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Abstract

Nested entities are prone to obtain similar repre-001
sentations in pre-trained language models, pos-002
ing challenges for Named Entity Recognition003
(NER), especially in the few-shot setting where004
prototype shifts often occur due to distribu-005
tion differences between the support and query006
sets. In this paper, we regard entity representa-007
tion as the combination of prototype and non-008
prototype representations. With a hypothesis009
that using the prototype representation specif-010
ically can help mitigate potential prototype011
shifts, we propose a Prototype-Attention mech-012
anism in the Contrastive Learning framework013
(PACL) for the few-shot nested NER. PACL014
first generates prototype-enhanced span repre-015
sentations to mitigate the prototype shift by016
applying a prototype attention mechanism. It017
then adopts a novel prototype-span contrastive018
loss to reduce prototype differences further and019
overcome the O-type’s non-unique prototype020
limitation by comparing prototype-enhanced021
span representations with prototypes and origi-022
nal semantic representations. Our experiments023
show that the PACL outperformed baseline024
models on the 1-shot and 5-shot tasks in terms025
of F1 score. Furthermore, experiments on En-026
glish datasets show the effectiveness of PACL,027
and experiments on cross-lingual datasets show028
the robustness of PACL. Further analyses indi-029
cate that our Prototype-Attention mechanism030
is a simple but effective method and exhibits031
good generalizability1.032

1 Introduction033

The few-shot Named Entity Recognition (NER)034

task has gained a lot of attention in recent years as035

it aims to address the limitations of traditional NER036

methods that rely on a large number of labeled train-037

ing instances, which can be both time-consuming038

and experience-dependent. This task deals with the039

NER problem using only a few labeled instances.040

1The code is available at https://anonymous.4open.
science/r/PACL-840A

(a) Nested entities.

: Other (O) class : Prototype

: Protein molecule (support and query)

Protein family or group (spt)

Protein family or group (qry)

(b) Prototype shift

Figure 1: (a) Example of a sentence with nested entities
from the GENIA dataset. (b) Illustration of prototype
shifts, where the prototypes differ due to the distribution
difference between the support and query sets.

Researchers have made significant progress on this 041

task by applying deep learning models, includ- 042

ing pre-trained-model-based (Florez and Mueller, 043

2019; Hou et al., 2019; Yang et al., 2021; Wang 044

et al., 2022b), metric-learning-based (Snell et al., 045

2017; Hofer et al., 2018; Yang and Katiyar, 2020), 046

meta-learning-based (Li et al., 2020a; Sung et al., 047

2018), prompt-tuning-based (Ma et al., 2022; Hou 048

et al., 2022), and contrastive-learning-based (Das 049

et al., 2022) methods. 050

However, most existing few-shot NER research 051

has focused on flat entities that do not overlap 052

(Ming et al., 2022; Wang et al., 2022b). In real- 053

ity, many entities share the same words and form 054

nested entities that are part of another entity. This 055

is where the few-shot nested NER task comes in. 056

This task deals with nested entities that share words 057
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Figure 2: The Euclidean distance of prototype shift
between the prototypes in the support set and the query
set in the GENIA, GermEval, and NEREL datasets. K-
shot denotes the K number of labeled instances in the
support set for each type.

