result by averaging the value over all the videos in the test dataset. Better

detection corresponds to a higher percentage of tracked objects

MTOP =
1

V · T

V
∑

v=1

T
∑

t=1

Ntracked
NGT

, (38)

where Ntracked is the number of tracked objects (at least one keypoint lies in the object mask in time frames t and t-1)

Ntracked =
∑

obj∈O

[

K
∑

i=1

[I((xi, yi)t ∈M
(t)
obj ] · [I((xi, yi)t−1 ∈M

(t−1)
obj )]

]

> 0. (39)

D.3. Unsuccessful Keypoint Assignment (UAK)

A keypoint is unsuccessfully assigned in a time frame if it does not belong to any object. We average the number of

unsuccessful keypoint over the whole video, and then over test videos to get a global value over the testset

MUKA =
1

V · T

V
∑

v=1

T
∑

t=1

Nuk , (40)

where Nuk is the number of unsuccessful keypoints (does not belong to the sum of the masks)

Nuk =

K
∑

i=1

∼ I((xi, yi) /∈
∑

obj∈O

Mobj) . (41)

A lower unsuccessful keypoint assignment metric MUKA corresponds to better keypoints activation.

D.4. Redundant Keypoint Assignment (RAK)

Assigning keypoints to areas already represented by other keypoints signals bad keypoint detection. The RAK metric

accounts for the number of keypoints over the area of the object. The number of keypoints on an object mask should be

proportional to its area Aobj . We assume a keypoint can represent some area of pixels Ak. If the keypoints cover the object,

the RAK metric will have a value of 0, with higher values if more or fewer keypoints were assigned to that object.

MRAK =
1

V · T ·O

V
∑

v=1

T
∑

t=1

∑

obj∈O

|Aobj −Aknobj |

Aobj
, (42)

where Ak is the representation area of a keypoint (e.g. average object areas in the dataset) Aobj is the area of the object’s

mask and nobj is the number of keypoints assigned to the object
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nobj =

K
∑

i=1

I((xi, yi) ∈Mobj) for each obj ∈ O . (43)

The lower the value of MRAK , the better, because more efficient, is the distribution of the keypoints.

The metrics collectively judge the efficacy of keypoint detection and tracking methods, where only detected objects can be

tracked, so the DOP metric is an upper bound for the TOP metric. The value of the metric RAK will go to one in the case of

not detecting any object, but can go higher in case of assigning redundandant keypoints to the same object. Following this

observation, we recommend judging the value of the RAK metric jointly with the value of the DOP metric.

E. Additional Experimental Analysis

E.1. Ablation Study

Our method for unsupervised keypoint discovery in video streams uses a collection of information-theoretic losses and

some regularizers. In the ablation study, we investigate the role of each component and discuss our design choices. In

the following, we analyze different design choices like the entropy region size, the conditional entropy in the information

transportation loss, and the regularizers.

Ablation analysis. Using the proposed evaluation metrics, we analyzed several aspects of MINT on CLEVRER (Yi et al.,

2019). We report the results in Table 5.

Since we compute the local entropy using the probability of the pixel value in its neighborhood region, we investigated the

effect of the region size on the performance by varying the region size while using the information maximization (IM) (i.e.,

masked entropy (ME) and masked conditional entropy (MCE) from Section 2.2.1) loss alone. The results show that a region

of size 5 × 5 gives the highest values for the percentage of the detected object (DOP) and percentage of tracked objects

(TOP) metrics. We observe also that increasing the region size led to an increase in unsuccessful keypoint assignment

(UAK), with a decrease in redundant keypoint assignment (RAK); we hypothesize this is due to an over-smoothing effect of

the bigger region, which leaks some information outside the objects. We noticed, on the other hand, an increase in the order

of 30 minutes in the training time (50% of the training time) of one seed when increasing the region size by 2. Given the

marginal improvement and the need for more resources, we adopted a region size of 3× 3 for all of our experiments.

We examined the information-theoretic losses without regularization to ablate the additional hyperparameter κ which sets the

contribution of the conditional entropy in the information transportation (IT) loss. The results prove that adding conditional

information improves the keypoint detection, with κ = 0.5 giving the best results for DOP and TOP followed by κ = 0.9.

