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Abstract

Nested entities are prone to obtain similar repre-
sentations in pre-trained language models, pos-
ing challenges for Named Entity Recognition
(NER), especially in the few-shot setting where
prototype shifts often occur due to distribu-
tion differences between the support and query
sets. In this paper, we regard entity representa-
tion as the combination of prototype and non-
prototype representations. With a hypothesis
that using the prototype representation specif-
ically can help mitigate potential prototype
shifts, we propose a Prototype-Attention mech-
anism in the Contrastive Learning framework
(PACL) for the few-shot nested NER. PACL
first generates prototype-enhanced span repre-
sentations to mitigate the prototype shift by
applying a prototype attention mechanism. It
then adopts a novel prototype-span contrastive
loss to reduce prototype differences further and
overcome the O-type’s non-unique prototype
limitation by comparing prototype-enhanced
span representations with prototypes and origi-
nal semantic representations. Our experiments
show that the PACL outperformed baseline
models on the 1-shot and 5-shot tasks in terms
of F} score. Furthermore, experiments on En-
glish datasets show the effectiveness of PACL,
and experiments on cross-lingual datasets show
the robustness of PACL. Further analyses indi-
cate that our Prototype-Attention mechanism
is a simple but effective method and exhibits
good generalizability'.

1 Introduction

The few-shot Named Entity Recognition (NER)
task has gained a lot of attention in recent years as
it aims to address the limitations of traditional NER
methods that rely on a large number of labeled train-
ing instances, which can be both time-consuming
and experience-dependent. This task deals with the
NER problem using only a few labeled instances.

'The code is available at https://anonymous.4open.
science/r/PACL-840A
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Figure 1: (a) Example of a sentence with nested entities
from the GENIA dataset. (b) Illustration of prototype
shifts, where the prototypes differ due to the distribution
difference between the support and query sets.

Researchers have made significant progress on this
task by applying deep learning models, includ-
ing pre-trained-model-based (Florez and Mueller,
2019; Hou et al., 2019; Yang et al., 2021; Wang
et al., 2022b), metric-learning-based (Snell et al.,
2017; Hofer et al., 2018; Yang and Katiyar, 2020),
meta-learning-based (Li et al., 2020a; Sung et al.,
2018), prompt-tuning-based (Ma et al., 2022; Hou
et al., 2022), and contrastive-learning-based (Das
et al., 2022) methods.

However, most existing few-shot NER research
has focused on flat entities that do not overlap
(Ming et al., 2022; Wang et al., 2022b). In real-
ity, many entities share the same words and form
nested entities that are part of another entity. This
is where the few-shot nested NER task comes in.
This task deals with nested entities that share words
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Figure 2: The Euclidean distance of prototype shift
between the prototypes in the support set and the query
set in the GENIA, GermEval, and NEREL datasets. K-
shot denotes the K number of labeled instances in the
support set for each type.

and are part of another entity. For example, in the
GENIA dataset (Kim et al., 2003), about 53.9%
of entities are nested. Figure 1 (a) illustrates an
instance, that is, a protein molecule entity "lipoxy-
genase" is nested within a protein family or group
entity "lipoxygenase metabolites". Due to the over-
lapped part, nested entities are more likely to obtain
similar representations, increasing the difficulty of
distinguishing them, especially in the few-shot set-
ting where prototype shifts often occur.

The prototype shift in NER refers to changes
in the prototypes between the few-shot labeled
data set (support set) and unlabeled data (query
set), as exemplified in Figure 1 (b), where a proto-
type is a representative instance of a specific entity
type. The very few labeled data in the support
set could hardly represent the whole distribution,
resulting in prototype shifts. Figure 2 shows the
statistics of prototype shifts in terms of Euclidean
distance between the support set and the query
set in three nested datasets (GENIA (Kim et al.,
2003), GermEval (Benikova et al., 2014), NEREL
(Loukachevitch et al., 2021)). We can find that
the prototype shift reveals a consistent pattern of
increasing Euclidean distance between prototypes
as the number of labeled data in the support set
decreases. When employing the prototypes derived
from the support set for delineating the decision
boundaries in the query set, a high frequency of
classification errors would be introduced due to pro-
totype shifts. Despite having distinguished nested
entities within the support set, they may become
interspersed within the query set.

This paper addresses the prototype shift in the
few-shot nested NER task. Unlike the example-
extrapolation-based data augmentation methods

(DeVries and Taylor, 2017; Wei, 2021) to enhance
the entity representation, we regard entity repre-
sentation as the combination of prototype and non-
prototype representations. Entities of the same
type should share the same prototype representa-
tion. The non-prototype representation determines
the dispersion of the entity distribution. If we could
focus more on the prototype representation when
learning the entity representation, entities would
gather closer around the prototype, and the proto-
type shift could be reduced. Therefore, we design
a prototype-attention mechanism to enhance the
prototype representation. Besides, words of the O-
type have miscellaneous semantics and cannot be
represented by a unique prototype. Therefore, we
further design a novel prototype-span contrastive
loss. It compares prototype-enhanced span repre-
sentations with original semantic representations
to guarantee the O-type’s representations are not
enhanced by entity prototypes. It also compares
prototype-enhanced span representations with pro-
totypes to reduce prototype differences further.
Our main contributions are as follows:

* We identify the prototype shift challenge
in the few-shot learning, particularly in the
few-shot nested NER task, and propose
a Prototype-Attention Contrastive Learning
(PACL) framework to tackle it.

* We devise a unique Prototype-Attention mech-
anism to generate the prototype-enhanced rep-
resentation for each span to mitigate the proto-
type shift between the support and query sets.
This mechanism exhibits a high level of gen-
erality in enhancing the performance of two
baseline models.

