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Abstract

Post-hoc explanation methods are critical for building trust in complex black-box artificial intelli-
gence (AI) models; however, they often suffer from the disagreement problem, which provides con-
flicting explanations for the same prediction. This inconsistency undermines reliability and poses a
significant barrier to adoption in high-stakes domains that demand trustworthiness and transparency.
To address this, we move beyond the search for a single best method and instead propose a princi-
pled, preference-driven framework for selecting the best suitable explanation technique for a given
context: which specific post-hoc explanation methods to use and when? We formalize this selection
process as a Multi-Criteria Decision Analysis (MCDA) problem. Our framework evaluates a set
of state-of-the-art post-hoc explanation methods (e.g., LIME, SHAP, and Anchor) against six ex-
planation evaluation metrics: fidelity, identity, stability, separability, faithfulness, and consistency.
We then apply a suite of established MCDA techniques such as Simple Additive Weighting (SAW),
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Elimination and
Choice Translating Reality (ELECTRE I) to aggregate these evaluations based on user-defined pri-
orities. By comparing the rankings produced by these diverse decision logics across multiple predic-
tive models and real-world datasets, we demonstrate not only how to select the optimal explanation
method under different priority scenarios (e.g., favoring fidelity vs. stability) but also how to ex-
pose critical trade-offs that are invisible to simpler aggregation approaches. Our work provides a
robust, transparent, and adaptable methodology for resolving explanation disagreement, enabling
practitioners to make more justifiable choices about explainability.

1 Introduction

The deployment of complex machine learning (ML) and deep learning (DL) models in high-stakes domains, such as
finance, law, and healthcare, hinges on our ability to trust their decisions Davenport & Kalakota (2019); Cao (2020).
Post-hoc explainable AI (XAI) methods, such as LIME Ribeiro et al. (2016), SHAP Lundberg & Lee (2017), etc.,
are crucial tools for building trust by offering insights into the rationale behind ML/DL model predictions. However,
these methods introduce a significant paradox: while designed to enhance the transparency of ML/DL models, they
often generate confusion. When applied to the same prediction, different XAI methods frequently highlight different
features as most important, leading to what is known as the disagreement problem Krishna et al. (2022); Han et al.
(2022); Silva et al. (2025); Laberge et al. (2024). Let us consider a healthcare scenario in which a predictive ML/DL
model is being deployed to aid doctors in diagnosing diabetic diseases by analyzing a range of patient data (e.g.,
medical history, genetic information, lifestyle factors, various clinical measurements, etc.,), as shown in Figure 1. In
addition, to enhance the transparency and trustworthiness of this ML/DL-driven diagnostic process, state-of-the-art
(SOTA) post-hoc explanation methods (e.g., SHAP and LIME) are employed to explain each model prediction to a
doctor. These methods generate detailed explanations to elucidate the reasoning behind the ML/DL model’s predic-
tions, helping doctors make informed decisions. However, an issue arises when different explanation methods are
applied to the same diagnostic task, each focusing on a different set of features to explain the ML/DL model’s predic-
tions. For instance, SHAP identifies features such as blood sugar levels, physical activity, etc., that cause diabetes. At
the same time, LIME highlights features such as pregnancies, smoking history, etc., that cause diabetes. Such dispari-
ties can lead to uncertainty among doctors and undermine the trustworthiness of the AI-based diagnostic system. The
presence of conflicting explanations can lead doctors to doubt the model’s recommendations, as they are unsure which
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explanation to prioritize or trust. This disagreement may lead doctors to rely more on their own clinical expertise,
potentially resulting in inconsistent or suboptimal decisions in some instances. Thus, to ensure the trustworthiness
of the overall decision-making process, it becomes essential to address these discrepancies among explanation meth-
ods. Standardizing or combining these explanations into a coherent, unified narrative could mitigate trust issues and
enhance collaborative decision-making among AI systems and professionals across sectors (e.g., healthcare, finance),
raising a critical unanswered question: which explanation method should I trust?
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• Explanation disagreement observed.
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• Hence manual decisions.
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Figure 1: An illustrative example highlights how disagreement in explanation leads to uncertainty among doctors and impacts the
trustworthiness of the AI-based diagnostic system.

The root of this disagreement lies in the diverse theoretical foundations of these XAI methods, ranging from game-
theoretic Shapley values to local surrogate modeling. To evaluate the quality of these methods, researchers have
proposed numerous explanation evaluation metrics assessing desirable properties, such as fidelity (how well the expla-
nation reflects the model), stability (robustness to minor perturbations) faithfulness (if features truly drive the predic-
tion), etc., Alvarez-Melis & Jaakkola (2018); Zhou et al. (2021); Agarwal et al. (2022); Klein et al. (2024). However,
this has led to another dilemma: no single XAI method consistently performs well across all metrics. One method
may demonstrate high fidelity but poor stability, while another offers greater robustness at the expense of faithfulness.
As a result, practitioners face a multi-criteria dilemma, lacking a principled framework to navigate these trade-offs and
select the most suitable explanation method for their specific context and objectives. The critical research gap, there-
fore, is not the absence of evaluation metrics but rather the lack of a structured decision-making process to effectively
synthesize them.

To address this gap, we formalize the selection of an appropriate explanation method as a Multi-Criteria Decision
Analysis (MCDA) problem. We propose a novel framework that moves beyond the futile search for a single, univer-
sally "best" explainer, and instead provides a transparent, preference-driven process for selecting the most appropriate
one. Instead of relying on a single aggregation strategy, our core contribution lies in a comparative analysis of three
established MCDA techniques with distinct decision-making philosophies: the compensatory Simple Additive Weight-
ing (SAW), the ideal-point-based Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and the
non-compensatory outranking method ELECTRE I. By applying these techniques, our framework recommends an
explanation method that best aligns with user-defined priorities (e.g., favoring fidelity over stability) and, importantly,
exposes the inherent trade-offs and sensitivity of the decision. Our key contributions are threefold:

• At first, we empirically show that SOTA post-hoc explanation methods (e.g., LIME, SHAP, Anchor) exhibit
significant performance trade-offs across six key explanation evaluation metrics: fidelity, identity, stability,
separability, faithfulness, and consistency, reinforcing the need for a structured decision framework.

• We then propose a novel and adaptable framework that formulates the explanation method selection task
as an MCDA problem, enabling user-defined preferences (weights) to guide the decision-making process.
Specifically, we apply three MCDA techniques: SAW, TOPSIS, and ELECTRE I to diverse models and
datasets, demonstrating how our framework not only provides a suitable explanation method but also uncovers
deeper insights into the decision logic, such as when compensatory vs. non-compensatory reasoning leads to
different outcomes.
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Evaluated across four ML/DL models, three explanation methods, and three real-world datasets, our approach provides
a robust and principled framework for resolving XAI disagreements in a transparent and justifiable manner. For
instance, across all datasets, SHAP consistently ranks higher in most scenarios for the predicted class explanations.
These findings underscore the often-overlooked issue of explanation disagreement and offer practical guidance for
selecting appropriate explainers for predictive models.

2 Related Works

In this section, we provide an overview of the current evaluation paradigm in XAI research. Thus, our work builds on
the vast literature in XAI. We review prior work and its connections to this research.

