
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TABLETEXTGRAD: A REFLEXIVE FRAMEWORK FOR
TABLE UNDERSTANDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Table understanding is a complex task that requires not only grasping the seman-
tics of free-form questions but also accurately reasoning over semi-structured ta-
bles. Recently, promising approaches designed sophisticated prompts that lever-
age large language models (LLMs) by combining Chain-of-Thought strategies
with function calls, consequently demonstrating competitive results without re-
quiring fine-tuning. However, creating sufficiently effective prompts remains a
challenge. Without fine-tuning, all necessary priors must be incorporated directly
into the initial prompt, making prompt design even more critical. Motivated by the
recent advancements in the “textual gradient” space, we introduce TableTextGrad,
a novel framework that enables automatic prompt optimization by leveraging the
“differentiation” of prompting pipelines through textual gradients. Concretely, ac-
cording to the feedback of LLMs, TableTextGrad iteratively refines each function
within the Chain-of-Thought steps and function calls, resulting in more accurate
and reliable table reasoning outcomes. Experiments on table question-answering
datasets demonstrate that our integrated approach achieves significant improve-
ments, setting a new state-of-the-art results on WikiTableQA. Our TableTextGrad
not only enhances the reasoning capabilities of LLMs in the table reasoning task
but also lays a groundwork for more robust and generalizable prompting pipelines
due to its simplicity and effectiveness.

1 INTRODUCTION

Table understanding and reasoning are crucial in business and consumer applications (Cafarella
et al., 2008), as tables typically contain well-structured data that can be efficiently queried using
SQL or Python. However, reasoning over tables remains challenging due to factors such as ambigu-
ous feature names and complex relationships between columns, which hinder precise information
retrieval from the table as well as accurate query interpretation and reasoning. Recent advances in
large language models (LLMs) have demonstrated potential in overcoming these challenges, par-
ticularly in tasks like fact verification (Chen et al., 2019) and question answering (Jin et al., 2022;
Pasupat & Liang, 2015; Nan et al., 2022).

Approaches for LLM-based table reasoning can be broadly divided into two categories. The first in-
volves fine-tuning models by adjusting LLM embeddings, attention mechanisms (Herzig et al., 2020;
Wang et al., 2021; Gu et al., 2022), or training models to improve SQL generation directly (Eisen-
schlos et al., 2020; Liu et al., 2021; Jiang et al., 2022). The second category leverages inference-
only techniques like Chain-of-Thought (CoT) reasoning and in-context learning (ICL) (Chen, 2023;
Cheng et al., 2022; Ye et al., 2023; Hsieh et al., 2023; Liu et al., 2023; Wang et al., 2024) to boost
performance without fine-tuning.

Each approach has its drawbacks: fine-tuning is computationally intensive and lacks flexibility for
new tasks due to its reliance on task-specific labeled data. In contrast, inference-only table un-
derstanding offers adaptability but fails to fully utilize labeled data. Recent research has shown the
potential of leveraging labeled data for prompting methods (Singh et al., 2023; Gulcehre et al., 2023;
Agarwal et al., 2024; Yuksekgonul et al., 2024) to boost LLM performance without the need for fine-
tuning. Notably, TextGrad, a recently introduced framework, performs automatic ”differentiation”
through text, using natural language feedback from LLMs to optimize their outputs. In our case, we
may apply TextGrad to refine prompt optimization for table understanding.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our proposed TableTextGrad extends TextGrad’s capabilities by dynamically adjusting prompts in
multiple chain-of-thought steps and multiple branching function calls, combining the strengths of
inference-only flexibility with data-driven learning to improve table understanding tasks. Addition-
ally, we perform experiments on non-destructive functions that perform soft selection (italicizing
relevant cells) rather than hard selection, which may remove relevant information (Patnaik et al.,
2024). Through a training process, TableTextGrad advances LLM capabilities in handling complex
table-based tasks, achieving state-of-the-art results in TabFact and WikiTableQA.

Rank Nation Gold Silver

1 Russia 6

2 US 5

...

Question: What is the total
amount of nations with > 5

bronze medals?

Table Data

3

9

Bronze

7

4

25 Total 29 29 29

Available Actions: add_column,
select_row, select_column,
group_column, sort_column,

Answer: select_column

TableTextGrad: Automatic Prompt Updating

Agent 1

Prompt 1: Sample Next Operation in
Chain of Thought Prompt 2: Generate args in operation

Thought: I need to filter where
the number of Bronze medals is >
5 and count the number

Answer: select_col(Nation,
Bronze)

Chain of Table Inference Example

Agent 1

Prompt 3, 4, ... n-1: Repeat until out of actions or predict <END>

Nation

Russia

US

...

Update Table Data

Bronze

7

4

Total 29

You are given a table. The task is to answer the question given the table.
Question: What is the total amount of nations with > 5 bronze medals?

Final Answer: 7

Prompt n: Final Query

 Chain of
 Table

 Inference

Training
Set

Validation
Set

 Gradient
 Update

Agent 1 Agent 2
Saved

Prompts

Step 2: Validation: Compare Updated VS Previous
Prompt on Validation Set PerformanceStep 1: Training: Update Prompts

Return Best Performing Prompt

 Chain of
 Table

 InferenceAgent 1

Step 3: Inference on Unseen
Data

Test Set
 Chain of
 Table

 InferenceAgent 1

Gradient Update Example

You are given a table. The
task is to answer the question
given the table.
Question: What is the total
amount of nations with > 5
bronze medals?
Final Answer: 7

7 was incorrect. What
criticisms can be made to
improve the prompt?

Final Query Prompt

loss.backward() Instructions

Agent 2

This prompt could be improved
by ensuring numerical values
are accurately calculated and
crossverified. Also, ensure
that special rows like
"Total" are not miscounted.

optimizer.step() Instructions
Implement the criticisms and
return the updated prompt.

Final Query Prompt Gradients

You are given a table.
The task is to answer
the question given the
table.
- Ensuring numerical
values are
accurately calculated
and crossverified.
- Ensure that special
rows like "Total" are
not miscounted.

New Final Query Prompt
loss.backward() optimizer.step()

Propagate Final
Query Prompt
gradients to

previous prompts

Agent 2

Given the
criticisms on
Final Query, What
criticisms can be
made to improve
the prompt?

optimizer.step()
updates all previous

prompts as well

Figure 1: This figure presents TableTextGrad, which refines prompts through natural language feed-
back and gradient updates on training data. We demonstrate how prompts are iteratively improved
through text gradients. The training, validation, and testing phases are similar to the general ML
training pipeline. The best-performing prompt on validation is then saved. Chain of Table Inference
(in blue) is the chain-of-thought table understanding pipeline that utilizes prompt-based operations
for table inference using a set of actions (e.g., add column, filter rows). The table is updated after
each step. The Gradient Update (in green) is the textual gradient used to refine the table understand-
ing prompts.

We summarize our contribution as follows:

• We present TableTextGrad, an advanced extension of the TextGrad framework, designed to dy-
namically optimize prompts in multi-step reasoning tasks. By incorporating multiple chain-of-
thought steps and branching function calls, TableTextGrad effectively combines the adaptability
of inference-only techniques with the robustness of data-driven learning, improving LLM perfor-
mance in table understanding tasks.

• Our approach introduces non-destructive functions that perform soft selection of table elements
(e.g., italicizing relevant cells) instead of hard selection, which risk excluding critical information.
This ensures a more nuanced understanding of the tabular data without removing potentially useful
context, enhancing overall table comprehension.

• Through extensive experiments, TableTextGrad achieves new state-of-the-art (SOTA) results on
key benchmarks like TabFact and WikiTableQA, significantly improving LLM accuracy and rea-
soning in complex table-based queries.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 TABLE UNDERSTANDING

Recent advancements in machine learning and data processing have led to innovative solutions for
table-related QA. Large, pretrained LLM on multiple tables (Zhang et al., 2023; Li et al., 2023; Jiang
et al., 2022; Xie et al., 2022) propose versatile LLMs trained to perform a variety of tasks such as
reasoning, completion, QA, and more (Zha et al., 2023; Yang et al., 2023). Finetuned LLMs are
surprisingly good in this space, with subtable selection and reasoning improvements (Zhao et al.,
2022; Gu et al., 2022; Patnaik et al., 2024). Similarly, LLM Prompting has seen success due to
LLM’s powerful inherent reasoning abilities (Cheng et al., 2022; Ye et al., 2023; Jiang et al., 2023;
Wang et al., 2024).

