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Abstract
Large language models internalize enormous001
parametric knowledge during pre-training.002
Concurrently, realistic applications necessitate003
external contextual knowledge to aid models004
on the underlying tasks. This raises a crucial005
dilemma known as knowledge conflicts, where006
the contextual knowledge clashes with the para-007
metric knowledge. However, existing decoding008
works are specialized in resolving knowledge009
conflicts and could inadvertently deteriorate010
performance in absence of conflicts. In this pa-011
per, we propose an adaptive decoding method,012
termed as contextual information-entropy con-013
straint decoding (COIECD), to discern whether014
the knowledge conflicts occur and resolve them.015
It can improve the model’s faithfulness to con-016
flicting context, and simultaneously maintain017
high performance among non-conflicting con-018
text. Our experiments show that COIECD ex-019
hibits strong performance and robustness over020
knowledge conflicts in realistic datasets. Code021
is available.022

1 Introduction023

Characterized by the massive knowledge internal-024

ized into the parameters (Petroni et al., 2019; Geva025

et al., 2021b; Roberts et al., 2020), Large lan-026

guage models (LLMs) have pioneered numerous027

breakthroughs across various domains (Vaswani028

et al., 2017; Devlin et al., 2018; Brown et al., 2020;029

Chung et al., 2022; Touvron et al., 2023). Mean-030

while, LLMs struggle with less popular factual031

knowledge (Mallen et al., 2023), are fundamentally032

incapable of adapting over time (Lazaridou et al.,033

2021; Kasai et al., 2022) and prone to hallucina-034

tions (Shuster et al., 2021). These challenges neces-035

sitate the incorporation of non-parametric knowl-036

edge sources, through retrieval (Shi et al., 2023b)037

or application of tools (Schick et al., 2023). How-038

ever, it has given rise to a sharp dilemma: knowl-039

edge conflicts, defined by Longpre et al. (2021),040

where the non-parametric contextual knowledge041
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Figure 1: The illustration of knowledge conflict. Due to
model’s bias towards its outdated parametric knowledge,
it fails to accurately ground answer in the latest context,
which conflicts with the LM’s knowledge.

conflicts with internal parametric knowledge. Prior 042

works (Longpre et al., 2021; Chen et al., 2022; Li 043

et al., 2023a; Zhou et al., 2023; Wang et al., 2023c) 044

have flagged that when confronting conflicts, larger 045

models have a greater tendency to ignore the given 046

context when it contradicts with model’s paramet- 047

ric knowledge. As shown in the Figure 1, due to the 048

model’s bias towards its parametric knowledge, it 049

fails to ground its answer in the conflicting context. 050

051

Early attempts on knowledge conflict-resolving 052

methods resort to fine-tuning a small-scale model 053

like T5 (Raffel et al., 2020) by data augmenta- 054

tion, such as KAFT (Li et al., 2023a) and Dis- 055

entQA (Neeman et al., 2023). Those fine-tuning 056

methods bear the risk of undermining the intrinsic 057

linguistic capabilities of the models (Dong et al., 058

2023). Another line of works employ various de- 059

coding strategies during inference. For instance, 060

Contrastive Decoding (CD) (Li et al., 2023b; Wang 061

et al., 2023a) leverages the discrepancy in contex- 062

tual impact on the model’s probability distribution 063

of high-probability words for decoding. Another 064

representative method is Context-Aware Decoding 065

(CAD) (Shi et al., 2023a), which draws upon CD to 066

amplifies the contextual distribution for all words. 067

However, existing decoding methods could inad- 068
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Contextual knowledge:
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selected as the host 
nation for the 2022 
World Cup...
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Figure 2: The illustration of conflicting and non-
conflicting scenarios. Existing methods adeptly handle
conflicts but struggle to address non-conflicting con-
texts. The table presented below illustrates the EM
scores of existing conflict-solving methods and regu-
lar decoding method across diverse conflict ratio data.
Numbers within brackets are the discrepancy between
Regular and current method. More detailed analyses are
in Appendix A.

vertently deteriorate performance in absence of069

conflicts. As evidenced in the Figure 2, while these070

methods effectively mitigate over-reliance on para-071

metric memory for knowledge conflicts, their per-072

formances deteriorate on the non-conflicting data073

derived from NaturalQuestions dataset. Typically,074

these methods generally work under the experimen-075

tal scenario where all contexts are presumed to be076

inherently conflicting, without considering the pres-077

ence or absence of conflicts in realistic scenario.078

Thus, we posit the core question lies in: how to dis-079

cern knowledge conflicts between contexts and080

LLMs during inference.081

To this end, the paper proposes an adaptive de-082

coding method, termed COntextual Information-083

Entropy Constraint Decoding (COIECD), aimed084

at discerning knowledge conflicts and employ-085

ing distinct strategies for conflicting and non-086

conflicting data. Given the observations that LLMs087

tend to be well-calibrated (Kadavath et al., 2022)088

and their generations usually lie in a narrow and089

nearly flat entropy band (Arora et al., 2023), we090

adopt an adaptive decoding strategy that only alle-091

viates conflict when LLMs generate tokens violate092

an entropy-information constraint (band). To be093

specific, when discerning knowledge conflicts, it is094

important to consider whether LLMs have already095

aligned with contextual knowledge. If so, the en-096

tropy of contextual generation would not have a097

drastic change. Therefore, we propose discerning098

the knowledge conflicts by measuring the changes099

of the distribution entropy at token level, and then 100

employ tailored decoding strategies for conflicting 101

and non-conflicting tokens. 102

We benchmark COIECD on several popular 103

context-specific question answering (QA) datasets, 104

including NaturalQuestions (NQ) (Kwiatkowski 105

et al., 2019), SQuAD 1.1 (Rajpurkar et al., 2016), 106

StrategyQA (Geva et al., 2021a), and Counter- 107

facts (Longpre et al., 2021). Over all tasks, 108

COIECD achieves superior or competitive perfor- 109

mance compared to the baselines, demonstrating 110

the effectiveness and robustness of our method. 111

To summarize, the highlights of the paper are as 112

follows: 113

• This study presents a contextual information- 114

entropy constraint to discern knowledge con- 115

flicts, between parametric knowledge in 116

LLMs and non-parametric contextual knowl- 117

edge. The constraint has proven effective in 118

realistic datasets, which are characterized by 119

the unpredictability of conflicts. 120

• The paper develops tailored decoding strate- 121

gies to solve knowledge conflicts based on 122

the contextual information-entropy constraint. 123

Experimental results demonstrate that our 124

method significantly augments the model’s 125

faithfulness to conflicting contexts and ex- 126

hibits enhanced performance and robustness 127

varying across diverse datasets and models. 128

2 Related Work 129

When presented with an external context with con- 130

flicting knowledge, prior works (Longpre et al., 131

2021; Chen et al., 2022) have flagged that larger 132

models have a greater tendency to ignore the con- 133

flicting context. Existing approaches for improving 134

model’s faithfulness to the context, such as the 135

prompting-based method (Zhou et al., 2023), is 136

limited to specific instruction-finetuned LLMs and 137

do not universally apply. Other methods resort 138

to fine-tuning a small-scale model like T5 (Raf- 139

fel et al., 2020) by counterfactual contexts, such 140

as KAFT (Li et al., 2023a) and DisentQA (Nee- 141

man et al., 2023). Wang et al. (2023c) proposed 142

an evaluation framework for simulating contextual 143

knowledge conflicts and quantitatively evaluating 144

to what extent LLMs achieve these goals. 145

Another line of works employ various decoding 146

strategies during inference. SC (Wang et al., 2023b) 147

proposed the idea that a complex QA problem typ- 148

ically admits multiple different ways of thinking 149
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leading to its unique correct answer. It acts as a150

general enhanced decoding strategy. CD (Li et al.,151

2023b) adopted a contrastive object, which mea-152

sures the discrepancy between two distributions to153

facilitate decoding. In addressing knowledge con-154

flicts, this discrepancy is assessed based on the out-155

put probabilities with and without context. Chuang156

et al. (2023) proposed contrastive layer decoding157

to enhance factuality, diverging from our focus.158

Most similar to our work is the CAD (Shi et al.,159

2023a) method. It broadly amplifies the contextual160

distribution for all words without considering the161

presence of conflicting contexts, a limitation our162

work aims to address.163

3 Contextual Information-Entropy164

Constraint Decoding165

Discerning Conflicts (§3.1). First, we argue that166

if a context has consistent knowledge with the167

model’s parameters, this context could be a natural168

generation of the model.1 It motives us to employ169

the theories of Stable Entropy Hypothesis (Arora170

et al., 2023) and Locally Typical Set (Meister et al.,171

2023)2 to measure whether there are unnatural172

tokens (conflicting knowledge) in the contexts,173

which demonstrate that natural-sounding language174

should ideally be constrained within a specific175

range. Based on these two theories, we introduce176

a novel decoding constraint termed the contextual177

information-entropy constraint which aims to178

identify the violation of token that results in less179

contextual generation attributed to knowledge con-180

flicts, as shown in Figure 3.181

Resolving Conflicts (§3.2). Then we implement182

tailored decoding strategies, which cater to tokens183

identified as either conflicting or non-conflicting.184

For non-conflicting tokens, model is expected to185

refer to both parametric and contextual knowledge.186

For conflicting tokens, model should prioritize the187

contextual knowledge. To this end, we calculate188

a contextual contrastive object (Li et al., 2023b),189

which represents the distribution discrepancy de-190

rived from the context. This object is then utilized191

to variably adjust token distributions in accordance192

with the contextual information-entropy constraint.193

1The assumption is empirically validated by a comparison
of distribution entropy between conflicting and non-conflicting
contexts, as detailed in the Appendix D.

2The detailed definitions of these concepts are provided
in Appendix B.
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Figure 3: Above: Based on the contextual information-
entropy constraint, tokens that fall into either the lower
or upper violation zone of the constraint are typically as-
sociated with conflicts. Below: Distinct decoding strate-
gies are employed for conflicting and non-conflicting
tokens.