and are part of another entity. For example, in the058

GENIA dataset (Kim et al., 2003), about 53.9%059

of entities are nested. Figure 1 (a) illustrates an060

instance, that is, a protein molecule entity "lipoxy-061

genase" is nested within a protein family or group062

entity "lipoxygenase metabolites". Due to the over-063

lapped part, nested entities are more likely to obtain064

similar representations, increasing the difficulty of065

distinguishing them, especially in the few-shot set-066

ting where prototype shifts often occur.067

The prototype shift in NER refers to changes068

in the prototypes between the few-shot labeled069

data set (support set) and unlabeled data (query070

set), as exemplified in Figure 1 (b), where a proto-071

type is a representative instance of a specific entity072

type. The very few labeled data in the support073

set could hardly represent the whole distribution,074

resulting in prototype shifts. Figure 2 shows the075

statistics of prototype shifts in terms of Euclidean076

distance between the support set and the query077

set in three nested datasets (GENIA (Kim et al.,078

2003), GermEval (Benikova et al., 2014), NEREL079

(Loukachevitch et al., 2021)). We can find that080

the prototype shift reveals a consistent pattern of081

increasing Euclidean distance between prototypes082

as the number of labeled data in the support set083

decreases. When employing the prototypes derived084

from the support set for delineating the decision085

boundaries in the query set, a high frequency of086

classification errors would be introduced due to pro-087

totype shifts. Despite having distinguished nested088

entities within the support set, they may become089

interspersed within the query set.090

This paper addresses the prototype shift in the091

few-shot nested NER task. Unlike the example-092

extrapolation-based data augmentation methods093

(DeVries and Taylor, 2017; Wei, 2021) to enhance 094

the entity representation, we regard entity repre- 095

sentation as the combination of prototype and non- 096

prototype representations. Entities of the same 097

type should share the same prototype representa- 098

tion. The non-prototype representation determines 099

the dispersion of the entity distribution. If we could 100

focus more on the prototype representation when 101

learning the entity representation, entities would 102

gather closer around the prototype, and the proto- 103

type shift could be reduced. Therefore, we design 104

a prototype-attention mechanism to enhance the 105

prototype representation. Besides, words of the O- 106

type have miscellaneous semantics and cannot be 107

represented by a unique prototype. Therefore, we 108

further design a novel prototype-span contrastive 109

loss. It compares prototype-enhanced span repre- 110

sentations with original semantic representations 111

to guarantee the O-type’s representations are not 112

enhanced by entity prototypes. It also compares 113

prototype-enhanced span representations with pro- 114

totypes to reduce prototype differences further. 115

Our main contributions are as follows: 116

• We identify the prototype shift challenge 117

in the few-shot learning, particularly in the 118

few-shot nested NER task, and propose 119

a Prototype-Attention Contrastive Learning 120

(PACL) framework to tackle it. 121

• We devise a unique Prototype-Attention mech- 122

anism to generate the prototype-enhanced rep- 123

resentation for each span to mitigate the proto- 124

type shift between the support and query sets. 125

This mechanism exhibits a high level of gen- 126

erality in enhancing the performance of two 127

baseline models. 128

• We design a novel prototype-span contrastive 129

loss by comparing prototype-enhanced span 130

representations with prototypes and original 131

semantic representations to reduce prototype 132

differences further and overcome the O-type’s 133

non-unique prototype limitation. 134

• We conduct experiments on various English 135

and cross-lingual nested NER datasets. The re- 136

sults show improvements in PACL over exist- 137

ing nested NER and few-shot NER baselines 138

in terms of F1 score. Further analyses indi- 139

cate that our PACL is a simple but effective 140

method and exhibits good generalizability. 141
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Figure 3: Illustration of our PACL framework and learning procedures. During the training procedure on the source
domain, PACL calculates prototypes based on labeled spans of the support set and then utilizes prototype-attention to
obtain prototype-enhanced representations for the query set. After that, PACL applies the prototype-span contrastive
loss to optimize the representations. During the fine-tuning procedure on the target domain, PACL generates
prototype-enhanced representations for the support set to fine-tune the model. Finally, PACL makes inferences on
the query set of the target domain based on the nearest neighbor strategy.

2 Problem Definition142

Following the mainstream solutions, we formulate143

the few-shot nested NER task as a span-based en-144

tity classification problem. That is, given an in-145

put sentence x ∈ X with l tokens, denoted by146

x = {w1, . . . , wl}, we generate an entity span147

set containing all possible spans, and each span148

spq is a span of tokens starting from the pth to-149

ken and ending at the qth token in x, denoted by150

spq = {wp, . . . , wq} (1 ⩽ p ⩽ q ⩽ l). Then, we151

learn a classification model to map each span into152

an entity label in the label set EX . If we set the153

task as a K-shot task, then the number of span la-154

bels for each entity type used for training is limited155

to K. Besides, we also apply the meta-learning156

framework. The formal descriptions are as follows.157

Let D = {X ,Y} denote a dataset with X and Y158

as the sentence set and the corresponding label set,159

respectively. Dspt = {X spt,Yspt} and Dqry =160

{X qry,Yqry} are disjoint sets sampled from D for161

model training and testing, respectively. They are162

also known as the support set and the query set.163

Suppose Di = {Xi,Yi} and Dj = {Xj ,Yj} are164

the source and target domain datasets, respectively.165

The few-shot nested NER task first samples several166

subtasks {Dspt
i ,Dqry

i } from Di = {Xi,Yi}, where167

Dspt
i = {X spt

i ,Yspt
i }, Dqry

i = {X qry
i ,Yqry

i }. It168

then trains a model on these subtasks. After that,169

it makes adaptations on Dj , i.e., it fine-tunes the170

model on Dspt
j = {X spt

j ,Yspt
j } and then predicts 171

the span labels for Dqry
j = {X qry

j }. For the K- 172

shot setting, each entity category in X spt
i and X spt

j 173

contains K entities. 174

3 Methodology 175

This section introduces our PACL framework and 176

then provides details of the prototype-attention 177

mechanism, the prototype-span contrastive loss, 178

and target domain adaption procedures. 179

3.1 PACL Framework 180

As previously mentioned, the data Di in domain 181

i encompasses scenarios where there is a data 182

distribution shift between the support set Dspt
i 183

and the query set Dqry
i . We denote the average 184

distribution shift of entity categories as EDi = 185
1
n

∑n
k=1(c

spt
k − cqryk ). csptk and cqryk denote pro- 186

totype vector for category k in support and query 187

set, respectively. To mitigate the distribution shift, 188

it is necessary to identify a function f that brings 189

the prototype of the query set closer to the support 190

set: EDi =
1
n

∑n
k=1(c

spt
k − f(cqryk )). 191

Figure 3 illustrates our Prototype-Attention Con- 192

trastive Learning (PACL) framework as the func- 193

tion f and learning procedures. 194

PACL first applies a Pre-trained Language 195

Model (PLM) to obtain the semantic representation 196

for each span. It then calculates prototypes on the 197
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support set and utilizes a novel prototype-attention198