The value of RAK increases with lower κ, because keypoints seek the same areas of high information to reconstruct as

much information as possible, leading to the redundant assignment. The introduction of conditional entropy in the IT loss,

as describe in Section 2.2.2, helps mitigate this behavior by lowering the reconstruction error outside the transportation

regions, i.e., the keypoint position in the current and the previous time frame. We highlight two values from this part; with

κ = 0.5 we get the best scores for DOP and TOP, while κ = 0.9 trades off well all of the metrics (we call this model

MINT w/o Reg. - highlighted in light blue, that is also referenced in Table 1).

Next, we investigate the regularization terms proposed in our method: (1) the movement loss controlled by the weight md in

the information transportation loss, (2) the overlapping loss (O), and (3) the active status loss (S). We experimented with

all possible combinations of those regularizers. We can observe that the movement regularizer helps decrease the UAK

metric, as this regularizer stabilizes the keypoint movement and constraints the keypoints from jumping into the background.

The overlapping loss reduces the RAK value by almost half (from 3.982 to 2.079), but this comes with a higher UAK. The

status loss reduces the UAK but comes at the cost of lower DOP and TOP. Introducing the overlapping and the status loss

together allows better overall performance, where the overlapping loss increases the DOP. We achieved the best trade-off

across all metrics by setting κ = 0.9 while using all the regularizers (highlighted in light green). We adopt this option for

our method MINT , and it proved to outperform the baselines both in the synthetic dataset (quantitatively proved in Table 1,

and qualitatively shown in Figure 4) and for realistic scenarios (Figures 5 and 6).

Finally, we investigated the performance of the losses that work for single images, mainly the ME with the regularizers:

the active status loss (S) and the overlapping loss (O). This combination of losses does not use any temporal information,

hence, it can operate on static images. We train this combination of losses on CLEVRER, operating on single images. We

can observe that the model learns to track objects despite being trained on single images only. However, we argue that
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Table 5. Ablation study on MINT losses. We report the statistics of the metric values over 5 seeds. IM stands for the information

maximization losses (ME + MCE), IT for information transportation, κ decides the contribution of the conditional entropy in the IT loss,

md is the movement regularizer weight in the IT loss, O is the overlapping loss and S is the active status loss. The ablations picked for

MINT w/o reg. , MINT w/o Temp. and MINT are highlighted with light blue, light red, and light green consequently. The weight

scales used for all the ablations are λME = λMCE = 100, λIT = 20, λs = 10, λo = 30, and K = 25. The * near the method’s name

indicates a longer training time.

Method DOP ⇑ TOP ⇑ UAK ⇓ RAK ⇓

IM (3x3) 0.951 ± 0.042 0.929 ± 0.048 6.777 ± 1.369 3.885 ± 1.090
IM (5x5)* 0.956 ± 0.036 0.932 ± 0.043 8.276 ± 1.428 3.660 ± 1.083
IM (7x7)* 0.951 ± 0.041 0.926 ± 0.048 9.946 ± 1.593 3.098 ± 0.959

IM+IT (md = 0,κ=0) 0.917 ± 0.072 0.897 ± 0.077 3.543 ± 1.529 5.096 ± 1.587
IM+IT (md = 0,κ=0.5) 0.935 ± 0.058 0.916 ± 0.063 4.754 ± 1.463 3.982 ± 1.226
IM+IT (md = 0,κ=0.9) 0.918 ± 0.073 0.897 ± 0.078 6.793 ± 1.956 2.478 ± 0.865
IM+IT (md = 0,κ=1) 0.916 ± 0.073 0.895 ± 0.078 5.645 ± 1.873 2.336 ± 0.768

IM+IT (md = 1) 0.883 ± 0.097 0.865 ± 0.102 1.665 ± 0.954 1.896 ± 0.706
IM+IT (md = 0)+O 0.921 ± 0.066 0.898 ± 0.073 7.769 ± 1.880 2.079 ± 0.604
IM+IT (md = 1)+O 0.879 ± 0.102 0.861 ± 0.105 2.196 ± 1.228 1.705 ± 0.582
IM+IT (md = 0)+S 0.851 ± 0.114 0.830 ± 0.118 1.057 ± 0.666 1.159 ± 0.455
IM+IT (md = 1)+S 0.842 ± 0.116 0.823 ± 0.119 1.060 ± 0.735 1.180 ± 0.475