SOTA XAI methods have two main approaches: (i) designing inherently interpretable models such as rule lists, de-
cision trees, etc., (ii) applying post-hoc explanation methods, i.e., SHAP, LIME, etc., to explain a black-box ML/DL
model locally (for a specific sample) or globally (for the entire model space). Our work focuses on local post-hoc ex-
planation methods based on feature importance. For instance, post-hoc explainers, such as LIME Ribeiro et al. (2016),
SHAP Lundberg & Lee (2017), Anchor Ribeiro et al. (2018), BayesLIME Slack et al. (2021), BayesSHAP Slack et al.
(2021), etc., are proxy models trained atop a base ML/DL model with the sole intention of “explaining" that base
model. These methods rely solely on the model’s inputs and outputs to identify the salient features that contribute
to its output. On the other hand, methods such as SmoothGrad Smilkov et al. (2017), Integrated Gradients Qi et al.
(2019), GradCAM Selvaraju et al. (2017), etc., are referred to as gradient-based local explanation methods, which do
not use a proxy model but instead compute the gradients of a model with respect to input features to identify important
features. A more detailed treatment of this topic is provided in other comprehensive survey articles Madsen et al.
(2022); Zhao et al. (2023). However, one problem with these explanation methods is that they often suffer from the
disagreement problem Krishna et al. (2022); Fazelpour & Fleisher (2025); Silva et al. (2025). From a conceptual stand-
point, the misalignment of goals among explanation methods leads to an inconsistent view of explanations Reingold
et al. (2024). For instance, the SHAP method is based on game theoretic concepts Lundberg & Lee (2017), whereas
LIME is motivated by the function approximation method Ribeiro et al. (2016). Such differences pose conceptual and
practical challenges for understanding and using explanation methods, thwarting progress in the XAI field and raising
questions about which explanation method to use and when.

Prior research has proposed several metrics to assess the reliability of an explanation. An extensive survey of metrics
for evaluating explanation methods is provided in Zhou et al. (2021); Klein et al. (2024); Agarwal et al. (2022). Their
survey highlights two high-level goals of explanation methods: interpretability (the clarity, simplicity, and broadness
of the explanations) and fidelity (the completeness and soundness of the explanations). In contrast, authors in Liu et al.
(2021) proposed a synthetic benchmark for explanation evaluation, including implementations of several metrics and
a discussion of how to choose evaluation metrics. Neely et al. Neely et al. (2021) measured the disagreement problem
in XAI for the first time, in which they compared different explanation methods (e.g., LIME, DeepSHAP, etc.,) with
a rank correlation (Kendall’s τ ) metric. Instead of only using a rank correlation metric, authors in Krishna et al.
(2022) used different evaluation metrics (e.g., feature agreement, rank agreement, sign agreement, etc.,) to capture
specific aspects of explanation disagreement w.r.t. the top-k features using various types of data. Unfortunately, their
proposed approach did not address how to choose an accurate and trustworthy explanation for the predictive model’s
decisions. This is important since unstable and inconsistent explanations may lead to an untrustworthy model for
end users (e.g., doctors and policymakers). Therefore, Han et.al Han et al. (2022) extend the work of Krishna et
al. Krishna et al. (2022) to investigate why the disagreement problem exists for these explanation methods. They
conclude that different explanation methods approximate predictive black-box models over different neighborhoods
by applying different loss functions. However, one problem with their work is that it focuses on faithfulness rather
than on the interpretability of explanations. On the other hand, Avi et.al. Schwarzschild et al. (2023) showed the
disagreement problem using the Post hoc Explainer Agreement Regularization (PEAR) loss term that measures the
difference in feature attribution between a pair of explainers. A more focused disagreement problem study can be
found in Roy et al. (2022) where the explanations of LIME and SHAP are investigated for one single defect prediction
model. They conclude that LIME and SHAP disagree more on the ranking of important features than on their signs of
importance. In addition to these evaluation metrics, human-grounded evaluation approaches emphasize how human
users perceive and utilize explanations Linardatos et al. (2020); Schmitt et al. (2024); Doshi-Velez & Kim (2017);
Swamy et al. (2025). For instance, authors in Kaur et al. (2020) found that explanations are often over-trusted and
misused. Although our work does not involve human subject studies, we view this line of human-centered investigation
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as a critical complement to our quantitative evaluation framework. Unfortunately, none of these studies considered
how to select an accurate explanation method for the black-box ML/DL model’s decisions. This is important because
unstable, inconsistent explanations may lead to untrustworthy decisions by end users. Furthermore, the quality of the
explanations and the corresponding evaluation metrics were used to analyze the behavior of the explanation methods.
Since SOTA explanation methods may result in explanations that are not only inconsistent and unstable but also prone
to adversarial attacks and potentially mislead end users into believing that the underlying models and explanations
are fair Ghorbani et al. (2019); Slack et al. (2020); Madsen et al. (2022). This, in turn, could lead to the deployment
of unfair models in critical real-world applications and ought not to be used in high-stakes decisions. Indeed, it is
important to understand and quantify how often explanation methods disagree, and to examine how ML practitioners
and domain experts can address such disparities. This is concerning, as inconsistent or misleading explanations can
erode trust and propagate unfair decisions in high-stakes settings Madsen et al. (2022).

3 Methodology

This section presents the details of our proposed methodology for a trustworthy explanation selection from a set of
explanation methods. As illustrated in Figure 2, the proposed method is comprised of three phases: (1) Classification
model and explanation method development, (2) Explanation evaluation metrics development, and (3) MCDA method.
The details are as follows.
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Figure 2: Our proposed framework for selecting an appropriate explanation method from a set of explanation methods.

3.1 Explanation Method Development

At first, we develop a classification model using three ML models, namely Random Forest (RF), XGBoost (XGB),
Logistic Regression (LR), and a 3-layer neural network (NN) with 50, 100, and 200 nodes per layer, ReLU activa-
tion, binary cross-entropy loss, Adam optimizer (learning rate 0.001), and early stopping strategy (patience value =
30) over 100 epochs. These models are trained on three real-world datasets: HELOC Demajo et al. (2020), Ger-
man Credit Asuncion & Newman (2007), and COMPAS Angwin et al. (2016). Hyperparameter tuning is performed
using a grid search, and performance evaluation is conducted through 10-fold cross-validation. Then, to interpret
ML/DL models’ predictions, we apply three local post-hoc explanation methods, such as LIME Ribeiro et al. (2016),
(SHAP) Lundberg & Lee (2017), and Anchor Ribeiro et al. (2018)to compute feature importance scores for randomly
selected test samples. It is important to note that this study focuses solely on local explanation methods, where sam-
ples are randomly selected from the test dataset. We adopt widely used ML and DL models, as well as three post-hoc
explanation techniques and three datasets, aligning with prior works in the XAI disagreement literature Laberge et al.
(2024); Han et al. (2022); Krishna et al. (2022).
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3.2 Explanation Evaluation Metrics

Several metrics have been proposed to evaluate the explainability of XAI methods Alvarez-Melis & Jaakkola (2018);
Agarwal et al. (2022). A comprehensive survey by Zhou et al. (2021) identifies two key qualities of high-quality
explanations: how well it approximates the model and how human-understandable it is. In this work, we focus on
six explanation evaluation metrics: fidelity, identity, stability, separability, consistency, and faithfulness, which help
measure the explanation disagreement problem in a principled manner. These metrics are commonly used in recent
XAI studies to assess explanation reliability across different contexts Barr et al. (2023); Agarwal et al. (2022); Dai
et al. (2022); Bobek et al. (2021); Parimbelli et al. (2023); Solís-Martín et al. (2023); Klein et al. (2024). The details
of these explanation evaluation metrics are below.