mechanism to achieve prototype-enhanced repre-199

sentations. After that, PACL optimizes representa-200

tions by a prototype-span contrastive loss.201

During the training procedure on the source202

domain, PACL utilizes a bunch of subtasks203

{Dspt
i ,Dqry

i } to train the model. It generates204

prototype-enhanced representations for the query205

set to obtain the adjustment ability for prototype206

shift. During the fine-tuning procedure on the tar-207

get domain, PACL utilizes Dspt
j = {X spt

j ,Yspt
j }208

to fine-tune the model by generating prototype-209

enhanced representations for the support set. Fi-210

nally, it predicts the labels for Dqry
j = {X qry

j } by211

the nearest neighbor strategy.212

3.2 Prototype-Attention Mechanism213

To mitigate the prototype shift, we propose a214

prototype-attention (PA) mechanism to generate215

prototype-enhanced representations for the query216

set based on prototypes obtained from the support217

set during training on the source domain. This ap-218

proach improves the span representations in the219

query set by incorporating more prototype informa-220

tion, which aligns the prototypes of the query set221

with those of the support set. The detailed proce-222

dures are presented below.223

We first incorporate a Pre-trained Language224

Model (PLM) to obtain original span semantic rep-225

resentations. For the sentence x with l tokens, we226

get all word embeddings, concatenate the start and227

the end token embeddings of each span, and use a228

non-linear function to get the span semantic repre-229

sentation s:230

[h1,h2, . . . ,hl] = PLM([w1,w2, . . . ,wl]) (1)231

232
s = ReLU(hp ⊕ hq) (2)233

Where ⊕ denotes the concatenation operator.234

Prototype based methods predict the probabili-235

ties of each s as Equation 3236

P (ŷk) =
exp(−d(s, ck))∑

k∈K exp(−d(s, ck))
(3)237

Where ck is the prototype of entity type k and238

calculated via mean-pooling of each span repre-239

sentation in type k. And d(·) is the normalized240

cosine-similarity. The final predicted label for the241

span s is given by242

ŷ = argmaxk∈{1,2,3...}P (ŷk) (4)243

To mitigate prototype shift for entity spans in the 244

support set and the query set, we gain the prototype- 245

enhanced representation ŝqry in the query set by 246

calculating the attention score between the origi- 247

nal span representation sqry and prototypes C = 248

[c1, c2, . . .] in the support set: 249

ŝqry = softmax

(
sqry C⊤
√
dC

)
C + sqry (5) 250

where dC is the dimension of prototypes. We also 251

include sqry in the attention representation to ob- 252

tain ŝqry, excluding the O-type spans which cannot 253

be represented by prototypes in C. This will be fur- 254

ther optimized in the next section with prototype- 255

span contrastive loss. 256

3.3 Prototype-Span Contrastive Loss 257

The traditional contrastive loss increases span simi- 258

larities of the same entity type and decreases span 259

similarities between different entity types. This pa- 260

per aims to address the prototype shift. Therefore, 261

we want to increase the similarity between spans 262

in the query set and the corresponding prototype in 263

the support set to let the model obtain the ability 264

to mitigate the prototype shift. Besides, the O-type 265

span has miscellaneous semantics and could not be 266

represented by a unique prototype (Fritzler et al., 267

2019). We also want prototype-enhanced repre- 268

sentations of O-type entities close to their original 269

semantic representations. Therefore, we design the 270

following prototype-span contrastive loss based on 271

the circle loss (Sun et al., 2020). 272

For each span representation ŝqry in the query 273

set, the loss Lŝqry is calculated by: 274

Lŝqry = log(1 + sim(ŝqry, c+) ∗ sim(ŝqry, c−))
(6) 275

Where c+ is the corresponding prototype in the 276

support set with the same type as ŝqry, and c− 277

denotes prototypes in the support set with different 278

types from ŝqry. The similarity function sim is 279

calculated by: 280

sim(ŝqry, c+) = e−τ ∗ ϕ(ŝqry , c+) (7) 281

282

sim(ŝqry, c−) =
∑

c−i ∈c−
eτ ∗ ϕ(ŝqryi , c−i ) (8) 283

Where ϕ(.) denotes the cosine similarity, τ is the 284

temperature (Wang and Liu, 2021). 285

When calculating sim(ŝqry, c+) for the O-type, 286

we calculate the cosine similarity between the orig- 287
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inal span representation sqry and the prototype-288

enhanced representation ŝqry :289

ϕ(ŝqryi , co) = λ ∗ ϕ(ŝqryi , sqry) (9)290

Where λ is a learnable hyperparameter. We cal-291

culate the cosine similarity between the prototype-292

enhanced representation ŝqry and its corresponding293

prototype in the support set for other entity types.294

3.4 Target Domain Adaption295

After training the model on the source domain, we296

make adaptions to the target domain, including fine-297

tuning the model on the support set and making298

inferences on the query set.299

During the fine-tuning procedure, our PACL first300

generates prototype-enhanced representations ŝspt301

for spans in the support set by calculating the atten-302

tion score between the original span representation303

sspt and the prototypes C in the support set. After304

that, PACL fine-tunes the model by utilizing the305

prototype-span contrastive loss with the input of306

ŝspt and C. Different from using ŝqry as the input307

in the training procedure, we utilize ŝspt in the fine-308

tuning procedure since the labels of the query set309

are unknown.310

During the inference procedure, our PACL ob-311

tains prototype-enhanced representations ŝqry for312

spans in the query set according to prototypes C313

in the support set. It further applies the nearest314

neighbor inference for each span according to the315

maximum similarity with prototypes or its original316

span representation (O-type).317

4 Experiments318

In this section, we evaluate PACL in few-shot319

nested NER. After introducing datasets and base-320

line models, we outline the setup, present results,321

and analyze them thoroughly.322

4.1 Datasets323

To evaluate our proposed PACL, We validate the324

effectiveness of our model on English datasets and325

assess its robustness and generalizability in cross-326

lingual setting by German, Russian, and Chinese327

datasets.328

As shown in Table 1, the English target nested329

NER datasets are ACE042 (Doddington et al.,330

2004), ACE053 (Ntroduction), and GENIA4. (Kim331

2https://catalog.ldc.upenn.edu/LDC2005T09
3https://catalog.ldc.upenn.edu/LDC2006T06
4http://www.geniaproject.org/genia-corpus

Dataset language Types Sentences Entities/Nest entities

ACE04 English 7 6.8k 27.8k / 12.7k
ACE05 English 7 13.6k 50.2k / 18.3k

ACE05_Chinese Chinese 7 6.5k 34.2k / 15.5k
GENIA English 36 18.5k 55.7k / 30.0k

GermEval German 12 18.4k 41.1k / 6.1k
NEREL Russian 29 8.9k 56.1k / 18.7k

FewNERD English 66 188.2k 491.7k / -

Table 1: Datasets used in experiments

et al., 2003). And the cross-lingual target nested 332

NER datasets are Chinese part of ACE05, Ger- 333

mEval5 in German (Benikova et al., 2014), and 334

NEREL6 in Russian (Loukachevitch et al., 2021). 335

To ensure the complete difference with the target 336

test domain, We use a flat NER dataset, FewNERD 337
7 in English (Ding et al., 2021), as the source do- 338

main dataset to train the model. We have manually 339

checked to guarantee these datasets are without 340

offensive content and identifiers. 341

For training in the source domain, We ran- 342

domly sampled 10,500 5-way 5-shot subtasks from 343

the FewNERD inter-domain subset, among which 344

10,000 subtasks are used for training and 500 sub- 345

tasks are used for validation. We validated the 346

model every 1000 subtasks. When fine-tuning in 347

the target domain, we sampled 32-way support sets 348

under 1-shot and 5-shot settings from the GENIA 349

dataset instead of all 36-way due to there being 350

4 types having less than 50 entities. For other 351

datasets, we sample all types to make the few-shot 352

support set. 353

4.2 Baselines 354

We compare our proposed PACL with seven 355

baselines which can be categorized into three 356

groups: 1) Rich-resource nested NER meth- 357

ods including NER-DP (Yu et al., 2020), IoBP 358

(Wang et al., 2021), and PO-TreeCRFs (Fu et al., 359

2021); 2) Metric-based few-shot NER methods 360

including ProtoNet (Snell et al., 2017), NNShot 361

(Yang and Katiyar, 2020), ESD (Wang et al., 362

2022c), and SpanProto (Wang et al., 2022a); 3) 363

Contrastive-learning-based few-shot NER method 364

CONTaiNER (Das et al., 2021). Appendix A de- 365

tails these baseline models. 366

5https://sites.google.com/site/
germeval2014ner/data

6https://github.com/nerel-ds/NEREL
7https://ningding97.github.io/fewnerd/
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Model ACE04 (7-way) ACE05 (7-way) GENIA (32-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