2.2 LLM PROMPTING FOR TABULAR UNDESTANDING

The are multiple widely used strategies to provide models with instructions for improving down-
stream tasks to prompt LLMs. Chain-of-Thought (CoT) (Wei et al., 2022) suggests generating
reasoning steps before producing an answer rather than directly generating an end-to-end solution.
Building on CoT, Least-to-Most (Zhou et al., 2022) and DecomP (Khot et al., 2022) break questions
into subproblems, where each step builds on previous ones. This task decomposition improves per-
formance on complex problems by using intermediate subproblem results. Jin & Lu (2023) extends
CoT with a table-filling approach, mainly for text-based tasks. As Chen (2023) reports, generic
reasoning methods work reasonably well with LLMs, but there are gaps compared to table-specific
methods (Cheng et al., 2022; Ye et al., 2023).

Still, CoT-based methods tailored to tabular data generally utilize external tools. Chen et al. (2022);
Gao et al. (2023) suggest using Python programs to solve reasoning tasks, significantly improving
arithmetic reasoning. Text-to-SQL (Rajkumar et al., 2022) applies this approach to table under-
standing, while Binder (Cheng et al., 2022) generates SQL or Python programs and extends their
capability by calling LLMs as APIs. LEVER (Ni et al., 2023) further verifies the generated programs
through execution results. However, these program-aided methods struggle with complex tables due
to limitations of single-pass generation, where LLMs cannot dynamically modify tables based on
specific questions, relying instead on static tables. In contrast, our method adopts a multi-step rea-
soning framework that iteratively transforms tables to suit the given question.

Dater (Ye et al., 2023) and Chain of Table (Wang et al., 2024) modify tabular context during reason-
ing. Dater was the first to introduce table decomposition, but mainly focused on data pre-processing,
with operations limited to fixed column and row selections. Chain of Table generalized a wider
range of table operations and dynamically generates reasoning chains based on input, leveraging
LLMs’ planning capabilities (Valmeekam et al., 2022; Hao et al., 2023). Despite these advance-
ments, both approaches rely on quality, human-expert annotated initial prompts, with no easy way
to tune prompts beyond manual trial and error.

2.3 AUTOMATED LLM CORRECTION:

The idea of correction in LLM Agents has been recently popular (Agarwal et al., 2024; Singh et al.,
2023; Gulcehre et al., 2023; Shinn et al., 2024; Huang et al., 2023; Feng et al., 2024; Yuksekgonul
et al., 2024). The concept of “Reinforced ICL” (Agarwal et al., 2024) evaluates the CoT rationals on
labeled data and retrieves reference data in the test time. While effective, this work does not explore
the idea of error case correction or adding additional Prompt Conditions. Similarly, ”prethinking” on
an unlabeled dataset, saving the high-confidence thoughts, and retrieving them boosts performance
at inference-time for QA tasks (Li & Qiu, 2023). Huang et al. demonstrated that self-correction
without ground truth does not perform well (Huang et al., 2023), which we also observed. Corrective
retrieval has also been proposed (Yan et al., 2024; Asai et al., 2023)–Asai et al. demonstrated that
finetuning an LLM to learn to retrieve raw data is beneficial for QA and long-form generation (Asai
et al., 2023). Self-correction of text-to-SQL using ICL (Pourreza & Rafiei, 2024) has also been
explored. However, to our knowledge, no approach has focused on the automatic correction of
prompts for table understanding like in TableTextGrad.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

The general process is shown in Figure 1. The TableTextGrad framework is designed for automatic
prompt updating, enabling large language models (LLMs) to refine their reasoning over tabular data
through an iterative process that combines natural language feedback and gradient updates. We first
describe the general table understanding framework.

3.1 CHAIN OF TABLE BACKBONE

For general table understanding, we use Chain of Table (Wang et al., 2024) as the backbone, where
LLM Agents engage in step-by-step, function-aided reasoning over the Table and Question, shown
in Algorithm 1. We briefly overview how inference works in this section.

We convert the tables into a list of strings to make the tables interpretable by LLMs. For a given
table-based reasoning task, we represent the given paired (table, query) as (T,Q), where T stands
for the table and Q represents a table-based question or a statement to be verified (to accommodate
TabFact). The objective of the LLM is to predict the answer based on the corresponding (T,Q).

Algorithm 1 TableTextGrad Chain of Table Backbone
Inputs: Table T and Question Q.
Outputs: Â predicted answer.
1: chain← []
2: while f ̸= END do
3: f ← prompt next function(T,Q, chain) # Get next table function
4: args← prompt f args(T,Q, f) # Get arguments specific to table function f
5: T ← f(args, T) # Apply processing to Table T
6: chain← chain+ [f, args] # Update the chain of thought
7: return prompt final query(T,Q) # The output is predicted answer Â

The set of all functions f is described as follows:

• add column adds an additional column that may contain intermediate calculations. For ex-
ample, if a table about athletes has Jennifer (US), Josh (UK), the model could call
add column(country, [US, UK]).

• group by returns a secondary table (appended to the original table) of the count of each unique
element in a column. This is similar to the pandas value counts function.

• select row retains only certain relevant rows in the table.
• select column retains only certain relevant columns in the table.
• sort by sorts a column based on its numerical values, and the order can be specified (small-to-

large or the reverse).

Note that by default, Chain of Table’s select row and select column remove information
from the table (hard selection). However, in our proposed soft selection, we simply italicize the
intersection of selected rows and columns, as shown in Figure 2. In raw text prompt format, we do
this by adding asterisks to any *italicized text*. prompt next function is a prompt that generates
one of the functions f t. At any point, if no further processing is needed an END tag is predicted.
prompt f args is a separate prompt that generates the arguments to the specific f . The separate
nature of this allows many ICL examples of function f usage to be shown, improving performance.
Finally, prompt final query is the final prompt that asks the LLM to predict the answer after all f
table processing. For all prompts, multiple ICL examples are also included.

3.2 TABLETEXTGRAD

We overview our main contribution. TableTextGrad works similarly to the standard Machine Learn-
ing training pipeline. First, an initial LLM (Agent 1) uses the Chain of Table backbone to iteratively
generate table operations for table understanding, such as adding columns or filtering rows. Af-
ter each step, the table is updated based on the generated function calls and function arguments,
allowing for incremental selection and processing of relevant table data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Next, in the Validation Phase, a second LLM agent (Agent 2) evaluates the predicted answers from
Agent 1 for the table QA task using text matching (after processing to remove formatting). Natural
language feedback of how to improve the prompt given any incorrect predictions is then backprop-
agated as textual gradients, which are backpropagated to every prompting step used to generate the
answer, encompassing all prompts used for function selection, function argument generation, and
final table query. This refined prompt is validated by rerunning the new prompts for the Chain of
Table on a validation set, and saved if the performance is better than the current set of prompts.

Finally, after a certain number of batches, the best-performing set of prompts is returned. We detail
TableTextGrad more formally in Algorithm 2.

Algorithm 2 TableTextGrad Table Understanding
Inputs: Dtrain, Dvalid,Dtest, Pinit is the training, validation, and test splits, and Pinit is the initial prompt.
Each D is a set of Tables T and Questions Q.
Outputs: Ptuned is the tuned version from the initial prompt.
1: Ptuned ← Pinit

2: # Obtain current Chain of Table inference performance on validation data for comparison
3: lossval ←

∑
loss fn(COT(T,Q, Pinit), A), ∀ T,Q,A ∈ Dvalid

4: for Batch ∈ Dtrain do
5: loss← 0
6: for T,Q,A ∈ Batch do
7: Â← COT(T,Q, Ptuned) # Chain of Table onference
8: loss += loss fn(Â, A) # String matching boolean for Table QA
9: loss.backward() # Backpropagate textual gradients from loss

10: P ∗ ← optimizer.step() # Obtain potentially better performing prompts
11: loss∗val ←

∑
loss fn(COT(T,Q, P ∗), A), ∀ T,Q,A ∈ Dvalid

12: if loss∗val < lossval then
13: lossval, Ptuned ← loss∗val, P

∗ # Save better performing prompts and lossval
14: return Ptuned

The “.backward()” call is an LLM prompt that asks Agent 2 for criticisms to improve Ptuned given
loss. This call is repeated to other parameters in the gradient graph using backpropagation. I.e.
if the call was X → Y → loss, the gradient backpropagation would look like the outputs to the
following prompt:1

∂loss
∂X = Here is a conversation X,Y . Here are the criticisms on Y : ∂loss

∂Y . Give some
criticisms on improving X .