Fidelity: A key question in evaluating explanation quality is "To what extent does explanation accurately represent
the underlying decision-making process?" Dai et al. (2022). Explanations that correctly identify important features
are said to have high fidelity. This is quantified as:

F(x,g,ϵ) = |top(k, V) ∩ top(k, v)|
k

Here, v denotes the ground truth feature importance weights of a black-box model g for input x, and V = ϵ(x, g) is the
explanation generated by explanation method ϵ, the fidelity metric F measures the fraction of top-k features in V that
overlap with those in v, where k selects the indices of the k largest elements. The intuition behind this fidelity metric
is that the model’s prediction, g, should remain stable when non-important features (outside the top-k) are perturbed.
Significant changes indicate low fidelity, revealing that the explanation fails to capture the essential features critical to
the model’s prediction.

Stability: This metric, also known as explanation robustness, captures the idea that similar inputs should yield similar
explanations. We use the Lipschitz indicator proposed by Alvarez-Melis and Jaakkola Alvarez-Melis & Jaakkola
(2018) to quantify stability, denoted as:

SX(xi) = max
xj∈Nε(xi)

||Mi −Mj ||
||xi − xj ||

Here, SX(xi) denotes the stability of test sample xi ∈ X , with Mi and Mj representing feature importance scores for
xi and its neighbor xj , respectively. The neighborhood Nε(xi) includes points within L2 distance ϵ of xi. Intuitively,
stability measures how much explanations change under small input perturbations; lower Lipschitz values indicate
higher robustness at point xi Alvarez-Melis & Jaakkola (2018)

Faithfulness: An explanation is faithful if the features it highlights genuinely influence the model’s prediction. One
way to measure this is through the Prediction Gap on Important features (PGI), which quantifies the change in model
output when top-k important features (as identified by an explanation) are perturbed Agarwal et al. (2022). A larger

gap implies higher faithfulness. PGI is defined as: U(x,g) = 1
p

p∑
i=1
|g(x)− g(x̃i)|, where U(x,g) is the faithfulness score

for input x, x̃i is the perturbed version of x (top-k features modified), g is the black-box model, and p is the number
of stochastic perturbation runs. Following Barr et al. (2023), we apply Gaussian noise (N (0, 0.1)) for continuous
features and flip 30% of discrete ones. Note, this work uses only the PGI metric to evaluate faithfulness Agarwal et al.
(2022).

Consistency: This metric assesses how similar the explanations from different methods are for the same predic-
tion Bobek et al. (2021). The main intuition is that repeated explanations for a single observation should produce
similar results; otherwise, it suggests instability in the ML/DL model or the explanation method. Consistency is
computed by averaging the L1 distance between pairs of explanations, discussed in Bobek et al. (2021). For a given
observation, the consistency score is defined as:

C(Mj1 , Mj2) = 1
||Mj1 −Mj2 ||2 + 1

Where C(Mj1 , Mj2) measures the consistency for the jth observation, and Mj1 , Mj2 the feature importance from two
explanation methods.
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Identity: The underlying assumption is that if there are two identical data points(i.e., the actual and predicted classes)
their explanations must be identical Parimbelli et al. (2023). If this condition is not met, then the black-box ML/DL
model either predicted the incorrect class or the explanation method produced an explanation that is not identical. The
identity metric can be expressed as follows: ∀i,j(d(xi, xj) = 0⇒ d(ϵi, ϵj) > 0). Where x are samples, d is a distance
function, and ϵ is the explanation vector that explains the prediction of each sample.

Separability: This metric evaluates whether dissimilar inputs produce dissimilar explanations Parimbelli et al. (2023);
Solís-Martín et al. (2023). The underlying assumption is that non-identical samples should not receive identical
explanations, as each feature is expected to contribute meaningfully either positively or negatively to the model’s
prediction. For instance, if two samples differ only in a feature that does not influence the prediction, the model may
produce the same output, and the explanation method might produce identical explanations. Formally, this can be
expressed as: ∀i,j(d(xi, xj) ̸= 0 ⇒ d(ϵi, ϵj) = 0), where x are input samples, d is a distance function, and ϵ is the
explanation vector for each sample.

3.3 Proposed Comparative MCDA Framework for XAI Method Selection

To address the challenge of selecting an appropriate explanation method when faced with disagreements, we propose
a novel framework based on MCDA. This framework allows for a structured and transparent evaluation of explanation
methods against multiple explanation evaluation metrics, with the flexibility to incorporate user-defined preferences
through differential weighting. Instead of relying on a single aggregation rule, we implement and compare three
established MCDA techniques: Simple Additive Weighting (SAW), Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS), and ELECTRE I.

3.3.1 Justification of Methodological Choices

Our framework’s components are chosen to ensure a holistic and robust analysis. We selected six evaluation criteria to
cover three key dimensions of explanation quality: Model Alignment (Fidelity, Faithfulness), Robustness (Stability,
Identity, Separability), and Inter-Method Agreement (Consistency). For the decision logic, we chose three distinct
and widely recognized MCDA families to analyze the sensitivity of the rankings to the aggregation philosophy: SAW
as a simple compensatory baseline, TOPSIS as an ideal-point method, and ELECTRE I as a non-compensatory
outranking method capable of identifying incomparable alternatives and veto effects often missed by other techniques.

3.3.2 Formal Preliminaries

Let the set of candidate explanation methods be A = {A1, . . . , Am}, where m is the total number of methods. Let
the set of evaluation criteria be C = {C1, . . . , Cn}, where n is the total number of metrics. The first step of our
framework, detailed in Algorithm 1, is to construct a normalized decision matrix X. The performance of each method
Aj on criterion Ci is captured by the element xij ∈ [0, 1] in this matrix, where a higher value is always preferable.
This is achieved by first computing a raw performance matrix X′ = [x′

ij ] and then applying two transformations. Any
"cost" criterion (where lower is better) is converted to a benefit criterion using Eq. 1, and all scores are then normalized
using min-max scaling as shown in Eq. 2:

x′′
ij =

maxk(x′
ik)− x′

ij

maxk(x′
ik)−mink(x′

ik) (1)

xij =
x′′

ij −mink(x′′
ik)

maxk(x′′
ik)−mink(x′′

ik) (2)

The user’s preferences are captured in a weight vector W = {w1, . . . , wn}, where wi is the non-negative weight for
criterion Ci and

∑
wi = 1.

3.3.3 Formal Properties of the Framework

A robust selection framework should satisfy desirable formal properties. We define Monotonicity and show that our
compensatory methods adhere to it.

Definition 1 (Monotonicity). A selection framework is monotonic if improving the performance of an alternative Aj

on any single criterion Ci, while holding all other scores constant, does not worsen its final rank. Formally, if S(Aj) is
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Algorithm 2 Compensatory MCDA Ranking (SAW & TOPSIS)

Input: Decision Matrix X, Weight Vector W .
Output: SAW Ranking RSAW, TOPSIS Ranking RTOPSIS.