NER-DP 4.01±2.75 11.48±4.05 6.48±5.34 15.58±8.54 14.26±3.98 32.19±4.59 8.25 19.75
IoBP 10.63±6.70 14.14±6.06 15.68±4.48 34.36±6.62 15.14±2.34 19.89±5.47 13.82 22.80

PO-TreeCRFs 10.55±4.79 29.77±7.97 18.02±11.93 33.83±10.54 21.88±4.32 40.21±3.67 16.82 34.60
CONTaiNER 6.87±2.89 14.19±3.09 11.46±3.30 15.52±4.96 8.39±1.33 10.92±1.76 8.91 13.54

ProtoNet 25.55±8.23 40.18±6.19 25.61±11.25 41.52±5.14 20.52±3.86 36.02±3.28 23.89 39.24
NNShot 22.01±7.92 37.74±5.55 23.93±10.74 36.69±6.23 23.87±3.79 36.01±2.33 23.27 36.81

ESD 23.41±6.19 39.13±5.09 24.85±11.17 41.30±5.37 21.11±4.15 26.79±1.77 23.12 35.74
SpanProto 24.90±5.80 40.10±5.98 29.92±8.27 41.65±7.89 30.91±2.74 40.95±1.52 28.33 40.90

PACL 30.31±6.15 43.16±6.86 29.35±10.08 46.47±6.38 33.89±2.15 44.76±1.61 31.18 44.80

Table 2: F1 performance on English datasets (%).

Model ACE05_Chinese (7-way) GermEval (12-way) NEREL (29-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

NER-DP 5.06±2.60 15.82±8.33 6.99±3.05 20.25±5.14 14.18±3.78 40.87±3.96 8.74 25.65
IoBP - - 3.27±2.17 20.99±13.19 8.36±1.27 23.66±2.91 5.82 22.33

PO-TreeCRFs 7.94±5.43 15.43±4.64 6.60±5.63 40.06±5.17 17.91±3.21 44.48±2.98 10.82 33.32
CONTaiNER 12.27±3.70 16.09±5.45 12.38±2.81 17.81±3.23 14.84±2.38 27.09±2.15 13.16 20.33

ProtoNet 36.36±6.70 51.40±2.52 35.75±6.57 49.68±4.16 41.83±3.83 56.50±2.09 37.98 52.53
NNShot 36.47±5.17 51.73±4.54 36.51±7.30 46.07±10.60 41.53±2.81 57.99±2.52 38.17 51.93

ESD 33.95±6.76 47.64±3.14 34.13±8.15 35.29±5.71 34.86±4.12 46.30±4.70 34.31 43.08
SpanProto 37.41±4.97 51.16±4.55 38.30±7.52 50.10±2.97 44.09±3.62 57.47±1.95 39.93 52.91

PACL 44.65±5.93 54.90±3.58 47.53±6.30 58.43±2.69 50.26±4.60 62.08±1.36 47.48 58.47

Table 3: Micro F1 performance on cross-lingual datasets (%).

4.3 Experimental Settings367

We implemented PACL by Huggingface Trans-368

former 4.21.1 and PyTorch 2.1. The model is369

initialized randomly and optimized by AdamW370

(Loshchilov and Hutter, 2017). We train and371

fine-tune the model with the learning rate 5e-372

5. For the text encoder, we use the pre-trained373

BERTbase_multilingual model since the languages374

of target domain datasets are different. The hidden375

layer of the non-linear function f in equation 2 for376

getting span semantic representations is set to 512,377

and the initial value of the learnable hyperparam-378

eter λ for the O-type is set to 0.5. We set random379

seeds ranging from 0 to 10 to get ten results for380

each setting and report the average and standard381

deviation values to evaluate all models.382

4.4 Experimental Results383

To evaluate the effectiveness of our PACL, we com-384

pare it against state-of-the-art baseline models in-385

troduced in 4.2. Table 2 and Table 3 shows their av-386

erage F1 results on English test datasets and cross-387

lingual test datasets.388

For the English test sets, except for the ACE05-389

1shot setting, our proposed PACL model surpasses390

the baseline model. Specifically, under the 1-391

shot setting, our method outperforms the baseline392

method by 5.41% and 2.98% on the ACE04 and393

GENIA datasets, respectively. Under the 5-shot set-394

ting, our method surpasses the baseline method by 395

3.06%, 4.82%, and 3.81% on the ACE04, ACE05, 396

and GENIA datasets, respectively. 397

And for the cross-lingual test sets, except for 398

the IoBP’s inability to handle Chinese tasks (in- 399

dicated as "-" in the table 3), our proposed PACL 400

model consistently outperforms the baseline model. 401

Specifically, for the ACE05_Chinese, GermEval, 402

and NEREL datasets, under the 1-shot setting our 403

method surpasses the baseline method by 7.24%, 404

9.23%, and 6.17%, respectively. And under the 5- 405

shot setting, our method outperforms the baseline 406

method by 3.74%, 8.33%, and 4.61%, respectively. 407

Overall, these results demonstrate the effective- 408

ness of our proposed PACL framework compared 409

to the state-of-the-art baseline models. 410

4.5 Experimental Analysis 411

This section presents ablation studies, results on 412

only-nested in the test datasets, the generality of 413

the PA mechanism, and the efficiency Study of the 414

PA mechanism. 415

4.5.1 Ablation Study 416

To evaluate the contribution of the designed PA 417

mechanism to the overall performance of PACL, 418

we conduct the ablation study by removing PA 419

from the PACL. The detailed results shown in Ap- 420

pendix D suggest that the PA mechanism positively 421

impacts the F1 score for both the English and the 422
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corss-lingual tasks. On average, the PA mechanism423