Similarly, the optimizer.step() call is an LLM prompt that asks Agent 2 to return an updated P ∗ that
incorporates the criticisms from the backward call. We note that there is no learning rate, and the
optimizer.step() function is a prompt to Agent 2 on how the current parameters can be improved
based on loss. Additionally, while Agent 1 and Agent 2 may be the same LLM, in practice, we use
more powerful models for Agent 2 vs Agent 1 in order to have better possible textual gradients.

Furthermore, because we rely on LLM output, loss.backward() and optimizer.step() prompts may
crash due to length constraints / general power of the LLM. To reduce this risk, we found that
explicitly excluding lengthy ICL examples from Pinit and adding that as a prompt input (i.e. adding
ICL examples to Q instead) was useful.

3.3 DATASETS AND BASELINES

Table 1: Dataset Statistics
WikiTQ TabFact

Questions Tables Questions Tables

Train 14,148 1,679 92,283 13,182
Valid 3,536 1,455 12,792 1,696
Test 4,344 421 2,024 298

We assess TableTextGrad on two commonly
used datasets: WikiTableQA (WikiTQ) (Pasu-
pat & Liang, 2015) and TabFact (Chen et al.,
2019) (Table 1). WikiTQ focuses on table-
based question answering, demanding complex
reasoning over tables with short-text answers,
whereas TabFact is a benchmark for binary fact
verification, evaluating the truthfulness of state-

1This example is taken directly from Yuksekgonul et al. (2024)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ments derived from table data. Consistent with prior research, we report performance metrics using
cleaned string matching for WikiTQ and binary prediction accuracy for TabFact.

Both WikiTQ and FeTaQA are datasets aimed at table-based question answering, requiring sophis-
ticated reasoning across tables. WikiTQ typically involves short-text span answers, while FeTaQA
asks for more detailed, free-form responses. Conversely, TabFact is a binary fact verification task
that requires determining whether a given statement is true or false based on table data. For WikiTQ,
we evaluate performance using string matching accuracy (post-processing for consistency), and for
TabFact, we use binary classification accuracy as the metric.

Table 2: Accuracy comparisons of all baselines vs Table-
TextGrad. Results are copied from the original papers’ most rel-
evant and best-performing configurations (missing results are de-
noted with a dash “-”). The best performance is bolded. The sec-
ond best performance is underlined. Chain of Table∗ denotes our
backbone implementation in TableTextGrad, without any tuning.
TableTextGrad SF denotes our method with soft selection and
full pipeline gradient tuning.

Approach Base Model TabFact WikiTQ
Finetuning-Based

Unifiedskg (Xie et al., 2022) T5 3B 83.68 49.29
REASTAP (Zhao et al., 2022) BART-Large 80.1 58.6

PASTA (Gu et al., 2022) DeBERTaV3 85.60 -
OmniTab (Jiang et al., 2022) BART-Large - 62.80

CABINET (Patnaik et al., 2024) BART-Large - 69.10
LLM Prompting

BINDER (Cheng et al., 2022) GPT-3 Codex 86.00 64.60
DATER (Ye et al., 2023) GPT-3 Codex 85.60 65.90

STRUCTGPT (Jiang et al., 2023) GPT 3.5 87.60 57.00
Chain-of-Thought (Wei et al., 2022) PaLM 2 79.05 60.43

E5 (Zhang et al., 2024) GPT-4 88.77 65.54
Chain of Table (Wang et al., 2024) GPT 3.5 80.20 59.94
Chain of Table (Wang et al., 2024) PaLM 2 86.11 67.31

Chain of Table∗ Llama 3.1 70B 85.05 63.58
Chain of Table∗ GPT 4o mini 81.20 60.34
Chain of Table∗ GPT 4o 86.41 64.95

TableTextGrad SA Llama 3.1 70B 87.05 70.58
TableTextGrad SA GPT 4o mini 86.62 64.14
TableTextGrad SA GPT 4o 88.75 75.10

The baseline methods are
divided into two categories.
Finetuning-based are methods
that require training the weights
of a base model. This includes
methods like Unifiedskg (Xie
et al., 2022), PASTA (Gu et al.,
2022), and CABINET (Patnaik
et al., 2024).

The second category are in-
ference only methods such as
Chain-of-Thought (Wei et al.,
2022), Text-to-SQL (Rajkumar
et al., 2022), Binder (Cheng
et al., 2022), and Dater (Ye et al.,
2023). Chain-of-Thought (Wei
et al., 2022) prompts the LLM
to explain its reasoning process
before answering the question.
Text-to-SQL (Rajkumar et al.,
2022) uses in-context examples
to guide the LLM in generat-
ing SQL queries for answering
questions (Chen et al., 2022;
Gao et al., 2023). Binder (Cheng
et al., 2022) combines a lan-
guage model API with SQL or
Python to generate executable
programs that reason over the table. Dater (Ye et al., 2023) uses few-shot examples to decompose
complex table contexts and questions into smaller sub-tables and sub-questions, enhancing table
reasoning.

Note that we slightly distinguish between the default Chain of Table implementation and our reim-
plementation with a ∗, since small changes may slightly affect downstream performance.

4 RESULTS

We see the results in Table 2 to the right (FeTaQA results are shown in Appendix A.3). The table
presents accuracy comparisons across different approaches for the TabFact and WikiTQ datasets,
In finetuning-based methods, which involve model adaptation to specific tasks, PASTA (Gu et al.,
2022) performs well on TabFact with accuracies of 85.60, while CABINET (Patnaik et al., 2024)
leads WikiTQ with 69.10%. However, these methods require extensive finetuning on the dataset,
which can limit generalizability.

While fine-tuning methods can provide high accuracy, the versatility and competitive performance of
LLM prompting strategies also offer compelling performance. Models leverage pre-trained LLMs
without task-specific finetuning, both the Chain of Table base model and our re-implementation
demonstrate strong baseline performance, achieving competitive results. The GPT 4o version

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

achieves the best performance on both TabFact (86.41%) and WikiTQ (64.95%) out of the box,
surpassing prior approaches by using more recent LLMs.

The proposed TableTextGrad approach (highlighted as TableTextGrad and TableTextGrad SA)
demonstrates impressive results in this LLM prompting setting. Notably, TableTextGrad SA, which
incorporates soft selection and the full pipeline gradient tuning, achieves strong performance with
88.75% on TabFact (within .02 from SOTA) and 75.10% on WikiTQ, highlighting the Table-
TextGrad’s effectiveness. These results show that gradient-based refinement techniques help op-
timize task-specific accuracy, with little to no human effort.

4.1 SOFT VS HARD TABLE SELECTION

Figure 2 illustrates the difference between hard and soft table selection.

Rank Nation Gold Silver

1 Russia 6

2 US 5

...

Question: What is the total
amount of nations with > 5

bronze medals?

Table Data

3

9

Bronze

7

4

25 Total 29 29 29

select_row(
 row 1, row 2
)
->
select_column(
 Nation, Bronze
)

Hard vs Soft Table Selection

Agent 1

Hard Selection

Nation

Russia

US

Bronze

7

4

Soft Selection

Rank Gold Silver

1 6

...

3

9

Bronze

7

4

25 29 29

Nation

2 5

Total 29

Russia

US

Figure 2: On the left, a table with data on nations’ medal counts is presented, along with a question
about the total number of nations with more than 5 bronze medals. In the center, an agent performs
a hard selection by choosing specific rows and columns, reducing the table to only the relevant data
(Russia and US in the “Nation” and “Bronze” columns). On the right, the soft selection highlights
(in italics) the relevant cells without excluding the rest of the table’s content. This approach retains
broader contextual information, allowing for a more comprehensive understanding of the data while
emphasizing critical details.

