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ABSTRACT

Recent diffusion models provide a promising alternative zero-shot solution to
noisy linear inverse problems without retraining for specific inverse problems. In
this paper, we propose the first unified framework for diffusion-based zero-shot
methods from the view of approximating conditional posterior mean for the re-
verse process. We reveal that recent diffusion-based zero-shot methods are equiv-
alent to making isotropic Gaussian approximation to intractable posterior distri-
butions over clean images given diffused noisy images, with only difference in
handcrafted design of isotropic posterior covariances. Inspired by this finding,
we develop the optimal posterior covariance of the posterior distribution via max-
imum likelihood estimation. We provide a general solution based on three ap-
proaches specifically designed for posterior covariance optimization, by training
from scratch and using pre-trained models with and without reverse covariances.
Remarkably, the proposed framework can be achieved in a plug-and-play fashion
based on pre-trained unconditional diffusion models by converting reverse covari-
ances or via Monte Carlo estimation without reverse covariances. Experimental
results demonstrate that the proposed framework significantly outperforms exist-
ing zero-shot methods and enhances the robustness to hyper-parameters.

1 INTRODUCTION

Noisy linear inverse problems are widely studied for a variety of tasks in the field of image process-
ing, including denoising, inpainting, deblurring, super-resolution, and compressive sensing. The
noisy linear inverse problems are formulated to accommodate to widely adopted degradation model
where images are measured with linear projection under the noise corruption.

Recently, diffusion models have been emerging as promising methods for solving inverse problems.
According to the training strategies, these methods can be categorized into two groups: 1) super-
vised methods that aim to learn a conditional diffusion model using datasets consisting of pairs of
degraded and clean images (Saharia et al. (2022); Whang et al. (2022); Luo et al. (2023); Chan
et al. (2023)), and 2) zero-shot methods that leverage pre-trained unconditional diffusion models for
conditional sampling in various scenarios of inverse problems without the requirement of retraining.
In this paper, we focus on the zero-shot methods that can accommodate to various tasks without
retraining. To ensure the consistency of optimizing fidelity under conditional sampling, existing
zero-shot methods either adopt projection onto the measurement subspace (Choi et al. (2021); Lug-
mayr et al. (2022); Song et al. (2022); Wang et al. (2023); Zhu et al. (2023)) or leverage the similar
idea as classifier guidance (Song et al. (2021b); Dhariwal & Nichol (2021)) to modify the sampling
process with the likelihood score (Song et al. (2023); Chung et al. (2023)).

Diffusion models initially establish a forward process that introduces noise to the original data x0,
generating noisy data xt at time t, and then implement the reverse process to generate x0 obey-
ing the original data distribution. The key to realize the reverse process is the posterior mean
E[x0|xt] =

∫
x0p(x0|xt)dx0, which would be the optimal estimation of x0 given xt in the sense

of minimizing the mean square error. In the reverse process for conditional sampling in inverse
problems, estimating x0 is based on both xt and measurement y; hence, the optimal estimation is
determined by the conditional posterior mean E[x0|xt,y].

In this paper, we provide the first unified framework for zero-shot methods from the view of ap-
proximating E[x0|xt,y]. We reveal that recent zero-shot methods (Song et al. (2023); Chung et al.
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(2023); Wang et al. (2023); Zhu et al. (2023) are equivalent to isotropic Gaussian approximations to
intractable posterior distributions pt(x0|xt) over clean images x0 given diffused noisy images xt

but differ in various handcrafted isotropic posterior covariances. This finding inspires us to develop
optimal posterior covariances via maximum likelihood estimation (MLE) to further optimize recent
zero-shot methods. Consequently, we achieve a general solution to zero-shot methods by developing
three approaches for optimizing posterior covariances by training from scratch and using pre-trained
models with and without reverse covariances. Remarkably, leveraging the pre-trained unconditional
diffusion models (Nichol & Dhariwal (2021)), the proposed framework can be applied to various
zero-shot methods in a plug-and-play fashion. Experimental results demonstrate that the proposed
framework significantly outperforms existing zero-shot methods and enhances the robustness to hy-
perparameters.

2 PRELIMINARIES

2.1 SOLVING INVERSE PROBLEMS UNDER BAYESIAN FRAMEWORK

In inverse problems, we wish to recover the unknown signal x0 ∈ Rd given noisy measurements
y ∈ Rm, where

y = Ax0 + n (1)
It is usually assumed that by the expert knowledge of the sensing device, A ∈ Rm×d is known
and n ∼ N (0, σ2I) is an i.i.d. additive Gaussian noise with a known standard deviation of σ.
However, recovering x0 from the degraded measurements y becomes ill-posed due to the under-
determined A and the existence of noise. To solve the ill-posed inverse problem, a prior is re-
quired to constrain the solution according to desired image statistics (Feng et al. (2023)). From a
Bayesian perspective, the prior is described by assuming x0 obeys an unknown prior distribution
p(x0), and we have a likelihood function p(y|x0) = N (y|Ax0, σ

2I) determined by equation 1.
We solve inverse problems by formulating a posterior distribution p(x0|y) over clean images given
noisy measurements, which in principle is determined given p(x0) and p(y|x0) by Bayes’ theorem:
p(x0|y) = p(x0)p(y|x0)/

∫
p(x0)p(y|x0)dx0.

2.2 DIFFUSION MODELS AND CONDITIONING

The goal is using diffusion models to model the complex posterior distribution p(x0|y) for solving
inverse problems. To begin with, let us define a family of Gaussian perturbation kernels pt(xt|x0)
of x0 ∼ p(x0) by injecting i.i.d. Gaussian noise of standard deviation σt to x0 and then scaling by
the factor of st, i.e., pt(xt|x0) = N (xt|stx0, s

2
tσ

2
t I). The standard deviation σt is monotonically

increased with respect to time t ∈ [0, T ], starting from σ0 = 0 and reaching a value of σT being
much larger than the standard deviation of p(x0), ensuring that samples from xT ∼ p(xT ) are
indistinguishable to samples fromN (0, s2Tσ