IM+IT (md = 0)+S+O 0.859 ± 0.112 0.840 ± 0.116 1.130 ± 0.710 1.324 ± 0.508
IM+IT (md = 1,κ=0.5)+S+O 0.844 ± 0.120 0.826 ± 0.123 1.100 ± 0.716 1.121 ± 0.451
IM+IT (md = 1,κ=0.9)+S+O 0.855 ± 0.118 0.838 ± 0.121 0.889 ± 0.639 1.123 ± 0.448

ME+S+O 0.849 ± 0.115 0.826 ± 0.119 0.958 ± 0.615 1.142 ± 0.446

MINT w/o Reg. 0.918 ± 0.073 0.897 ± 0.078 6.793 ± 1.956 2.478 ± 0.865
MINT w/o Temp. 0.849 ± 0.115 0.826 ± 0.119 0.958 ± 0.615 1.142 ± 0.446

MINT (ours) 0.855 ± 0.118 0.838 ± 0.121 0.889 ± 0.639 1.123 ± 0.448

K=10

IM (3x3) 0.879 ± 0.085 0.847 ± 0.095 1.662 ± 0.781 1.536 ± 0.554

the structure of our training process, which uses samples from a sequence of images, biases the model towards reducing

the movement of the keypoints while attending to features, leading to good tracking performance. We call this ablation

MINT w/o Temp. , and we discuss it further later.

We show that if we have enough knowledge about the environment and we can decide on the suitable number of keypoint (e.g.,

K=10 keypoints for CLEVRER), then the information maximization (IM) loss alone is enough to get good performance (last

row in Table 5), with low UAK and RAK, as the keypoint assignment is easier. We further discuss the two major ablations

MINT w/o Reg. and MINT w/o Temp. in detail regarding their performance qualitatively on the realistic datasets.8

MINT w/o Reg. With MINT w/o Reg. we refer to our method MINT without the regularization terms, i.e., (1) removing

the regularization for the keypoints’ movement md = 0 in the information transportation loss, (2) removing the overlapping

loss λo = 0, and (3) removing the active status loss λs = 0. Besides the quantitative results in Table 5, which show that the

information-theoretic losses can detect and track objects better than the baselines (outperforming all of the baselines in the

DOP and TOP metrics), we provide qualitative evidence of the performance of the proposed information-theoretic losses,

where MINT w/o Reg. can detect and track the object in synthetic (Figure 13) and realistic scenes (Figures 11 and 12).

On the other hand, the experiments justify the role of regularization in stabilizing keypoint detection and removing excessive

keypoints. Figure 13 from CLEVRER and Figure 11 from SIMITATE show a better distribution of keypoint when using

MINT over MINT w/o Reg. We refer also to the zoomed-in regions in Figure 13 where we show MINT w/o Reg. assign

keypoints around the object’s edges due to the entropy overestimation; MINT regularizes the keypoint towards the center of

the object. Figure 12 depicts the contribution of the regularization losses for economizing the number of used keypoints in

the come-and-go situation, allowing MINT to outperform the other models.

MINT w/o Temp. refers to our method MINT operating on single images without the losses that operate temporally over

two images. MINT w/o Temp. requires (1) removing the masked conditional entropy loss λMCE = 0, and (2) the information

8Video results for the ablation study: https://sites.google.com/view/mint-kp/ablations
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Figure 11. Crowded scenes. A video from SIMITATE dataset with a human moving in a room. We compare MINT with its ablations

MINT w/o Reg. and MINT w/o Temp. from Appendix E.1

transportation loss λIT = 0.

This ablation proposes good performance for keypoint detection on static images when using the losses that operate on

a single image. Table 5 shows that MINT w/o Temp. can detect 85% of the objects in the scene while distributing the

keypoint reasonably. Figure 13 shows that the MINT w/o Temp. assigns keypoints to objects in the scene successfully.