* We design a novel prototype-span contrastive
loss by comparing prototype-enhanced span
representations with prototypes and original
semantic representations to reduce prototype
differences further and overcome the O-type’s
non-unique prototype limitation.

* We conduct experiments on various English
and cross-lingual nested NER datasets. The re-
sults show improvements in PACL over exist-
ing nested NER and few-shot NER baselines
in terms of F; score. Further analyses indi-
cate that our PACL is a simple but effective
method and exhibits good generalizability.
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Figure 3: Illustration of our PACL framework and learning procedures. During the training procedure on the source
domain, PACL calculates prototypes based on labeled spans of the support set and then utilizes prototype-attention to
obtain prototype-enhanced representations for the query set. After that, PACL applies the prototype-span contrastive
loss to optimize the representations. During the fine-tuning procedure on the target domain, PACL generates
prototype-enhanced representations for the support set to fine-tune the model. Finally, PACL makes inferences on
the query set of the target domain based on the nearest neighbor strategy.

2 Problem Definition

Following the mainstream solutions, we formulate
the few-shot nested NER task as a span-based en-
tity classification problem. That is, given an in-
put sentence x € X with [ tokens, denoted by

= {w,...,w;}, we generate an entity span
set containing all possible spans, and each span
Spq is a span of tokens starting from the p*" to-
ken and ending at the ¢'” token in z, denoted by
Spg = {Wp,...,we} (1 < p < g <1). Then, we
learn a classification model to map each span into
an entity label in the label set Ey. If we set the
task as a K-shot task, then the number of span la-
bels for each entity type used for training is limited
to K. Besides, we also apply the meta-learning
framework. The formal descriptions are as follows.

Let D = {X, )} denote a dataset with X and Y
as the sentence set and the corresponding label set,
respectively. DSt = {xsPt Yspt} and DI =
{X7V, Y9V} are disjoint sets sampled from D for
model training and testing, respectively. They are
also known as the support set and the query set.
Suppose D; = {&;,);} and D; = {X;,Y;} are
the source and target domain datasets, respectively.
The few-shot nested NER task first samples several
subtasks {D;” t DI} from D; = {X;, V;}, where
D = [ Y DI = (X YT
then trains a model on these subtasks. After that,
it makes adaptations on D, i.e., it fine-tunes the

model on DSP L — {X]Sp t yjp t} and then predicts
the span labels for DI = {&x]"V}. For the K-

shot setting, each entity category in X" and P t
contains K entities.

3 Methodology

This section introduces our PACL framework and
then provides details of the prototype-attention
mechanism, the prototype-span contrastive loss,
and target domain adaption procedures.

3.1 PACL Framework

As previously mentioned, the data D; in domain
1 encompasses scenarios where there is a data
distribution shift between the support set D;**
and the query set D{"Y. We denote the average
distribution shift of entity categories as Ep, =
LS~ (@P — ey, P and ¢’ denote pro-
totype vector for category k in support and query
set, respectively. To mitigate the distribution shift,
it is necessary to identify a function f that brings
the prototype of the query set closer to the support
set: Ep, = & 325y (6 — F(cI)).

Figure 3 111ustrates our Prototype-Attention Con-
trastive Learning (PACL) framework as the func-
tion f and learning procedures.

PACL first applies a Pre-trained Language
Model (PLM) to obtain the semantic representation
for each span. It then calculates prototypes on the



support set and utilizes a novel prototype-attention
mechanism to achieve prototype-enhanced repre-
sentations. After that, PACL optimizes representa-
tions by a prototype-span contrastive loss.

During the training procedure on the source
domain, PACL utilizes a bunch of subtasks
(D' DI} to train the model. It generates
prototype-enhanced representations for the query
set to obtain the adjustment ability for prototype
shift. During the fine-tuning procedure on the tar-
get domain, PACL utilizes D' = {77, Y57}
to fine-tune the model by generating prototype-
enhanced representations for the support set. Fi-
nally, it predicts the labels for DI = {X ¥} by
the nearest neighbor strategy.

3.2 Prototype-Attention Mechanism

To mitigate the prototype shift, we propose a
prototype-attention (PA) mechanism to generate
prototype-enhanced representations for the query
set based on prototypes obtained from the support
set during training on the source domain. This ap-
proach improves the span representations in the
query set by incorporating more prototype informa-
tion, which aligns the prototypes of the query set
with those of the support set. The detailed proce-
dures are presented below.

We first incorporate a Pre-trained Language
Model (PLM) to obtain original span semantic rep-
resentations. For the sentence x with [ tokens, we
get all word embeddings, concatenate the start and
the end token embeddings of each span, and use a
non-linear function to get the span semantic repre-
sentation s:

[hla h2a s 7hl] = PLM([W17W27 s >W1]) (1)

s = ReLU(hp ® hq) (2)

Where & denotes the concatenation operator.
Prototype based methods predict the probabili-
ties of each s as Equation 3

_ exp(—d(s,cy))
> rex exp(—d(s, cx))

Where c;, is the prototype of entity type k and
calculated via mean-pooling of each span repre-
sentation in type k. And d(-) is the normalized
cosine-similarity. The final predicted label for the
span s is given by

P(gy) 3)

§ = argmaryeq 3. 3P (Jk) “)

To mitigate prototype shift for entity spans in the
support set and the query set, we gain the prototype-
enhanced representation §7"Y in the query set by
calculating the attention score between the origi-
nal span representation s?"¥ and prototypes C =
[c1, €2, .. .] in the support set:

sty CT
Ve

where d is the dimension of prototypes. We also
include s?"Y in the attention representation to ob-
tain 877, excluding the O-type spans which cannot
be represented by prototypes in C. This will be fur-
ther optimized in the next section with prototype-
span contrastive loss.