2
T I). Since xt is independent to y once x0 is known, we

characterize a joint distribution between x0,y and xt as pt(x0,y,xt) = p(x0)p(y|x0)pt(xt|x0),
which can also be represented by an probabilistic graphical model y ← x0 → xt. There exist
multiple formulations of diffusion models in the literature (Song & Ermon (2019); Ho et al. (2020);
Song et al. (2021a); Kingma et al. (2021); Song et al. (2021b); Karras et al. (2022)). Here we use
ordinary differential equation (ODE) formulation and select st = 1, σt = t suggested in Karras et al.
(2022) for simplicity. Let us consider the following ODE:

dxt =
xt − E[x0|xt]

t
dt, xT ∼ pT (xT ) (2)

The only source of randomness of such ODE is induced by the initial sample xT ∼ pT (xT ), and it
possesses an important property that xt generated by the ODE maintains the exact same marginals to
xt obtained by injecting Gaussian noise to x0, i.e., pt(xt). Generally, diffusion models approximate
E[x0|xt] with a time-dependent denoiser Dt(xt) (which is referred to as the unconditional diffusion
model throughout the paper), trained via minimizing a simple L2 loss for all t ∈ [0, T ]:

min
Dt

Ept(x0,xt)[∥x0 −Dt(xt)∥22] (3)

With sufficient data and model capacity, the optimal Dt(xt) is the minimum mean square er-
ror (MMSE) estimator of x0 given xt and equals to the posterior mean E[x0|xt]. Thus, samples
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Methods Guidance rt

DPS (Chung et al. (2023)) I approach 0

ΠGDM (Song et al. (2023)) I
√
σ2
t /(σ

2
t + 1)

DDNM (Wang et al. (2023)) II any
DiffPIR (Zhu et al. (2023)) II σt/

√
λ

Table 1: Summary of zero-shot methods. Recent methods can be regarded as making isotropic
Gaussian approximations to the posterior distributions over clean images given noisy images.

from p(x0) can be obtained by sampling xT from N (0, s2Tσ
2
T I) and then simulating equation 2

from t = T to t = 0 using black box ODE solver that replaces E[x0|xt] with a well-trained Dt(xt).

To solve inverse problems, we are interested in p(x0|y) and formulate an ODE whose marginals are
pt(xt|y) such that we can simulate the ODE to sample from p(x0|y). The desired ODE is given by

dxt =
xt − E[x0|xt,y]

t
dt, xT ∼ pT (xT |y) (4)

For sufficiently large σT , samples xT ∼ p(xT |y) are also indistinguishable to samples from
N (0, s2Tσ

2
T I) (Appendix D.2, Dhariwal & Nichol (2021)). Therefore, the unconditioned sampling

procedure of equation 2 can be utilized for the conditioned sampling as equation 4, except for intro-
ducing the conditional posterior mean E[x0|xt,y] to substitute E[x0|xt]

1.

3 A UNIFIED FRAMEWORK FOR SOLVING INVERSE PROBLEMS USING
UNCONDITIONAL DIFFUSION MODELS

To solve inverse problems, a common approach is to approximate E[x0|xt,y] by training a condi-
tional diffusion model using supervised learning. However, this approach requires training separate
models for different inverse problems, which can be computationally demanding. In this work, we
aim to leverage pre-trained unconditional diffusion models for conditional sampling in inverse prob-
lems. This approach allows us to utilize the models without the need for additional training. We
summarize three steps for solving the target inverse problem:

1. Obtain an estimation of E[x0|xt] through the unconditional diffusion model;

2. Estimate the conditional posterior mean E[x0|xt,y] based on E[x0|xt];

3. Substitute the estimation for E[x0|xt] in sampling process (see equation 2 and equation 4).

Recent diffusion-based zero-shot methods, including DPS (Chung et al. (2023)), ΠGDM (Song et al.
(2023)), DDNM (Wang et al. (2023)), and DiffPIR (Zhu et al. (2023)), follow the three steps, but
they vary in the approach to estimating E[x0|xt,y] (step 2). Here, we establish a unified framework
embracing these methods, showing that they in fact estimate E[x0|xt,y] via making isotropic Gaus-
sian approximations N (x0|E[x0|xt], r

2
t I) to the intractable posterior pt(x0|xt) with different rt,

as shown in Table 1. We classify these methods into two categories, Guidance I and II, with detailed
descriptions as follows.

3.1 TYPE I GUIDANCE: APPROXIMATING THE LIKELIHOOD SCORE FUNCTION

We classify DPS and ΠGDM into one category, referred to as Type I guidance. Type I guidance is
closely related to classifier guidance (Dhariwal & Nichol (2021)), where the conditional posterior
mean E[x0|xt,y] is approximated based on the following proposition:
Proposition 1. The conditional posterior mean equals to the posterior mean drifted by scaled like-
lihood score function, formally

E[x0|xt,y] = E[x0|xt] + stσ
2
t∇xt log pt(y|xt). (5)

We can leverage the pre-trained unconditional diffusion model to approximate E[x0|xt]. However,
the likelihood score ∇xt

log pt(y|xt) is computationally intractable. In inverse problems, only the
1Of note, this conclusion can be extended to DDPM, DDIM, or SDE-formalized diffusion models.
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likelihood p(y|x0) at t = 0 is known, while the likelihood for any t > 0 is given by an intractable
integral over all possible x0:

pt(y|xt) =

∫
p(y|x0)pt(x0|xt)dx0 (6)

DPS (Chung et al. (2023)) DPS can be viewed as approximating pt(x0|xt) using a delta distribu-
tion centered at the posterior mean E[x0|xt], which can be regarded as the limit of the Gaussian
N (x0|E[x0|xt], r

2
t I) when the variance r2t approaches zero. In such case, the likelihood pt(y|xt)

is approximated by

pt(y|xt) ≈
∫

p(y|x0)δ(x0 − E[x0|xt])dx0 = p(y|x0 = E[x0|xt]). (7)

However, simply replacing pt(y|xt) with p(y|x0 = E[x0|xt]) to compute the likelihood score
does not perform well in practice. For example, log p(y|x0 = E[x0|xt]) becomes unbounded in
the noiseless case (i.e., σ → 0). To address this issue, DPS empirically adjusted the strength of
the guidance by replacing the likelihood score ∇xt

log pt(y|xt) with −ζt∇xt
∥y − AE[x0|xt]∥22,

where ζt = ζ/∥y −AE[x0|xt]∥ with a hyper-parameter ζ.