improves performance on both English and cross-424

lingual tasks by 4.04% and 2.91%, respectively,425

under the 1-shot setting. And under the 5-shot set-426

ting, it improves performance by 1.65% and 3.56%,427

respectively.428

In conclusion, the PA module has an overall pos-429

itive impact, primarily because it reduces the pro-430

totype shift. Appendix B shows how our PACL431

mitigates the prototype shift.432

4.5.2 Only-Nested Results433

In order to more comprehensively demonstrate the434

efficacy of the outcomes pertaining to nested enti-435

ties across these datasets, we undertook a process436

of splitting and filtering exclusively for nested enti-437

ties. The results in Appendix C show that for the438

English test dataset, except for the GENIA-1shot439

setting, our proposed PACL model can also outper-440

form the baseline models in predicting only nested441

entities. And for cross-lingual datasets, our PACL442

model consistently outperforms the baseline model.443

Specifically, for the English test datasets, only444

under the GENIA-1shot setting did PACL fail445

to surpass the baseline model. Apart from this,446

for ACE04 and ACE05 under the 1-shot setting,447

our PACL outperforms the baseline model by448

4.54% and 2.57% respectively. Under the 5-shot449

condition, for ACE04, ACE05, and the GENIA450

dataset, our PACL surpasses the baseline model451

by 4.79%, 3.99%, and 1.22%. For cross-language452

test datasets, PACL outperforms all baseline mod-453

els. Under the 1-shot setting for ACE05_Chinese,454

GermEval, and NEREL, our PACL surpasses the455

baseline models by 4.62%, 5.07%, and 2.62%, re-456

spectively. Meanwhile, under the 5-shot setting for457

ACE05_Chinese, GermEval, and NEREL datasets,458

our PACL outperforms the baseline models by459

1.29%, 6.73%, and 1.89%, respectively.460

In summary, our proposed PACL demonstrates461

advantages over the baseline models in identifying462

nested entities.463

4.5.3 Generality of Prototype-Attention464

Mechanism465

As the Prototype-Attention (PA) mechanism ad-466

dresses the fundamental property of the prototype467

shift phenomenon, we believe it has a high level of468

generalizability and can enhance the performance469

of various models.470

To assess the generality of the PA mechanism,471

we conduct experiments by integrating it into the472

SpanProto and ESD models and comparing the 473

performance before and after integration. As shown 474

in Appendix E, the experiment results demonstrate 475

that integrating the PA mechanism into SpanProto 476

and ESD improves the F1 score on several datasets. 477

These findings suggest that the PA mechanism 478

has high generality and can serve as a valuable tool 479

for NLP practitioners looking to improve their mod- 480

els’ performance in few-shot nested NER tasks. 481

4.5.4 Efficiency Study 482

Through our time analysis in Appendix F, we found 483

that our proposed PACL spends a similar amount 484

of time as ESD during fine-tuning on the few-shot 485

support set, but it requires less time than baseline 486

models during testing on the unlabeled query set. 487

Additionally, using the PA mechanism incurs only 488

extremely minor overhead. As demonstrated in 489

section 4.5.1 and 4.5.3, PA mechanism can enhance 490

the predictive performance of the models. This 491

indicates that the PA method is simple but effective. 492

4.5.5 Case Study 493

Figure 5 in Appendix G displays instances from 494

several datasets along with the prediction results of 495

our proposed PACL model. Currently, the results of 496

the few-shot nested NER tasks are not particularly 497

satisfactory. Our proposed PACL method may also 498

suffer from missed recognitions and identification 499

errors, but overall, it exhibits good performance. 500

5 Related Work 501

This section discusses related works on rich- 502

resource nested NER, few-shot NER, and distri- 503

bution shifts. 504

5.1 Rich-resource Nested NER 505

Nested NER aims to recognize entities with nested 506

structures. Most of the current methods for nested 507

NER are established on rich-resource datasets. 508

These methods could be categorized into span- 509

based, hypergraph-based, and layered-based (Wan 510

et al., 2022). 511

Span-based methods treat sequences of tokens 512

as spans and then label all possible spans by classi- 513

fication models (Shen et al., 2021; Li et al., 2020b; 514

Tan et al., 2021). Hypergraph-based methods an- 515

alyze the dependence of words in a sentence and 516

then construct a dependency tree (Yu et al., 2020) 517

or other structures (Wang and Lu, 2018; Katiyar 518

and Cardie, 2018) to help identify nested entities. 519

And layered-based methods capture the depth of 520

7



entity nesting and apply multi-level sequence label-521

ing strategies to recognize nested entities (Wang522

et al., 2021; Shibuya and Hovy, 2020).523

These methods may be stuck in overfitting due524

to sophisticated models and the limited number of525

instances for training in the few-shot setting.526

5.2 Few-shot NER527

Few-shot NER requires recognizing entities with528

the support of very few labeled instances (Hofer529

et al., 2018; Fritzler et al., 2019). Due to limited530

information contained in the support set, methods531

for few-shot NER mainly resort to a rich-resource532

source domain to help train models, resulting in533

transfer-learning and meta-learning frameworks.534

Transfer-learning-based methods train models535

on a source domain and then transfer models or536

features to the few-labeled target domain (Yang537

et al., 2021; Liu et al., 2021). Meta-learning-based538

methods train models on adequate subtasks to make539

the model acquire the learning ability on few-shot540

tasks (de Lichy et al., 2021; Li et al., 2020a). Com-541

paratively speaking, meta-learning-based methods542

are more widely used in few-shot NER due to their543

easy adaption to new tasks.544

Within the meta-learning framework, various545

kinds of models are designed. For example, metric-546

based methods, including ProtoNet (Snell et al.,547

2017), NNShot (Yang and Katiyar, 2020), and548

SpanProto (Wang et al., 2022a), measure distances549

between prototypes in the support set and instances550

in the query set. Optimization-based methods, such551

as MAML (Finn et al., 2017) and FEWNER (Li552

et al., 2020a), train the model by a special optimizer.553

Model-based methods, such as SNAIL (Mishra554

et al., 2017) and CNPs (Garnelo et al., 2018), learn555

the hidden representation of instances on the sup-556

port set and the query set to make inferences in an557

end-to-end manner. Contrastive-learning methods,558

such as CONTaiNER (Das et al., 2022), aims to559

maximize similarities of the same type and mini-560