0: // SAW Calculation
0: for all Aj ∈ A do calculate SSAW

j =
∑n

i=1 wixij .
0: RSAW ← rank alternatives by SSAW

j (descending).
0: // TOPSIS Calculation
0: Construct weighted matrix V = [wixij ].
0: Determine PIS A+ and NIS A− from V.
0: for all Aj ∈ A do calculate distances D+

j to A+ and D−
j to A−.

0: for all Aj ∈ A do calculate CCTOPSIS
j = D−

j /(D+
j + D−

j ).
0: RTOPSIS ← rank alternatives by CCTOPSIS

j (descending).
0: return RSAW, RTOPSIS.

the final score for alternative Aj , then for any two decision matrices X and X̂ that are identical except that x̂ij > xij

for some i, j, it must hold that S(Aj)X̂ ≥ S(Aj)X.

Proof Sketch for SAW. The SAW method satisfies Monotonicity. The score for an alternative Aj is SSAW
j =∑n

k=1 wkxkj . If we increase a single score xij to x̂ij , the new score becomes ŜSAW
j = (

∑
k ̸=i wkxkj) + wix̂ij .

Since wi ≥ 0 and x̂ij > xij , it follows that wix̂ij ≥ wixij , and therefore ŜSAW
j ≥ SSAW

j . This ensures that an
improvement in any criterion never penalizes an alternative.

Algorithm 1 Data Preparation and Normalization

Input: Datasets (Ds), Models (Mk), XAI Methods (A), Criteria (C).
Output: Normalized Decision Matrix X.

0: Compute raw performance matrix X′ = [x′
ij ] for each Aj on Ci.

0: Initialize transformed matrix X′′.
0: for all criterion Ci ∈ C do
0: if Ci is a cost criterion then
0: Apply cost-to-benefit transformation (Eq. 1) to get column i of X′′.
0: else
0: Copy column i from X′ to X′′.
0: Apply min-max normalization (Eq. 2) to X′′ to get X.
0: return X. =0

Algorithm 3 Non-Compensatory MCDA (ELECTRE I)

Input: Decision Matrix X, Weight Vector W , Thresholds c̄, d̄.
Output: Outranking Kernel P ELECTRE.

0: Initialize outranking graph G.
0: for all ordered pairs (Ak, Al) where k ̸= l do
0: Calculate concordance c(Ak, Al) =

∑
i:xik≥xil

wi.
0: Calculate discordance d(Ak, Al) = 1

L maxi:xil>xik
(xil − xik).

0: if c(Ak, Al) ≥ c̄ AND d(Ak, Al) ≤ d̄ then
0: Add directed edge Ak → Al to G.
0: P ELECTRE ← find nodes in G with in-degree of 0 (the kernel).
0: return P ELECTRE. =0
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3.3.4 Simple Additive Weighting (SAW)

The SAW method, also known as the Weighted Sum Model (WSM), is a compensatory technique that calculates a total
score for each explanation method. The process is detailed in Algorithm 2. The score, denoted as SSAW

j , for method
Aj is calculated as:

SSAW
j =

n∑
i=1

wixij (3)

where wi is the weight of criterion Ci and xij is the normalized performance score of method Aj on that criterion.
The explanation methods are then ranked based on their SSAW

j scores in descending order.

3.3.5 Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS is an ideal-point method that ranks alternatives based on their simultaneous shortest distance from a best-case
solution and farthest distance from a worst-case solution, as detailed in Algorithm 2. The key steps are:

1. Construct the Weighted Normalized Decision Matrix: Using the normalized decision matrix of scores xij and
weights wi, we construct a weighted matrix where each element vij is calculated as vij = wixij .

2. Determine Ideal Solutions: The Positive Ideal Solution (PIS), denoted A+, is a vector {v+
1 , . . . , v+

n } where each
element v+

i is the maximum score achieved on criterion Ci across all explanation methods (i.e., v+
i = maxj vij).

Conversely, the Negative Ideal Solution (NIS), denoted A−, is a vector {v−
1 , . . . , v−

n } where each element v−
i is the

minimum score (v−
i = minj vij).

3. Calculate Separation Measures: For each explanation method Aj , its Euclidean distance from the PIS is calculated
as D+

j , and its distance from the NIS is calculated as D−
j :

D+
j =

√√√√ n∑
i=1

(vij − v+
i )2 (4)

D−
j =

√√√√ n∑
i=1

(vij − v−
i )2 (5)

4. Calculate Relative Closeness: The final score for each explanation method Aj , known as the closeness coefficient
CCTOPSIS

j , is calculated as:

CCTOPSIS
j =

D−
j

D+
j + D−

j

(6)

where 0 ≤ CCTOPSIS
j ≤ 1. Explanation methods are then ranked in descending order of their CCTOPSIS

j score.

3.3.6 ELECTRE I (Elimination and Choice Translating Reality)

ELECTRE I is a non-compensatory outranking method that builds a preference relation between pairs of alternatives,
as detailed in Algorithm 3. It determines if an alternative Ak outranks another alternative Al (denoted Ak ⪰ Al) by
constructing concordance and discordance indices.

1. Define Concordance Index: The concordance index, c(Ak, Al), measures the strength of evidence supporting the
claim that Ak is at least as good as Al. It is the sum of weights for all criteria where Ak performs greater than or equal
to Al:

c(Ak, Al) =
∑

i:xik≥xil

wi (7)

where the summation is over the set of indices i for which the score of explanation method Ak (xik) is greater than or
equal to the score of method Al (xil).

2. Define Discordance Index: The discordance index, d(Ak, Al), measures the strength of evidence against the claim
that Ak outranks Al. It identifies the criterion where Al most significantly outperforms Ak. Let L be the range of the
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Figure 3: Local explanation using SHAP for a single prediction in the Heloc dataset (a) XGB, (b) and NN model.
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Figure 4: Local explanation using LIME for a single prediction in the Heloc dataset, (a) XGB, (b) and NN model.

normalized scale (i.e., L = 1 for [0, 1]).

d(Ak, Al) = 1
L

max
i:xil>xik

(xil − xik) (8)

If the set of indices where xil > xik is empty, then d(Ak, Al) = 0.

3. Determine Outranking Relation: An alternative Ak is said to outrank Al (Ak ⪰ Al) if and only if its concordance
index meets a minimum threshold c̄ and its discordance index does not exceed a maximum threshold d̄: c(Ak, Al) ≥ c̄
AND d(Ak, Al) ≤ d̄. The result of ELECTRE I is an outranking graph. Further analysis of this graph (e.g., identifying
the kernel, which contains all non-outranked alternatives) provides a final set of preferred explanation methods. Unlike
scoring methods that produce a total ranking, ELECTRE I’s primary output is this kernel set. Therefore, in our results
table, we report only the members of the kernel, as the method does not provide a relative ranking for the outranked
alternatives.

3.3.7 Framework Application and Comparative Analysis

The application of our framework, summarized in Algorithms 1, 2, and 3, involves applying these three MCDA meth-
ods to the performance scores of the candidate explanation methods. We analyze the rankings produced under various
pre-defined weighting scenarios to: (1) identify explanation methods that consistently perform well, (2) understand
the sensitivity of the selection to the choice of MCDA technique, and (3) provide practitioners with a transparent tool
for selecting an explanation method that best aligns with their requirements.
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Figure 5: For a single prediction in the Heloc dataset, the local explanations provided by Anchor (a) XGB, (b) and NN model.