ΠGDM (Song et al. (2023)) The simple delta distribution used in DPS is a very rough approximation
to pt(x0|xt) as it completely ignores the uncertainty of x0 given xt. As t increases, pt(x0|xt) has
larger uncertainty that close to the original data distribution, in which case choosing rt > 0 could
be more reasonable. In ΠGDM, rt is heuristically selected as

√
σ2
t /(1 + σ2

t ) under the assumption
that the original data distribution p(x0) is the standard normal distribution N (0, I). In such case,
the likelihood pt(y|xt) is approximated by

pt(y|xt)≈
∫
N (y|Ax0, σ

2I)N (x0|E[x0|xt], r
2
t I)dx0=N (y|AE[x0|xt], σ

2I + r2tAAT ) (8)

In equation 8, the score is a vector-Jacobian product that can be computed using back-
propagation (Song et al. (2023)). Proposition 1 can be used for achieving different purposes, in-
cluding refining the estimation of x0 for learning sampling patterns in MRI (Ravula et al., 2023)
and realizing guidance for flow-based generative models to solve inverse problems (Pokle et al.,
2023).

3.2 TYPE II GUIDANCE: APPROXIMATING THE CONDITIONAL POSTERIOR MEAN USING
PROXIMAL SOLUTION

We classify DiffPIR and DDNM into one category, referred to as Type II guidance. Type II guidance
approximates the conditional posterior mean E[x0|xt,y] by finding a solution x̂

(t)
0 which is both

close to E[x0|xt] and consistent with the measurement y. Compared to Type I guidance, Type II
guidance is more efficient by circumventing the expensive back-propagation through the denoiser.
We show that, though Type II guidance is developed from completely different perspective, it can
also be regarded as making isotropic Gaussian approximation to the true posterior pt(x0|xt).

DiffPIR (Zhu et al. (2023)) The core step in DiffPIR is replacing the denosing results E[x0|xt] in
the unconditional sampling process with the solution of the following proximal problem:

x̂
(t)
0 = argmin

x0

∥y −Ax0∥2 + ρt∥x0 − E[x0|xt]∥2, ρt =
λσ2

σ2
t

, (9)

where λ is a hyper-parameter. Our key insight is that such a step can still be interpreted as ap-
proximating E[x0|xt,y] via making isotropic Gaussian approximations N (x0|E[x0|xt], r

2
t I) to

the intractable posterior distributions pt(x0|xt). In fact, the mean of the distribution pt(x0|xt,y) ∝
p(y|x0)pt(x0|xt)

2 is E[x0|xt,y]. However, it is intractable to find the mean of pt(x0|xt,y).
To address this, we introduce a Gaussian approximation qt(x0|xt) = N (x0|E[x0|xt], r

2
t I) of

pt(x0|xt) and approximate pt(x0|xt,y) using qt(x0|xt,y) ∝ p(y|x0)qt(x0|xt). Therefore,

2Here we leverage the conditional independent between y and xt given x0, so pt(y|x0,xt) = p(y|x0).
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qt(x0|xt,y) is a Gaussian with its mean obtained by solving the optimization problem:
Eq[x0|xt,y] = argmax

x0

log qt(x0|xt,y) = argmax
x0

log p(y|x0) + log qt(x0|xt)

= argmin
x0

∥y −Ax0∥2 +
σ2

r2t
∥x0 − E[x0|xt]∥2, (10)

where Eq[x0|xt,y] denotes the mean of qt(x0|xt,y). Note that equation 9 used in DiffPIR can be
obtained from equation 10 by setting rt = σt/

√
λ. Therefore, DiffPIR can be viewed as using the

Gaussian approximation qt(x0|xt) = N (x0|E[x0|xt], (σ
2
t /λ)I) for pt(x0|xt).

DDNM (Wang et al. (2023)) The core step of DDNM resorts to range-null space decomposition.
Specifically, to enforce the solution x̂

(t)
0 satisfying the measurement consistency y = Ax̂

(t)
0 , DDNM

replaces the range space component of E[x0|xt] with A†y but keeps the null space component un-
changed, i.e., x̂(t)

0 = A†y + (I − A†A)E[x0|xt]. We find that the replacement of range space
component with A†y is equivalent to replacing E[x0|xt] with Eq[x0|xt,y] when the measurement
noise σ vanishes. Thus, DDNM is equivalent to approximating pt(x0|xt) using an isotropic Gaus-
sian. In Proposition 2, we formalize the equivalency for DDNM.

Proposition 2. For any rt > 0, Eq[x0|xt,y] approaches x̂
(t)
0 used in DDNM as the variance of

measurement noise approaches zero. Formally, we have

lim
σ→0

Eq[x0|xt,y] = A†y + (I −A†A)E[x0|xt]. (11)

4 IMPROVING DIFFUSION MODELS FOR INVERSE PROBLEMS USING
OPTIMAL POSTERIOR COVARIANCE

With the above discussion, prior works can be regarded as making isotropic Gaussian approxima-
tions to the intractable posterior distributions pt(x0|xt) over clean images x0 given diffused noisy
images xt. This motivates us to investigate whether the performance of existing approaches can be
further improved through the use of “better” posterior covariances in theses Gaussian approxima-
tions. Specifically, we consider to approximate pt(x0|xt) using Gaussian with posterior covariance
Σt(xt), such that qt(x0|xt) = N (x0|E[x0|xt],Σt(xt)).

Type I guidance: The likelihood is approximated as follows in a similar way of equation 8:

pt(y|xt) ≈ N (y|AE[x0|xt], σ
2I +AΣt(xt)A

T ) (12)

Type II guidance: We consider to solve the following auto-weighted proximal problem:
Eq[x0|xt,y] = argmin

x0

∥y −Ax0∥2 + σ2∥x0 − E[x0|xt]∥2Σ−1
t (xt)

(13)

where ∥x∥2Λ denotes xTΛx. For commonly seen A, the score of equation 12 and the minimizer of
equation 13 can be obtained by deriving closed-form solution under isotropic posterior covariance
case Σt(xt) = r2t (xt)I , or using conjugate gradient method (CG) for more general case (details in
Appendix B and Appendix C).

Below, we develop three alternative ways to achieve optimal posterior covariance via MLE, re-
spectively designed for three common cases: 1) pre-trained unconditional diffusion model is un-
available (Section 4.1), 2) reverse covariance prediction is available from the given unconditional
diffusion model (Section 4.2), and 3) reverse covariance prediction is not available (Section 4.3).