3.1 Contextual Information-Entropy 194

Constraint 195

We assume that if the contextual knowledge aligns 196

with model’s parametric knowledge, then the con- 197

text can be a coherent and natural generation of 198

model in some way. In this setting, the character- 199

istics of natural language generation hold true for 200

the non-conflicting contexts. Given the observa- 201

tions that LLMs tend to be well-calibrated (Kada- 202

vath et al., 2022) and their generations usually lie 203

in a narrow and nearly flat entropy band (Arora 204

et al., 2023), we craft a contextual constraint to 205

measure the changes of the distribution entropy 206

and token information, using it as an indicator to 207

discern knowledge conflicts on token-grained level. 208

We define the entropy of the genertated token yt 209

by given the question x and generated history y<t 210

following Arora et al. (2023) as 211

H(yt|x,y<t) = E
yt∼p(·|y<t)

− log p(yt|x,y<t)

(1) 212

For brevity, we use H1(yt) to represent the entropy 213

of conditional distribution over question x and gen- 214

erated history y<t, and H2(yt) denotes the entropy 215

conditioning by x, y<t, and assumed generation c. 216

H1(yt) = H(yt|x,y<t) (2) 217

H2(yt) = H(yt|x, c,y<t) (3) 218

The Stable Entropy Hypothesis (Arora et al., 219

2023) proposes that natural language generations 220
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usually lie in a narrow and flat entropy band. When221

we posit that a non-conflicting context can arise222

as a natural generation of model, the entropy shift223

should adhere to the bound. Deviations from it224

may indicate a potential conflicting context. In225

such instances, it becomes crucial to precisely iden-226

tify which specific tokens, reflecting the conflicts,227

are likely to cause the model to exceed its en-228

tropy bound during generation. To address this,229

we utilize the Locally Typical Set (Meister et al.,230

2023) to discern tokens by the following bound on231

information-entropy shift. The proofs are detailed232

in Appendix C.233

Proposition 3.1 (Bound on information-en-234

tropy shift). The information content of a ran-235

dom variable is quantified as its negative log-236

probability (Meister et al., 2023). Let the infor-237

mation content of token yt be I(yt) = − log p(yt |238

x, c,y<t), and we define a information-entropy239

shift as: I(yt) − H1(yt). The following bound240

holds for a constant γ > 0:241 ∣∣I(yt)−H1(yt)
∣∣ < γ (4)242

In words, the information-entropy shift can be243

bounded by some constant denoted as γ. That244

means, if the shift of a token adheres to this con-245

straint, we can view it as a plausible candidate of246

non-conflicting contextual generation. Conversely,247

any violation of token indicate the potential con-248

flicts with a high probability.249

To formalize the bound into constraint of decod-250

ing, we follow a popular constraint paradigm in de-251

coding techniques such as nucleus sampling (Holtz-252

man et al., 2019) and CD (Li et al., 2023b). We253

employ the softmax function to normalize the254

information-entropy shift into distribution:255

pδ(yt) = softmax(I(yt)−H1(yt)) (5)256

Then we have an upper bound upδ and a lower257

bound lpδ to constrain the vocabulary subset when258

decoding as:259

upδ = λmax
w

pδ(w) (6)260

lpδ =

{
l′pδ if

∑
I(pδ(yt) < l′pδ) > 1,

0 otherwise.
(7)261

where l′pδ =
1

λ
min
w

pδ(w)262

Here λ is a scaling factor in (0, 1] and I is an indi-263

cator function. Eq. 7 implies that the lower-bound264

probability lpδ takes the value in cases where multi- 265

ple tokens exhibit probabilities pδ(yt) falling below 266

the l′pδ . Otherwise, lpδ is set to 0, indicating that 267

only a solitary token violates the lower bound. It 268

reflects model’s high confidence with the absence 269

of conflict for that token. Based on the bounds, the 270

constraint subset C(y<t) ⊆ V is as follows: 271

C(y<t) = {y ∈ V : lpδ ≤ pδ(yt) ≤ upδ} (8) 272

3.2 Adaptive Decoding 273

Before employing distinct decoding strategies for 274

the conflicting and non-conflicting tokens, initially, 275

we define that 276

p1(yt) = p(yt|x,y<t) (9) 277

p2(yt) = p(yt|x, c,y<t) (10) 278

Here the parametric knowledge is factored out from 279

the model’s output distribution as p1, in accordance 280

with Shi et al. (2023a). The output distribution 281

p2 that incorporates context can be interpreted as 282

context-aware knowledge, which integrates knowl- 283

edge from both parameters and context. Then a 284

contextual contrastive object g (Li et al., 2023b) is 285

calculated to quantify the divergence between p1 286

and p2: 287

g(yt) = log p2(yt)− log p1(yt) (11) 288

which aims to refine the discrepancy brought by the 289

context. It assumes that p1 has a stronger tendency 290

to produce the outputs that adhere to parametric 291

knowledge of the model. The g is to factor out the 292

model’s inherent memory and favor the contextual 293

knowledge. 294

Based on g, the decoding strategies are differ- 295

entiated for tokens distinguished by the proposed 296

contextual information-entropy constraint. For con- 297

flicting tokens, model is expected to prioritize con- 298

textual knowledge. To facilitate this, g is strategi- 299

cally employed to reinforce context-aware knowl- 300

edge p2. For non-conflicting tokens, the model 301

is encouraged to lean more heavily on parametric 302

knowledge, rather than depending exclusively on 303

context. This strategy stems from on the recogni- 304

tion of the potential limitations in contextual knowl- 305

edge, which may not be comprehensive to fully ad- 306

dress the query. Therefore, this paper emphasizes 307

the importance of parametric knowledge p1, while 308

still considering contextual factors. To achieve this, 309

the g is incorporated with it. Overall, the contex- 310

tual information-entropy constraint is utilized with 311
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g on the output distribution π as:312

log π(yt | x, c,y<t) (12)313

=

{
log p1(yt) + α · g(yt) if yt ∈ C(y<t),

log p2(yt) + α · g(yt) otherwise.
314

where α is a scaling weight to control the con-315

textual impact. The final decoding strategy can be316

formalized as:317

yt ∼ softmax[log π(yt | x, c,y<t)] (13)318

In this way, COIECD strikes a balance between319

the two sources of knowledge to achieve a more320

effective and holistic decoding strategy.321

4 Experiments322

4.1 Experimental Setup323

Datasets. We experiment with several324

public QA datasets, including NaturalQues-325

tions (Kwiatkowski et al., 2019), SQuAD326

1.1 (Rajpurkar et al., 2016) and StrategyQA (Geva327

et al., 2021a). Unlike prior research where all328

data consists of synthetic conflicts, we adopt329

the original datasets and view them as hybrid330

datasets consisting of both conflicting (Conf.) and331

non-conflicting (Non-Conf.) data. It can stimulate332

the unpredictability of conflict occurrences in a333

realistic setting. Then we adopt the posteriori334

judgement of the parametric knowledge in LLMs335

(Wang et al., 2023d) to identify the knowledge336

conflicts within the datasets in Sec 4.3.337

Furthermore, we also incorporate the Counter-338

facts dataset (Longpre et al., 2021) to facilitate a339

more comprehensive analysis. Counterfacts exclu-340

sively consists of synthetic conflicting data, where341

all the original answers are replaced with other342

plausible entities in the contexts. The brief intro-343

ductions and statistic for each dataset are provided344

in Appendix E. We apply the prompt instruction fol-345

lowing Ren et al. (2023) to assess the QA abilities346

for all models.347

Used LLMs. Our experiments are conducted348

on pre-trained language models, including auto-349

regressive models: the LLaMA2 models (7B, 13B350

parameters) (Touvron et al., 2023), OPT models351

(6.7B, 13B parameters) (Zhang et al., 2022) and352

the encoder-decoder language model: FLAN-T5353

(3B, 11B parameters) (Chung et al., 2022). The ex-354

perimental results feature a representative outcome355

for a single size in each model. Additional results,356

including a comparative analysis of GPT-3.5 and 357

GPT-4 performance on these datasets, are detailed 358

in Appendix J. 359

Baselines. We adopt four decoding methods as 360

baselines: Regular Decoding, Self-Consistency 361

(SC) (Wang et al., 2023b), Contrastive Decoding 362

(CD) (Li et al., 2023b) and Context-Aware Decod- 363

ing (CAD) (Shi et al., 2023a).3 CD and CAD are 364

specialized in resolving knowledge conflicts, while 365

SC is a general decoding strategy to strengthen the 366

model performance. Regular Decoding employs 367

a standard, greedy strategy, integrating both ques- 368

tion and context as inputs. For SC, which neces- 369

sitates multiple samples per question, 40 outputs 370

are sampled with temperature t = 0.5, in accord- 371

ing with Wang et al. (2023b). For other methods, 372

the temperature t = 0 following prior works. All 373

the decoding methods are evaluated in a zero-shot 374

setting. The values of λ and α are set to 0.25 and 1, 375

respectively. Detailed analyses sampling strategies 376

are provided in Appendices G. 377

Metrics. Following previous works (Chen et al., 378

2017; Izacard and Grave, 2021; Sun et al., 2023), 379

we use the Exact Match (EM) and F1 scores for 380

evaluating the QA performance of LLMs. For the 381

binary classification in StrategyQA, the accuracy 382

is used as the metric. 383

4.2 Overall Performance 384

Table 1 presents the results on the QA datasets. To- 385

tally, COIECD exhibits consistent improvements 386

over all baseline comparisons. The SC method 387

yields results akin to the Regular with a slight 388

increase. The performance of conflict-solving 389

methods, namely CD and CAD, varies across 390

models and datasets, showing inconsistent varia- 391

tions when compared to Regular. On the contrary, 392

COIECD consistently achieves improvements in 393

realistic datasets (NQ, SQuAD and StrategyQA) 394

and maintains competitive performance in the syn- 395

thetic Counterfacts dataset. The results conclu- 396

sively demonstrate the consistent effectiveness and 397

adaptability of COIECD across various datasets in 398

different conflict scenarios. 399

The results on the Counterfacts dataset reveal 400

that most methods exhibit performance enhance- 401

ment. Upon closer examination, it becomes evident 402

3For the issue of knowledge conflicts, CD adopts the ob-
ject of difference between the output likelihood when inputs
are presented with and without context. More detailed com-
parisons of those methods are described in the Appendix F.
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LLaMA2-13B OPT-6.7B FLAN-T5-3B