87Y = softmax <

> C+s?" (5

3.3 Prototype-Span Contrastive Loss

The traditional contrastive loss increases span simi-
larities of the same entity type and decreases span
similarities between different entity types. This pa-
per aims to address the prototype shift. Therefore,
we want to increase the similarity between spans
in the query set and the corresponding prototype in
the support set to let the model obtain the ability
to mitigate the prototype shift. Besides, the O-type
span has miscellaneous semantics and could not be
represented by a unique prototype (Fritzler et al.,
2019). We also want prototype-enhanced repre-
sentations of O-type entities close to their original
semantic representations. Therefore, we design the
following prototype-span contrastive loss based on
the circle loss (Sun et al., 2020).

For each span representation §9"Y in the query
set, the loss Lzqry is calculated by:

Lsary = log(1 + sim(87Y, c™) * sim(87Y,c7))

(6)
Where ¢ is the corresponding prototype in the
support set with the same type as 39, and ¢~
denotes prototypes in the support set with different
types from 89Y. The similarity function sim is
calculated by:

sim (89, ¢t) = T * 9B eT) (7
sim(39, ¢7) = Z eT* P e) ()
c, €c™

K3

Where ¢(.) denotes the cosine similarity, 7 is the
temperature (Wang and Liu, 2021).

When calculating sim/(87"Y, ¢*) for the O-type,
we calculate the cosine similarity between the orig-



inal span representation s?Y and the prototype-
enhanced representation §7"Y :

$(8]", co) = A= (8], 87) ©)

Where A is a learnable hyperparameter. We cal-
culate the cosine similarity between the prototype-
enhanced representation §7¥ and its corresponding
prototype in the support set for other entity types.

3.4 Target Domain Adaption

After training the model on the source domain, we
make adaptions to the target domain, including fine-
tuning the model on the support set and making
inferences on the query set.

During the fine-tuning procedure, our PACL first
generates prototype-enhanced representations §%7*
for spans in the support set by calculating the atten-
tion score between the original span representation
s°Pt and the prototypes C in the support set. After
that, PACL fine-tunes the model by utilizing the
prototype-span contrastive loss with the input of
3! and C. Different from using $7"Y as the input
in the training procedure, we utilize 3% in the fine-
tuning procedure since the labels of the query set
are unknown.

During the inference procedure, our PACL ob-
tains prototype-enhanced representations §7"Y for
spans in the query set according to prototypes C
in the support set. It further applies the nearest
neighbor inference for each span according to the
maximum similarity with prototypes or its original
span representation (O-type).

4 Experiments

In this section, we evaluate PACL in few-shot
nested NER. After introducing datasets and base-
line models, we outline the setup, present results,
and analyze them thoroughly.

4.1 Datasets

To evaluate our proposed PACL, We validate the
effectiveness of our model on English datasets and
assess its robustness and generalizability in cross-
lingual setting by German, Russian, and Chinese
datasets.

As shown in Table 1, the English target nested
NER datasets are ACE04? (Doddington et al.,
2004), ACE053 (Ntroduction), and GENIA*. (Kim

2https ://catalog.ldc.upenn.edu/LDC2005T09
3https://catalog.ldc.upenn.edu/LDC2006T06
4http: //www.geniaproject.org/genia-corpus

Dataset language  Types  Sentences  Entities/Nest entities
ACE04 English 7 6.8k 27.8k /12.7k
ACE05 English 7 13.6k 50.2k / 18.3k
ACEO5_Chinese Chinese 7 6.5k 34.2k / 15.5k
GENIA English 36 18.5k 55.7k / 30.0k
GermEval German 12 18.4k 41.1k / 6.1k
NEREL Russian 29 8.9k 56.1k / 18.7k
FewNERD English 66 188.2k 491.7k / -

Table 1: Datasets used in experiments

et al., 2003). And the cross-lingual target nested
NER datasets are Chinese part of ACEQS, Ger-
mEval® in German (Benikova et al., 2014), and
NEREL in Russian (Loukachevitch et al., 2021).
To ensure the complete difference with the target
test domain, We use a flat NER dataset, FewNERD
7 in English (Ding et al., 2021), as the source do-
main dataset to train the model. We have manually
checked to guarantee these datasets are without
offensive content and identifiers.

For training in the source domain, We ran-
domly sampled 10,500 5-way 5-shot subtasks from
the FewNERD inter-domain subset, among which
10,000 subtasks are used for training and 500 sub-
tasks are used for validation. We validated the
model every 1000 subtasks. When fine-tuning in
the target domain, we sampled 32-way support sets
under 1-shot and 5-shot settings from the GENIA
dataset instead of all 36-way due to there being
4 types having less than 50 entities. For other
datasets, we sample all types to make the few-shot
support set.

4.2 Baselines

We compare our proposed PACL with seven
baselines which can be categorized into three
groups: 1) Rich-resource nested NER meth-
ods including NER-DP (Yu et al., 2020), IoBP
(Wang et al., 2021), and PO-TreeCRFs (Fu et al.,
2021); 2) Metric-based few-shot NER methods
including ProtoNet (Snell et al., 2017), NNShot
(Yang and Katiyar, 2020), ESD (Wang et al,,
2022c), and SpanProto (Wang et al., 2022a); 3)
Contrastive-learning-based few-shot NER method
CONTaiNER (Das et al., 2021). Appendix A de-
tails these baseline models.