Table 3: Ablations: Table understanding results on WikiTQ and TabFact with GPT 4o mini, GPT
4o, and Llama 3.1 70b. H and S denotes hard and soft selection respectively. A and L denote
all prompts tuned vs only the last prompt tuned respectively (underline denotes the second-best
performance; bold denotes the best performance)

Llama 3.1 70B GPT 4o mini GPT 4o
Ablations TabFact WikiTQ TabFact WikiTQ TabFact WikiTQ

TableTextGrad HA 86.56 66.30 86.35 62.89 88.42 73.02
TableTextGrad SA 87.05 70.58 86.62 64.14 88.75 75.10
TableTextGrad HL 86.76 66.66 85.11 60.29 87.12 72.96
TableTextGrad SL 86.62 68.58 84.86 61.20 88.20 73.24

In nearly all cases, tuning all prompts yields better performance compared to tuning only the last
prompt. This suggests that fine-tuning the entire prompt chain allows the model to better optimize
reasoning across all steps, not just the final output generation.

Tuning all prompts also consistently leads to superior or equal results across both datasets, regard-
less of the underlying model. This reinforces the importance of maintaining flexibility throughout
the entire reasoning pipeline, as each prompt step contributes to more accurate responses, particu-
larly in complex tasks such as WikiTQ. While last prompt tuned does not outperform full-prompt
tuning, its competitive performance highlights the efficiency of tuning just the final step. For in-
stance, with GPT 4.0 on TabFact, TableTextGrad HL achieves 87.12%, which is only slightly lower
than the 88.75% of best-performing TableTextGrad SA. This shows that, in resource-constrained

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

environments, tuning only the final prompt could offer a more efficient alternative with minimal
performance trade-offs.

The performance gap between tuning all prompts and tuning the last prompt is slightly more pro-
nounced in smaller models (e.g., GPT 4o mini), where full-prompt tuning tends to offer a greater
boost in performance. This indicates that larger models like GPT 4o are more robust to freezing
earlier prompts, likely because they possess stronger generalization capabilities.

4.2 TUNING ALL PROMPTS VS TUNING FINAL PROMPT

Similar to the common practice of fine-tuning only the last layer of a deep learning model, it is
reasonable to hypothesize that fine-tuning just the final query prompt in the table QA pipeline could
yield competitive results while reducing the computational cost. In this ablation, we explore the
impact of fine-tuning only the final query table QA prompt while keeping all prior prompts in the
reasoning chain frozen. The rationale behind this approach is that the earlier prompts are likely
responsible for general task understanding and contextual reasoning, while the final prompt directly
governs the model’s response generation.

This ablation helps isolate the contributions of the final prompt in guiding table-based question an-
swering, as well as assessing the role of prior prompts in contributing to overall system performance.
If fine-tuning the last prompt yields performance close to full-prompt tuning, this approach could
provide a significant efficiency advantage, reducing the number of parameters that require updat-
ing during training and consequently lowering memory and compute requirements. The results in
Table 3 show that while tuning the final prompt alone achieves reasonable performance, it does
not match the results of tuning the entire set of prompts. This suggests that earlier prompts play
an integral role in step-by-step reasoning over table data, and their fixed nature might hinder the
model’s ability to fully optimize reasoning paths. However, the final prompt fine-tuning still offers
a computationally efficient alternative, especially in scenarios with limited resources or when rapid
deployment is required.

4.3 EFFECT OF TABLE LENGTH ON PERFORMANCE

We investigate the effect of lengths of tables on performance.

Table 4: Results on different table lengths. Small Tables are those where the sum of all the tokens
of the table are <33 percentile. Medium are those >33 percentile and <67 percentile. Large Tables
are those >67 percentile. We choose to show the results of the best-performing version of Table-
TextGrad SA.

Llama 3.1 70B GPT 4o mini GPT 4o
Table Lengths TabFact WikiTQ TabFact WikiTQ TabFact WikiTQ

Small Tables 91.12 81.81 87.50 66.14 92.52 83.96
Medium Tables 87.16 70.29 85.98 64.89 88.46 72.38

Large Tables 86.54 62.52 84.40 62.29 85.32 69.72

From Table 4, across all models and datasets, performance generally decreases as the table size
increases. For example, with GPT 4.0 on WikiTQ, small tables yield an accuracy of 83.96, high-
lighting the increased difficulty in reasoning over larger tables where more tokens must be processed
and contextualized. The highest performance is consistently seen on small tables across models and
tasks. For instance, GPT 4o achieves 92.52% accuracy on TabFact and 83.96% on WikiTQ, which
are the highest results for each dataset. This suggests that when the input is more concise, Table-
TextGrad can reason more effectively, likely due to the reduced complexity and need for processing
less information. As expected, large tables lead to the lowest performance. The increase in token
count likely overwhelms the model’s ability to capture relevant information efficiently, especially
when complex reasoning is required. Smaller models like GPT 4.0 mini seem to have a lower ceil-
ing, the 4% difference between small tables and large tables is small compared to larger models like
GPT 4o, which drops from 83.96% to 69.72%. This indicates a higher sensitivity to the input length
for more powerful LLMs. These results follow the trend of other models, such as Chain-of-Table
and Dater.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25
Training Steps

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Abl: Noisy Init. Val
Abl: Noisy Init. Test

0 5 10 15 20 25
Training Steps

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Abl: Noisy Qs Val
Abl: Noisy Qs Test

Figure 3: 2 experiments showing the effectiveness of TableTextGrad on noisy inputs. The exper-
iment on the left starts with a poorly initialized final query prompt. The experiment on the right
demonstrates TableTextGrad’s ability to deal with noisy/irrelevant questions.

4.4 ROBUSTNESS TO POOR PROMPT INITILIZATIONS

In this section, we investigate a worst-case scenario where the initialized final query prompt is very
poorly initialized. We perform experiments on a 200-sample subset of WikiTQ (100 for training,
100 for testing). The final prompt will be initialized as the following: Here is a table and
a question. Return "I don’t know". (The usual prompt is shown in App. A.9.6)
We also remove the ICL examples for the final query, so that the model has no information to work
with, and has to learn how to answer the question from the training data starting from scratch. We
use TableTextGrad SL to keep the maximum amount of information from the tables and only tune
the final query prompt. From Figure 3, we see that TableTextGrad is able to achieve a respectable
accuracy of 0.6 starting essentially from scratch. This highlights the power of TableTextGrad as well
as the need for good initialization. The final prompt is in Appendix A.8.1.

4.5 ROBUSTNESS TO IRRELEVANT QUESTIONS

To test how our model performs a more difficult task with noisy input, we investigate a scenario
where irrelevant information is added to questions to simulate an imperfect scenario. To do this, we
add 4 randomly sampled questions from other tables so that the Agent has to identify the relevant
question as well as answer it. Such a task would usually require significant methodology changes
to address, but with TableTextGrad, the training step can automatically learn to parse out relevant
information. For similar reasons as the previous experiment, we utilize TableTextGrad SL. The
results in Figure 3 demonstrate that TableTextGrad is indeed able to learn how to select and return
the correct answer, at least 40% of the time. This simple experiment demonstrates the flexibility and
usefulness of automatically tunable prompting pipelines. The final prompt is in Appendix A.8.2/

4.6 TRAINING PERFORMANCE MIRRORS ML TRAINING CURVES

This corresponds to the number of batches in Dtrain in Algorithm 2. For best performance, we run
as many iterations as feasible with as many validation data points as possible. In our case, we run
32 iterations at 100 validation data points, sampled randomly for fairness. Note that we only chose
a smaller number of validation datapoints since we have to run each one num train iterations times,
which begins to become expensive. Each batch in the training set consists of 4 data points at each
iteration. We found that batch size was relatively robust. See Appendix for more details.