Table 1: Measured explanation evaluation metrics, with average and standard deviation values computed on 50 randomly selected
samples from the HELOC dataset. Where ↑ indicates that higher values are better, ↓ indicates that lower values are better, and
bolded values are the best values.

XAI Model FI (↑) ST (↓) ID (↑) SE (↓) CO (↑) FA (↑)

SHAP

NN 1.00 ± 0.00 0.39 ± 0.01 0.81 ± 0.01 0.03 ± 0.01 0.40 ± 0.02 0.46 ± 0.01
XGB 0.96 ± 0.01 0.36 ± 0.02 0.68 ± 0.02 0.03 ± 0.01 0.31 ± 0.02 0.49 ± 0.01
RF 0.94 ± 0.01 0.44 ± 0.01 0.55 ± 0.02 0.05 ± 0.01 0.38 ± 0.01 0.42 ± 0.01
LR 0.91 ± 0.02 0.61 ± 0.03 0.10 ± 0.03 0.21 ± 0.02 0.10 ± 0.01 0.20 ± 0.01

LIME

NN 0.99 ± 0.01 0.30 ± 0.01 0.61 ± 0.02 0.03 ± 0.00 0.29 ± 0.02 0.47 ± 0.02
XGB 0.95 ± 0.01 0.40 ± 0.01 0.67 ± 0.02 0.05 ± 0.01 0.10 ± 0.01 0.35 ± 0.02
RF 0.94 ± 0.01 0.49 ± 0.02 0.28 ± 0.03 0.07 ± 0.01 0.30 ± 0.02 0.29 ± 0.01
LR 0.89 ± 0.02 0.54 ± 0.02 0.08 ± 0.02 0.38 ± 0.02 0.00 ± 0.00 0.19 ± 0.01

Anchor

NN 0.88 ± 0.01 0.50 ± 0.01 0.10 ± 0.02 0.15 ± 0.02 0.10 ± 0.02 0.30 ± 0.02
XGB 0.82 ± 0.01 0.50 ± 0.01 0.08 ± 0.01 0.24 ± 0.02 0.09 ± 0.01 0.29 ± 0.01
RF 0.79 ± 0.02 0.56 ± 0.02 0.01 ± 0.02 0.22 ± 0.01 0.10 ± 0.01 0.24 ± 0.01
LR 0.69 ± 0.02 0.64 ± 0.02 0.00 ± 0.02 0.39 ± 0.02 0.00 ± 0.01 0.22 ± 0.01

4 Experimental Setup

This section discusses the experimental setup and data we used to evaluate our proposed method. We used Scikit-
Learn Pedregosa et al. (2011) to train the ML models and TensorFlow-2.4 Sergeev & Del Balso (2018) to train and
evaluate our NN model. To explain the Ml/DL models, we used the SHAP Lundberg & Lee (2017), the Anchor Ribeiro
et al. (2018), and LIME Ribeiro et al. (2016) library. All models were trained on an Intel Core i9 Processor and 128GB
RAM option with NVIDIA GeForce RTX 3090 Ti GPU.

Datasets: To validate the effectiveness of the proposed approach, we use three real-world datasets namely, home equity
line of credit (Heloc) Demajo et al. (2020), German Credit Asuncion & Newman (2007), and Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS) Angwin et al. (2016). The Heloc dataset is from FICO
which consists of information on Heloc applications, with 9, 871 samples for 24 continuous features. We use this
dataset to predict whether an applicant made payments without being 90 days overdue. In contrast, the German Credit
dataset comprises of 20 features capturing the bank account balance, loan information, demographics, employment
information, and credit history of 1, 000 loan applicants. The class label here is a loan applicant’s credit risk (e.g.,
high or low). However, the COMPAS dataset contains 7 features capturing information about the criminal history,
demographics, and prison time of 4, 937 defendants. Each defendant in the dataset is labeled either as high-risk or
low-risk for recidivism based on the COMPAS algorithm’s risk score. We used the 70% samples from these datasets
to train the ML/DL models and their remaining 30% for testing.

5 Experimental Results

This section presents the detailed results of our proposed framework for trustworthy explanation selection from a set
of explanation methods.
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Table 2: Measured explanation evaluation metrics, with average and standard deviation values computed on 50 randomly selected
samples from the German Credit dataset. Where ↑ indicates that higher values are better, ↓ indicates that lower values are better,
and bolded are the best values.

XAI Model FI (↑) ST (↓) ID (↑) SE (↓) CO (↑) FA (↑)

SHAP

NN 0.99 ± 0.01 0.40 ± 0.02 0.78 ± 0.02 0.05 ± 0.01 0.34 ± 0.02 0.45 ± 0.02
XGB 0.93 ± 0.01 0.39 ± 0.01 0.69 ± 0.02 0.04 ± 0.01 0.32 ± 0.01 0.43 ± 0.01
RF 0.92 ± 0.01 0.50 ± 0.02 0.48 ± 0.03 0.07 ± 0.01 0.37 ± 0.02 0.32 ± 0.01
LR 0.91 ± 0.01 0.65 ± 0.02 0.01 ± 0.01 0.19 ± 0.01 0.10 ± 0.01 0.15 ± 0.02

LIME

NN 0.97 ± 0.01 0.44 ± 0.01 0.70 ± 0.02 0.05 ± 0.01 0.26 ± 0.02 0.46 ± 0.01
XGB 0.94 ± 0.01 0.49 ± 0.02 0.75 ± 0.02 0.05 ± 0.01 0.19 ± 0.02 0.39 ± 0.01
RF 0.94 ± 0.01 0.54 ± 0.02 0.40 ± 0.03 0.08 ± 0.01 0.27 ± 0.02 0.31 ± 0.02
LR 0.90 ± 0.01 0.56 ± 0.02 0.10 ± 0.01 0.30 ± 0.02 0.00 ± 0.01 0.15 ± 0.02

Anchor

NN 0.84 ± 0.02 0.50 ± 0.01 0.08 ± 0.01 0.17 ± 0.01 0.10 ± 0.02 0.38 ± 0.02
XGB 0.84 ± 0.01 0.56 ± 0.02 0.01 ± 0.01 0.28 ± 0.02 0.05 ± 0.01 0.25 ± 0.01
RF 0.75 ± 0.01 0.65 ± 0.02 0.00 ± 0.02 0.25 ± 0.02 0.12 ± 0.01 0.32 ± 0.01
LR 0.79 ± 0.01 0.71 ± 0.02 0.00 ± 0.01 0.45 ± 0.02 0.00 ± 0.01 0.29 ± 0.01

5.1 ML/DL Model Explanation

The local explanation results using the LIME and SHAP methods for the same data instances from the Heloc dataset
for the XGB and NN models are shown in Figures 4 and 3. In Figure 4a, the features such as MSinceMostRecentDel,
NetFractionRevolvingBurde, AverageMInFil, ExternalRiskEstimate etc., are the ones that contribute to bad class clas-
sification, while the features such as MaxDelqEve, NumSatisfactoryTrade, etc., that have a negative effect on bad class
classification. In contrast, in Figure 4b, features such as MSinceMostRecentDel, NumSatisfactoryTrade, AverageM-
InFile,etc., appear to be the most influential features for bad class classification and features such as NumRevolving-
TradesWBalanc, NumTotalTrade, NumTrades60Ever2DerogPubRec, etc., are the most dominating features and have a
negative impact in bad class classification for the NN model. Interestingly, the SHAP and LIME explanation methods
provide different feature rankings for the same instance in the predicted same class (e.g., bad) explanation, leading
to disagreement problems. For example, in Figure 3a, NumSatisfactoryTrades is the most important feature for bad
class classification in the SHAP explanation, while MSinceMostRecentDelq is the most important feature for the same
class classification in the LIME explanation, as shown in Figure 4a for the NN model. A similar phenomenon is also
observed for the Anchor explanation method, as shown in Figure 5. One thing we notice from these three post-hoc
explanation techniques is that they may disagree with each other for the same instance. Indeed, different post-hoc
explanation techniques have various goals, leading to an inconsistent and unreliable view of explanation Krishna et al.
(2022). Thus, solely looking at the feature ranking does not give sufficient disagreement problems with the predicted
class explanation. Therefore, we use six explanation evaluation metrics to measure the intuitions behind the dispute in
the predicted class explanation. The next section will evaluate the explanation methods against these metrics.