mize similarities between different types.561

These few-shot NER methods mostly focus on562

flat entities. Few works have discussed the few-563

shot nested NER setting. Wang converted sequence564

labeling to span-level matching for the few-shot flat565

NER and showed their method could handle nested566

entities (Wang et al., 2022b). However, it is not567

designed for the few-shot nested NER specifically.568

5.3 Distribution Shifts 569

Distribution shift is a problem of training and test- 570

ing data following two different distributions. It 571

affects the generalization ability of supervised deep- 572

learning models as the fundamental that these mod- 573

els could work is that training and testing data come 574

from the same distribution. Inspired by real-world 575

challenges, Wiles et al. summarized three distri- 576

bution shifts: spurious correlation, low-data drift, 577

and unseen data shift (Wiles et al., 2022). There 578

have been some researches aiming to address dis- 579

tribution shifts in computer vision and general nat- 580

ural language processing tasks (Fang et al., 2020; 581

Tu et al., 2022). To the best of our knowledge, 582

researchers seldom discuss the distribution shift 583

problem in the few-shot NER task. In this paper, 584

we aim to tackle the few-shot nested NER task. 585

Therefore, we rethink the distribution shift prob- 586

lem from the perspective of entity representation 587

distribution and identify the prototype shift since it 588

directly affects entity classification. 589

6 Conclusion 590

This paper first identifies the phenomenon of pro- 591

totype shift that arises when there is a difference 592

in prototypes between the support and query sets. 593

Within the context of few-shot learning tasks, pro- 594

totype shift is prone to occur since the few labeled 595

instances in the support set could hardly represent 596

the query set. To mitigate this issue in the few- 597

shot nested NER task, we propose the Prototype- 598

Attention Contrastive Learning (PACL) framework 599

combining a prototype-attention mechanism and 600

a prototype-span contrastive loss to enhance pro- 601

totype representations. The experiments on En- 602

glish tasks show the effectiveness of PACL and 603

the experiments on cross-lingual tasks show the 604

robustness of PACL. Furthermore, our prototype- 605

attention mechanism applied to baseline models 606

also leads to performance improvements, further 607

validating the strong generalizability of our ap- 608

proach. 609

7 Limitations 610

This paper still has several limitations. The first one 611

is about the prototype shift adjustment. It is hard to 612

completely address the prototype shift, while our 613

PACL makes this attempt and achieves inspiring 614

improvement. The second one is about other distri- 615

bution shifts. Prototype shift is just one kind of dis- 616

tribution shift. Other distribution shifts also need 617
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to be identified and addressed to improve the accu-618

racy of the few-shot nested NER task. The third619

one is about the language used for training. We620

utilized FewNERD as the source domain training621

dataset and conducted testing tasks on the English622

datasets including ACE04 and ACE05. These two623

datasets belong to the MIX domain, encompassing624

various types of entities. Although FewNERD is625

a flat dataset while ACE04/05 are nested datasets,626

there exists a potential risk of training domain in-627

formation leaking into the target domain.628
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A Detail of Baselines877

Detailed information on baseline models is intro-878

duced in this section. We compare our PACL with879

the following seven baseline models:880

• NER-DP (Yu et al., 2020) is a rich-resource-881

based nested NER method. It applies a bi-882

affine model to score pairs of start and end883

tokens for each span to establish dependency884

parsing for identifying nested entities.885

• IoBP (Wang et al., 2021) introduces a sig- 886

nificant enhancement to NER, leveraging the 887

second-best path recognition method’s frame- 888

work while reducing the impact of the best 889

path. This approach adopts a layered architec- 890

ture, preserving a set of hidden states at each 891

temporal iteration. These states are subse- 892

quently employed to construct diverse poten- 893

tial functions for recognizing nested entities 894

across various hierarchical levels. 895

• PO-TreeCRFs (Fu et al., 2021) tackles the 896

challenge of nested NER by conceptualiz- 897

ing it as a constituency parsing issue with 898

partially observed trees. Introducing a fresh 899

model called partially observed TreeCRFs, 900

this approach regards labeled entity spans as 901

observed nodes within a constituency tree, 902

while the remaining spans are considered la- 903

tent nodes. 904

• CONTaiNER (Das et al., 2021) is a 905

contrastive-learning-based few-shot NER 906

method. It first obtains entities’ Gaussian- 907

distributed embeddings and then optimizes 908

a generalized objective of differentiating be- 909

tween entity types by a contrastive loss func- 910

tion. We adapt it to handle nested entities with 911

the entity span formulation. 912

• ProtoNet (Snell et al., 2017) is a metric- 913

learning-based few-shot NER method. It ap- 914

plies prototypical networks to learn a metric 915

space for obtaining prototype representations. 916

We also adapt it to handle nested entities with 917

the entity span formulation. 918

• NNShot (Yang and Katiyar, 2020) is also a 919

metric-learning-based few-shot NER method. 920

It applies structured decoding and nearest- 921

neighbor learning to identify entities. We uti- 922

lize the entity span formulation to make it 923

handle nested entities. 924

• ESD (Wang et al., 2022c) is a metric-learning- 925

based few-shot NER method. It formulates 926

the task as a span-level matching problem. To 927

identify entities, it performs span-level pro- 928

cedures, including enhanced span represen- 929

tation, class prototype aggregation, and span 930

conflict resolution. 931

• SpanProto (Wang et al., 2022a) is a metric- 932

learning-based few-shot NER method. It also 933

11

https://doi.org/10.18653/v1/2022.naacl-main.369
https://doi.org/10.18653/v1/2022.naacl-main.369
https://doi.org/10.18653/v1/2022.naacl-main.369
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.emnlp-main.479
https://openreview.net/forum?id=Dl4LetuLdyK
https://openreview.net/forum?id=Dl4LetuLdyK
https://openreview.net/forum?id=Dl4LetuLdyK
https://doi.org/10.18653/v1/2020.acl-main.577


model ACE04 (7-way) ACE05 (7-way) GENIA (32-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