Across all models and datasets, validation accuracy rapidly increases within the first few training
steps (often before 10 steps) and then plateaus. This indicates that TableTextGrad quickly converges
to a high level of accuracy during training. In general, the test performance aligns closely with
the validation accuracy, suggesting that the small validation set is reasonably representative of the
test set. This demonstrates that the model generalizes well from the validation set to the test set
across different configurations. Larger models such as GPT 4o and LLaMA 3.1 70B tend to achieve
higher test and validation accuracy compared to the smaller GPT 4o mini across both datasets.
For instance, GPT 4o reaches near-perfect validation and test scores in both TabFact and WikiTQ,
whereas GPT 4o mini shows a more gradual rise and slightly lower final performance. Both models
generally perform better on TabFact compared to WikiTQ. This is evident from the higher plateaus

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
0.7

0.8

0.9

1.0
GPT 4o Tabfact

0 5 10 15 20 25 30
0.7

0.8

0.9

1.0
GPT 4o mini Tabfact

0 5 10 15 20 25 30
0.7

0.8

0.9

1.0
Llama 3.1 70B Tabfact

0 5 10 15 20 25 30

0.6
0.7
0.8
0.9
1.0

GPT 4o WTQ

0 5 10 15 20 25 30

0.6
0.7
0.8
0.9
1.0

GPT 4o mini WTQ

0 5 10 15 20 25 30

0.6
0.7
0.8
0.9
1.0

Llama 3.1 70B WTQ

Figure 4: Validation accuracy of TableTextGrad on both the TabFact (top row) and WikiTQ (bottom
row) datasets, with three different models: GPT 4o, GPT 4o mini, and LLaMA 3.1 70B. Each plot
presents the validation performance (blue line) over the course of 32 training steps, and the test
performance (red dashed line) is shown for comparison.

reached in validation accuracy for TabFact across all models. This trend likely reflects the additional
complexity of WikiTQ, which requires more advanced reasoning over tabular data.

4.7 EFFICIENCY ANALYSIS

The efficiency of TableTextGrad is an important factor in its overall utility, especially compared
to other table understanding approaches. Building on the relatively lightweight requirements of
Chain of Table backbone, TableTextGrad’s gradient-based refinement process incurs some additional
computational costs. Specifically, the efficiency is driven by the fact that each gradient step requires
only O(10×number of training sample×number of validation points), where the maximum length
of the table reasoning pipeline is 5, and each step in the pipeline outputs a response that also has
to be backpropagated through. This means that the computational overhead scales with the size of
the training set × validation set. Still, this is entirely manageable even for larger datasets, as seen
in Section 4.6. We see that TableTextGrad converges closer to the beginning, potentially allowing
for smaller amounts of training data. Given that many table understanding methods require more
resource-intensive operations, such as full model finetuning or multiple self-consistency runs as in
Dater, we argue that TableTextGrad ’s approach is worth it to reduce the work of manual prompt
optimization. A further discussion is shown in App. A.2.

5 CONCLUSION

In conclusion, table understanding presents a unique challenge, requiring both the comprehension of
free-form questions and precise reasoning over semi-structured data. While recent prompting-based
approaches leveraging Chain-of-Thought reasoning and function calls have shown promise with-
out fine-tuning, the difficulty of designing effective initial prompts remains a critical barrier. Our
proposed TableTextGrad framework introduces a novel extension of TextGrad principles to this do-
main, addressing the inherent complexity of conditional branching prompt pipelines. TableTextGrad
not only demonstrates state-of-the-art performance on WikiTableQA, TabFact, and FeTaQA bench-
marks but also proves to be robust and adaptable. Through experiments with poor prompt initializa-
tion and noisy questions, we illustrate its ability to recover and optimize performance under chal-
lenging conditions, showcasing its resilience compared to static, manually designed prompts. More-
over, experiments on prompt initialization robustness and robustness to noisy questions demonstrate
the framework’s flexibility, highlighting its potential for broader applications in table reasoning and
beyond.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

LIMITATIONS

In its current form, TableTextGrad focuses on optimizing reasoning and prompt refinement for stan-
dard table reasoning tasks within the token limit constraints of large language models (LLMs).
While the framework demonstrates state-of-the-art results on WikiTableQA and TabFact, handling
very large tables presents a challenge due to the inherent length limitations of LLMs. These con-
straints can affect the efficiency of reasoning over tables with extensive rows and columns, where
memory and attention span become critical bottlenecks.

To address this, TableTextGrad can be augmented with approaches such as TableRAG: Million-
Token Table Understanding with Language Models or Tree-of-Table: Unleashing the Power of
LLMs for Enhanced Large-Scale Table Understanding. Both techniques enable more scalable ta-
ble understanding by partitioning or hierarchically structuring the table data to fit within the to-
ken constraints while maintaining semantic coherence. TableRAG Chen et al. (2024) introduces a
retrieval-augmented mechanism, breaking large tables into smaller, manageable chunks and retriev-
ing only the most relevant pieces for reasoning. Similarly, Tree-of-Table Ji et al. (2024) leverages a
hierarchical attention mechanism that processes large-scale tables in a tree-like structure, enabling
reasoning across expansive data while staying within the model’s operational limits.

Integrating these methods with TableTextGrad would allow our framework to extend its applicability
to large-scale tables, leveraging its iterative optimization capabilities on partitioned or hierarchically
processed data. This combination not only addresses the token length limitations but also preserves
the core advantages of TableTextGrad, such as its automated refinement of reasoning paths and ro-
bustness to noisy or poor initial prompts. We recognize this as a promising direction for future work,
extending the utility of TableTextGrad to more complex and large-scale table reasoning scenarios.

Further future work could involve extending TableTextGrad to hierarchical table structures such as
those found in HiTab Cheng et al. (2021). Hierarchical tables present unique challenges compared to
flat tables, as reasoning often involves navigating nested relationships between rows and columns.
Although this is currently not in scope with our existing work of flat tables, adapting our Table-
TextGrad could broaden its applicability to more complex and realistic real-world tabular datasets.

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv
preprint arXiv:2404.11018, 2024.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. arXiv preprint arXiv:2310.11511, 2023.

Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang. Webtables:
Exploring the power of tables on the web. Proc. VLDB Endow., 1(1):538–549, aug 2008. ISSN
2150-8097. doi: 10.14778/1453856.1453916.

Si-An Chen, Lesly Miculicich, Julian Martin Eisenschlos, Zifeng Wang, Zilong Wang, Yanfei Chen,
Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and Tomas Pfister. Tablerag: Million-token table
understanding with language models. arXiv preprint arXiv:2410.04739, 2024.

Wenhu Chen. Large language models are few(1)-shot table reasoners. In Findings of the Association
for Computational Linguistics: EACL 2023, pp. 1120–1130, Dubrovnik, Croatia, May 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-eacl.83.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. In
International Conference on Learning Representations, 2019.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang
Lou, and Dongmei Zhang. Hitab: A hierarchical table dataset for question answering and natural
language generation. arXiv preprint arXiv:2108.06712, 2021.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. Binding language models in symbolic
languages. In International Conference on Learning Representations, 2022.

Julian Eisenschlos, Syrine Krichene, and Thomas Müller. Understanding tables with intermediate
pre-training. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
281–296, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.findings-emnlp.27.

Tao Feng, Pengrui Han, Guanyu Lin, Ge Liu, and Jiaxuan You. Thought-retriever: Don’t just retrieve
raw data, retrieve thoughts. In ICLR 2024 Workshop: How Far Are We From AGI, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiaoman Zhao, and Xiaoyong Du. PASTA: Table-
operations aware fact verification via sentence-table cloze pre-training. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pp. 4971–4983, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.emnlp-main.331.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and Julian Eisen-
schlos. TaPas: Weakly supervised table parsing via pre-training. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 4320–4333, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.398.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. In Findings of the Association
for Computational Linguistics: ACL 2023. Association for Computational Linguistics, 2023.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Deyi Ji, Lanyun Zhu, Siqi Gao, Peng Xu, Hongtao Lu, Jieping Ye, and Feng Zhao. Tree-of-
table: Unleashing the power of llms for enhanced large-scale table understanding. arXiv preprint
arXiv:2411.08516, 2024.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt:
A general framework for large language model to reason over structured data. arXiv preprint
arXiv:2305.09645, 2023.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neubig, and Weizhu Chen. OmniTab: Pretraining
with natural and synthetic data for few-shot table-based question answering. In Proceedings of the
2022 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 932–942, Seattle, United States, July 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.68.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qingcai Chen. A survey on table question an-
swering: recent advances. In China Conference on Knowledge Graph and Semantic Computing,
pp. 174–186. Springer, 2022.