5.2 Performance of Explanation Methods

This section evaluates SHAP, LIME, and Anchor methods across six explanation quality metrics: fidelity (FI), stability
(ST), identity (ID), separability (SE), faithfulness (FA), and consistency (CO). To evaluate and measure the disagree-
ment problem in a principled manner, we randomly select 50 samples from the test datasets.Tables 1, 2, and 3 report
the mean and standard deviation of these metrics for the HELOC, German Credit, and COMPAS datasets. It is ob-
served that the SHAP method performs better regarding the NN model most of the time. For instance, SHAP achieves
a fidelity score of 1.0 in the NN model, which is 1.02× and 1.14× higher than LIME and Anchor, respectively, in-
dicating relatively low disagreement. However, LIME shows better performance on the COMPAS dataset. Notably,
We see that Anchor underperforms in the LR model setting, likely due to the mismatch between sparse rule-based
explanations and linear decision boundaries Ribeiro et al. (2018). While for the HELOC dataset, LIME consistently
demonstrates higher stability than SHAP across all models. Additionally, the NN model exhibits generally poor sta-
bility across all datasets. For example, in the German Credit dataset, SHAP yields a notably lower stability score with
the XGB model compared to other ML models, indicating reduced robustness in explanation consistency. However,
SHAP consistently shows higher identity scores, suggesting greater consistency for identical inputs. For example, on
the HELOC dataset, SHAP achieves an identity score of 0.814 for the NN model, which is 1.34× and 7.90× higher
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Table 3: Measured explanation evaluation metrics, with average and standard deviation values computed on 50 randomly selected
samples from the Compass dataset. Where ↑ indicates that higher values are better, ↓ indicates that lower values are better, and
bolded values are the best values.

XAI Model FI (↑) ST (↓) ID (↑) SE (↓) CO (↑) FA (↑)

SHAP

NN 0.95 ± 0.01 0.32 ± 0.01 0.78 ± 0.01 0.04 ± 0.01 0.35 ± 0.01 0.42 ± 0.01
XGB 0.90 ± 0.01 0.35 ± 0.01 0.71 ± 0.01 0.04 ± 0.01 0.31 ± 0.01 0.41 ± 0.01
RF 0.90 ± 0.01 0.41 ± 0.02 0.41 ± 0.02 0.06 ± 0.01 0.29 ± 0.01 0.37 ± 0.02
LR 0.89 ± 0.01 0.59 ± 0.02 0.10 ± 0.01 0.31 ± 0.02 0.10 ± 0.01 0.27 ± 0.01

LIME

NN 0.96 ± 0.01 0.41 ± 0.01 0.58 ± 0.02 0.05 ± 0.01 0.22 ± 0.01 0.40 ± 0.01
XGB 0.95 ± 0.01 0.46 ± 0.02 0.49 ± 0.02 0.09 ± 0.01 0.14 ± 0.01 0.33 ± 0.01
RF 0.90 ± 0.01 0.51 ± 0.02 0.35 ± 0.02 0.10 ± 0.01 0.20 ± 0.01 0.30 ± 0.01
LR 0.87 ± 0.01 0.55 ± 0.02 0.01 ± 0.01 0.39 ± 0.02 0.00 ± 0.01 0.15 ± 0.02

Anchor

NN 0.82 ± 0.02 0.52 ± 0.02 0.09 ± 0.01 0.21 ± 0.01 0.09 ± 0.01 0.38 ± 0.02
XGB 0.80 ± 0.01 0.59 ± 0.02 0.01 ± 0.01 0.30 ± 0.01 0.01 ± 0.01 0.29 ± 0.01
RF 0.80 ± 0.01 0.61 ± 0.02 0.00 ± 0.01 0.27 ± 0.01 0.10 ± 0.01 0.31 ± 0.01
LR 0.75 ± 0.01 0.69 ± 0.02 0.00 ± 0.00 0.41 ± 0.02 0.00 ± 0.01 0.25 ± 0.01

Table 4: Comprehensive MCDA rankings of the explanation methods for the NN model. The table shows the final rank order across
three datasets and seven distinct weighting scenarios, demonstrating the sensitivity of the "best" method selection to user priorities.
Scores for SAW and TOPSIS are shown in brackets (); for ELECTRE I, the kernel (set of non-outranked alternatives) is shown.

Framework Element HELOC Dataset German Credit Dataset COMPAS Dataset
Scenario MCDA Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

Balanced
SAW SHAP (0.71) LIME (0.68) Anchor (0.45) SHAP (0.64) LIME (0.62) Anchor (0.43) SHAP (0.66) LIME (0.58) Anchor (0.48)

TOPSIS SHAP (0.83) LIME (0.68) Anchor (0.00) SHAP (0.85) LIME (0.75) Anchor (0.00) SHAP (0.89) LIME (0.57) Anchor (0.00)
ELECTRE I {SHAP} - - {SHAP} - - {SHAP} - -

Fidelity-focused
SAW SHAP (0.87) LIME (0.86) Anchor (0.79) SHAP (0.86) LIME (0.85) Anchor (0.75) LIME (0.82) SHAP (0.81) Anchor (0.73)

TOPSIS SHAP (0.97) LIME (0.91) Anchor (0.00) SHAP (0.97) LIME (0.91) Anchor (0.00) LIME (0.96) SHAP (0.89) Anchor (0.00)
ELECTRE I {SHAP} - - {SHAP} - - {LIME} - -

Stability-focused
SAW LIME (0.72) SHAP (0.66) Anchor (0.49) SHAP (0.65) LIME (0.62) Anchor (0.47) SHAP (0.70) LIME (0.61) Anchor (0.50)

TOPSIS LIME (0.99) SHAP (0.61) Anchor (0.00) SHAP (0.94) LIME (0.71) Anchor (0.00) SHAP (0.99) LIME (0.53) Anchor (0.00)
ELECTRE I {LIME, SHAP} - - {SHAP} - - {SHAP} - -

Identity-focused
SAW SHAP (0.78) LIME (0.68) Anchor (0.42) SHAP (0.75) LIME (0.69) Anchor (0.41) SHAP (0.77) LIME (0.60) Anchor (0.44)