Figure 11 shows that MINT w/o Temp. can detect the human and objects in the background, but due to the lack of temporal

information, it does not concentrate on the moving objects (e.g., the hand of the human).

Overall, the full MINT model (cf. Table 5) trades off the need for good detection and tracking performance, but with a

reasonable distribution of keypoints, to adequately represent the information in the video when minimizing our information

theoretic losses (i.e., maximizing the covered information entropy spatio-temporally), as dictated by Propositions 2.1 and 2.4.

E.2. Hyperparameters

Table 6 provides the hyperparameters used for CLEVRER (Yi et al., 2019) in our experiments. We use the same values

for all other datasets, i.e., also for MIME (Sharma et al., 2018), SIMITATE (Memmesheimer et al., 2019), and MAGICAL

(Toyer et al., 2020). The only exceptions are the activation threshold γ, the std for heatmap σGi
and the threshold of the

heatmap τ , where these values depend on the size of the input image (i.e., γ = 15, σGi
= 9.0, τ = 0.1 for MIME, γ = 10,

σGi
= 9.0, τ = 0.5 for SIMITATE, γ = 10, σGi

= 7.0, τ = 0.3 for MAGICAL). Our method requires a sequence of 2

frames for the loss computation, and we found that the batch size does not affect the training and can be chosen based on

the available GPU resources. In our experiments, we used a PC with a GPU NVIDIA Tesla V100-DGXS-32GB. MINT

consumes around 5GB of GPU memory for a batch size of 32 and trains the model in around 1 hour and 5 minutes (for

each seed). We use the same weights for the losses in all experiments over different datasets, which suggests that the model

is robust against the hyperparameters. Moreover, we ran additional experiments on our benchmark with different sets of

hyperparameters (cf. Table 7), and the results were always close, which provides further proof of the robustness of our

method.

E.3. Baselines

Video structure (Minderer et al., 2019) is an unsupervised method for learning keypoint-based representation from videos.

Video structure learns a keypoint detector φdet(vt) = xt for a video sequence vt that captures the spatial structure of the

objects in each frame in a set of keypoints xi. It learns a reconstruction model φrec that reconstructs frame vt from its

keypoint representation xt and the first frame of the sequence v1. An additional skip connection from the first frame to the
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Table 6. Hyperparameters

Parameter name Value Parameter name Value Parameter name Value

learning rate 0.001 clip value 10.0 weight decay 0.00001
epochs 100 num keypoints K 25 number of stacked frames 3

activation threshold γ 15 entropy region size
√

|R| 3 std for heatmap σGi
9.0

Threshold for heatmap τ 0.1 Thresholded heatmap scale η 3.5 CE contribution (IT) κ 0.5
movement weight (IT) md 1.0 ME weight λME 100 MCE weight λMCE 100
IT weight λIT 20 active status weight λs 10 overlapping weight λo 30

Table 7. Hyperparameters experiments.

Hyperparams DOP ⇑ TOP ⇑ UAK ⇓ RAK ⇓

κ = 0.9
λIM = 100

λIT = 10, λs = 0, λo = 10, β = 4, m=0 0.917 ± 0.070 0.894 ± 0.076 7.606 ± 1.509 1.978 ± 0.593
λIT = 10, λs = 0.1, λo = 10, β = 4, m=0 0.913 ± 0.073 0.889 ± 0.078 5.813 ± 1.325 1.887 ± 0.587
λIT = 10, λs = 0.1, λo = 10, β = 4, m=1 0.879 ± 0.097 0.859 ± 0.102 2.468 ± 1.087 1.710 ± 0.585