Shttps://sites.google.com/site/
germeval2@14ner/data

®https://github.com/nerel-ds/NEREL

7https: //ningding97.github.io/fewnerd/
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Model ACE04 (7-way) ACEOQS (7-way) GENIA (32-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot  5-shot
NER-DP 4.01+275 11.48+4.05 6.48+534 15.58+854  14.264398 32.19+459 8.25 19.75
IoBP 10.63+670 14.14+606  15.68+4.48 34.36+662  15.14+234  19.89+s547 13.82  22.80
PO-TreeCRFs  10.55+479  29.77+797 18.02+11.93 33.83+1054 21.88+432 40.21+367 16.82  34.60

" CONTaiNER ~ 6.87+280  14.194300 11.46+330  15.52+496  8.39+13  10.92+176 891 1354 =
ProtoNet 25.554+823  40.18+6.19  25.61+1125  41.524514  20.52+386 36.02+328 23.89  39.24
NNShot 22.01+792  37.74+s555  23.93+1074  36.69+623  23.87+379 36.01+233 23.27  36.81
ESD 23414619  39.13+509 24.85+11.17  41.30+537  21.11+415  26.79+177  23.12 35.74
SpanProto 24904580  40.10+598  29.92+827  41.65+780  3091+274 40.95+152 2833  40.90
PACL 30.31+615 43.16+686 29.35+1008 46.47+633  33.89+215 44.76+161  31.18  44.80
Table 2: F; performance on English datasets (%).

Model ACEO5_Chinese (7-way) GermEval (12-way) NEREL (29-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot  5-shot
NER-DP 5.06+2.60 15.82+833 6.99+3.05 20.25+5.14  14.18+378  40.87+3.96 8.74 25.65
IoBP - - 3.27+217  20.99+1319 8.36+127  23.66+291 5.82 22.33
PO-TreeCRFs  7.944543 15.43+4.64 6.60+5.63 40.06+5.17 17914321 44484208 10.82  33.32

" CONTaiNER  1227+370  16.09+s545  12.38x281  17.81+323 14.84+238 27.09+215 13.16  20.33

ProtoNet 36.36+6.70 51.40+252 35.75+657  49.68+416  41.83+383  56.50+200 37.98 52.53
NNShot 36.47+5.17 51.73+454 36.51+730 46.07+1060 41.53+281 57.99+252  38.17 51.93
ESD 33.95+6.76 47.64+3.14 34134815  35.29+571 34.86+412  46.30+470 34.31 43.08
SpanProto 37414497  51.16+455  38.30+752  50.10+297  44.09+362 57.47+195 3993 5291
PACL 44.65+5.93 54.90+3.58 47.53+630 58.43+269 50.26+t4c0 62.08+136 47.48  58.47

Table 3: Micro F} performance on cross-lingual datasets (%).

4.3 Experimental Settings

We implemented PACL by Huggingface Trans-
former 4.21.1 and PyTorch 2.1. The model is
initialized randomly and optimized by AdamW
(Loshchilov and Hutter, 2017). We train and
fine-tune the model with the learning rate Se-
5. For the text encoder, we use the pre-trained
BERTbase_multilingual model since the languages
of target domain datasets are different. The hidden
layer of the non-linear function f in equation 2 for
getting span semantic representations is set to 512,
and the initial value of the learnable hyperparam-
eter A for the O-type is set to 0.5. We set random
seeds ranging from O to 10 to get ten results for
each setting and report the average and standard
deviation values to evaluate all models.

4.4 Experimental Results

To evaluate the effectiveness of our PACL, we com-
pare it against state-of-the-art baseline models in-
troduced in 4.2. Table 2 and Table 3 shows their av-
erage F results on English test datasets and cross-
lingual test datasets.

For the English test sets, except for the ACEQ5-
Ishot setting, our proposed PACL model surpasses
the baseline model. Specifically, under the 1-
shot setting, our method outperforms the baseline
method by 5.41% and 2.98% on the ACE04 and
GENIA datasets, respectively. Under the 5-shot set-

ting, our method surpasses the baseline method by
3.06%, 4.82%, and 3.81% on the ACE04, ACEOS,
and GENIA datasets, respectively.

And for the cross-lingual test sets, except for
the IoBP’s inability to handle Chinese tasks (in-
dicated as "-" in the table 3), our proposed PACL
model consistently outperforms the baseline model.
Specifically, for the ACEO5_Chinese, GermEval,
and NEREL datasets, under the 1-shot setting our
method surpasses the baseline method by 7.24%,
9.23%, and 6.17%, respectively. And under the 5-
shot setting, our method outperforms the baseline
method by 3.74%, 8.33%, and 4.61%, respectively.

Overall, these results demonstrate the effective-
ness of our proposed PACL framework compared
to the state-of-the-art baseline models.

4.5 Experimental Analysis

This section presents ablation studies, results on
only-nested in the test datasets, the generality of
the PA mechanism, and the efficiency Study of the
PA mechanism.

4.5.1 Ablation Study

To evaluate the contribution of the designed PA
mechanism to the overall performance of PACL,
we conduct the ablation study by removing PA
from the PACL. The detailed results shown in Ap-
pendix D suggest that the PA mechanism positively
impacts the F score for both the English and the



corss-lingual tasks. On average, the PA mechanism
improves performance on both English and cross-
lingual tasks by 4.04% and 2.91%, respectively,
under the 1-shot setting. And under the 5-shot set-
ting, it improves performance by 1.65% and 3.56%,
respectively.