Datasets Decoding EM F1 EM F1 EM F1

NQ

Regular 46.48 61.51 19.74 26.25 46.00 62.78
SC 46.66 (+0.18) 61.76 (+0.25) 24.24 (+4.50) 29.78 (+3.53) 46.14 (+0.14) 62.51 (−0.27)

CD 46.19 (−0.29) 61.97 (+0.46) 22.90 (+3.16) 34.48 (+8.23) 37.62 (−8.38) 55.47 (−7.31)

CAD 46.79 (+0.31) 62.29 (+0.78) 29.15 (+9.41) 40.16 (+13.91) 38.91 (−7.09) 57.77 (−5.01)

COIECD 47.42 (+0.94) 62.89 (+1.38) 30.07 (+10.33) 40.77 (+14.52) 48.84 (+2.84) 64.45 (+1.67)

SQuAD

Regular 54.46 68.92 21.49 28.50 71.20 83.53
SC 54.55 (+0.09) 68.85 (−0.07) 23.64 (+2.15) 30.97 (+2.47) 70.90 (−0.30) 83.28 (−0.25)

CD 53.89 (−0.57) 68.04 (−0.88) 26.35 (+4.86) 37.90 (+9.40) 71.25 (+0.05) 83.10 (−0.43)

CAD 56.46 (+2.00) 70.52 (+1.60) 29.46 (+7.97) 40.31 (+11.81) 68.62 (−2.58) 81.88 (−1.65)

COIECD 57.10 (+2.64) 70.86 (+1.94) 29.93 (+8.44) 40.47 (+11.97) 73.84 (+2.64) 84.99 (+1.46)

StrategyQA

Regular 81.09 81.09 47.51 47.51 87.07 87.07
SC 81.05 (−0.04) 81.05 (−0.04) 46.64 (−0.87) 46.64 (−0.87) 86.81 (−0.26) 86.81 (−0.26)

CD 83.58 (+2.49) 83.58 (+2.49) 46.99 (−0.52) 46.99 (−0.52) 89.34 (+2.27) 89.34 (+2.27)

CAD 85.50 (+4.41) 85.50 (+4.41) 53.10 (+5.59) 53.10 (+5.59) 88.69 (+1.62) 88.69 (+1.62)

COIECD 85.76 (+4.67) 85.76 (+4.67) 53.84 (+6.33) 53.84 (+6.33) 88.78 (+1.71) 88.78 (+1.71)

Counterfacts

Regular 61.67 62.63 18.15 19.38 74.56 75.73
SC 61.76 (+0.09) 62.76 (+0.13) 21.40 (+3.25) 22.62 (+3.24) 74.58 (+0.02) 75.64 (−0.09)

CD 67.96 (+6.29) 69.16 (+6.53) 38.16 (+20.01) 42.78 (+23.40) 74.76 (+0.20) 77.30 (+1.57)

CAD 68.76 (+7.09) 71.20 (+8.57) 40.10 (+21.95) 45.29 (+25.91) 68.23 (−6.33) 74.17 (−1.56)

COIECD 68.30 (+6.63) 69.33 (+6.70) 37.35 (+19.20) 43.45 (+24.07) 77.60 (+3.04) 78.97 (+3.24)

* We reproduce all baseline methods and report our corresponding results.

Table 1: Totally, COIECD achieves stable optimal performance than baselines. Regular: Regular decoding, SC:
Self-consistency, CD: Contrastive decoding, CAD: context-aware decoding. The best scores compared with Regular
are boldfaced. Numbers within brackets are the discrepancy between Regular and current method. The outcomes
for models of various sizes are detailed in Table 12-14.

that the CAD’s advantages are primarily evident403

in counterfactual scenarios, outperforming other404

methods except FLAN-T5. Nonetheless, COIECD405

still demonstrates superior robustness, maintaining406

competitive performance across various models.407

4.3 Performance on Conf. & Non-Conf. data.408

As shown in the Table 2, since the CD and CAD409

specialize in resolving knowledge conflicts, they410

can handle the Conf. data well. However, in the411

Non-Conf. dataset, both of them demonstrate a sig-412

nificant decrease in performance, with reductions413

reaching up to -11.86 EM score on the SQuAD414

dataset. This finding highlights the inherent limita-415

tions of these methods, especially in scenarios with416

high knowledge consistency, where their applica-417

tion is particularly challenging.418

The Regular shows the least efficacy in handling419

Conf. data compared to Non-Conf. data4, falling by420

nearly 50% on LLaMA2 model. This observation421

aligns with previous research, indicating that larger422

models are more prone to disregard context when423

it conflicts with the model’s parametric knowledge.424

Moreover, SC adopts the voting strategy from mul-425

tiple generations. It naturally has better results on426

Non-Conf., but could not deal with the conflicts in427

Conf. By contrast, the proposed COIECD compre-428

hensively considers the conflicts and non-conflicts429

between the given contexts and LLMs. As a results,430

4This observation does not always apply to the OPT
model. This limitation is attributed to the inherent scarcity of
parametric knowledge within the model. (See Appendix E.2)

it obtains the best performance on Total. And it 431

also has better results than CD and CAD whatever 432

on Non-Conf., and Conf. in most datasets. 433

In summary, whether it’s SC, CD, or CAD, each 434

is made for either Conf. or Non-Conf. scenarios, 435

achieving comparatively better outcomes in one 436

scenario while inevitably performing poorly in the 437

other. In contrast, our adaptive decoding method 438

considers both scenarios, achieving a trade-off that 439

works well in all datasets. 440

4.4 Performance with Different Conflicting 441

Data Proportions 442

We conduct further experiments aiming to under- 443

stand how the presence of conflicts within data 444

affects the performance of these methods, mea- 445

sured in terms of EM score. We establish two 446

experimental scenarios: a real-world conflicting 447

scenario composed of samples from conflicting 448

and non-conflicting data in the NQ dataset, and a 449

synthetic conflicting scenario sampled by the same 450

non-conflicting data and the synthetic Counterfacts 451

constructed on the NQ. As shown in Figure 4 and 5, 452

we visualize the correlation among the proportion 453

of conflicting data and the performance of different 454

methods in two scenarios. 455

Performance degradation across conflict pro- 456

portions. Both figures reveal a universal trend 457

of performance deterioration for Regular as the 458

conflict proportion escalates. The Regular and SC 459

show the highest initial EM score at 0% conflicts 460
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LLaMA2-13B OPT-6.7B FLAN-T5-3B

Datasets Decoding EM F1 EM F1 EM F1

NQ

Conf.

Regular 38.45 54.37 19.79 26.24 45.16 61.44
SC 38.65 (+0.20) 54.64 (+0.27) 24.26 (+4.47) 29.75 (+3.51) 45.22 (+0.06) 61.02 (−0.42)

CD 39.64 (+1.19) 56.50 (+2.13) 22.96 (+3.17) 34.54 (+8.30) 38.29 (−6.87) 55.97 (−5.47)

CAD 40.53 (+2.08) 57.15 (+2.78) 29.21 (+9.42) 40.19 (+13.95) 39.34 (−5.82) 58.25 (−3.19)

COIECD 39.88 (+1.43) 56.59 (+2.22) 30.13 (+10.34) 40.78 (+14.54) 48.36 (+3.20) 63.98 (+2.54)

Non-
Conf.

Regular 73.05 85.15 12.40 27.03 52.20 72.65
SC 73.16 (+0.11) 85.30 (+0.15) 21.79 (+9.39) 34.07 (+7.04) 52.26 (+0.06) 73.49 (+0.84)

CD 67.84 (−5.21) 80.06 (−5.09) 12.51 (+0.11) 25.23 (−1.80) 33.40 (−18.80) 52.33 (−20.32)

CAD 67.50 (−5.55) 79.19 (−5.96) 20.83 (+8.43) 36.05 (+9.02) 35.68 (−16.52) 54.22 (−18.43)

COIECD 72.37 (−0.68) 83.75 (−1.40) 19.01 (+6.61) 35.82 (+8.79) 52.42 (+0.22) 67.87 (−4.78)

SQuAD

Conf.

Regular 48.78 64.34 21.49 28.50 70.51 83.09
SC 48.87 (+0.09) 64.24 (−0.10) 23.14 (+1.65) 30.18 (+1.68) 70.25 (−0.26) 82.84 (−0.25)

CD 50.68 (+1.90) 66.01 (+1.67) 26.33 (+4.84) 37.61 (+9.11) 71.31 (+0.80) 83.17 (+0.08)

CAD 51.64 (+2.86) 67.09 (+2.75) 29.32 (+7.83) 39.97 (+11.47) 68.64 (−1.87) 81.92 (−1.17)

COIECD 51.95 (+3.17) 66.91 (+2.57) 29.78 (+8.29) 40.13 (+11.63) 73.51 (+3.00) 84.76 (+1.67)

Non-
Conf.

Regular 80.50 89.88 35.62 57.10 79.56 88.81
SC 80.57 (+0.07) 89.96 (+0.08) 36.59 (+0.97) 56.04 (−1.06) 78.67 (−0.89) 88.61 (−0.20)

CD 68.64 (−11.86) 77.35 (−12.53) 26.90 (−8.72) 49.05 (−8.05) 70.60 (−8.96) 82.26 (−6.55)

CAD 78.53 (−1.97) 86.19 (−3.69) 34.93 (−0.69) 53.44 (−3.66) 68.37 (−11.19) 81.42 (−7.39)

COIECD 80.69 (+0.19) 88.93 (−0.95) 35.69 (+0.07) 53.71 (−3.39) 77.78 (−1.78) 87.76 (−1.05)

StrategyQA

Conf.