κ = 0.5
λIM = 100

λIT = 10, λs = 1, λo = 10, β = 4, m=1 0.870 ± 0.107 0.852 ± 0.110 2.418 ± 1.121 1.606 ± 0.574
λIT = 10, λs = 0, λo = 1, β = 4, m=0 0.929 ± 0.062 0.907 ± 0.068 8.611 ± 1.686 2.228 ± 0.696
λIT = 10, λs = 5, λo = 10, β = 2, m=1 0.857 ± 0.115 0.838 ± 0.118 1.287 ± 0.689 1.090 ± 0.438
λIT = 10, λs = 5, λo = 30, β = 2, m=1 0.851 ± 0.117 0.832 ± 0.121 1.646 ± 0.706 1.050 ± 0.390
λIT = 10, λs = 5, λo = 30, β = 4, m=1 0.857 ± 0.115 0.838 ± 0.118 1.102 ± 0.703 1.269 ± 0.469
λIT = 20, λs = 5, λo = 30, β = 4, m=1 0.856 ± 0.117 0.838 ± 0.121 1.697 ± 1.232 1.391 ± 0.544
λIT = 20, λs = 5, λo = 30, β = 4, m=0 0.859 ± 0.113 0.839 ± 0.117 1.021 ± 0.599 1.283 ± 0.479
λIT = 20, λs = 5, λo = 30, β = 2, m=0 0.861 ± 0.107 0.839 ± 0.112 1.567 ± 0.728 1.207 ± 0.462
λIT = 20, λs = 10, λo = 30, β = 4, m=1 0.844 ± 0.120 0.826 ± 0.123 1.100 ± 0.716 1.121 ± 0.451

κ = 0.7
λIM = 100, λIT = 20, λs = 10, λo = 30

β = 4, m=1 0.845 ± 0.120 0.826 ± 0.123 1.256 ± 0.975 1.041 ± 0.450
β = 4, m=0 0.848 ± 0.117 0.829 ± 0.121 1.270 ± 0.766 1.068 ± 0.442
β = 2, m=1 0.846 ± 0.120 0.826 ± 0.125 1.545 ± 0.946 1.020 ± 0.384
β = 2, m=0 0.839 ± 0.118 0.818 ± 0.122 1.088 ± 0.647 0.948 ± 0.352

200 epochs
λIM = 100, λIT = 20, λs = 10, λo = 30, m=1

κ = 0.9, β = 2 0.842 ± 0.124 0.821 ± 0.128 2.121 ± 0.736 1.002 ± 0.387
κ = 0.5, β = 4 0.835 ± 0.123 0.817 ± 0.126 1.194 ± 0.797 1.047 ± 0.412
κ = 0.7, β = 4 0.843 ± 0.126 0.825 ± 0.129 1.003 ± 0.649 1.045 ± 0.419
κ = 0.9, β = 4 0.836 ± 0.125 0.818 ± 0.128 1.441 ± 1.390 1.004 ± 0.384

reconstruction model output changes its actual task to predict vt − v1; hence vt − v1 = φrec(v1, xt).
The keypoint detector is trained to optimize three losses:

(1) L2 image reconstruction loss

Limage =
∑

t

||v − v̂||22 , (44)

where v is the true and v̂ is the reconstructed image.

(2) Temporal separation loss penalizes the overlap between trajectories within a Gaussian radius σsep

Lsep =
∑

k

∑

k′

exp(−
dkk′

σsep

) , (45)

where dkk′ =
1
T

∑

t ||(xt,k − xk)− (xt,k′ − xk′)||
2
2 is the distance between the trajectories of keypoints k and k′.

(3) Sparsity loss adds an L1 penalty on the keypoint intensity µ (the mean value of the corresponding feature map) to

encourage keypoints to be sparsely active

Lsparse =
∑

k

|µk| . (46)
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Figure 12. Come-and-go scenario. In a manipulation video from MIME, the hand enters after the start of the video and departs before

the end. We plot the number of active keypoints w.r.t. timesteps. The results show the role of regularization in our Method MINT in

improving resource assignment and economizing the number of active keypoints.

A keypoint is active if the intensity is higher than a specific threshold thµ, the threshold is a hyperparameter that has to be

tuned depending on the video.

Transporter (Kulkarni et al., 2019) is a neural network architecture for discovering keypoint representations in an

unsupervised manner by transporting learned image features between video frames using the keypoint bottleneck. During

training, spatial feature maps φ(x) and keypoint coordinates ψ(x) are predicted for a source frame xs and a target frame

xt using a ConvNet and KeyNet (Barroso-Laguna et al., 2019). The keypoint coordinates are transformed into Gaussian

heatmaps hψ(x).