4.1 OPTIMIZING POSTERIOR COVARIANCE BY LEARNING FROM SCRATCH

We can additionally learn an optimal covariance of qt(x0|xt) in the pre-training stage of uncondi-
tional diffusion model, in contrast to the prior works that only learn the mean of qt(x0|xt), i.e., the
denoiser. Specifically, the mean and covariance of qt(x0|xt) is parameterized using time-dependent
neural networks µt and Σt, such that qt(x0|xt) = N (µt(xt),Σt(xt)). In the pre-training stage, we
learn qt(x0|xt) by minimizing the weighting integral of expected forward KL divergence between
pt(x0|xt) and qt(x0|xt).

min
q

∫
ωtEpt(xt)[DKL(pt(x0|xt)∥qt(x0|xt))]dt (14)
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Since minimizing the KL divergence DKL(pt(x0|xt)∥qt(x0|xt)) equals to maximizing the log-
likelihood of qt(x0|xt), equation 14 can be optimized in a tractable way as

max
q

∫
Ept(x0,xt)[ωt log qt(x0|xt)]dt. (15)

However, letting all the elements of Σt(xt) be learnable is computationally demanding, especially
for high-dimensional signals. Therefore, we restrict to diagonal posterior covariance: Σt(xt) =
diag[r2t (xt)], where r2t (xt) is posterior variances3. Besides, as shown in Section 4.2, such restric-
tion also allow us to directly leverage off-the-shelf reverse covariance prediction to obtain posterior
covariance prediction. Also, in Proposition 3, we develop the solution to equation 15 under diagonal
posterior covariance.
Proposition 3. The optimal mean µ∗

t (xt) and the optimal posterior variances r∗2t (xt) to equa-
tion 15 are obtained by

µ∗
t (xt) = E[x0|xt] (16)

r∗2t (xt) = Ept(x0|xt)[(x0 − E[x0|xt])
2] (17)

Proposition 3 shows that the optimal mean µ∗
t (xt) of qt(x0|xt) is the MMSE estimator E[x0|xt].

This result suggests that unconditional sampling can be achieved by plugging a well-trained µt(xt)
in equation 2, while µt and Σt are used together for solving inverse problems.

4.2 OPTIMIZING POSTERIOR VARIANCES BY CONVERTING OPTIMAL REVERSE VARIANCES

In addition to obtain optimal posterior covariance by training diffusion models from scratch us-
ing equation 14, we provide an alternative solution to leverage the pre-trained diffusion models.
Recent pre-trained diffusion models often predict the optimal reverse variances (Nichol & Dhariwal
(2021)) for improving performance when using ancestral sampling of discrete diffusion models (or
denoising diffusion probabilistic models (DDPM)) (Ho et al. (2020); Sohl-Dickstein et al. (2015)).
To avoid pre-training, we directly convert the optimization of posterior variances to the optimization
reverse variances. To this end, we establish a connection between the optimal posterior variances
r∗2t (xt) and the optimal reverse variances v∗2

t (xt) proposed in (Bao et al. (2022b)).

Unlike continuous ODE formulation introduced in Section 2.2, diffusion models pre-trained under
the DDPM framework are latent variable models defined by p(x0) =

∫
p(x0:T )dx1:T . The joint

distribution p(x0:T ) is referred to as the reverse process defined as a Markov chain of learnable
Gaussian transitions starting at p(xT ) = N (0, I) (Ho et al. (2020)):

p(x0:T ) = p(xT )

T∏
t=1

p(xt−1|xt), p(xt−1|xt) = N (xt−1|mt(xt),Ct(xt)). (18)

DDPM defines a forward process q(x1:T |x0) by gradually injecting noise to the data. Please refer to
Appendix A.4 for the detailed definition of q(x1:T |x0). We fit p(x0) to the original data distribution
q(x0) by minimizing the KL divergence between the forward and the reverse processes:

min
p

DKL(q(x0:T )||p(x0:T )), q(x0:T ) = q(x0)q(x1:T |x0) (19)

Bao et al. (2022b) propose a theoretical result that determines the optimal solution to equation 19
under the signal-independent isotropic covariance case: Ct(xt) = c2tI , and generalize the result
in Bao et al. (2022a). In Theorem 1, we present the result for signal-dependent diagonal covariance
Ct(xt) = diag[v2

t (xt)] as used in (Nichol & Dhariwal (2021)).
Theorem 1. Let Ct(xt) = diag[v2

t (xt)] be a signal-dependent diagonal covariance for the reverse
covariance. When µ̃t, βt, ᾱt, β̄t are determined by the forward process q(x1:T |x0), the optimal
solutions m∗

t (xt) and v∗2
t (xt) to equation 19 are

m∗
t (xt) = µ̃t(xt,E[x0|xt]), (20)

v∗2
t (xt) = β̃t + (

√
ᾱt−1βt

1− ᾱt
)2 · r∗2t (xt) (21)

3Variances refer to the diagonal elements of the covariance matrix.
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Inpaint (Random) Deblur (Gaussian) Deblur (Motion) Super resolution (4×)

Avg. MAD 1.6975× 10−6 6.4629× 10−4 1.5461× 10−3 1.1937× 10−2

Table 2: DDNM v.s. DiffPIR in noiseless inverse problems. We report the averaged MAD between
their conditional posterior means averaged over all sampling steps and test images.

where r∗2t (xt) is the optimal posterior variances determined by equation 17 under st =
√
ᾱt and

σt =
√

β̄t/ᾱt, and β̃t =
β̄t−1

β̄t
βt.