Regular 57.36 57.36 47.86 47.86 69.41 69.41
SC 57.59 (+0.23) 57.59 (+0.23) 47.03 (−0.83) 47.03 (−0.83) 68.80 (−0.61) 68.80 (−0.61)

CD 81.15 (+23.79) 81.15 (+23.79) 47.26 (−0.60) 47.26 (−0.60) 85.96 (+16.55) 85.96 (+16.55)

CAD 77.31 (+19.95) 77.31 (+19.95) 54.21 (+6.35) 54.21 (+6.35) 77.39 (+7.98) 77.39 (+7.98)

COIECD 80.29 (+22.93) 80.29 (+22.93) 54.90 (+7.04) 54.90 (+7.04) 77.36 (+7.95) 77.36 (+7.95)

Non-
Conf.

Regular 96.54 96.54 40.87 40.87 97.06 97.06
SC 96.47 (−0.07) 96.47 (−0.07) 39.13 (−1.74) 39.13 (−1.74) 96.69 (−0.07) 96.69 (−0.07)

CD 85.16 (−11.38) 85.16 (−11.38) 41.71 (+0.84) 41.71 (+0.84) 91.26 (−5.80) 91.26 (−5.80)

CAD 89.33 (−7.21) 89.33 (−7.21) 32.17 (−8.70) 32.17 (−8.70) 95.08 (−1.98) 95.08 (−1.98)

COIECD 90.80 (−5.74) 90.80 (−5.74) 33.91 (−6.96) 33.91 (−6.96) 95.22 (−1.84) 95.22 (−1.84)

Table 2: We use the posteriori judgement of the parametric knowledge in LLMs (Wang et al., 2023d) to identify and
analyze conflicts within the datasets. On Non-Conf. data, COIECD consistently outperforms other conflict-solving
methods in terms of both EM and F1, and outperforms the Regular and SC on Conf. data.
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Figure 5: Synthetic con-
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but also demonstrate the most significant decline as461

conflicts increase. It suggests that those methods462

heavily rely on knowledge consistency with param-463

eters and contexts. CAD exhibits the lowest perfor-464

mance across all levels of conflict, indicating that465

it may be specifically designed for datasets with466

maximal conflicts. The performance of COIECD467

declines at the slowest rate, suggesting it has the468

capability that mitigate the impact of conflicting469

data. Overall, COIECD appears to be more robust470

to conflicts compared to others.471

Gap between realistic and synthetic scenarios.472

Upon closer inspection of Figure 4 and 5, we find473

that the performances of CAD and CD exhibit sub-474

stantial variation with the increase of conflicts. In475

the synthetic scenario, they fall below that of Regu-476

lar by a large margin when no conflict occurs, but477

rise gradually with increase of the proportion of478

knowledge conflicts. This trend does not exist in479

DPR Regular SC CD CAD COIECD

w/o reranker†
EM 16.80 16.74 15.97 16.23 16.84
F1 22.93 22.75 22.05 22.14 22.88

w/ oracle reranker
EM 34.92 35.24 34.20 34.10 35.82
F1 43.35 43.23 43.49 43.27 44.48
† The accuracy of Hits@1 w/o reranker is 0.46.

Table 3: Performance evaluation with DPR on Conf.
data of NQ Open. The red cell indicates superior per-
formance than the Regular decoding, and green denotes
degeneration

the realistic data. Furthermore, the impact of con- 480

flicts on EM is more pronounced in the realistic 481

scenario. This might be due to the nature of real- 482

istic conflicts being more challenging or nuanced 483

compared to the synthetic ones. In conclusion, the 484

capability of the decoding method cannot be only 485

verified by the performance on the single counter- 486

factual data. To address a more realistic scenario, 487

the COIECD method emerges as the optimal choice. 488

489

4.5 Performance on Noisy Contexts 490

In this paper, the input contexts are regarded as high 491

quality and containing the answer following the set- 492

tings in (Longpre et al., 2021; Zhou et al., 2023; Shi 493

et al., 2023a; Wang et al., 2023c). However, in real- 494

world models like retrieval-augmented language 495

models (RALMs), contextual knowledge can be of 496

low quality or noisy. Therefore, we also incorpo- 497
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Nucleus
(p = 0.9)

Top-k
(k = 50)

Typical
(τ = 0.9)

Decoding EM F1 EM F1 EM F1

COIECD 46.19 62.13 46.16 61.87 46.74 62.03
-w/o upper 46.08 61.87 45.06 61.13 46.24 61.91
-w/o lower 44.11 60.22 41.93 59.05 44.77 60.49

Regular 43.80 59.75 41.64 58.27 44.32 60.24

Table 4: Performance evaluation for the ablation studies
of single-side constraint on NQ dataset.

rate a prominent retrieval system DPR (Karpukhin498

et al., 2020) into our research on the NQ Open499

dataset5. One primary objectives of the RALM500

method is to ascertain whether a given question501

necessitates retrieval augmentation (Mallen et al.,502

2023; Jiang et al., 2023), which drives far from503

the our focus. Therefore, we conduct experiments504

amidst the conflicting data, where the model lacks505

the requisite knowledge to formulate an accurate506

response and necessitates retrieval augmentation.507

In Table 3, the ’w/o reranker’ means the pres-508

ence of noise, whereas the ’oracle reranker’ has509

the capability to filter out all the noise. It is evi-510

dent that the noise in the context significantly im-511

pacts both the CAD and CD, resulting in perfor-512

mances considerably lower than Regular. SC still513

displays the performance comparable to Regular.514

In contrast, COIECD maintains a marginal superi-515

ority over Regular, a distinction that becomes more516

pronounced when the retriever is coupled with an517

oracle reranker. Moreover, in real-world scenar-518

ios characterized by potentially noisy contexts, we519

posit the challenge of mitigating noise presents520

a unique research concern, particularly focusing521

on other components of RALMs, such as retriev-522

ers and rerankers. Enhanced reranking of external523

context is observed to correlate with improved per-524

formance in the COIECD. Notably, our approach525

still demonstrates robustness even in the absence526

of reranker.527

4.6 Analyses on Contextual528

Information-Entropy Constraint529

In this section, we delve into the criticality of the530

contextual information-entropy constraints within531

the COIECD model, specifically focusing on the532

impacts of the lower and upper bounds in various533

stochastic sampling decoding contexts. Table 4534

presents the experimental results on the NQ dataset535

with LLaMA2-13B model.536

5We use a single document as the context input, which is
top-scored passage retrieved by DPR from WikiText-103.
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We observe that the exclusion of the lower bound 537

leads to a discernible decrement in both EM and 538

F1 scores across diverse decoding strategies. It 539

demonstrates the pivotal role of the lower bound in 540

improving the faithfulness to the conflicting con- 541

texts. Although the upper bound is crucial for lim- 542

iting the inclusion of low-probability, potentially 543

irrelevant tokens, the lower bound’s contribution 544

to steering the model distribution towards more 545

context-faithful tokens is more pronounced. Fur- 546

thermore, a detailed case study is presented in Ap- 547

pendix H. 548

Notably, COIECD consistently surpasses the per- 549

formance of Regular. This superiority is sustained 550

even in scenarios where one of the bounds is omit- 551

ted, highlighting the overall effectiveness and ro- 552

bustness of the COIECD. 553

4.7 Discussion on Hyperparameters 554

As illustrated in Figure 6 and 7, we conduct ex- 555

periments with various values of λ and α on NQ 556

dataset. We find λ = 0.25 and α = 1 consis- 557

tently provide robust improvements over Regular 558

decoding. Therefore, we adopt this hyperparameter 559

configuration across all experiments. 560

Furthermore, we evaluate the model perfor- 561

mance under the setting of α = 0 as simply pro- 562

viding not providing the context during decoding 563

in Appendix I, which highlight the significance of 564

adding g(yt). The detailed results are evaluated 565

with EM and F1 metrics in Table 7 - 10. 566

5 Conclusion 567

The COIECD method is introduced to discern 568

and resolve knowledge conflicts effectively. This 569

method is evaluated on context-relevant QA tasks 570

using both realistic and synthetic datasets. The find- 571

ings indicate that COIECD maintains consistently 572

high performance, irrespective of the presence or 573

absence of knowledge conflicts within the data. 574
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6 Limitations575

• We only evaluate our decoding method on the576

tasks of QA. It would be interesting to apply577

our method to other context-intensive NLP578

tasks such as summarization (Maynez et al.,579

2020; Pagnoni et al., 2021).580

• Similar to the limitations of CD and CAD, our581

method also requires twice the computational582

resources due to the necessity of performing583

two decoding operations, thus resulting in a584

cost equivalent to double that of Regular de-585

coding.586

• Given the shorter length of answers in QA587

tasks, our approach omits the entropy smooth-588

ing calculation within the constraint during589

the decoding process. This step is generally590

incorporated in open-ended text generation591

tasks, aligning with the stable entropy theory592

described by Arora et al. (2023). Although593

this adaptation is practical for QA, we recog-594

nize it as a limitation and propose it as an area595

for future research.596
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A Analyses of the Performances of891

Existing Decoding Methods892

We compare the performance of three baseline893

methods (introduced in Section 4.1) on LLaMA2-894

13B model: Regular takes the context and ques-895

tion as input with greedy decoding, and the other896

two methods are specialized in conflict-solving de-897

coding strategies. We experiment on three sub-898

sets of NQ (Kwiatkowski et al., 2019): data with-899

out conflict(∼1K), data with all conflicts (∼3K),900

and random sampled data with half-ratio conflicts.901

The details of these datasets is introduced in Ap-902

pendix. E and the detailed experimental results are903

illustrated in the NQ dataset of Table 1 and Figure 4.904

We use Exact Match (EM) as the major evaluation905

metric in the comparison.906

In the table presented below, it is observed907

that when conflicts occur 100% of the time, both908

conflict-solving decoding methods address the is-909

sue more effectively than Regular. Notably, CAD910

exhibits a pronounced improvement, achieving a911

significant increase of up to 2.08 in the EM score.912

Nevertheless, when the ratio of conflict decreases,913

there is a discernible decrease in those methods’914

efficacy. Especially, the performance of CAD no-915

ticeably deteriorates, trailing behind the Regular by916

a margin of 5.55.917

B Information-Theoretic Properties of918

Language Models919

B.1 Locally Typical Set920

Meister et al. (2023) posit that the language model-921

ing can be conceptualized as a discrete stochastic922

process and build its notion on the concept of typ-923

ical set. Informally, the typical set, derived from924

information theory, is the set of all samples that we925

would expect when sampling from the language926

model distribution. But it relies on a stationary and927

ergodic language process which contradicts with928

the non-ergodic language process. So they define929

a more restrictive notion of typical set - termed930

as locally typical set - for the language process,931

from which each token generates in a natural and932

error-minimizing manner.933

Definition B.1 (Locally Typical Set). Let Y =934

{Yt}∞t=1 be a discrete stochastic process under dis-935

tribution p. The (T, ε)-locally typical set of Y is936

the set of all sequences of length exactly T such that 937

L(T )
ε =

{
y = y0 · · ·yT | ∀1 ≤ t ≤ T, (14) 938∣∣∣ log p(yt | y<t) + H(Yt | Y <t = y<t)