Ziqi Jin and Wei Lu. Tab-cot: Zero-shot tabular chain of thought. arXiv preprint arXiv:2305.17812,
2023.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In Interna-
tional Conference on Learning Representations, 2022.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman,
Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table-tuned gpt for diverse table tasks. arXiv
preprint arXiv:2310.09263, 2023.

Xiaonan Li and Xipeng Qiu. Mot: Memory-of-thought enables chatgpt to self-improve. In Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
6354–6374, 2023.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
TAPEX: Table pre-training via learning a neural sql executor. In International Conference on
Learning Representations, 2021.

Tianyang Liu, Fei Wang, and Muhao Chen. Rethinking tabular data understanding with large lan-
guage models. arXiv preprint arXiv:2312.16702, 2023.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech
Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang, Mutethia Mutuma, Ben Rosand, Is-
abel Trindade, Renusree Bandaru, Jacob Cunningham, Caiming Xiong, Dragomir Radev, and
Dragomir Radev. FeTaQA: Free-form table question answering. Transactions of the Association
for Computational Linguistics, 10:35–49, 2022. doi: 10.1162/tacl\ a\ 00446.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In International
Conference on Machine Learning, pp. 26106–26128. PMLR, 2023.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 1470–1480, Beijing, China, July 2015. Association for Computational Linguistics.
doi: 10.3115/v1/P15-1142.

Sohan Patnaik, Heril Changwal, Milan Aggarwal, Sumita Bhatia, Yaman Kumar, and Balaji Krish-
namurthy. Cabinet: Content relevance based noise reduction for table question answering. arXiv
preprint arXiv:2402.01155, 2024.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36, 2024.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models. arXiv preprint arXiv:2204.00498, 2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for llms on planning and reasoning about change). In
NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang. TUTA: Tree-
based transformers for generally structured table pre-training. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1780–1790, 2021.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table: Evolving
tables in the reasoning chain for table understanding. arXiv preprint arXiv:2401.04398, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga,
Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I Wang, et al. Unifiedskg: Unifying and
multi-tasking structured knowledge grounding with text-to-text language models. arXiv preprint
arXiv:2201.05966, 2022.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation.
arXiv preprint arXiv:2401.15884, 2024.

Yazheng Yang, Yuqi Wang, Guang Liu, Ledell Wu, and Qi Liu. Unitabe: Pretraining a unified
tabular encoder for heterogeneous tabular data. arXiv preprint arXiv:2307.09249, 2023.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decompose evidence and questions for table-based reasoning. arXiv
preprint arXiv:2301.13808, 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi Huang, Saisai Yang, Jing Yuan, Changbao
Su, Xiang Li, Aofeng Su, et al. Tablegpt: Towards unifying tables, nature language and commands
into one gpt. arXiv preprint arXiv:2307.08674, 2023.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206, 2023.

Zhehao Zhang, Yan Gao, and Jian-Guang Lou. E5: Zero-shot hierarchical table analysis using
augmented llms via explain, extract, execute, exhibit and extrapolate. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 1244–1258, 2024.

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang, and Dragomir Radev. Reastap: Inject-
ing table reasoning skills during pre-training via synthetic reasoning examples. arXiv preprint
arXiv:2210.12374, 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In International Conference on Learning Representations,
2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Contents

A Appendix 15

A.1 Ethics Statement . 15

A.1.1 Human Impact . 15

A.2 Cost Continued . 16

A.3 Results on FeTaQA . 16

A.4 Results on FeTaQA Row and Column Identification 17

A.5 Table Length vs Performance on WikiTQ . 17

A.6 Reproducibility . 18

A.7 Batch Size . 18

A.8 Experiment Prompts . 19

A.8.1 Robustness to Poor Prompt Initializations Prompt 19

A.8.2 Robustness to Irrelevant Questions Prompt 20

A.9 Example Prompts Original vs Tuned . 21

A.9.1 generate prompt for next step . 21

A.9.2 group column . 22

A.9.3 select column . 23

A.9.4 select row . 24

A.9.5 sort column . 25

A.9.6 final query . 26

A APPENDIX

A.1 ETHICS STATEMENT

This work on TableTextGrad was conducted using publicly available datasets, including WikiTable-
Questions (WikiTQ) and TabFact, which are widely recognized benchmarks in the domain of tabular
data understanding and reasoning. These datasets are accessible to the research community, ensur-
ing that all evaluations and model training can be reproduced by other researchers under similar
conditions. The use of publicly available data ensures transparency in evaluation and aligns with
ethical practices of data usage and sharing within the machine learning community.

However, it is important to acknowledge that GPT models used in this work are proprietary and
closed-source. The reliance on closed-source models poses some potential ethical challenges re-
lated to transparency, reproducibility, and equity of access. Researchers and practitioners outside
of organizations with privileged access to GPT may find it difficult to replicate results or apply the
model in their own work due to these restrictions. This limitation may hinder the open progress of
scientific research and could create a barrier between institutions with access to proprietary mod-
els and those without, thereby limiting equitable advancements in the field. In contrast, LLaMA
3.1, which is used in this study, is an open-source model, enabling a wider range of researchers
to replicate and extend the findings of this work. Open-source alternatives like LLaMA 3.1 help
foster inclusivity and collaboration in machine learning research by lowering the barrier to entry for
institutions and researchers globally.

A.1.1 HUMAN IMPACT

The ability of TableTextGrad to improve the understanding and reasoning over tabular data holds
significant potential for positive human impact. Tabular data is foundational in many domains,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

including healthcare, finance, public policy, and scientific research. By enhancing the capabilities of
models to analyze and reason over this type of data, TableTextGrad could improve decision-making
processes across these fields. For example, in healthcare, better analysis of patient data could lead to
improved diagnostic insights, while in finance, enhanced table understanding could streamline data-
driven strategies and compliance efforts. This advancement can drive increased efficiency, better
resource allocation, and more informed outcomes.

However, it is also important to recognize that the deployment of powerful AI models like Table-
TextGrad must be approached with caution. The potential for automated systems to be used in
decision-making processes could introduce risks if these systems are used without proper over-
sight. For example, inaccuracies in table interpretation or over-reliance on AI-generated insights
could lead to misinformed conclusions, particularly in high-stakes areas such as healthcare or legal
domains. Ensuring that TableTextGrad is deployed in a way that augments, rather than replaces,
human judgment is critical for mitigating these risks. For example, prompt corrections should still
be double-checked by a human for validity, to reduce the risk of hallucination.

A.2 COST CONTINUED

Table 5: Table of cost of prompting baselines as well as TableTextGrad. TableTextGrad A indicates
full prompt pipeline tuning and TableTextGrad L indicates only tuning the final query prompt.

Method Training Cost # Inference Prompts

Binder Manual Tuning 50
Dater Manual Tuning 100

CHAIN-OF-TABLE Manual Tuning ≤25
TableTextGrad A ≤25 × # training data + 10 × # training steps ≤25
TableTextGrad L ≤25 × # training data + 2 × # training steps ≤25

Table 5 provides a comparison of the prompting costs associated with baseline methods and Table-
TextGrad, focusing on training effort and inference efficiency. Traditional methods such as Binder,
Dater, and Chain-of-Table rely heavily on manual prompt tuning, which involves substantial human
effort and domain-specific expertise. In contrast, TableTextGrad introduces a more scalable and au-
tomated approach to prompting through its iterative optimization framework. Both variants of Table-
TextGrad, denoted as TableTextGrad A and TableTextGrad L, substantially reduce the dependency
on manual tuning by leveraging automated textual gradient optimization during training. Specif-
ically, the cost for TableTextGrad is parameterized by the number of training data instances and
training steps, where each number may be tuned in practice. At inference time, TableTextGrad re-
quires no more than 25 prompts, matching the efficiency of Chain-of-Table. Notably, TableTextGrad
L is particularly efficient, requiring as few as 2 training steps per training data instance, compared
to TableTextGrad A, which scales linearly with 10 training steps.