Theorem 1 implies that, given the reverse variances v̂2
t (xt) predicted by a pre-trained DDPM model

at time step t, the posterior variances are obtained according to equation 21 by

r̂2t (xt) = (v̂2
t (xt)− β̃t) ·

(√
ᾱt−1βt

1− ᾱt

)−2

. (22)

4.3 OPTIMIZING POSTERIOR VARIANCES WITHOUT REVERSE VARIANCES

We further develop the optimal posterior variances using a pre-trained unconditional diffusion model
without providing the reverse variances prediction v̂2

t (xt) (e.g., Ho et al. (2020)). In this case, we
consider Σt(xt) is signal-independent. Suppose Σt(xt) = r2t I is an isotropic covariance with a
time-dependent standard deviation rt. We directly optimize rt by forcing the derivative of equa-
tion 15 with an optimal µt with regard to rt to zero. Thus, we obtain that

r∗2t =
1

d
Ept(x0,xt)[∥x0 − E[x0|xt]∥2]. (23)

Note that we only estimate the expected reconstruction error of the MMSE estimator E[x0|xt].
Similar to Bao et al. (2022b), given a pre-trained unconditional diffusion model Dt, r∗2t is estimated
using Monte Carlo samples as

r̂2t =
1

dM

M∑
m=1

∥x(m)
0 −Dt(x

(m)
t )∥22, x

(m)
0 ,x

(m)
t ∼ pt(x0,xt) (24)

where M is the number of Monte Carlo samples. In the discrete-time case, r̂2t is pre-computed for
any t and reused in subsequent computations. In the continuous-time case, we pre-compute r̂2t for
1000 discrete time steps, and for any t used in sampling, we use the pre-computed result with the
nearest time step to t.

5 EXPERIMENTS

We implement our techniques and re-implement prior works on a newly written codebase based on
an open source diffusion codebase k-diffusion4. This allows us to minimize the effect of different
implementation for fair comparisons, and to allow the prior works using more advanced sampler
which is not supported by the original codebase. Following (Chung et al. (2023); Wang et al. (2023)),
we performed experiments on the FFHQ 256×256 and ImageNet 256×256 datasets to compare
different methods. For each dataset, we report the results averaged over 100 validation images.
Following (Chung et al. (2023); Zhu et al. (2023)), the pre-trained unconditional diffusion models
are from Dhariwal & Nichol (2021) and Chung et al. (2023) for ImageNet and FFHQ, respectively.

The degradation models are specified mostly following (Zhu et al. (2023)): (i) For inpainting, 50
percent of the total pixels are masked out at random. (ii) For Gaussian debluring and motion de-
bluring, we use the same setup of the bluring kernels to (Chung et al. (2023)). (iii) For super
resolution (SR), we consider bicubic downsampling. All measurements are corrupted by Gaussian
noise with σ = 0.05. For more experimental details and results, see Appendix E.

4https://github.com/crowsonkb/k-diffusion
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(a) Comparison on FFHQ dataset (b) Comparison on ImageNet dataset
Figure 1: Comparing the averaged values of e and r̂2t (xt). r̂2t (xt) obtained using equation 22 is
promising only in low noise level region.

Figure 2: Visualization of e and r̂2t (xt) of an example image x0 at different t (averaged over
RGB channels for better visualization). Top row: e; Bottom row: r̂2t (xt).

Dataset Method Inpaint (Random) Deblur (Gaussian) Deblur (Motion) Super resolution (4×)

PSNR ↑ LPIPS ↓ FID ↓ PSNR ↑ LPIPS ↓ FID ↓ PSNR ↑ LPIPS ↓ FID ↓ PSNR ↑ LPIPS ↓ FID ↓

FFHQ

DPS 32.62 0.1323 49.46 24.93 0.3652 136.12 19.83 0.4924 212.48 27.26 0.2054 61.36
ΠGDM 30.98 0.1422 49.89 27.62 0.1910 59.93 26.69 0.2209 66.14 27.49 0.2005 61.46

Analytic (Ours) 33.76 0.0845 28.83 27.71 0.1850 53.09 26.73 0.2183 64.77 27.58 0.1968 59.83
Convert (Ours) 33.91 0.0794 25.90 27.74 0.1836 52.42 26.77 0.2156 62.88 27.57 0.1962 58.37

ImageNet

DPS 29.55 0.1490 36.58 22.23 0.4630 173.77 19.00 0.5554 282.21 23.82 0.3231 92.89
ΠGDM 27.16 0.2328 64.96 24.28 0.3429 102.89 23.56 0.3781 113.89 24.16 0.3552 100.36

Analytic (Ours) 29.16 0.1446 35.51 24.32 0.3334 93.21 23.60 0.3668 113.39 24.25 0.3495 95.33
Convert (Ours) 29.48 0.1329 29.14 24.34 0.3327 95.23 23.58 0.3656 109.61 24.22 0.3477 96.76

Table 3: Quantitative results (PSNR, FID, LPIPS) on FFHQ and ImageNet dataset for Type I
guidance. We use bold and underline for the best and second best, respectively.

5.1 VALIDATION OF THEORETICAL RESULTS

DDNM as noiseless DiffPIR. To validate Proposition 2, we re-implement DDNM under DiffPIR
codebase. DiffPIR deal with noiseless inverse problems by setting σ to relative low value for equa-
tion 9 (0.001 in DiffPIR codebase), and we aim to demonstrate that directly use the DDNM solu-
tion (equation 11) can produce the similar results under noiseless case. In Table 2, we report the
Mean Absolute Difference (MAD, MAD between x and y is defined by ∥x − y∥1/d) between
their conditional posterior means (equation 9 and equation 11) averaged over all sampling steps and
test images to validate Proposition 2. As can be seen, the MAD is negligible in comparison to the
data range ([−1, 1]). MAD for debluring and super resolution is relatively larger than inpainting,
since several approximations are made for computing A†, while for inpainting A† is exact (see
Appendix E.4 for details).

Posterior variances prediction. To validate the effectiveness of equation 22 in practice, we com-
pare the ground-truth square errors made by the denoiser e = (x0 − Dt(xt))

2 with the posterior
variances prediction r̂2t (xt). We compare e with r̂2t (xt) because posterior variances r∗2t (xt) is the
MMSE estimator of e given xt (assuming Dt(xt) = E[x0|xt]), as suggested by equation 17, im-
plying that a good r̂2t (xt) should be a reliable predictor of e. Therefore, we may use the comparison
between e and r̂2t (xt) as a sanity check to gauge the effectiveness of equation 22 in practice. We
plot their averaged values over all pixels and test images in Figure 1. We visualize e and r̂2t (xt) of
an example image x0 at different t in Figure 2. As shown in Figure 1, the posterior variances pre-
diction obtained via equation 22 is accurate only in low noise level region. This is reasonable, since
the optimal reverse variance v∗2(xt) is bounded by the upper bound βt and the lower bound β̃t,
and they are almost equal at high noise level region (Nichol & Dhariwal (2021)). Thus, equation 22
becomes a 0/0 limit that possesses high numerical instability, when v∗2(xt)− β̃t ≈ 0.
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(a) Inpainting (Random) (b) Deblur (Gaussian) (c) Deblur (Motion) (d) SR (4×)
Figure 3: Quantitative results (LPIPS) on FFHQ dataset for Type II guidance. We report the
LPIPS performance under different λ.