In conclusion, the PA module has an overall pos-
itive impact, primarily because it reduces the pro-
totype shift. Appendix B shows how our PACL
mitigates the prototype shift.

4.5.2 Only-Nested Results

In order to more comprehensively demonstrate the
efficacy of the outcomes pertaining to nested enti-
ties across these datasets, we undertook a process
of splitting and filtering exclusively for nested enti-
ties. The results in Appendix C show that for the
English test dataset, except for the GENIA-1shot
setting, our proposed PACL model can also outper-
form the baseline models in predicting only nested
entities. And for cross-lingual datasets, our PACL
model consistently outperforms the baseline model.

Specifically, for the English test datasets, only
under the GENIA-1shot setting did PACL fail
to surpass the baseline model. Apart from this,
for ACEO4 and ACEOQS5 under the 1-shot setting,
our PACL outperforms the baseline model by
4.54% and 2.57% respectively. Under the 5-shot
condition, for ACE04, ACEOS, and the GENIA
dataset, our PACL surpasses the baseline model
by 4.79%, 3.99%, and 1.22%. For cross-language
test datasets, PACL outperforms all baseline mod-
els. Under the 1-shot setting for ACEOS5_Chinese,
GermEval, and NEREL, our PACL surpasses the
baseline models by 4.62%, 5.07%, and 2.62%, re-
spectively. Meanwhile, under the 5-shot setting for
ACEQ5_Chinese, GermEval, and NEREL datasets,
our PACL outperforms the baseline models by
1.29%, 6.73%, and 1.89%, respectively.

In summary, our proposed PACL demonstrates
advantages over the baseline models in identifying
nested entities.

4.5.3 Generality of Prototype-Attention
Mechanism

As the Prototype-Attention (PA) mechanism ad-
dresses the fundamental property of the prototype
shift phenomenon, we believe it has a high level of
generalizability and can enhance the performance
of various models.

To assess the generality of the PA mechanism,
we conduct experiments by integrating it into the

SpanProto and ESD models and comparing the
performance before and after integration. As shown
in Appendix E, the experiment results demonstrate
that integrating the PA mechanism into SpanProto
and ESD improves the F} score on several datasets.
These findings suggest that the PA mechanism
has high generality and can serve as a valuable tool
for NLP practitioners looking to improve their mod-
els’ performance in few-shot nested NER tasks.

4.5.4 Efficiency Study

Through our time analysis in Appendix F, we found
that our proposed PACL spends a similar amount
of time as ESD during fine-tuning on the few-shot
support set, but it requires less time than baseline
models during testing on the unlabeled query set.
Additionally, using the PA mechanism incurs only
extremely minor overhead. As demonstrated in
section 4.5.1 and 4.5.3, PA mechanism can enhance
the predictive performance of the models. This
indicates that the PA method is simple but effective.

4.5.5 Case Study

Figure 5 in Appendix G displays instances from
several datasets along with the prediction results of
our proposed PACL model. Currently, the results of
the few-shot nested NER tasks are not particularly
satisfactory. Our proposed PACL method may also
suffer from missed recognitions and identification
errors, but overall, it exhibits good performance.

5 Related Work

This section discusses related works on rich-
resource nested NER, few-shot NER, and distri-
bution shifts.

5.1 Rich-resource Nested NER

Nested NER aims to recognize entities with nested
structures. Most of the current methods for nested
NER are established on rich-resource datasets.
These methods could be categorized into span-
based, hypergraph-based, and layered-based (Wan
et al., 2022).

Span-based methods treat sequences of tokens
as spans and then label all possible spans by classi-
fication models (Shen et al., 2021; Li et al., 2020b;
Tan et al., 2021). Hypergraph-based methods an-
alyze the dependence of words in a sentence and
then construct a dependency tree (Yu et al., 2020)
or other structures (Wang and Lu, 2018; Katiyar
and Cardie, 2018) to help identify nested entities.
And layered-based methods capture the depth of



entity nesting and apply multi-level sequence label-
ing strategies to recognize nested entities (Wang
et al., 2021; Shibuya and Hovy, 2020).

These methods may be stuck in overfitting due
to sophisticated models and the limited number of
instances for training in the few-shot setting.

5.2 Few-shot NER

Few-shot NER requires recognizing entities with
the support of very few labeled instances (Hofer
et al., 2018; Fritzler et al., 2019). Due to limited
information contained in the support set, methods
for few-shot NER mainly resort to a rich-resource
source domain to help train models, resulting in
transfer-learning and meta-learning frameworks.

Transfer-learning-based methods train models
on a source domain and then transfer models or
features to the few-labeled target domain (Yang
etal., 2021; Liu et al., 2021). Meta-learning-based
methods train models on adequate subtasks to make
the model acquire the learning ability on few-shot
tasks (de Lichy et al., 2021; Li et al., 2020a). Com-
paratively speaking, meta-learning-based methods
are more widely used in few-shot NER due to their
easy adaption to new tasks.

Within the meta-learning framework, various
kinds of models are designed. For example, metric-
based methods, including ProtoNet (Snell et al.,
2017), NNShot (Yang and Katiyar, 2020), and
SpanProto (Wang et al., 2022a), measure distances
between prototypes in the support set and instances
in the query set. Optimization-based methods, such
as MAML (Finn et al., 2017) and FEWNER (Li
etal., 2020a), train the model by a special optimizer.
Model-based methods, such as SNAIL (Mishra
et al., 2017) and CNPs (Garnelo et al., 2018), learn
the hidden representation of instances on the sup-
port set and the query set to make inferences in an
end-to-end manner. Contrastive-learning methods,
such as CONTaiNER (Das et al., 2022), aims to
maximize similarities of the same type and mini-
mize similarities between different types.