∣∣∣ < ε
}

939

The relationship can be formalized as the follow- 940

ing hypothesis, which has been verified empirically 941

using data from human language process. 942

Hypothesis B.2. Samples y = y0 · · ·yT from a 943

human language process with distribution p tend 944

to belong to the process’s locally typical set L(T )
ε 945

for large enough T and some ε > 0. In words, 946

this means that we should expect every word in 947

natural-sounding sentences to be close to the ex- 948

pected information content under p, i.e., the condi- 949

tional entropy given prior context. 950

The H represents the entropy rate of Y , which 951

is equivalent to the standard definition of (Shan- 952

non) entropy H for a random variable Y . The 953

locally typical set restricts the set of tokens to 954

those for which each has an information con- 955

text——measured by its negative log probabil- 956

ity——close to the expected information content 957

given prior context, i.e., the entropy of the distribu- 958

tion p(· | y<t). 959

B.2 Stable Entropy Hypothesis 960

Arora et al. (2023) postulate that natural language 961

generations usually lie in a narrow and nearly flat 962

entropy band. In the empirical analyses, they ob- 963

serve that, the mean entropy of a language model 964

remains stable over the length of the generation, 965

which is defined as the stable entropy baseline6 966

in Eq.15. Under the context distribution at time t, 967

an input x and vocabulary V , yt ∈ V: 968

µH(t;V) = Eyt∈V
[
H(yt | x,y<t)

]
. (15) 969

Then a stable entropy zone is defined as the 970

zone around the stable entropy baseline that covers 971

a major fraction of entropy of the model under the 972

target distribution. They define it by standard devi- 973

ation (σH(t;V)) around the stable entropy baseline 974

as the stable entropy zone and posit the following 975

hypothesis: 976

Hypothesis B.3. Decoding algorithms whose gen- 977

eration’s smoothed entropy stays mostly enclosed 978

within the stable entropy zone will produce higher 979

quality, coherent, less repetitive, and more "human- 980

like" text. 981

6Here we drop the smoothing step for brevity.

12



C Detailed Proofs of Propositions982

Assumption C.1. If a task-specific context c is983

contained by parametric knowledge (denoted as K)984

without triggering any conflicts in model p, then it985

also can be the natural generation of model.986

if c ∈ K, then c ∈
⋃

y ∼ p(· | x)987

Here,
⋃

y indicates the sampling set of all nat-988

ural generations by the model conditioning by the989

question x. Then we define the entropy of the990

model following Arora et al. (2023) as991

H(yt|x,y<t) = E
yt∼p(·|y<t)

− log p(yt|x,y<t)

(16)992

For brevity, we use H1(yt) to represent the entropy993

of conditional distribution over question x and gen-994

eration y<t, and H2(yt) denotes the entropy con-995

ditioning by x, y<t, and assumed generation c.996

H1(yt) = H(yt|x,y<t) (17)997

H2(yt) = H(yt|x, c,y<t) (18)998

where H2(yt) denotes the entropy conditioning by999

previously generated tokens c and y<t, and H1(yt)1000

represents the entropy of conditional distribution1001

over generation y<t.1002

Proposition C.2 (Bound on Entropy Shift). The en-1003

tropy shift denoted as H2(yt)−H1(yt) is bounded1004

within the width of the stable entropy zone.1005

Proof. Note that context c is the natural generation1006

of a language model in the setting, both the entropy1007

H1(yt) and H2(yt) should fall into a stable en-1008

tropy zone around the mean entropy µH. Let β be1009

the threshold of a certain standard deviation around1010

the mean entropy. According to Eq. 15, it can be1011

deduced that1012 ∣∣H1(yt)−µH1

∣∣ < β

2
,
∣∣H2(yt)−µH2

∣∣ < β

2
(19)1013

Stable entropy baseline demonstrates that mean1014

entropy of a model under the target context distri-1015

bution remains stable. Since the length of context1016

is limited, the mean entropy µH1 and µH2 can be1017

equated if smoothed, denoted as µH. Consider-1018

ing inequalities in Eq.(19) jointly, we can obtain1019

the bound on the entropy shift using the triangle1020

inequality:1021 ∣∣H2(yt)−H1(yt)
∣∣1022

=
∣∣(H2(yt)− µH

)
−
(
H1(yt)− µH

)∣∣1023

<
∣∣H2(yt)− µH

∣∣+ ∣∣H1(yt)− µH
∣∣ < β (20)1024

■1025

Proposition C.3 (Bound on information-entropy 1026

shift). As the information content of a random vari- 1027

able is quantified as its negative log-probability. 1028

Let the information content I(yt) = − log p(yt | 1029

x, c,y<t), we denote the information-entropy 1030

shift as: I(yt) − H1(yt). The following bound 1031

holds for a constant: 1032∣∣I(yt)−H1(yt)
∣∣ < γ (21) 1033

where γ > 0. 1034

Proof. Locally typicality demonstrates that the in- 1035

formation content of y should is quite close to a 1036

specific value of the entropy under model distribu- 1037

tion p. It means that there exists a sufficiently small 1038

constant ϵ > 0: 1039∣∣I(yt)−H2(yt)
∣∣ < ϵ (22) 1040

which bounds the information of y into a coher- 1041

ent and contextual generation. Applying triangle 1042

inequality on Eq.(20) and Eq.(22), the following 1043

inequality holds for a constant: 1044∣∣I(yt)−H1(yt)
∣∣ 1045

=
∣∣(I(yt)−H2(yt)

)
+

(
H2(yt)−H1(yt)

)∣∣ 1046

<
∣∣I(yt)−H2(yt)

∣∣+ ∣∣H2(yt)−H1(yt)
∣∣ 1047

< β + ϵ = γ (23) 1048

■ 1049

D Empirical Study of Assumption C.1 1050

In this section, we show that the distribution en- 1051

tropy of non-conflicting context remains more sta- 1052

ble than the non-conflicting one. Then the assump- 1053

tion C.1 can be proved with the stable entropy 1054

hypothesis B.3. 1055

To demonstrate our assumption, we follow a sim- 1056

ilar setup as Arora et al. (2023) in a text completion 1057

setup. We use the LLaMA2-13B model and NQ 1058

data. We sample 500 pieces of data from Conf. and 1059

Non-Conf. sub-datasets respectively, then com- 1060

pute the mean smoothed entropy at each step and 1061

calculate the standard deviation (std) for each gen- 1062

eration. Figure 8 visualizes the std of smoothed 1063

entropy for conflicting and non-conflicting genera- 1064

tion. The vertical axis, labeled ’Std of Smoothed 1065

Entropy’, represents the std of each step’s entropy 1066

in the generation. The horizontal axis represents 1067

the NQ samples from Conf. and Non-Conf. data. 1068

From the violin plot, it can be observed that the 1069

13



Figure 8: Conf. or Non-Conf. distributions of the ’Std
of Smoothed Entropy’ for NQ dataset.