A.3 RESULTS ON FETAQA

In this section, we investigate TableTextGrad’s performance on FeTaQA Nan et al. (2022), a free-
form table QA dataset.

Table 6: Results on FeTaQA
BLEU ROUGE-1 ROUGE-2 ROUGE-L

End-to-End 28.37 0.63 0.41 0.53
Dater 29.47 0.63 0.41 0.53

CHAIN-OF-TABLE (Rerun) 31.46 0.65 0.42 0.54
TableTextGrad HA 33.75 0.67 0.44 0.55
TableTextGrad SA 34.06 0.68 0.46 0.56

From Table 6, we see that while TableTextGrad achieves higher BLEU and ROUGE scores com-
pared to baseline methods, it is important to note that these metrics primarily reflect token-level
matching rather than true semantic understanding or reasoning capabilities. As such, higher scores
do not necessarily indicate improved performance on complex reasoning tasks but rather better align-
ment in token matching with reference answers.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 RESULTS ON FETAQA ROW AND COLUMN IDENTIFICATION

We perform an ablation to test the adaptability of TableTextGrad to predict relevant rows and
columns. Note that in this scenario, we directly use a one-step prediction, bypassing all previ-
ous row/column selection functions. We perform experiments on a subset of FeTaQA dataset, with
200 samples (100 training, 100 test) and 25 training steps.

Table 7: Results on FeTaQA Row and Column Identification
ROUGE-1 ROUGE-L

Rows 0.78 0.72
Columns 0.79 0.60

Combined 0.82 0.72

0 5 10 15 20 25
Training Steps

0.0

0.2

0.4

0.6

0.8

%
 R

OU
GE

-1
 >

 0
.8

Abl: RowCol Val
Abl: RowCol Test

Figure 5: Training Curve of FeTaQA row / col prediction performance over 25 training steps.

Table 7 and Figure 5 present the results of TableTextGrad on row and column identification tasks
for the FeTaQA dataset, which are crucial subtasks in table question answering (QA). These sub-
tasks involve accurately aligning the question semantics with the relevant table rows and columns,
enabling precise data retrieval for answer generation. TableTextGrad demonstrates robust perfor-
mance on row and column identification, achieving a ROUGE-1 score of 0.78 and ROUGE-1 of
0.79 respectively, indicating its effectiveness. Notably, these results were achieved without requir-
ing task-specific manual prompt tuning. The final learned prompt is the following:

You are given a table. The task is to return relevant rows and
columns based on the information in the table.
- Ensure all relevant rows and columns are explicitly included in
the response to capture the complete context of the question.
- Ensure the model identifies and uses consistent terminology and
capitalization for column names to prevent confusion.
- Ensure the model filters and focuses on only the relevant rows
and columns that directly pertain to the question.
- Ensure the response format is clear and structured, avoiding
unnecessary introductory phrases.
- Ensure the model verifies the accuracy of the data referenced
from the table before formulating the response.
- Ensure the model checks for potential ambiguities in the
question and clarifies them if necessary.
- Ensure the model provides a clear rationale for the inclusion of
specific rows and columns in its response.
- Ensure the final answer strictly follows the format: "The
answer is: row: 1,2,3.., column: x, y, z ..."

A.5 TABLE LENGTH VS PERFORMANCE ON WIKITQ

Table 8 demonstrates a fair comparison of the performance of the best-performing version of Table-
TextGrad on the test set. Other baseline results are taken from Wang et al. (2024). We see that
TableTextGrad is able to obtain competitive performance against previous models.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Accuracy of performance split by various table token lengths in WikiTQ.
Small (<2k) Medium (≥2k, <4k) Large (>4k)

Binder 56.54 26.13 6.41
Dater 62.50 42.34 34.62

Chain-of-Table 68.13 52.25 44.87
TableTextGrad SA 76.87 55.12 50.35

A.6 REPRODUCIBILITY

All Llama 3.1 70B experiments were run on a server with 4 NVIDIA RTX A6000 GPUs (48GB
VRAM), a AMD EPYC 7513 32-Core Processor, and 1000GB of RAM. The specific OpenAI GPT
versions are gpt-4o-2024-05-13, and gpt-4o-mini-2024-07-18.

Code will be released after polishing and removing user-specific information.

A.7 BATCH SIZE

Table 9: Results on different batch sizees.

Batch Size
Llama 3.1 70B GPT 4o mini

TabFact WikiTQ TabFact WikiTQ

Batch Size 1 85.51 66.18 85.56 60.67
Batch Size 4 87.05 70.58 86.62 64.14
Batch Size 8 86.89 71.10 85.98 63.72

Table 9 demonstrates experiments on different batch sizes. We see that as long as the batch size is
of reasonable, the performance is relatively consistent. Higher Batch sizes will require longer input
lengths in the gradient step, so we limited our experiments to smaller sizes to avoid running into
errors.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.8 EXPERIMENT PROMPTS

A.8.1 ROBUSTNESS TO POOR PROMPT INITIALIZATIONS PROMPT

Here is a table and a question. Return the answer by extracting
information specifically from *italicized* cells, as those have
been determined to be relevant.

- Ensure the model summarizes key data points from the
italicized cells succinctly, linking them directly to the
question.

- Ensure the model formats the final answer strictly as "The
answer is: AnswerName1, AnswerName2..." without additional
commentary.

- Ensure the model avoids unnecessary phrases that do not
contribute to the answer, streamlining the response for clarity.

- Ensure the model verifies the accuracy of the extracted data
before formulating the final answer.

- Ensure the model checks for any missing or incomplete data in
the *italicized* cells that may affect the answer.

- Ensure the model maintains a clear focus on the question being
asked, prioritizing the identification of the relevant entity.

- Ensure the model provides a numerical representation of the
answer when applicable, avoiding redundancy in the final answer.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.8.2 ROBUSTNESS TO IRRELEVANT QUESTIONS PROMPT

Here is the table to answer this question. Please understand the
table and answer the question.

- Ensure the last line of the final answer is strictly "The answer
is: AnswerName1, AnswerName2..." with no additional information
or context.

- Ensure only relevant *italicized* cells are referenced in the
answer, avoiding any unnecessary data.

- Ensure the final answer is concise and directly addresses the
question without extraneous elements.

- Ensure clarity by avoiding vague terms and providing complete
statements that directly address the question.

- Ensure the model identifies and prioritizes the most relevant
italicized cell(s) that directly answer the question.

- Ensure the model validates its answer against the table data
for accuracy before finalizing the response.

- Ensure the model explicitly identifies which parts of the
question are relevant to the provided table data.

- Ensure the model summarizes the relevant parts of the question
clearly, promoting coherence in the response.

- Ensure the model provides a brief justification for the selected
answer, explaining how it corresponds to the data in the table.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.9 EXAMPLE PROMPTS ORIGINAL VS TUNED

In this section, we demonstrate some examples of prompts that were turned by TableTextGrad. The
full list of prompts will be released along with the code.

A.9.1 GENERATE PROMPT FOR NEXT STEP

Original

Choose the next operation in the function chain to answer the
question. The output must start or add to the existing function
chain for the next operation.

Tuned

Your goal is to construct a function chain that answers the given
question using the table data. Choose the next operation from
the following options: f add column() (to add a new column),
f select row() (to select specific rows), f select column() (to
select specific columns), f group column() (to group rows by a
column), f sort column() (to sort rows by a column), or <END> (to
finish the function chain). Consider the context of the question
and the table data to choose the next operation. Ensure that
each chosen operation logically follows from the previous steps
and contributes to answering the question. Refer to the provided
examples to identify patterns in how operations are chosen based
on the question type. Avoid operations that do not directly
contribute to answering the question or that might lead to dead
ends. After choosing an operation, consider if it brings you
closer to answering the question. If not, reconsider your choice.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.9.2 GROUP COLUMN

Original

To tell the statement is true or false, we can first use
f group() to group the values in a column. This count the number
of unique values in the column.