These few-shot NER methods mostly focus on
flat entities. Few works have discussed the few-
shot nested NER setting. Wang converted sequence
labeling to span-level matching for the few-shot flat
NER and showed their method could handle nested
entities (Wang et al., 2022b). However, it is not
designed for the few-shot nested NER specifically.

5.3 Distribution Shifts

Distribution shift is a problem of training and test-
ing data following two different distributions. It
affects the generalization ability of supervised deep-
learning models as the fundamental that these mod-
els could work is that training and testing data come
from the same distribution. Inspired by real-world
challenges, Wiles et al. summarized three distri-
bution shifts: spurious correlation, low-data drift,
and unseen data shift (Wiles et al., 2022). There
have been some researches aiming to address dis-
tribution shifts in computer vision and general nat-
ural language processing tasks (Fang et al., 2020;
Tu et al., 2022). To the best of our knowledge,
researchers seldom discuss the distribution shift
problem in the few-shot NER task. In this paper,
we aim to tackle the few-shot nested NER task.
Therefore, we rethink the distribution shift prob-
lem from the perspective of entity representation
distribution and identify the prototype shift since it
directly affects entity classification.

6 Conclusion

This paper first identifies the phenomenon of pro-
totype shift that arises when there is a difference
in prototypes between the support and query sets.
Within the context of few-shot learning tasks, pro-
totype shift is prone to occur since the few labeled
instances in the support set could hardly represent
the query set. To mitigate this issue in the few-
shot nested NER task, we propose the Prototype-
Attention Contrastive Learning (PACL) framework
combining a prototype-attention mechanism and
a prototype-span contrastive loss to enhance pro-
totype representations. The experiments on En-
glish tasks show the effectiveness of PACL and
the experiments on cross-lingual tasks show the
robustness of PACL. Furthermore, our prototype-
attention mechanism applied to baseline models
also leads to performance improvements, further
validating the strong generalizability of our ap-
proach.

7 Limitations

This paper still has several limitations. The first one
is about the prototype shift adjustment. It is hard to
completely address the prototype shift, while our
PACL makes this attempt and achieves inspiring
improvement. The second one is about other distri-
bution shifts. Prototype shift is just one kind of dis-
tribution shift. Other distribution shifts also need



to be identified and addressed to improve the accu-
racy of the few-shot nested NER task. The third
one is about the language used for training. We
utilized FewNERD as the source domain training
dataset and conducted testing tasks on the English
datasets including ACE04 and ACEQS. These two
datasets belong to the MIX domain, encompassing
various types of entities. Although FewNERD is
a flat dataset while ACE04/05 are nested datasets,
there exists a potential risk of training domain in-
formation leaking into the target domain.
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A Detail of Baselines

Detailed information on baseline models is intro-
duced in this section. We compare our PACL with
the following seven baseline models:

¢ NER-DP (Yu et al., 2020) is a rich-resource-
based nested NER method. It applies a bi-
affine model to score pairs of start and end
tokens for each span to establish dependency
parsing for identifying nested entities.
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* JoBP (Wang et al., 2021) introduces a sig-
nificant enhancement to NER, leveraging the
second-best path recognition method’s frame-
work while reducing the impact of the best
path. This approach adopts a layered architec-
ture, preserving a set of hidden states at each
temporal iteration. These states are subse-
quently employed to construct diverse poten-
tial functions for recognizing nested entities
across various hierarchical levels.

* PO-TreeCRFs (Fu et al., 2021) tackles the
challenge of nested NER by conceptualiz-
ing it as a constituency parsing issue with
partially observed trees. Introducing a fresh
model called partially observed TreeCRFs,
this approach regards labeled entity spans as
observed nodes within a constituency tree,
while the remaining spans are considered la-
tent nodes.

e CONTaiNER (Das et al., 2021) is a
contrastive-learning-based few-shot NER
method. It first obtains entities’ Gaussian-
distributed embeddings and then optimizes
a generalized objective of differentiating be-
tween entity types by a contrastive loss func-
tion. We adapt it to handle nested entities with
the entity span formulation.

e ProtoNet (Snell et al., 2017) is a metric-

learning-based few-shot NER method. It ap-
plies prototypical networks to learn a metric
space for obtaining prototype representations.
We also adapt it to handle nested entities with
the entity span formulation.

* NNShot (Yang and Katiyar, 2020) is also a

metric-learning-based few-shot NER method.
It applies structured decoding and nearest-
neighbor learning to identify entities. We uti-
lize the entity span formulation to make it
handle nested entities.

* ESD (Wang et al., 2022c) is a metric-learning-

based few-shot NER method. It formulates
the task as a span-level matching problem. To
identify entities, it performs span-level pro-
cedures, including enhanced span represen-
tation, class prototype aggregation, and span
conflict resolution.