entropy distribution for Conf. data exhibit a bi-1070

modal nature, suggesting that quite a few samples1071

are characterized by large variances. Furthermore,1072

the box line of Conf. is higher than the one of Non-1073

Conf., which demonstrates that the Non-Conf. is1074

more likely to be a natural generation of the model1075

due to its more stable entropy levels. This is de-1076

duced by the stable entropy hypothesis, which1077

posits that "generation’s smoothed entropy stays1078

mostly enclosed within the stable entropy zone will1079

produce higher quality, coherent, less repetitive,1080

and more ’human-like’ text.".1081

E Dataset Details1082

We use three realistic QA datasets (NaturalQues-1083

tions (Kwiatkowski et al., 2019), SQuAD 1.1 (Ra-1084

jpurkar et al., 2016)), and StrategyQA (Geva et al.,1085

2021a)) and one conflicting QA dataset (Counter-1086

facts dataset (Longpre et al., 2021)) for evaluating1087

our method.1088

NaturalQuestions consists of real-world1089

information-seeking queries issued to the Google1090

search engine and their corresponding long1091

answers (gold evidence passage) and short answers1092

(one or more entities). In our study, we employ the1093

long answers as the input context and short answers1094

as the ground truth, and conduct evaluations on the1095

dev set.1096

The SQuAD 1.1 is a common QA benchmark. It1097

includes questions posed by human annotators on1098

a given Wikipedia paragraph, where the answer to1099

each question is a segment of text (or span) from1100

the paragraph. In our experiments, we conduct1101

experiments on the dev for evaluation.1102

StrategyQA is a fact reasoning benchmark that 1103

necessitates the implicit question decomposition 1104

into reasoning steps. Built around Wikipedia terms, 1105

these questions are accompanied by multiple evi- 1106

dence paragraphs. The model is expected to pro- 1107

vide a True or False answer. We concatenate 1108

question-relevant evidences to form the input con- 1109

text. We adopt the training set for evaluation, con- 1110

sidering the volume of data. 1111

Counterfacts is based on the NaturalQues- 1112

tions (Kwiatkowski et al., 2019) dataset. To gen- 1113

erate conflicting contextual knowledge, Longpre 1114

et al. (2021) first identify questions with named en- 1115

tity answers, find the supportive document for each 1116

question and then replace the gold answer entity in 1117

the document with a random entity. 1118

E.1 Posteriori judgement 1119

We delineates the process of identifying instances 1120

of knowledge conflicts. The evaluation of these 1121

conflicts is based on the accuracy7 of the model’s 1122

responses when context is not provided. The sce- 1123

narios are divided into two categories: 1124

• Non-Conflicting (Non-Conf.): This category 1125

pertains to situations where the model is ca- 1126

pable of accurately responding to a question 1127

without the need for its corresponding context. 1128

Such instances suggest that the model has in- 1129

ternalized the context, thereby indicating a 1130

consistency between its parametric knowledge 1131

and the external contextual knowledge. 1132

• Conflicting (Conf.): When the model fails 1133

to provide the true answer without the aid 1134

of context, indicating a conflict between its 1135

inherent parametric knowledge and the exter- 1136

nal contextual knowledge. Following Wang 1137

et al. (2023d), incorrect responses reflects 1138

the model does not possess the knowledge 1139

equipped by the external context, which has 1140

a discrepancy with the model’s parametric 1141

knowledge. 1142

In this setting, the NQ, SQuAD and StrategyQA 1143

datasets can serve as suitable approximations of re- 1144

alistic scenarios where conflicts may not necessar- 1145

ily occur. Additionally, the synthetic dataset named 1146

Counterfacts, which is composed exclusively of 1147

conflicting data (Conf. data), serves as a unique 1148

7Given the excessively rigid nature of EM for evalua-
tion, an F1 score of 0.5 has been employed as a proxy for
preliminary categorization.
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case. This is because it contains randomly replaced1149

answers that are not inherently known to the model,1150

distinguishing it from the aforementioned datasets.1151

E.2 Data Statistic1152

LLaMA2 OPT FLAN-T5

Datasets 7B 13B 6.7B 13B 3B 11B

NQ (∼4K)
Total(%) 100 100 100 100 100 100
Conf.(%) 81.91 76.79 99.34 97.21 88.07 85.80

Non-Conf.(%) 18.09 23.21 0.64 2.79 11.93 14.20

SQuAD (∼6K)
Total(%) 100 100 100 100 100 100
Conf.(%) 84.18 82.06 97.48 95.41 92.30 90.55

Non-Conf.(%) 15.82 17.94 2.56 4.59 7.70 9.45

StrategyQA (∼2K)
Total(%) 100 100 100 100 100 100
Conf.(%) 40.31 39.43 94.98 88.91 36.11 33.23

Non-Conf.(%) 59.69 60.57 5.02 11.09 63.89 66.77

Counterfacts (∼6K) Conf.(%) 100 100 100 100 100 100

Table 5: The data distributions of the datasets

As illustrated in Table 5, a discernible trend1153

emerges wherein an escalation in the model’s pa-1154

rameters is accompanied by a corresponding in-1155

crease in the percentage of non-conflicting data, sig-1156

nifying a greater degree of internalized knowledge1157

within larger models. Notably, among this cohort1158

of models, the OPT series models exhibit the lowest1159

parametric knowledge, yet they demonstrate sub-1160

stantial enhancements across most datasets when1161

the COIECD method is applied. It is also notewor-1162

thy to observe that even in the case of the popular1163

LLaMA2 models, the proportion of non-conflicting1164

data does not surpass 25% in the NQ and SQuAD1165

datasets. This observation necessitate the further1166

research for the inherent parametric knowledge en-1167

hancement of the model.1168

F Baseline Methods1169

Contrastive Decoding (CD) In our experiments,1170

we employ the distribution g(yt) with a certain1171

threshold as a baseline decoding method, referred1172

to as the CD (Li et al., 2023b) method. We modify1173

the original object of CD (computes the distribution1174

discrepancy between an small amateur model and1175

an expert larger model) to simulate the form of1176

g(yt).1177

CDoriginal = log pEXP(yt|x, y < t)−1178

log pAMA(yt|x, y < t)1179

CDmodify = log p(yt|x, y < t)− p(yt|y < t)1180

= log g(yt)1181

The threshold is same as in the original CD method:1182

Vhead(y<t) =1183 {
yt ∈ V : p(yt|y<t) ≥ 0.1 ·max

y
p(y|y<t)

}
1184

Here, we represent the input context as x. CD 1185

adopts the object of difference between the out- 1186

put likelihood when inputs are presented with and 1187

without input context. It enhances the influence 1188

of the context for high-probability words within a 1189

crude threshold. Therefore, it cannot obtain con- 1190

sistent improvement in performance, particularly 1191

with non-conflicting data. 1192

And the Section 3.1 aims to explore a deli-
cate constraint for output distribution to find out
whether the context is in conflict. Then we pro-
pose a contextual information-entropy constraint
on fine-grained token level based on the perspective
of information theory.

C(y<t) = {y ∈ V : lps ≤ ps(yt) ≤ ups} (7)

Context-Aware Decoding (CAD) In CAD (Shi 1193

et al., 2023a) method, the output probability is a 1194

product-of-experts of the original output probabil- 1195

ity and PMI weighted by α as follow: 1196

yt ∼ softmax[(1 + α) logitθ(yt | c,x,y<t) 1197

− α logitθ(yt | x,y<t)] 1198

Since they set α = 1 for all models evaluated on 1199

the knowledge conflict datasets, this method can be 1200

regarded as an unconstrained (λ = 1 in C(y<t)) 1201

decoding method when α is set to 1. If so, CAD can 1202

be considered as a specific case of our approach. 1203

Furthermore, CAD, as evidenced in their experi- 1204

mental evaluation, necessitates the different hyper- 1205

parameter values (the adjustment level of CAD is 1206

0.5 and 1) for realistic datasets and counterfacts. 1207

The absence of such specific adjustments results 1208

in a substantial decline in performance. This as- 1209

pect of our findings underscores the superiority and 1210

robustness of our method. 1211

G Maximization v.s. Sampling Strategies 1212

Recall that prior experiments are conducted based 1213

on greedy strategy that maximizes the distribution 1214

probability, except for SC with a fixed sampling 1215

strategy. We explore other strategies like sampling 1216

alternatives based on the same baselines. Table 6 1217

represents the results on maximization-based strate- 1218

gies: greedy decoding, and stochastic sampling: 1219

nucleus (Holtzman et al., 2019), top-k (Fan et al., 1220

2018), typical (Meister et al., 2023) on the NQ 1221

dataset of LLaMA2-13B. 1222

We observe that COIECD consistently produces 1223

the higher EM and F1 score the than Regular ir- 1224

respective of the choice of decoding strategy. In 1225
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contrast, both the CD and CAD exhibit a lack of1226

stability in performance among diverse decoding1227

strategies. Additionally, the result points to the1228

significant value of beam search, particularly in1229

relation to CD, in boosting performance. It can1230

be attributed to the increasing search width, a fea-1231

ture of beam search which effectively eliminates1232

disturbing tokens brought by contrastive object.

Decoding
Methods

Regular CD CAD COIECD
EM F1 EM F1 EM F1 EM F1

Greedy 46.48 61.51 46.19 61.97 46.79 62.29 47.42 62.89
Nucleus

(p = 0.9) 43.80 59.75 46.14 61.73 44.37 60.50 46.19 62.13
(p = 0.95) 43.82 60.05 45.77 62.03 43.17 59.45 46.53 62.80

Top-k
(k = 30) 42.46 58.64 46.03 61.86 41.88 58.37 46.98 62.14
(k = 50) 41.64 58.27 45.37 61.42 41.82 58.54 46.16 61.87

Typical
(τ = 0.2) 45.08 61.03 46.06 61.93 45.14 60.70 47.08 62.75
(τ = 0.9) 44.32 60.24 46.37 61.97 43.77 60.01 46.74 62.03

Table 6: Decoding on maximization-based and
stochastic sampling strategies. The red cell indicates
superior performance than the Regular decoding, and
green denotes degeneration.

1233

H Case Study1234

As illustrated in Figure 9, we look closer into two1235

cases of conflicting and non-conflicting one.1236

Lower-bound & Upper-bound violation. The1237

conflicting case mainly shows the function of lower1238

bound. For token yt, if pδ(yt) ≤ lpδ , it represents1239

a sufficiently low information content I(yt) com-1240

pared to the entropy H1(yt). This indicates that1241

the generation (like Russia) may be overconfident1242

and other informative gains (like Qatar) may be1243

ignored, then the conflict occurs. The upper bound1244

serves to filter some disturbing low-probability dis-1245

tribution, which plays a role in stochastic sam-1246

pling decoding. In the non-conflicting case, if1247

pδ(yt) ≥ upδ , the high information context repre-1248

sents a lower probability, indicating that the model1249

is less certain about current token (like Germany).1250

The decreased confidence might also be attributed1251

to a potential conflict within the context.1252

No violation. In the non-conflicting case, it is ob-1253

served that no tokens fall into the lower-violation1254

zone. This can be attributed to the model’s pro-1255

nounced confidence in a solitary high-probability1256

token, identified as Russia. Such a high degree of1257

confidence leads to the assignment of a zero value1258

to lpδ . The rationale behind this assignment stems1259

from the understanding that a heightened level of1260

confidence effectively indicates the non-existence1261

of any conflict.1262

I Detailed Results on Hyperparameter 1263

Analysis 1264

Here we display the detailed results about hyper- 1265

parameter analysis on different sizes of LLaMA2 1266

model with EM and F1 metrics.

EM
Score λ=0.1 λ=0.25 λ=0.5 λ=1

α=0 19.30 16.82 15.40 14.25
α=0.5 38.88 36.49 34.12 31.70
α=1.0 47.08 47.42 47.21 46.48
α=1.5 46.19 46.82 46.85 46.79
α=2.0 36.51 36.38 36.07 35.75

Table 7: Exact Match score on LLaMA2-13B Model.