Tuned

To answer the question, we can follow these steps: 1. Identify
the relevant column(s) that contain the information needed. 2.
Perform the necessary operations such as filtering, counting,
or grouping the values in that column. 3. Provide a clear and
concise explanation of the steps taken to arrive at the answer.
4. Conclude with the column name used in the operation.

For example: - If the question asks for a count, identify the
column to count, explain the counting process, and state the
column name. - If the question requires filtering, identify the
column to filter, explain the filtering criteria, and state the
column name. - If the question involves grouping, identify the
column to group by, explain the grouping process, and state the
column name.

Remember to handle edge cases, such as missing or incomplete data,
and verify the final answer by re-checking the data.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.9.3 SELECT COLUMN

Original

We can use f col() to filter out useless columns in the table
according to information in the statement and the table.

Tuned

We can use ‘f col()‘ to identify and return the relevant columns
in the table by closely analyzing the information provided in
the statement and the table. The function ‘f col()‘ is used to
encapsulate the relevant column names identified by the model.
The output should be in the format: ‘f col([column1, column2,
...])‘.

The model should link words and values in the statement to
the corresponding columns in the table. Additionally, provide
a detailed explanation for why these columns are relevant,
considering both the keywords and the semantic meaning of the
statement. Ensure that the explanation clearly links the
statement to the columns.

For example, if the statement is ’there are no cardiff wins
that have a draw greater than 27,’ the relevant columns would
be ’cardiff win’ and ’draw’ because these terms are directly
mentioned in the statement. For a more complex statement like
’in which three consecutive years was the record the same?’, the
relevant columns would be ’season’ and ’record’ because we need
to check the values in these columns for consistency over three
consecutive years.

In cases where the statement does not directly link to any
columns, provide an explanation of why no columns are relevant.
If the statement links to multiple columns, provide an explanation
of the links to each relevant column. Consider both the keywords
and the semantic meaning of the statement. For example, if the
statement implies a comparison or a trend, identify columns that
can provide the necessary data for such an analysis.

The output should include an explanation of the links between the
statement and the columns, followed by the relevant column names
in the format: ‘f col([column1, column2, ...])‘. Always list the
relevant columns in the order they appear in the table. Ensure
the explanation follows the format: ’The similar words in the
statement link to columns: ... The column value in the statement
links to columns: ... The semantic sentence in the statement
links to columns: ...’

By following these guidelines, the model can accurately identify
and explain relevant columns in a table question answering task.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.9.4 SELECT ROW

Original

We can use f row() to filter out useless rows in the table
according to information in the statement and the table.

Tuned

We can use ‘f row()‘ to select relevant rows in the given table
that directly support the explanation for the statement. For
example, if row 3 is relevant, use ‘f row([3])‘. Please use
‘f row([*])‘ to select all rows in the table. Always provide the
row numbers in a list format, e.g., ‘f row([3])‘ for a single row
or ‘f row([1, 2, 3])‘ for multiple rows. Your task is to provide
an explanation for the answer and then specify the relevant row
numbers using ‘f row()‘. Ensure your explanation is detailed and
directly references specific data points in the table. Break down
your reasoning step-by-step to ensure clarity. For example, if
identifying the highest score, first state the criteria (e.g.,
highest score), then identify the relevant rows, and finally
conclude with the row numbers. After providing your detailed
explanation, clearly specify the row numbers at the end using
‘f row()‘. For example, ‘The highest away team score is 23.11
(149), which is found in row 5. Therefore, the relevant row is 5.
The answer is: f row([5])‘. Verify your explanation against the
table data to ensure accuracy before specifying the row numbers.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.9.5 SORT COLUMN

Original

To answer the question, we can use f sort() to sort the values in
a column to get the order of the items. The order can be "large
to small" or "small to large". The column to sort should have
these data types: 1. Numerical: the numerical strings that can
be used in sort 2. DateType: the strings that describe a date,
such as year, month, day 3. String: other strings

Tuned
To answer the question, we can use different operations based on the type of question. The

output must include a detailed explanation of the steps taken, the relevant column name, and

the sort order if applicable. Here are the steps and examples for each type of operation:

1. **Sorting**: - Use ‘f sort by(column name, order)‘ to sort the values in a column. The

order can be "large to small" or "small to large". - Example: To find the club in the last

position, sort the "Position" column from large to small.

2. **Filtering**: - Use ‘f filter by(column name, condition)‘ to filter rows based on a

condition. - Example: To find films with the language "kannada", filter the "language"

column where the value is "kannada".

3. **Counting**: - Use ‘f count rows(column name, condition)‘ to count the number of rows

that meet a specific condition. - Example: To count the number of films with the language

"kannada", count the rows where the "language" column has the value "kannada".

Data Types and Operations: - **Numerical**: Any column with numerical values (e.g.,

integers, floats). Operations: sorting, counting. - **DateType**: Any column with

date-related values (e.g., year, month, day). Operations: sorting, filtering. - **String**:

Any column with text values. Operations: filtering, counting.

Explanation Template: 1. Identify the type of question (sorting, filtering, counting,

comparison). 2. Determine the relevant column(s) and their data type(s). 3. Choose the

appropriate operation based on the data type. 4. Provide a detailed explanation of the steps

taken. 5. Specify the column name and the sort order if applicable.

Handling Ambiguous Questions: - If the question is ambiguous or does not fit typical

patterns, break down the question into smaller parts or ask for clarification by specifying

the ambiguous part of the question.

Handling Comparisons: - For comparison questions, identify the relevant columns and

compare the values directly or sort the relevant column to determine the highest or lowest

value.

Error Handling and Edge Cases: - If the data contains missing values or inconsistent

formats, first clean the data by removing or correcting these entries before performing the

operations.

Common Pitfalls: - Avoid mixing up column names, misidentifying data types, or

incorrectly applying operations. Ensure the order of operations is logical (e.g., filter

before sorting).

By following these guidelines, we can effectively answer a wide range of table-related

questions. This structured approach ensures that the output includes a clear explanation,

the relevant column name, and the sort order if applicable.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.9.6 FINAL QUERY

Original

Here is the table to answer this question. Please understand the
table and answer the question - Ensure the last line of the final
answer is only "The answer is: AnswerName1, AnswerName2..." form,
no other form. - Ensure the final answer is a number or entity
names, as short as possible, without any explanation.

Tuned

Here is the table to answer this question. Please understand
the table and answer the question: - Ensure you understand the
context of the table and the question before providing the final
answer. - First, identify the relevant rows and columns. Then,
calculate or extract the required information before formulating
the final answer. - Ensure the final answer is only in the
form "The answer is: AnswerName1, AnswerName2..." without any
additional text. - Ensure the final answer is a number or entity
names, formatted as "The answer is: AnswerName1, AnswerName2...",
without any additional explanation. - If the data is ambiguous,
make a reasonable assumption, document it internally, and ensure
the final answer is consistent with this assumption. - Verify the
extracted information against the table data before providing the
final answer. - If uncertain, verify the extracted information
against the table data and provide the best possible answer in
the required format without indicating uncertainty. - After
formulating the final answer, perform a post-processing step to
replace any en dashes with hyphens and remove any extra spaces
or special characters. - Always provide the final answer in the
format "The answer is: AnswerName1, AnswerName2..." without any
additional text or context.

26

	Introduction
	Related Work
	Table Understanding
	LLM Prompting for Tabular Undestanding
	Automated LLM Correction:

	Methodology
	Chain of Table Backbone
	TableTextGrad
	Datasets and Baselines

	Results
	Soft vs Hard Table Selection
	Tuning All Prompts Vs Tuning Final Prompt
	Effect of Table Length on Performance
	Robustness to Poor Prompt Initilizations
	Robustness to Irrelevant Questions
	Training Performance Mirrors ML Training Curves
	Efficiency Analysis

	Conclusion
	Appendix
	Ethics Statement
	Human Impact

	Cost Continued
	Results on FeTaQA
	Results on FeTaQA Row and Column Identification
	Table Length vs Performance on WikiTQ
	Reproducibility
	Batch Size
	Experiment Prompts
	Robustness to Poor Prompt Initializations Prompt
	Robustness to Irrelevant Questions Prompt

	Example Prompts Original vs Tuned
	generate_prompt_for_next_step
	group_column
	select_column
	select_row
	sort_column
	final_query