A transported feature-map φ̂(xs, st) is generated by suppressing both sets of keypoint location in φ(xs) and composing into

the feature maps around the keypoints from xt:

φ̂(xs, st) ≜ (1− hψ(x)t) · (1− hψ(x)t) · φ(xs) + hψ(xt) · φ(xt) . (47)

An additional refiner net learns to map the transported features maps into an image x̂t. The learning objective is reconstructing

the target image xt from the process. Hence, the Transporter optimizes the L2 reconstruction error L = ||xt − x̂t||
2
2.

Transporter-modified is a modified version of the transporter baseline (Kulkarni et al., 2019). The original implementation

of the method has two potential bottlenecks: (1) the feature maps φ(s) have a receptive field of size 24 for each position,

for an input of size 128x128; and (2) the resolution of the feature maps between which the features are transported is

32x32. For fair comparison to our method, which uses an entropy region of size 3x3, we modified the network architecture

of ConvNet φ(x) to have (1) a receptive field of 7 and (2) a feature map of size 122x122. We call the new architecture

Transporter-modified.

The experimental results show that the Transporter-modified model outperforms the original Transporter in the quantitative
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MINT (ours) Transporter Video Structure

MINT w/o Reg. (ours) Transporter-modified MINT w/o Temp. (ours)

Figure 13. Qualitative results on CLEVRER dataset for Task I (object detection and tracking) and Task II (learning dynamics). We include

results for all baselines described in Appendix E.3.

evaluation on CLEVRER dataset (Yi et al., 2019) (cf. Table 1). We want to refer to the visual results in Figure 13 that

show that the keypoints detected by the original Transporter (top middle image) are more stable than those detected by the

Transporter-modified (bottom middle image). We argue this behavior is due to the smaller receptive field leading the model

to assign keypoints to features instead of objects, and thus keypoints jump to similar features in different objects.

E.4. Interaction Network Architecture

The interaction network (IN) (Battaglia et al., 2016) is a model developed for learning the interaction relations between

physical objects to infer the physics of the environment. The interaction network treats the objects as nodes of a graph,

with the relations as edges. In our case, we use the keypoints as object nodes, with the coordinates, status, and positional

encoding as features. We form a fully connected graph of the keypoints, with no relational features for edges.

The interaction network used in our experiments has two sub-models; a relational model and an object model. The relational

model uses the relational information and object attributes to predict the effects of all interactions. The object model uses

the effects to update the features of the object. We encode node features before passing them to the interaction network.

After one pass through the interaction network, we decode the features into coordinates for the prediction task, and we add

another prediction head for the action decoding in the imitation learning task.

E.5. Imitation Learning Results

CNN-agent. The CNN agent is trained from scratch for every environment. Note that the state space for the CNN agent, the

image pixels, is one order of magnitude higher than the keypoints’ features. For fair comparison, we train the CNN agent

longer (twice the epochs used for training the MINT-based agent to counteract for MINT’s pretraining).

The CNN feature extractor consists of 5 convolution blocks, each consisting of a 2D convolutional layer with a ReLU

activation function and a batch normalization layer. The input to the model is a sequence of 4 color images stacked over the

channel axis; hence, the input size is 12× 96× 96. The layers have 64, 128, 128, 128, and 128 filters, with a kernel size of

3 and stride of 2, except the initial layer, which has a kernel size of 5 and stride of 1. The output of the last block is flattened

and passed to a linear layer to provide the final features. A policy model uses the features to infer the actions. The policy
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MoveToRegion

MoveToCorner

MakeLine

Figure 14. Rollouts from MINT agent in MAGICAL (Toyer et al., 2020) dataset.

model is a multi-layer perceptron with 4 linear layers of sizes 128, 64, 32, and 32. The output matches the action dimension

of MAGICAL environment which is 18.