1267

F1
Score λ=0.1 λ=0.25 λ=0.5 λ=1

α=0 31.67 27.76 25.40 23.09
α=0.5 56.49 53.97 51.04 47.30
α=1.0 62.51 62.89 62.43 61.51
α=1.5 61.72 62.29 62.28 62.28
α=2.0 54.52 54.34 53.90 53.56

Table 8: F1 score on LLaMA2-13B Model.

EM
Score λ=0.1 λ=0.25 λ=0.5 λ=1

α=0 15.19 13.46 12.28 11.51
α=0.5 40.22 38.33 36.49 34.73
α=1.0 45.79 46.08 45.56 44.64
α=1.5 44.93 45.37 45.16 45.08
α=2.0 40.09 39.72 39.62 39.54

Table 9: Exact Match score on LLaMA2-7B Model.

F1
Score λ=0.1 λ=0.25 λ=0.5 λ=1

α=0 25.36 22.51 20.13 18.66
α=0.5 55.00 53.40 51.50 49.50
α=1.0 59.44 59.67 59.12 58.57
α=1.5 58.71 59.06 58.86 58.89
α=2.0 55.37 55.12 54.97 54.97

Table 10: F1 score on LLaMA2-7B Model.

The different values of alpha can measure the 1268

importance of adding g(yt) in Eq. 12 (§ 3.2). The 1269

results highlight the significance of adding g(yt). 1270

The performance declines dramatically when α 1271

equals 0. It’s under a decoding strategy where sim- 1272

ply providing or not providing the context during 1273

decoding. 1274
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Figure 9: Left: The illustration of conflicting and non-conflicting scenarios. Existing methods adeptly handle
conflicts but struggle to address non-conflicting context. In contrast, COIECD exhibits the capability to effectively
handle both scenarios. Right: The detailed process of COIECD method. Utilizing a contextual information-entropy
constraint, we discern the tokens that violate this constraint, which are typically triggered by conflicting contexts.
For these tokens, situated in different zones, we employ distinct decoding strategies.

J More Results1275

We present the experimental results of GPT-3.5 and1276

GPT-4 in Table 11, as well as the results on the1277

other size of LLaMA2, OPT and FLAN-T5 models1278

in Table 12-14.1279

J.1 The performances of GPT-3.5 and GPT-41280

In general, the GPT-4 model displays a modestly1281

superior performance in comparison to the mod-1282

els utilized in our experiments, whereas GPT-3.51283

attains a level of performance that aligns with our1284

best results achieved by the LLaMA2-13B model.1285

GPT-3.5 GPT-4

Datasets EM F1 EM F1

NQ
Total 44.45 61.63 47.36 65.28
Conf. 31.46 50.07 35.04 54.68

Non-Conf. 70.16 84.51 78.44 89.66

SQuAD
Total 58.16 75.74 63.02 78.42
Conf. 52.39 71.40 57.58 75.92

Non-Conf. 78.07 90.71 82.63 93.36

StrategyQA
Total 82.75 82.75 91.22 91.22
Conf. 68.29 68.29 78.83 78.83

Non-Conf. 91.46 91.46 96.67 96.67

Counterfacts Total (Conf.) 61.69 66.40 64.66 71.11

Table 11: The Performances of GPT-3.5 and GPT-4

J.2 The Performances of Models in Different1286

Size1287

Owing to the constraints of experimental resources,1288

we confined our model within the scope of a max-1289

imum parameter capacity of 13B for the experi-1290

ments. In addition to the main results in experiment1291

section, additional outcomes are illustrated in the 1292

Table 12-14. 1293
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LLaMA2-7B LLaMA2-13B

Datasets Decoding EM F1 EM F1

NQ

Total

Regular 44.64 58.60 46.48 61.51
SC 44.72 (+0.08) 58.47 (−0.13) 46.66 (+0.18) 61.76 (+0.25)

CD 45.35 (+0.71) 59.21 (+0.61) 46.19 (−0.29) 61.97 (+0.46)

CAD 45.08 (+0.44) 58.89 (+0.29) 46.79 (+0.31) 62.29 (+0.78)

COIECD 46.08 (+1.44) 59.67 (+1.07) 47.42 (+0.94) 62.89 (+1.38)

Conf.

Regular 39.06 53.66 38.45 54.37
SC 38.99 (−0.07) 53.43 (−0.23) 38.65 (+0.20) 54.64 (+0.27)

CD 40.69 (+1.63) 55.30 (+1.64) 39.64 (+1.19) 56.50 (+2.13)

CAD 40.82 (+1.76) 55.45 (+1.79) 40.53 (+2.08) 57.15 (+2.78)

COIECD 40.95 (+1.89) 55.24 (+1.58) 39.88 (+1.43) 56.59 (+2.22)

Non-
Conf.

Regular 69.91 80.93 73.05 85.15
SC 70.64 (+0.73) 81.26 (+0.33) 73.16 (+0.11) 85.30 (+0.15)

CD 66.42 (−3.49) 76.93 (−4.00) 67.84 (−5.21) 80.06 (−5.09)

CAD 64.39 (−5.52) 74.46 (−6.47) 67.50 (−5.55) 79.19 (−5.96)

COIECD 69.33 (−0.58) 79.71 (−1.22) 72.37 (−0.68) 83.75 (−1.40)

SQuAD

Total

Regular 54.75 68.92 54.46 68.92
SC 55.02 (+0.27) 69.04 (+0.12) 54.55 (+0.09) 68.85 (−0.07)

CD 57.56 (+2.81) 70.94 (+2.02) 53.89 (−0.57) 68.04 (−0.88)

CAD 56.98 (+2.23) 70.12 (+1.20) 56.46 (+2.00) 70.52 (+1.60)

COIECD 57.32 (+2.57) 70.39 (+1.47) 57.10 (+2.64) 70.86 (+1.94)

Conf.

Regular 50.11 65.17 48.78 64.34
SC 50.32 (+0.21) 65.25 (+0.08) 48.87 (+0.09) 64.24 (−0.10)

CD 54.36 (+4.25) 68.51 (+3.34) 50.68 (+1.90) 66.01 (+1.67)

CAD 53.33 (+3.22) 67.43 (+2.26) 51.64 (+2.86) 67.09 (+2.75)

COIECD 53.41 (+3.30) 67.42 (+2.25) 51.95 (+3.17) 66.91 (+2.57)

Non-
Conf.

Regular 79.44 88.84 80.50 89.88
SC 80.09 (+0.65) 89.20 (+0.36) 80.57 (+0.07) 89.96 (+0.08)

CD 74.57 (−4.87) 83.85 (−4.99) 68.64 (−11.86) 77.35 (−12.53)

CAD 76.41 (−3.03) 84.44 (−4.40) 78.53 (−1.97) 86.19 (−3.69)

COIECD 78.14 (−1.30) 86.21 (−2.63) 80.69 (+0.19) 88.93 (−0.95)

StrategyQA

Total

Regular 79.69 79.69 81.09 81.09
SC 79.34 (−0.35) 79.34 (−0.35) 81.05 (−0.04) 81.05 (−0.04)

CD 69.96 (−9.73) 69.96 (−9.73) 83.58 (+2.49) 83.58 (+2.49)

CAD 74.93 (−4.76) 74.93 (−4.76) 85.50 (+4.41) 85.50 (+4.41)

COIECD 78.91 (−0.78) 78.91 (−0.78) 85.76 (+4.67) 85.76 (+4.67)

Conf.

Regular 61.11 61.11 57.36 57.36
SC 61.11 (+0.00) 61.11 (+0.00) 57.59 (+0.23) 57.59 (+0.23)

CD 59.15 (−1.96) 59.15 (−1.96) 81.15 (+23.79) 81.15 (+23.79)

CAD 64.57 (+3.46) 64.57 (+3.46) 77.31 (+19.95) 77.31 (+19.95)

COIECD 63.71 (+2.60) 63.71 (+2.60) 80.29 (+22.93) 80.29 (+22.93)

Non-
Conf.

Regular 92.25 92.25 96.54 96.54
SC 91.66 (−0.59) 91.66 (−0.59) 96.47 (−0.07) 96.47 (−0.07)

CD 77.25 (−15.00) 77.25 (−15.00) 85.16 (−11.38) 85.16 (−11.38)

CAD 81.93 (−10.32) 81.93 (−10.32) 89.33 (−7.21) 89.33 (−7.21)

COIECD 89.17 (−3.08) 89.17 (−3.08) 90.80 (−5.74) 90.80 (−5.74)

Counterfacts Total
(Conf.)

Regular 67.86 68.77 61.67 62.63
SC 68.30 (+0.44) 69.23 (+0.46) 61.76 (+0.09) 62.76 (+0.13)

CD 72.94 (+5.08) 74.29 (+5.52) 67.96 (+6.29) 69.16 (+6.53)

CAD 73.11 (+5.25) 75.99 (+7.22) 68.76 (+7.09) 71.20 (+8.57)

COIECD 71.57 (+3.71) 68.86 (+0.09) 68.30 (+6.63) 69.33 (+6.70)

Table 12: The results of LLaMA2-7B and LLaMA2-13B.
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OPT-6.7B OPT-13B

Datasets Decoding EM F1 EM F1

NQ

Total

Regular 19.74 26.25 21.11 30.14
SC 24.24 (+4.50) 29.78 (+3.53) 24.40 (+3.29) 33.31 (+3.17)

CD 22.90 (+3.16) 34.48 (+8.23) 17.30 (−3.81) 27.63 (−2.51)

CAD 29.15 (+9.41) 40.16 (+13.91) 24.76 (+3.65) 36.37 (+6.23)

COIECD 30.07 (+10.33) 40.77 (+14.52) 27.08 (+5.97) 38.87 (+8.73)

Conf.

Regular 19.79 26.24 20.72 29.33
SC 24.26 (+4.47) 29.75 (+3.51) 23.82 (+3.10) 32.54 (+3.21)

CD 22.96 (+3.17) 34.54 (+8.30) 17.25 (−3.47) 27.58 (−1.75)

CAD 29.21 (+9.42) 40.19 (+13.95) 24.55 (+3.83) 36.19 (+6.86)

COIECD 30.13 (+10.34) 40.78 (+14.54) 26.80 (+6.08) 38.63 (+9.30)

Non-
Conf.