5.2 QUANTITATIVE RESULTS

To evaluate different methods, we use three common metrics: Peak Signal to Noise Ratio (PSNR),
Learned Perceptual Image Patch Similarity (LPIPS, Zhang et al. (2018)) and Frechet Inception Dis-
tance (FID, Heusel et al. (2017)). For the sampler setup5, all Type I guidance methods use the same
Heun’s 2nd deterministic sampler suggested in (Karras et al. (2022)) with 50 sampling steps, and
all Type II guidance methods use the same Heun’s 2nd stochastic sampler (Schurn = 80, Stmin =
0.05, Stmax = 1, Snoise = 1.007, definition see Karras et al. (2022)) with 50 sampling steps since we
found that Type II guidance does not perform well using deterministic samplers.

In initial experiments, we found that using optimal posterior covariance for all sampling steps re-
sults in poor performance. This may due to using Gaussian approximation qt(x0|xt) to posterior
pt(x0|xt) is reasonable only for small noise level (Xiao et al. (2022))6. To address this, we only
use the optimal posterior covariance at the last few sampling steps for our methods7, while for high
noise level we use ΠGDM and DiffPIR covariances for Type I and Type II guidance, respectively.

Table 3 summarizes the results for Type I guidance. DPS and ΠGDM and refer to the posterior covari-
ance type discussed in Section 3.1, and Analytic and Convert refer to the posterior covariance
type obtained using approaches presented in Section 4.3 and Section 4.2, respectively. Note that for
Type I guidance, our methods achieve the best results on almost all tasks. Although DPS outper-
forms us in several cases, we observe that its performance is very unstable (see DPS performance in
debluring tasks). For Type II guidance, since we use DiffPIR covariance in high noise level region,
the performance of our method and DiffPIR baseline are both influenced by the hyper-parameter λ.
Therefore, we report the performance under different λ in Figure 10. We observe that our method is
more robust than DiffPIR to the hyper-parameter λ, which demonstrate the optimality of the poste-
rior covariance obtained via MLE in inverse problems.

6 CONCLUSIONS

We show that recent diffusion-based zero-shot methods for inverse problems can be regarded as
making isotropic Gaussian approximations to the intractable posterior distributions. Inspired by this
fact, we propose to improve existing approaches through the use of optimal posterior covariances
obtained via MLE in these Gaussian approximations. We introduce three strategies for obtaining
optimal posterior covariances: maximum likelihood pre-training, conversion of off-the-shelf reverse
covariance predictions, and analytical estimation using Monte Carlo methods in the absence of re-
verse covariance predictions. Empirically, our techniques significantly improve the performance of
the prior works, or their robustness to hyper-parameters.

5To understand how to leverage pre-trained DDPM model to perform sampling under perturbation kernels
given in Section 2.2, please refer to Appendix D.

6To the best of our knowledge, why using Gaussian approximation with heuristic posterior covariance pro-
posed in prior works produce good empirical results still remains largely open.

7Empirically, we found that sampling with optimal covariance when σt < 0.2 (12 out of 50 steps), yields
highly stable results.
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A PROOFS TO THEORETICAL RESULTS

Lemma 1 (Tweedie’s formula). If the joint distribution between x0,xt is given by pt(x0,xt) =
p(x0)pt(xt|x0) with pt(xt|x0) = N (xt|stx0, s

2
tσ

2
t I) , then ∇xt

log pt(xt) =
1

s2tσ
2
t
(stE[x0|xt]−

xt).

Proof.

∇xt
log pt(xt) =

∇xt
pt(xt)

pt(xt)
(25)

=
1

pt(xt)
∇xt

∫
p(x0)pt(xt|x0)dx0 (26)

=
1

pt(xt)

∫
p(x0)∇xt

pt(xt|x0)dx0 (27)

=
1

pt(xt)

∫
p(x0)pt(xt|x0)∇xt

log pt(xt|x0)dx0 (28)

=

∫
pt(x0|xt)∇xt

log pt(xt|x0)dx0 (29)

= Ept(x0|xt)[∇xt
log pt(xt|x0)] (30)

For Gaussian perturbation kernel pt(xt|x0) = N (xt|stx0, s
2
tσ

2
t I), we have ∇xt

log pt(xt|x0) =
1

s2tσ
2
t
(stx0 − xt). Plug it into equation 30, we conclude the proof.

Lemma 2 (Conditional Tweedie’s formula). If the joint distribution between x0,y,xt is given
by pt(x0,y,xt) = p(x0)p(y|x0)pt(xt|x0) with pt(xt|x0) = N (xt|stx0, s

2
tσ

2
t I) , then

∇xt
log pt(xt|y) = 1

s2tσ
2
t
(stE[x0|xt,y]− xt)

Proof.

∇xt log pt(xt|y) =
∇xt

pt(xt|y)
pt(xt|y)

(31)

=
1

pt(xt|y)
∇xt

∫
pt(xt|x0,y)p(x0|y)dx0 (32)

=
1

pt(xt|y)
∇xt

∫
pt(xt|x0)p(x0|y)dx0 (33)

=
1

pt(xt|y)

∫
p(x0|y)∇xtpt(xt|x0)dx0 (34)

=
1

pt(xt|y)

∫
p(x0|y)pt(xt|x0,y)∇xt log pt(xt|x0)dx0 (35)

=

∫
pt(x0|xt,y)∇xt log pt(xt|x0)dx0 (36)

= Ept(x0|xt,y)[∇xt
log pt(xt|x0)] (37)

where equation 33 and equation 35 are due to the conditional independent between xt and y
given x0, such that pt(xt|x0,y) = pt(xt|x0). For Gaussian perturbation kernel pt(xt|x0) =
N (xt|stx0, s

2
tσ

2
t I), we have ∇xt log pt(xt|x0) =

1
s2tσ

2
t
(stx0 − xt). Plug it into equation 37, we

conclude the proof.