We also provide visualizations of the learned policies of the MINT-based agent on the three environments of MAGICAL

in Figure 14. The visualization shows that MINT can assign reasonable keypoints for the agent and all the objects in the

environment. The imitation agent can solve the first two tasks MoveToRegion and MoveToCorner, but it struggles with the

last task MakeLine. The agent receives a score of 1.0 when it sorts all 4 objects in one line, while it gets a score of 0.5 for

putting 3 out of 4 in one line. Our imitation agent could (occasionally) sort only 3 out of 4 in the depicted environment

(which led to an overall 0.2 mean score over 5 seeds – Table 3), despite being able to assign keypoints to all objects. The

results suggest that there is a problem in encoding the relational features between keypoints, hindering the agent to reason

upon getting the right locations. We argue that further investigation of the appropriate model to pool information from the

keypoints is necessary to solve this most challenging task, but this is out of scope of the current work.

E.6. Additional Video Results

We provide additional video results on the website of our project: https://sites.google.com/view/mint-kp.
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F. Code

Our code is available under an open-source license at: https://github.com/iROSA-lab/MINT .

We provide instructions to run the code, with sample datasets to reproduce the results in the paper.

The implementation of video structure (Minderer et al., 2019)9 uses outdated libraries. Due to compatibility reasons, we

reimplemented their code in PyTorch with our best effort. We adapted the implementation of Transporter from Li et al.

(2020) 10 into the codebase of MINT.11

G. Additional Related Work Discussion

Information-theoretic approaches in machine learning. Information-theoretic principles proved advantageous in training

and understanding machine learning models (Yu et al., 2021). Different information measures aim to describe a random

variable’s behavior due to a probability density function. The probability density function is normally unknown, and machine

learning methods usually estimate it (Pardo, 2018; Avi-Aharon et al., 2020). In our method, we use kernel density estimation

(KDE) (Parzen, 1962) to estimate the probability density function for a region of pixels. Various information-theoretic

quantities were used in machine learning for different applications; examples are the cross-entropy loss for classification

(Good, 1992; Goodfellow et al., 2016), maximum entropy regularization in reinforcement learning (Peters et al., 2010;

Haarnoja et al., 2018), mutual information for self-supervised learning and interpretability (Rakelly et al., 2021; Zhang et al.,

2018), and KL divergence for training deep energy models (Yu et al., 2020). Our approach uses Shannon’s definition of

entropy (Shannon, 2001) to compute the local image entropy. With image entropy, we estimate joint entropy, conditional

entropy, and mutual information and develop our information-theoretic losses.

Temporal information plays an important role for many downstream tasks. Recent methods in neural video compression (Li

et al., 2022) propose to estimate spatial-temporal intra-frame entropy over quantized latent representation. In our work, we

opted to use inter-frame entropy estimation with temporal losses that encourage the model to attend to temporal information

changes, which proved to provide a strong inductive bias for keypoint detection.

The information maximization principle (InfoMax) (Linsker, 1988) treats the neural network as an information channel and

aims to maximize the information transferred through the network. Recent methods in computer vision and natural language

processing use the InfoMax principle for self-supervised learning (Oord et al., 2018; Hjelm et al., 2018; Kong et al., 2019).

Our method adopts the treatment of the neural network as an information channel in the information maximization loss and

extends it to treat the keypoints as transmitters of information, while being completely unsupervised.

Glossary

CV Computer Vision. 1, 2, 9

DOP percentage of the detected object. 6, 7, 22, 23, 25

IM information maximization. 23

IN Interaction Network. 7, 8

ISE image spatial entropy. 1, 2, 3, 5, 8, 9, 17, 19, 20

IT information transportation. 4, 5, 20, 22

MCE masked conditional entropy. 3, 4, 20, 22

ME masked entropy. 3, 4, 5, 6, 22

MI mutual information. 5

MINT Maximum Information keypoiNTs. 1, 2, 5, 6, 7, 8, 9, 22, 23, 24, 26, 27, 28

MME monkey model entropy. 17

PoI Points of Interest. 1, 8, 9

RAK redundant keypoint assignment. 6, 7, 22, 23, 25

TOP percentage of tracked objects. 6, 7, 22, 23, 25

UAK unsuccessful keypoint assignment. 6, 7, 22, 23, 25

9https://github.com/google-research/google-research/tree/master/video structure
10https://github.com/pairlab/v-cdn
11Our baselines implementation is available in our codebase https://github.com/iROSA-lab/MINT
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