Regular 12.40 27.03 40.57 56.81
SC 21.79 (+9.39) 34.07 (+7.04) 44.34 (+3.77) 60.36 (+3.55)

CD 12.51 (+0.11) 25.23 (−1.80) 18.87 (−21.70) 29.18 (−27.63)

CAD 20.83 (+8.43) 36.05 (+9.02) 32.08 (−8.49) 42.77 (−14.04)

COIECD 19.01 (+6.61) 35.82 (+8.79) 36.79 (−3.78) 47.30 (−9.51)

SQuAD

Total

Regular 21.49 28.50 27.91 37.37
SC 23.64 (+2.15) 30.97 (+2.47) 30.13 (+2.22) 40.08 (+2.71)

CD 26.35 (+4.86) 37.90 (+9.40) 28.03 (+0.12) 37.51 (+0.14)

CAD 29.46 (+7.97) 40.31 (+11.81) 35.01 (+7.10) 47.34 (+9.97)

COIECD 29.93 (+8.44) 40.47 (+11.97) 35.13 (+7.22) 47.48 (+10.11)

Conf.

Regular 21.49 28.50 27.31 36.27
SC 23.14 (+1.65) 30.18 (+1.68) 29.57 (+2.26) 39.07 (+2.80)

CD 26.33 (+4.84) 37.61 (+9.11) 27.42 (+0.11) 36.38 (+0.11)

CAD 29.32 (+7.83) 39.97 (+11.47) 34.79 (+7.48) 46.93 (+10.66)

COIECD 29.78 (+8.29) 40.13 (+11.63) 34.95 (+7.64) 46.84 (+10.57)

Non-
Conf.

Regular 35.62 57.10 40.30 60.28
SC 36.59 (+0.97) 56.04 (−1.06) 41.79 (+1.49) 61.17 (+0.89)

CD 26.90 (−8.72) 49.05 (−8.05) 40.67 (+0.37) 60.98 (+0.70)

CAD 34.93 (−0.69) 53.44 (−3.66) 40.41 (+0.11) 58.93 (−1.35)

COIECD 35.69 (+0.07) 53.71 (−3.39) 38.81 (−1.49) 60.88 (+0.60)

StrategyQA

Total

Regular 47.51 47.51 61.79 61.79
SC 46.64 (−0.87) 46.64 (−0.87) 60.57 (−1.22) 60.57 (−1.22)

CD 46.99 (−0.52) 46.99 (−0.52) 61.18 (−0.61) 61.18 (−0.61)

CAD 53.10 (+5.59) 53.10 (+5.59) 62.31 (+0.52) 62.31 (+0.52)

COIECD 53.84 (+6.33) 53.84 (+6.33) 64.33 (+2.54) 64.33 (+2.54)

Conf.

Regular 47.86 47.86 61.48 61.48
SC 47.03 (−0.83) 47.03 (−0.83) 60.28 (−1.20) 60.28 (−1.20)

CD 47.26 (−0.60) 47.26 (−0.60) 60.86 (−0.62) 60.86 (−0.62)

CAD 54.21 (+6.35) 54.21 (+6.35) 61.97 (+0.49) 61.97 (+0.49)

COIECD 54.90 (+7.04) 54.90 (+7.04) 62.06 (+0.58) 62.06 (+0.58)

Non-
Conf.

Regular 40.87 40.87 82.35 82.35
SC 39.13 (−1.74) 39.13 (−1.74) 79.41 (−2.94) 79.41 (−2.94)

CD 41.71 (+0.84) 41.71 (+0.84) 82.35 (+0.00) 82.35 (+0.00)

CAD 32.17 (−8.70) 32.17 (−8.70) 85.29 (+2.94) 85.29 (+2.94)

COIECD 33.91 (−6.96) 33.91 (−6.96) 82.65 (+0.30) 82.65 (+0.30)

Counterfacts Total
(Conf.)

Regular 18.15 19.38 19.55 20.75
SC 21.40 (+3.25) 22.62 (+3.24) 21.75 (+2.20) 22.90 (+2.15)

CD 38.16 (+20.01) 42.78 (+23.40) 39.26 (+19.71) 42.89 (+22.14)

CAD 40.10 (+21.95) 45.29 (+25.91) 40.44 (+20.89) 47.46 (+26.71)

COIECD 37.35 (+19.20) 43.45 (+24.07) 38.68 (+19.13) 46.98 (+26.23)

Table 13: The results of OPT-6.7B and OPT-13B.
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FLAN-T5-3B FLAN-T5-11B

Datasets Decoding EM F1 EM F1

NQ

Total

Regular 46.00 62.78 44.98 65.02
SC 46.14 (+0.14) 62.51 (−0.27) 44.28 (−0.70) 65.71 (+0.69)

CD 37.62 (−8.38) 55.47 (−7.31) 39.06 (−5.92) 60.94 (−4.08)

CAD 38.91 (−7.09) 57.77 (−5.01) 42.48 (−2.50) 64.20 (−0.82)

COIECD 48.84 (+2.84) 64.45 (+1.67) 45.14 (+0.16) 65.98 (+0.96)

Conf.

Regular 45.16 61.44 42.35 62.69
SC 45.22 (+0.06) 61.02 (−0.42) 39.77 (−2.58) 62.25 (−0.44)

CD 38.29 (−6.87) 55.97 (−5.47) 38.68 (−3.67) 60.59 (−2.10)

CAD 39.34 (−5.82) 58.25 (−3.19) 41.71 (−0.64) 63.61 (+0.92)

COIECD 48.36 (+3.20) 63.98 (+2.54) 43.86 (+1.51) 64.73 (+2.04)

Non-
Conf.

Regular 52.20 72.65 60.81 79.09
SC 52.26 (+0.06) 73.49 (+0.84) 51.39 (−9.42) 71.55 (−7.54)

CD 33.40 (−18.80) 52.33 (−20.32) 41.40 (−19.41) 63.03 (−16.06)

CAD 35.68 (−16.52) 54.22 (−18.43) 47.13 (−13.68) 67.75 (−11.34)

COIECD 52.42 (+0.22) 67.87 (−4.78) 52.87 (−7.94) 73.52 (−5.57)

SQuAD

Total

Regular 71.20 83.53 66.63 80.88
SC 70.90 (−0.30) 83.28 (−0.25) 67.96 (+1.33) 81.51 (+0.63)

CD 71.25 (+0.05) 83.10 (−0.43) 65.04 (−1.59) 79.12 (−1.76)

CAD 68.62 (−2.58) 81.88 (−1.65) 68.88 (+2.25) 81.91 (+1.03)

COIECD 73.84 (+2.64) 84.99 (+1.46) 69.89 (+3.26) 82.59 (+1.71)

Conf.

Regular 70.51 83.09 65.34 80.01
SC 70.25 (−0.26) 82.84 (−0.25) 62.07 (−3.27) 77.92 (−2.09)

CD 71.31 (+0.80) 83.17 (+0.08) 64.57 (−0.77) 78.93 (−1.08)

CAD 68.64 (−1.87) 81.92 (−1.17) 68.43 (+3.09) 81.73 (+1.72)

COIECD 73.51 (+3.00) 84.76 (+1.67) 69.20 (+3.86) 82.22 (+2.21)

Non-
Conf.

Regular 79.56 88.81 78.99 89.15
SC 78.67 (−0.89) 88.61 (−0.20) 79.58 (+0.59) 89.18 (+0.03)

CD 70.60 (−8.96) 82.26 (−6.55) 69.57 (−9.42) 80.89 (−8.26)

CAD 68.37 (−11.19) 81.42 (−7.39) 73.19 (−5.80) 83.62 (−5.53)

COIECD 77.78 (−1.78) 87.76 (−1.05) 76.45 (−2.54) 86.14 (−3.01)

StrategyQA

Total

Regular 87.07 87.07 92.84 92.84
SC 86.81 (−0.26) 86.81 (−0.26) 92.58 (−0.26) 92.58 (−0.26)

CD 89.34 (+2.27) 89.34 (+2.27) 91.79 (−1.05) 91.79 (−1.05)

CAD 88.69 (+1.62) 88.69 (+1.62) 92.45 (−0.39) 92.45 (−0.39)

COIECD 88.78 (+1.71) 88.78 (+1.71) 92.89 (+0.05) 92.89 (+0.05)

Conf.

Regular 69.41 69.41 83.44 83.44
SC 68.80 (−0.61) 68.80 (−0.61) 83.18 (−0.26) 83.18 (−0.26)

CD 85.96 (+16.55) 85.96 (+16.55) 91.33 (+7.89) 91.33 (+7.89)

CAD 77.39 (+7.98) 77.39 (+7.98) 87.06 (+3.62) 87.06 (+3.62)

COIECD 77.36 (+7.95) 77.36 (+7.95) 87.39 (+3.95) 87.39 (+3.95)

Non-
Conf.

Regular 97.06 97.06 97.51 97.51
SC 96.69 (−0.07) 96.69 (−0.07) 97.25 (−0.26) 97.25 (−0.26)

CD 91.26 (−5.80) 91.26 (−5.80) 92.02 (−5.49) 92.02 (−5.49)

CAD 95.08 (−1.98) 95.08 (−1.98) 95.39 (−2.12) 95.39 (−2.12)

COIECD 95.22 (−1.84) 95.22 (−1.84) 95.55 (−1.96) 95.55 (−1.96)

Counterfacts Total
(Conf.)

Regular 74.56 75.73 71.79 74.82
SC 74.58 (+0.02) 75.64 (−0.09) 72.60 (+0.81) 74.30 (−0.52)

CD 74.76 (+0.20) 77.30 (+1.57) 70.31 (−1.48) 75.67 (+0.85)

CAD 68.23 (−6.33) 74.17 (−1.56) 67.39 (−4.40) 74.42 (−0.40)

COIECD 77.60 (+3.04) 78.97 (+3.24) 75.29 (+3.50) 78.37 (+3.55)

Table 14: The results of FLAN-T5-3B and FLAN-T5-11B.
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