TOPSIS SHAP (1.00) LIME (0.73) Anchor (0.00) SHAP (1.00) LIME (0.88) Anchor (0.00) SHAP (1.00) LIME (0.66) Anchor (0.00)
ELECTRE I {SHAP} - - {SHAP} - - {SHAP} - -

Separability-focused
SAW SHAP (0.78) LIME (0.78) Anchor (0.56) LIME (0.71) SHAP (0.71) Anchor (0.53) SHAP (0.75) LIME (0.64) Anchor (0.55)

TOPSIS SHAP (0.90) LIME (0.90) Anchor (0.00) LIME (0.83) SHAP (0.83) Anchor (0.00) SHAP (0.95) LIME (0.69) Anchor (0.00)
ELECTRE I {LIME, SHAP} - - {LIME, SHAP} - - {SHAP} - -

Consistency-focused
SAW SHAP (0.73) LIME (0.64) Anchor (0.43) SHAP (0.69) LIME (0.59) Anchor (0.44) SHAP (0.71) LIME (0.55) Anchor (0.45)

TOPSIS SHAP (1.00) LIME (0.54) Anchor (0.00) SHAP (0.99) LIME (0.70) Anchor (0.00) SHAP (1.00) LIME (0.45) Anchor (0.00)
ELECTRE I {SHAP} - - {SHAP} - - {SHAP} - -

Faithfulness-focused
SAW LIME (0.70) SHAP (0.69) Anchor (0.47) LIME (0.68) SHAP (0.67) Anchor (0.49) SHAP (0.68) LIME (0.62) Anchor (0.51)

TOPSIS LIME (0.88) SHAP (0.83) Anchor (0.00) LIME (0.95) SHAP (0.89) Anchor (0.00) SHAP (0.87) LIME (0.74) Anchor (0.00)
ELECTRE I {LIME, SHAP} - - {LIME, SHAP} - - {SHAP} - -

than LIME and Anchor, respectively, highlighting significant disparities in identity and stability across the methods.
These findings underscore the need for systematic evaluation when selecting explanation techniques.

Furthermore, for the separability metric, LIME generally outperforms SHAP, achieving lower values across most mod-
els. For instance, in the HELOC dataset with the NN model, LIME records a separability score of 0.026, which is
approximately 1.2× and 5.61× lower than SHAP and Anchor, respectively. However, SHAP achieves lower sepa-
rability in the COMPAS dataset. Notably, the NN model consistently underperforms across datasets, while the RF
model with LIME yields the lowest separability in COMPAS. Regarding consistency, values remain distant from the
ideal score of 1.0, highlighting instability and disagreement across explanation methods. Indeed, faithfulness scores
are also below ideal. For instance, in the HELOC dataset, SHAP achieves a mean faithfulness of 0.494 for the XGB
model, which is 1.40× and 1.70× higher than LIME and Anchor, respectively, indicating that SHAP generally pro-
duces more faithful explanations. However, faithfulness varies significantly across methods and models, emphasizing
that no single explanation method consistently yields faithful explanations. These findings reinforce that explana-
tion methods can yield unstable and inconsistent results across instances, underscoring the core of the disagreement
problem.
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5.3 Comparative MCDA Ranking and Analysis

In the preceding section, we observed that no explanation method consistently provides precise explanations, and
no singular explanation evaluation metric can comprehensively evaluate explanation methods. Therefore, we are
combining the evaluation metrics of explanation methods by employing the MCDA method for selecting the proper
explanation method from a set of post-hoc explanation techniques for a given set of instances. The results of our
comparative MCDA framework are presented in Tables 4 and 5 across the NN and XGB models, revealing a rich and
multifaceted landscape of explanation method performance. By analyzing the rankings across seven distinct weighting
scenarios and three datasets for the NN model, we can move beyond simplistic best explanation method claims to a
more nuanced, context-aware understanding. Our analysis yields three primary insights. First, SHAP emerges as a
consistently robust and well-rounded choice. For instance, in the balanced scenario, SHAP is the unambiguous
winner across all three datasets and all three MCDA methods. This dominance extends to priority scenarios focused
on explanation integrity: in the identity-focused and consistency-focused scenarios, SHAP is again the clear Rank
1 choice, as shown in Table 4. This strong, cross-logic agreement suggests that for general-purpose use or when the
reliability and consistency of explanations are paramount, SHAP provides a powerful and justifiable default selection.

Second, our framework clearly demonstrates that the optimal explanation method is highly sensitive to both user
priorities and the underlying dataset. For instance, in the fidelity-focused scenario, while SHAP wins on the
HELOC and German Credit datasets, LIME emerges as the top choice for COMPAS. An even starker shift occurs in
the stability-focused scenario, where LIME is the top-ranked method for HELOC, but SHAP wins decisively on both
German Credit and COMPAS. These results empirically invalidate any one-size-fits-all heuristic (e.g., "always use
LIME for stability”) and underscore the critical need for a data-driven, context-specific evaluation like our proposed
framework provides.

Third, and most critically, the comparison between MCDA methods reveals the crucial role of decision logic in
exposing hidden trade-offs. This is most evident in scenarios where LIME is the top-ranked method by the com-
pensatory SAW and TOPSIS techniques. For instance, in the stability-focused scenario on the HELOC dataset, and
the faithfulness-focused scenarios on the HELOC and German Credit, while SAW/TOPSIS ranks LIME first, the
non-compensatory ELECTRE I method finds LIME and SHAP to be incomparable (i.e., both are in the kernel). A
deeper analysis reveals why: LIME’s superior score on the single prioritized metric is offset by significant weaknesses
on other criteria (such as its poor Identity score), as shown in Table 1. ELECTRE’s discordance condition flags this
trade-off, preventing LIME from being declared a clear winner, an insight completely invisible to the other methods.
This demonstrates that our framework not only ranks alternatives but also makes the very nature of the decision, simple
compensation versus a risk-averse choice with trade-offs, transparent to the user. Note that, unlike scoring methods
that produce a total ranking, ELECTRE I’s primary output is this kernel set. Therefore, we report only the members
of the kernel in the Rank 1 column, as the method does not provide a relative ranking for the outranked alternatives,
as shown in Table 4. Across all scenarios, the Anchor method is consistently ranked last, suggesting its rule-based
approach is less suited for these complex, non-linear models compared to its counterparts. Thus, these results demon-
strate that our framework not only selects the most suitable explanation method from a given set of techniques for
specific instances but also facilitates a transparent, context-aware decision-making process. A similar phenomenon is
also observed for identity, separability, consistency, and faithfulness-focused scenarios across all datasets. It is also
noted that, we observed similar trend for the XGB model across all datasets, as shown in Table 5.

6 Discussion

The experimental results underscore a fundamental shift in how the XAI disagreement problem can be approached.
Instead of searching for a single "best" explanation method, our comparative MCDA framework provides a more
pragmatic and defensible path: selecting the "most suitable" method for a specific context and set of priorities. This
shift carries key implications for practitioners and researchers, which we elaborate on below.

Implications for Practitioners: For ML practitioners and domain experts, this work provides a transparent, structured
methodology to navigate the complex landscape of XAI tools. Rather than relying on anecdotal evidence or the
popularity of a method, users can articulate their priorities (e.g., "for this regulatory audit, explanation stability is
paramount") and receive a well-justified recommendation. The comparison between compensatory (SAW/TOPSIS)
and non-compensatory (ELECTRE I) methods is especially valuable, as it highlights the distinction between a "best on
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Table 5: Comprehensive MCDA rankings of the explanation methods for the XGBoost model. The table shows the final rank order
across three datasets and seven distinct weighting scenarios, demonstrating the sensitivity of the “best" method selection to user
priorities. Scores for SAW and TOPSIS are shown in brackets (); for ELECTRE I, the kernel (set of non-outranked alternatives) is
shown.