A.1 DERIVATION OF THE MARGINAL PRESERVING PROPERTY OF DIFFUSION ODES

For the sake of completeness, here we prove that the ODEs given in equation 2 and equation 4
respectively maintain the exact same marginals to pt(xt) and pt(xt|y).
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Proof. By borrowing the results from (Equation 4, Karras et al. (2022)) and setting st = 1, σt = t,
xt determined by the following ODE preserves the marginal pt(xt) for all t ∈ [0, T ]:

dxt = −t∇xt
log pt(xt)dt, xT ∼ pT (xT ) (38)

Using the posterior mean E[x0|xt] to represent the score∇xt
log pt(xt) using Lemma 1, we recover

equation 2:

dxt =
xt − E[x0|xt]

t
dt, xT ∼ pT (xT ) (39)

Likewise, the following ODE preserves the marginal pt(xt|y) for all t ∈ [0, T ]:

dxt = −t∇xt log pt(xt|y)dt, xT ∼ pT (xT |y) (40)

By Lemma 2, we recover equation 4:

dxt =
xt − E[x0|xt,y]

t
dt, xT ∼ pT (xT |y) (41)

A.2 DERIVATION OF PROPOSITION 1

Proof. To relate E[x0|xt,y] to E[x0|xt], we note that

∇xt log pt(xt|y) = ∇xt log pt(xt) +∇xt log pt(y|xt) (42)

Using Lemma 1 and Lemma 2, we have

1

s2tσ
2
t

(stE[x0|xt,y]− xt) =
1

s2tσ
2
t

(stE[x0|xt]− xt) +∇xt
log pt(y|xt) (43)

and consequently,
E[x0|xt,y] = E[x0|xt] + stσ

2
t∇xt

log pt(y|xt) (44)

A.3 DERIVATION OF PROPOSITION 2

Proof. When σ → 0, finding the minimizer of equation 10 is equivalent to solving the following
hard-constraint optimization problem :

min
x̂0

∥x̂0 − E[x0|xt]∥22 s.t. y = Ax̂0 (45)

We define the LagrangianL(x̂0, λ) =
1
2∥x̂0−E[x0|xt]∥22+λT (y−Ax̂0), where λ is the Lagrangian

multiplier. By the optimality condition, we have

∇x̂0
L = x̂0 − E[x0|xt]−ATλ = 0 (46)

∇λL = y −Ax̂0 = 0 (47)

Multiplying A to equation 46 and combining the condition of equation 47 gives:

A(x̂0 − E[x0|xt]−ATλ) = 0 (48)

⇒ y −AE[x0|xt]−AATλ = 0 (49)

⇒ AATλ = y −AE[x0|xt] (50)

Multiplying A† to equation 50 and leveraging the property A†AAT = AT , we have

ATλ = A†y −A†AE[x0|xt] (51)

and consequently,

x̂0 = E[x0|xt] +A†y −A†AE[x0|xt] (52)

= A†y + (I −A†A)E[x0|xt] (53)
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A.4 DERIVATION OF THEOREM 1

Proof. We follow Bao et al. (2022b) to derive the relationship between the optimal reverse variances
v2
t (xt) and optimal posterior variances r2t (xt) based on more general non-Markov forward process

introduced by Song et al. (2021a). To find the optimal solution to equation 19, we present a much
simpler proof than Bao et al. (2022b) using functional derivatives motivated by Rezende & Viola
(2018). Given a noise schedule {βt}Tt=1 and αt = 1−βt, the forward process q(x1:T |x0) is defined
as

q(x1:T |x0) = q(xT |x0)

T∏
t=2

q(xt−1|xt,x0) (54)

q(xt−1|xt,x0) = N (xt−1|µ̃t(xt,x0), λ
2
tI) (55)

µ̃t(xt,x0) =
√
ᾱt−1x0 +

√
β̄t−1 − λ2

t ·
xt −

√
ᾱtx0√
β̄t

(56)

where ᾱt =
∏t

i=1 αi and β̄t = 1− ᾱt. Song et al. (2021a) show that for arbitrary choice of λt, the
marginal distributions q(xt|x0) maintain q(xt|x0) = N (xt|

√
ᾱtx0, β̄tI). DDPM forward process

is a special case when λ2
t = β̃t with β̃t =

β̄t−1

β̄t
βt, which is used in Nichol & Dhariwal (2021) for

pre-training DDPM model.

To fit the data distribution q(x0), we define the reverse process, given by

p(x0:T ) = p(xT )

T∏
t=1

p(xt−1|xt), p(xt−1|xt) = N (xt−1|mt(xt),diag[v
2
t (xt)]) (57)

To train p(x0) we minimize the KL divergence between the forward and the reverse process:
min
p

DKL(q(x0:T )||p(x0:T )), q(x0:T ) = q(x0)q(x1:T |x0) (58)

which is equivalent to minimizing the variational bound Eq[Lvb] on negative log-likelihood of data
distribution q(x0) with Lvb given as follows:

Lvb = L0 + L1 + ...+ LT (59)
L0 = − log p(x0|x1) (60)
Lt−1 = DKL(q(xt−1|x0,xt)||p(xt−1|xt)) (61)
LT = DKL(q(xT |x0)||p(xT )) (62)

For t ∈ [2, T ], Lt−1 are KL divergences between two Gaussians, which possess analytical forms:

Lt−1 ≡ log
|diag[v2

t (xt)]|
|λ2

tI|
+ ∥µ̃t(xt,x0)−m(xt)∥2diag[v2

t (xt)]−1 + tr[λ2
tdiag[v

2
t (xt)]

−1] (63)

≡
d∑

i=1

log v2
t (xt)i +

(µ̃t(xt,x0)i −mt(xt)i)
2

v2
t (xt)i

+
λ2
t

v2
t (xt)i

(64)

where “≡” denotes “equals up to a constant and a scaling factor” and i indexes the elements of an
vector.