* SpanProto (Wang et al., 2022a) is a metric-

learning-based few-shot NER method. It also


https://doi.org/10.18653/v1/2022.naacl-main.369
https://doi.org/10.18653/v1/2022.naacl-main.369
https://doi.org/10.18653/v1/2022.naacl-main.369
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.emnlp-main.479
https://openreview.net/forum?id=Dl4LetuLdyK
https://openreview.net/forum?id=Dl4LetuLdyK
https://openreview.net/forum?id=Dl4LetuLdyK
https://doi.org/10.18653/v1/2020.acl-main.577

ACE04 (7-way)

ACEOQS (7-way)

GENIA (32-way) Average

model 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot  5-shot
NER-DP 3444208 9.49+252 3.61+256 9.63+3.88 13.544376  30.01+3383 6.86 16.37
" CONTaiNER  ~ 4.66+200  10.01+145 4.73+083  8.70+268  7.33+153  9.46+165s 557 939 =
ProtoNet 19.17+622  31.44+366 16.94+690 30.10x318 17.76+386 32.07+260 17.96  31.20
NNShot 16.70+665 30.59+360 15.70+698 27.07+306 23.77+377 34.70+185 18.72  30.79
ESD 16.18+500  29.10+441  15.39+648 28.11+368 18.55+490 23.86+278  16.71 27.02
SpanProto 18.194538  30.47+494  19.024496 30.50+461 31.43+3.17 39.89+138 22.88  33.62
PACL 22.73+646  35.26+501 21.59+743 34.49+265 30.51+200 41.11+151 2494  36.95
Table 4: Micro F} performance on English datasets with only-nested entity setting (%).
model ACEOQ5_Chinese (7-way) GermEval (12-way) NEREL (29-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot  5-shot
NER-DP 4.87+2.10 13.62+7.29 6.27+272 14.08+4.13  7.05+367  24.86+431 6.06 17.52
" CONTaiNER ~ 9.27+282 12474461 10.41+345 10.631206  6.64+210  7.78+144 877 1029
ProtoNet 32.66+5.57 38.50+2.39 19.85+554  31.66+579  25.72+488  39.83+218  26.08 36.66
NNShot 31.554+496  46.05+4.57 26.96+688 29.18+738  27.61+422 43214409 28.71 30.46
ESD 28.69+5.43 38.26+3.10 22394391 22.97+367  20.71+398 30.16+496 23.93 30.46
SpanProto 35.10+466  45.83+423  25.194s565 34.00+591  30.66+425 44.06+233 3032 41.30
PACL 39.72+4.75 47.12+421 30.26+812  40.73+200 33.28+591 45.95+214 3442  44.60

Table 5: Micro F} performance cross-lingual datasets with only-nested entity setting (%).

applies entity spans to formulate the problem.
For identifying entities, it first utilizes a span
extractor to recognize candidate entity spans
and then applies a mention classifier to deter-
mine entity types.

B Prototype Shift Mitigation by PACL
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Figure 4: Illustration of the change of the prototype
similarity during training.

This paper aims to mitigate prototype shifts, and
section 1 has already validated the existence of the
prototype shift phenomenon. This section exam-
ines how the prototype shift changes by applying
our PACL.

We utilize the cosine similarity to denote the pro-
totype differences between the support and query
sets to measure the prototype shift. Figure 4 illus-
trates the change of the prototype similarity with

the increase of iteration numbers during training.
We could find a consistently increasing trend in
prototype similarity, which means the prototype
shift is consistently decreasing. This validates the
effectiveness of our PACL in mitigating prototype
shifts.

C Results on Only-Nested Entities

We only calculate the F; value of nested entity
recognition for unlabeled query sets. Table 4 and
Table 5 show the average F7 results of only-nested
entities on English and cross-lingual test datasets
with 1-shot and 5-shot settings. For the English
test dataset, we observe that except for the GENIA-
Ishot setting, our proposed PACL model can also
outperform the baseline model in recognizing only
nested entities. As for cross-lingual datasets, our
PACL model consistently outperforms the baseline
model in all settings.

Our proposed model achieves the best results
in almost all experimental settings and datasets,
indicating that our model has an advantage in rec-
ognizing nested entities compared to other baseline
models.

D Ablation Study

Table 7 presents the ablation experiments for the
PA module. Except for the ACE0O4-5shot setting,
removing the PA module results in a decrease in
model performance. Specifically, for the ACE04,
ACEQ5, GENIA, ACEO5_Chinses, GermEval, and
NEREL datasets, under the 1-shot experimental set-
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SpanProto  SpanProto w PA ESD ESD w PA

ACE04 1-shot  24.90+5.80 27.32+63414 23414619  22.63+761 ]
5-shot  40.10+5.98 44.67+4.29 1 39.13+500  38.224520

ACEO05S 1-shot  29.92+s527 29.56+11.24 1 24.85+11.17  23.80+895 |
5-shot  41.65+7.89 45.40+5.45 + 41.30+537 41.02+7301

GENIA 1-shot  30.91+274 30.95+223 1 21.11+415  30.69+3301
5-shot  40.95+1.52 422341981 26.79+177  40.49+351 4

. 1-shot  37.414497 42.81+6.66 1 33.95+676  35.93+6.861
ACEOS_Chinese s ot 51164455 543143001  47.64+314  49.5642041
GermEval 1-shot  38.30+7.52 45.48+424+ 34134815 36.00+6.68 1
5-shot  50.10+2.97 56.06+2.55 1 35294571 49.9443244

NEREL 1-shot  44.09+3.62 49.7243971 34.86+412  42.14+3721
5-shot  57.47+1.95 61.43+124¢4 46.30+470  58.08+1.241

Table 6: Fj performance before and after integrating the Prototype-Attention (PA) mechanism to SpanProto and

ESD on test datasets (%).