Framework Element HELOC Dataset German Credit Dataset COMPAS Dataset
Scenario MCDA Method Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

Balanced
SAW SHAP (0.68) LIME (0.60) Anchor (0.42) SHAP (0.66) LIME (0.62) Anchor (0.39) SHAP (0.66) LIME (0.56) Anchor (0.37)
TOPSIS SHAP (1.00) LIME (0.78) Anchor (0.00) SHAP (0.92) LIME (0.89) Anchor (0.00) SHAP (0.95) LIME (0.70) Anchor (0.00)
ELECTRE I {SHAP} - - {LIME, SHAP} - - {SHAP} - -

Fidelity-Focused
SAW SHAP (0.84) LIME (0.82) Anchor (0.70) LIME (0.83) SHAP (0.82) Anchor (0.72) LIME (0.80) SHAP (0.79) Anchor (0.67)
TOPSIS SHAP (0.97) LIME (0.87) Anchor (0.00) LIME (0.96) SHAP (0.91) Anchor (0.00) LIME (0.98) SHAP (0.87) Anchor (0.00)
ELECTRE I {SHAP} - - {LIME} - - {LIME} - -

Stability-Focused
SAW SHAP (0.69) LIME (0.64) Anchor (0.46) SHAP (0.67) LIME (0.61) Anchor (0.42) SHAP (0.68) LIME (0.58) Anchor (0.39)
TOPSIS SHAP (0.95) LIME (0.87) Anchor (0.00) SHAP (1.00) LIME (0.63) Anchor (0.00) SHAP (1.00) LIME (0.62) Anchor (0.00)
ELECTRE I {SHAP} - - {SHAP} - - {SHAP} - -

Identity-Focused
SAW SHAP (0.71) LIME (0.65) Anchor (0.39) LIME (0.70) SHAP (0.69) Anchor (0.36) SHAP (0.71) LIME (0.56) Anchor (0.34)
TOPSIS SHAP (1.00) LIME (0.98) Anchor (0.00) LIME (1.00) SHAP (0.92) Anchor (0.00) SHAP (1.00) LIME (0.61) Anchor (0.00)
ELECTRE I {SHAP} - - {LIME} - - {SHAP} - -

Separability-Focused
SAW SHAP (0.85) LIME (0.80) Anchor (0.64) SHAP (0.83) LIME (0.82) Anchor (0.60) SHAP (0.83) LIME (0.77) Anchor (0.62)
TOPSIS SHAP (1.00) LIME (0.90) Anchor (0.00) SHAP (0.98) LIME (0.97) Anchor (0.00) SHAP (1.00) LIME (0.88) Anchor (0.00)
ELECTRE I {SHAP} - - {LIME, SHAP} - - {SHAP} - -

Consistency-Focused
SAW SHAP (0.72) LIME (0.56) Anchor (0.41) SHAP (0.69) LIME (0.58) Anchor (0.36) SHAP (0.70) LIME (0.53) Anchor (0.33)
TOPSIS SHAP (1.00) LIME (0.13) Anchor (0.00) SHAP (1.00) LIME (0.45) Anchor (0.00) SHAP (1.00) LIME (0.34) Anchor (0.00)
ELECTRE I {SHAP} - - {SHAP} - - {SHAP} - -

Faithfulness-Focused
SAW SHAP (0.71) LIME (0.61) Anchor (0.45) SHAP (0.68) LIME (0.62) Anchor (0.41) SHAP (0.68) LIME (0.58) Anchor (0.39)
TOPSIS SHAP (1.00) LIME (0.47) Anchor (0.00) SHAP (0.93) LIME (0.82) Anchor (0.00) SHAP (0.98) LIME (0.76) Anchor (0.00)
ELECTRE I {SHAP} - - {SHAP} - - {SHAP} - -

average" choice and one that avoids critical, "veto-level" weaknesses. For instance, let us recall the healthcare scenario
discussed in Section 1, our framework allows a practitioner to evaluate whether SHAP or LIME provides more reliable
insights for clinicians based on specific diagnostic priorities. By formalizing this selection, our framework helps ensure
the chosen explanations are consistent and trustworthy, fostering collaborative decision-making between the AI system
and healthcare professionals and mitigating trust issues.

Methodological Implications for Researchers: Our work demonstrates the value of applying established decision
science principles to challenges in XAI. The discordance observed between compensatory (e.g., SAW, TOPSIS) and
non-compensatory (ELECTRE I) methods highlights that the choice of aggregation logic itself is a crucial, often over-
looked, aspect of meta-evaluations in AI. It suggests that future XAI evaluation benchmarks should consider offering a
suite of aggregation techniques rather than a single, fixed leaderboard score. Furthermore, for researchers developing
novel explanation methods, our framework provides a multi-faceted benchmark. Instead of claiming superiority on a
single metric, new methods can be evaluated on their performance profiles across various weighting scenarios, offering
a more complete and honest assessment of their strengths and trade-offs against existing techniques. This provides a
structured approach to identify where a new method is susceptible to disagreement and how it compares to established
alternatives.

7 Limitations and Future Work

Although our proposed method addresses a key challenge for the practical adoption of XAI, it has few limitations.
First, we evaluated our framework using three ML models and one relatively simple DL model. With the growing
interest in foundation models and generative AI, we have not yet applied our framework to more complex DL archi-
tectures, such as Transformer-based networks or diffusion models. Extending our evaluation to these models is an
important direction for future work. Second, our study considered three post-hoc explanation methods and six expla-
nation evaluation metrics. While this set is representative, it is not exhaustive and may not capture all relevant aspects
of explanation quality. Third, we focused solely on feature-importance-based explanation methods in this work. As
part of our future research, we plan to evaluate our proposed method alongside other explanation families, includ-
ing example-based, counterfactual, and visual methods. Moreover, the weighting scenarios used in our experiments
were pre-defined for illustrative purposes. Real-world deployments would benefit from a more formal preference
elicitation process involving stakeholders, such as the Analytic Hierarchy Process (AHP) Saaty (2008). Finally, our
framework currently resolves disagreements at the method-selection level; it does not merge or reconcile feature-level
disagreements for a single prediction, which remains an open avenue for future investigation.
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8 Conclusion

This paper addressed the critical disagreement problem in XAI by proposing and validating a novel evaluation frame-
work based on comparative Multi-Criteria Decision Analysis. By leveraging SAW, TOPSIS, and ELECTRE I, we
moved beyond a single aggregated score to a transparent, preference-driven process for selecting the most suitable
post-hoc explanation method. Validated on four ML/DL models, three explanation methods, and three real-world
datasets, our framework successfully navigates the trade-offs between competing explanation quality criteria (e.g.,
fidelity and stability), highlighting not only the best-performing methods under different scenarios but also the critical
sensitivities in the decision logic itself. This work provides practitioners and researchers with a robust, adaptable tool
to make more principled and justifiable choices about explainability, thereby fostering greater trust and reliability in
AI systems.
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