NER-DP 3.44±2.28 9.49±2.52 3.61±2.56 9.63±3.88 13.54±3.76 30.01±3.83 6.86 16.37
CONTaiNER 4.66±2.09 10.01±1.45 4.73±0.83 8.70±2.68 7.33±1.53 9.46±1.65 5.57 9.39

ProtoNet 19.17±6.22 31.44±3.66 16.94±6.90 30.10±3.18 17.76±3.86 32.07±2.60 17.96 31.20
NNShot 16.70±6.65 30.59±3.60 15.70±6.98 27.07±3.06 23.77±3.77 34.70±1.85 18.72 30.79

ESD 16.18±5.09 29.10±4.41 15.39±6.48 28.11±3.68 18.55±4.90 23.86±2.78 16.71 27.02
SpanProto 18.19±5.38 30.47±4.94 19.02±4.96 30.50±4.61 31.43±3.17 39.89±1.38 22.88 33.62

PACL 22.73±6.46 35.26±5.01 21.59±7.43 34.49±2.65 30.51±2.09 41.11±1.81 24.94 36.95

Table 4: Micro F1 performance on English datasets with only-nested entity setting (%).

model ACE05_Chinese (7-way) GermEval (12-way) NEREL (29-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

NER-DP 4.87±2.10 13.62±7.29 6.27±2.72 14.08±4.13 7.05±3.67 24.86±4.31 6.06 17.52
CONTaiNER 9.27±2.82 12.47±4.61 10.41±3.45 10.63±2.96 6.64±2.10 7.78±1.44 8.77 10.29

ProtoNet 32.66±5.57 38.50±2.39 19.85±5.54 31.66±5.79 25.72±4.88 39.83±2.18 26.08 36.66
NNShot 31.55±4.96 46.05±4.57 26.96±6.88 29.18±7.38 27.61±4.22 43.21±4.09 28.71 30.46

ESD 28.69±5.43 38.26±3.10 22.39±3.91 22.97±3.67 20.71±3.98 30.16±4.96 23.93 30.46
SpanProto 35.10±4.66 45.83±4.23 25.19±5.65 34.00±5.91 30.66±4.25 44.06±2.33 30.32 41.30

PACL 39.72±4.75 47.12±4.21 30.26±8.12 40.73±2.00 33.28±5.91 45.95±2.14 34.42 44.60

Table 5: Micro F1 performance cross-lingual datasets with only-nested entity setting (%).

applies entity spans to formulate the problem.934

For identifying entities, it first utilizes a span935

extractor to recognize candidate entity spans936

and then applies a mention classifier to deter-937

mine entity types.938

B Prototype Shift Mitigation by PACL939
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Figure 4: Illustration of the change of the prototype
similarity during training.

This paper aims to mitigate prototype shifts, and940

section 1 has already validated the existence of the941

prototype shift phenomenon. This section exam-942

ines how the prototype shift changes by applying943

our PACL.944

We utilize the cosine similarity to denote the pro-945

totype differences between the support and query946

sets to measure the prototype shift. Figure 4 illus-947

trates the change of the prototype similarity with948

the increase of iteration numbers during training. 949

We could find a consistently increasing trend in 950

prototype similarity, which means the prototype 951

shift is consistently decreasing. This validates the 952

effectiveness of our PACL in mitigating prototype 953

shifts. 954

C Results on Only-Nested Entities 955

We only calculate the F1 value of nested entity 956

recognition for unlabeled query sets. Table 4 and 957

Table 5 show the average F1 results of only-nested 958

entities on English and cross-lingual test datasets 959

with 1-shot and 5-shot settings. For the English 960

test dataset, we observe that except for the GENIA- 961

1shot setting, our proposed PACL model can also 962

outperform the baseline model in recognizing only 963

nested entities. As for cross-lingual datasets, our 964

PACL model consistently outperforms the baseline 965

model in all settings. 966

Our proposed model achieves the best results 967

in almost all experimental settings and datasets, 968

indicating that our model has an advantage in rec- 969

ognizing nested entities compared to other baseline 970

models. 971

D Ablation Study 972

Table 7 presents the ablation experiments for the 973

PA module. Except for the ACE04-5shot setting, 974

removing the PA module results in a decrease in 975

model performance. Specifically, for the ACE04, 976

ACE05, GENIA, ACE05_Chinses, GermEval, and 977

NEREL datasets, under the 1-shot experimental set- 978
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SpanProto SpanProto w PA ESD ESD w PA

ACE04 1-shot 24.90±5.80 27.32±6.34 ↑ 23.41±6.19 22.63±7.61 ↓
5-shot 40.10±5.98 44.67±4.29 ↑ 39.13±5.09 38.22±5.20 ↓

ACE05 1-shot 29.92±8.27 29.56±11.24 ↑ 24.85±11.17 23.80±8.95 ↓
5-shot 41.65±7.89 45.40±5.45 ↑ 41.30±5.37 41.02±7.30 ↓

GENIA 1-shot 30.91±2.74 30.95±2.23 ↑ 21.11±4.15 30.69±3.30 ↑
5-shot 40.95±1.52 42.23±1.98 ↑ 26.79±1.77 40.49±3.51 ↑

ACE05_Chinese 1-shot 37.41±4.97 42.81±6.66 ↑ 33.95±6.76 35.93±6.86 ↑
5-shot 51.16±4.55 54.31±3.90 ↑ 47.64±3.14 49.56±2.94 ↑

GermEval 1-shot 38.30±7.52 45.48±4.24 ↑ 34.13±8.15 36.00±6.68 ↑
5-shot 50.10±2.97 56.06±2.55 ↑ 35.29±5.71 49.94±3.24 ↑

NEREL 1-shot 44.09±3.62 49.72±3.97 ↑ 34.86±4.12 42.14±3.72 ↑
5-shot 57.47±1.95 61.43±1.24 ↑ 46.30±4.70 58.08±1.24 ↑

Table 6: F1 performance before and after integrating the Prototype-Attention (PA) mechanism to SpanProto and
ESD on test datasets (%).