PACL w/o PA
1-shot  30.31+6.15  26.68+6.29 |
ACE04 Ssshot  43.1646s6  44.074s5531
1-shot  29.35+1008 26.41+962 |
ACEO5 5-shot  46.47+638  43.68+6.58 ]
1-shot  33.89+215  28.35+294
GENIA S5-shot  44.76+161  41.70+1.661
. 1-shot  44.65+593  41.35+654
ACEOS_Chinese 5 0t 54904358 53.332384 )
GermEval 1-shot  47.53+630 46.02+6.16 ]
5-shot  58.43+2.69 52.49+387
1-shot  50.26+460  46.35+274 |
NEREL Sshot 6208413  58.924182

Table 7: Ablation study of F} performance on test
datasets (%). “w/o PA” means removing the Prototype-
Attention mechanism.

ting, removing the PA module leads to a decrease
in the model’s final F} score by 3.63%, 2.94%,
5.54%, 3.30%, 1.51%, and 3.91%, respectively.
Furthermore, under the 5-shot experimental set-
ting, removing the PA module results in a decrease
in the model’s final F; score by 2.79%, 3.06%,
1.57%, 5.94%, and 3.16% for the ACE(Q5, GENIA,
ACEO05_Chinese, GermEval, and NEREL datasets,
respectively.

E Generality of Prototype-Attention
Mechanism

We applied the PA mechanism to the SpanProto
and ESD. The results are shown in Table 6.

Table 6 shows that the SpanProto model expe-
riences improvements across almost all datasets
under both 1-shot and 5-shot settings after apply-
ing the PA method. In the 1-shot setting, except for
a decrease of 0.36% in ACEQS, the Fj scores of
the SpanProto model improved by 2.42%, 1.28%,
5.40%, 7.18%, and 5.63% for ACEO4, GENIA,
ACEO05_Chinese, GermEval, and NEREL datasets,
respectively, after applying the PA method. In

the 5-shot setting, the I scores of the SpanProto
model improved by 4.57%, 3.75%, 1.28%, 3.15%,
5.96%, and 3.96% for ACE04, ACEQS, GENIA,
ACEO5_Chinese, GermEval, and NEREL datasets,
respectively, after applying the PA mechanism.

The effectiveness of the PA method is not
as pronounced for the ESD model compared
to SpanProto. After applying the PA mecha-
nism, ESD performs poorly on the ACE04 and
ACEQ5 datasets but shows improvements on other
datasets. Specifically, under the 1-shot setting,
ESD with PA exhibits improvements on the GE-
NIA, ACEO5_Chinese, GermEval, and NEREL
datasets by 9.58%, 1.98%, 1.87%, and 7.28%, re-
spectively. Similarly, under the 5-shot setting, ESD
with PA demonstrates improvements on the GE-
NIA, ACEO5_Chinese, GermEval, and NEREL
datasets by 13.70%, 1.92%, 14.65%, and 11.78%,
respectively.

F Efficiency Analysis

finetuning test

sentence num 50 18496
PACL w/o PA  258.81 342.78
PACL 263.23 (+4.42)  343.25 (+0.47)
SpanProto 90.32 370.70

w PA 91.68 (+ 1.36) 371.67 (+0.97)
ESD 268.21 528.89

w PA 270.97 (+2.76)  578.60 (+49.71)

Table 8: Our PACL and the two baseline models (ESD
and SpanProto) took a certain amount of time for fine-
tuning and testing on the GENIA dataset after applying
the PA method (s).

Table 8 displays the time taken by PACL and
baseline models. We take the GENIA dataset as
an example. Under the 5-shot setting, we extracted
50 sentences along with their labels to form a 32-
way 5-shot support set, leaving 18,496 unlabeled
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sentences in the unlabeled query set. To measure
the time taken for model fine-tuning, we fine-tuned
the 50 sentences in the support set for 100 epochs.
All models were run on an environment with an
Intel Xeon Gold 6348 CPU with a clock speed of
2.60 GHz and an A40 GPU.

We can conclude that SpanProto has the best
fine-tuning performance, but our proposed PACL
achieves the fastest efficiency during testing. Fur-
thermore, if the models use the PA method, there
is not a particularly large loss in time performance.
During the fine-tuning stage, in which PACL, Span-
Proto, and ESD models were trained for 100 epochs
on the few-shot support set, using the PA method
only resulted in an additional time cost of 4.42,
1.36, and 2.76 seconds, respectively. During testing
on the unlabeled query set, using the PA method
for testing 18k sentences incurred an additional
time cost of only 0.47, 0.97, and 49.71 seconds,
respectively.

G Case Study

true: L‘g;‘ég Secretary Bill Richardson says it is a case of
ACE04 demand outpacing supplies.
inference: [Energy Secretary Bill Richardson says it is a case
ofDL;Zmand outpacing supplies.

true: Wiihrend seine Mutter unterrichtete, wurde Paul ivon einer
GermEval deutschen KJOUVCTI"I‘H‘HIC erzogen.
inference:  Wihrend seine Mutter unterrichtete, wurde Paul von|einer
deutschen LGouvcrnan!ﬂ erzogen.

acros ™ BIEKnEET, AERTEREXAINBIER,
Chinese MERER
inference:  BRANGRHRE E £ T, NERTERSE LA BWEIER,

NERETE

Figure 5: Sentences from the ACE0O4, GermEval, and
ACEO5_Chinese datasets, we present true entities and
predicted entities. Entity types are indicated by colored
parentheses and background, with the entity categories
displayed in corresponding colors above/below the color
block.

Figure 5 illustrates test instances of our PACL
model on ACE04, GermEval, and ACE05_Chinese
datasets. For the example from the ACE04 dataset,
PACL missed the entities "Energy Secretary” and
"Energy Secretary Bill Richardson." For the exam-
ple from the GermEval dataset, PACL correctly
identified all entities. In the case of the sentence in
the ACEOS5_Chinese dataset, PACL correctly iden-
tified the majority of entities but misclassified one
entity type (PER classified as GPE).
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