PACL w/o PA

ACE04 1-shot 30.31±6.15 26.68±6.29 ↓
5-shot 43.16±6.86 44.07±5.53 ↑

ACE05 1-shot 29.35±10.08 26.41±9.62 ↓
5-shot 46.47±6.38 43.68±6.58 ↓

GENIA 1-shot 33.89±2.15 28.35±2.94 ↓
5-shot 44.76±1.61 41.70±1.66 ↓

ACE05_Chinese 1-shot 44.65±5.93 41.35±6.54 ↓
5-shot 54.90±3.58 53.33±3.84 ↓

GermEval 1-shot 47.53±6.30 46.02±6.16 ↓
5-shot 58.43±2.69 52.49±3.87 ↓

NEREL 1-shot 50.26±4.60 46.35±2.74 ↓
5-shot 62.08±1.36 58.92±1.82 ↓

Table 7: Ablation study of F1 performance on test
datasets (%). “w/o PA” means removing the Prototype-
Attention mechanism.

ting, removing the PA module leads to a decrease979

in the model’s final F1 score by 3.63%, 2.94%,980

5.54%, 3.30%, 1.51%, and 3.91%, respectively.981

Furthermore, under the 5-shot experimental set-982

ting, removing the PA module results in a decrease983

in the model’s final F1 score by 2.79%, 3.06%,984

1.57%, 5.94%, and 3.16% for the ACE05, GENIA,985

ACE05_Chinese, GermEval, and NEREL datasets,986

respectively.987

E Generality of Prototype-Attention988

Mechanism989

We applied the PA mechanism to the SpanProto990

and ESD. The results are shown in Table 6.991

Table 6 shows that the SpanProto model expe-992

riences improvements across almost all datasets993

under both 1-shot and 5-shot settings after apply-994

ing the PA method. In the 1-shot setting, except for995

a decrease of 0.36% in ACE05, the F1 scores of996

the SpanProto model improved by 2.42%, 1.28%,997

5.40%, 7.18%, and 5.63% for ACE04, GENIA,998

ACE05_Chinese, GermEval, and NEREL datasets,999

respectively, after applying the PA method. In1000

the 5-shot setting, the F1 scores of the SpanProto 1001

model improved by 4.57%, 3.75%, 1.28%, 3.15%, 1002

5.96%, and 3.96% for ACE04, ACE05, GENIA, 1003

ACE05_Chinese, GermEval, and NEREL datasets, 1004

respectively, after applying the PA mechanism. 1005

The effectiveness of the PA method is not 1006

as pronounced for the ESD model compared 1007

to SpanProto. After applying the PA mecha- 1008

nism, ESD performs poorly on the ACE04 and 1009

ACE05 datasets but shows improvements on other 1010

datasets. Specifically, under the 1-shot setting, 1011

ESD with PA exhibits improvements on the GE- 1012

NIA, ACE05_Chinese, GermEval, and NEREL 1013

datasets by 9.58%, 1.98%, 1.87%, and 7.28%, re- 1014

spectively. Similarly, under the 5-shot setting, ESD 1015

with PA demonstrates improvements on the GE- 1016

NIA, ACE05_Chinese, GermEval, and NEREL 1017

datasets by 13.70%, 1.92%, 14.65%, and 11.78%, 1018

respectively. 1019

F Efficiency Analysis 1020

finetuning test
sentence num 50 18496
PACL w/o PA 258.81 342.78
PACL 263.23 (+ 4.42) 343.25 (+ 0.47)
SpanProto 90.32 370.70

w PA 91.68 (+ 1.36) 371.67 (+ 0.97)
ESD 268.21 528.89

w PA 270.97 (+ 2.76) 578.60 (+ 49.71)

Table 8: Our PACL and the two baseline models (ESD
and SpanProto) took a certain amount of time for fine-
tuning and testing on the GENIA dataset after applying
the PA method (s).

Table 8 displays the time taken by PACL and 1021

baseline models. We take the GENIA dataset as 1022

an example. Under the 5-shot setting, we extracted 1023

50 sentences along with their labels to form a 32- 1024

way 5-shot support set, leaving 18,496 unlabeled 1025
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sentences in the unlabeled query set. To measure1026

the time taken for model fine-tuning, we fine-tuned1027

the 50 sentences in the support set for 100 epochs.1028

All models were run on an environment with an1029

Intel Xeon Gold 6348 CPU with a clock speed of1030

2.60 GHz and an A40 GPU.1031

We can conclude that SpanProto has the best1032

fine-tuning performance, but our proposed PACL1033

achieves the fastest efficiency during testing. Fur-1034

thermore, if the models use the PA method, there1035

is not a particularly large loss in time performance.1036

During the fine-tuning stage, in which PACL, Span-1037

Proto, and ESD models were trained for 100 epochs1038

on the few-shot support set, using the PA method1039

only resulted in an additional time cost of 4.42,1040

1.36, and 2.76 seconds, respectively. During testing1041

on the unlabeled query set, using the PA method1042

for testing 18k sentences incurred an additional1043

time cost of only 0.47, 0.97, and 49.71 seconds,1044

respectively.1045

G Case Study1046

Figure 5: Sentences from the ACE04, GermEval, and
ACE05_Chinese datasets, we present true entities and
predicted entities. Entity types are indicated by colored
parentheses and background, with the entity categories
displayed in corresponding colors above/below the color
block.

Figure 5 illustrates test instances of our PACL1047

model on ACE04, GermEval, and ACE05_Chinese1048

datasets. For the example from the ACE04 dataset,1049

PACL missed the entities "Energy Secretary" and1050

"Energy Secretary Bill Richardson." For the exam-1051

ple from the GermEval dataset, PACL correctly1052

identified all entities. In the case of the sentence in1053

the ACE05_Chinese dataset, PACL correctly iden-1054

tified the majority of entities but misclassified one1055

entity type (PER classified as GPE).1056
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