Note that minimizing Eq[Lvb] can be decomposed into T independent optimization sub-problems:
min
mt,vt

Eq(x0,xt)[Lt−1], t ∈ [1, T ] (65)

The optimal mt and vt can be found by taking the functional derivatives of Eq(x0,xt)[Lt−1] w.r.t
mt and v2

t then set to zero:
δEq(x0,xt)[Lt−1]

δmt(xt)i
≡ Eq(x0)[q(xt|x0)

mt(xt)i − µ̃t(xt,x0)i
v2
t (xt)i

] = 0 (66)

δEq(x0,xt)[Lt−1]

δv2
t (xt)i

≡ Eq(x0)[q(xt|x0)(
1

v2
t (xt)i

− (µ̃t(xt,x0)i −m(xt)i)
2

(v2
t (xt)i)2

− λ2
t

(v2
t (xt)i)2

)] = 0

(67)
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We can solve for optimal mt(xt)i by rearranging equation 66:

Eq(x0)[q(xt|x0)]mt(xt)i = Eq(x0)[q(xt|x0)µ̃t(xt,x0)i] (68)

⇒ q(xt)mt(xt)i =

∫
q(x0)q(xt|x0)µ̃t(xt,x0)idx0 (69)

⇒mt(xt)i =

∫
q(x0|xt)µ̃t(xt,x0)idx0 (70)

⇒mt(xt)i = µ̃t(xt,E[x0|xt])i (71)

where equation 71 is due to the linearity of µ̃t w.r.t x0.

Likewise, rearranging equation 67 gives

v2
t (xt)i = λ2

t + Eq(x0|xt)[(µ̃t(xt,x0)i −m(xt)i)
2] (72)

By plugging the optimal mt(xt)i determined by equation 71 into equation 72 and dropping the
element index i, we conclude the proof:

v2
t (xt) = λ2

t + Eq(x0|xt)[(µ̃t(xt,x0)− µ̃t(xt,E[x0|xt]))
2] (73)

= λ2
t + Eq(x0|xt)[(µ̃t(0,x0 − E[x0|xt]))

2] (74)

= λ2
t + (

√
ᾱt−1 −

√
β̄t−1 − λ2

t

√
ᾱt

β̄t
)2 · Eq(x0|xt)[(x0 − E[x0|xt])

2] (75)

= λ2
t + (

√
ᾱt−1 −

√
β̄t−1 − λ2

t

√
ᾱt

β̄t
)2 · r2t (xt) (76)

We are often given a pre-trained DDPM model with learned reverse variances. The following Corol-
lary of Theorem 1 gives a simplified relationship between optimal posterior variances and optimal
reverse variances under DDPM case:
Corollary 1. For the DDPM forward process λ2

t = β̃t, the optimal posterior variances r∗2t (xt) and
optimal reverse variances v∗2

t (xt) are related by

v∗2
t (xt) = β̃t + (

√
ᾱt−1βt

1− ᾱt
)2 · r∗2t (xt) (77)

Remark 1. From Theorem 1, we also know that to perform optimal ancestral sampling, we only
need to provide the MMSE estimator E[x0|xt] to compute the reverse mean m∗

t (xt) and the poste-
rior variances r∗2t (xt) to compute the reverse variances v∗2

t (xt), which can be both obtained from
the proposed maximum likelihood pre-training (equation 15). This may provide an alternative way
for pre-trainning DDPM model that differs from (Nichol & Dhariwal (2021)).

A.5 DERIVATION OF PROPOSITION 3

Proof. Deriving the optimal solution to equation 15 under the diagonal posterior covariance case,
i.e., Σt(xt) = diag(r2t (xt)), is similar to Appendix A.4. Note that we seek for point-wise maxi-
mizer of equation 15, i.e., find the optimum of

Ept(x0,xt)[log qt(x0|xt)] ≡ Ept(x0,xt)[

d∑
i=1

1

r2t (xt)i
(x0i − µt(xt)i)

2 + log r2t (xt)i] (78)

For any t, taking the functional derivatives of Ept(x0,xt)[log qt(x0|xt)] w.r.t µt(xt)i and r2t (xt)i
and then set to zero, we obtain the optimality conditions:

Ep(x0)[p(xt|x0)(µt(xt)i − x0i)] = 0 (79)

Ep(x0)[p(xt|x0)(−
1

(r2t (xt)i)2
(x0i − µt(xt)i)

2 +
1

r2t (xt)i
] = 0 (80)

Combining the optimality conditions given by equation 79 and equation 80, we conclude the proof.
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B CLOSED-FORM SOLUTIONS FOR IMPLEMENTING GUIDANCES

In this section, we provide important closed-form results for implementing efficient Type I and
Type II guidance under isotropic posterior covariance case: Σt(xt) = r2t (xt)I . Before we delve
into the closed-form results, we first give some important notations. We define the downsampling
operator given sampling position m ∈ {0, 1}d×1 as Dm ∈ {0, 1}∥m∥0×d, which selects rows of a
given matrix that corresponds to one in m and when performing left multiplication. We use D↓s to
denote the standard s-folds downsampling operator, which is equivalent to Dm when ones in m are
spaced evenly. For image signal, it selects the upper-left pixel for each distinct s × s patch (Zhang
et al. (2020)) when performing left multiplication to the vectorized image. We use D⇓s to denote the
distinct block downsampler, i.e., averaging s length d/s distinct blocks of a vector. For image signal,
it averaging distinct d/s × d/s blocks (Zhang et al. (2020)) when performing left multiplication to
the vectorized image. We denote the Fourier transform matrix for d-dimensional signal as F , Fourier
transform matrix for d/s-dimensional signal as F↓s, the Fourier transform of a vector v as v̂, and
the complex conjugate of a complex vector v as v̄. We use⊙ to denote element-wise multiplication,
and the divisions used below are also element-wise.

Lemma 3. Performing s-fold standard downsampling in spacial domain is equivalent to performing
s-fold block downsampling in frequency domain: D⇓s = F↓sD↓sF

−1.

Proof. Considering an arbitrary d-dimensional signal in frequency domain x̂[k], k = 0, 2, .., d− 1.
Multiplying F↓sD↓sF

−1 to x̂ is equivalent to letting x̂ go through the following linear system and
obtain the output ŷ:

x[n] =
1

d

d−1∑
k=0

x̂[k]ej
2π
d kn (81)

x↓s[n] = x[ns] (82)

ŷ[k] =

d/s−1∑
n=0

x↓s[n]e
−j 2π

d/s
kn (83)

We now use x̂ to represent ŷ:

ŷ[k] =

d/s−1∑
n=0

1

d

d−1∑
k′=0

x̂[k′]ej
2π
d k′nse−j 2π

d/s
kn (84)

=

d/s−1∑
n=0

1

d
e−j 2π

d/s
kn

d−1∑
k′=0

x̂[k′]ej
2π
d/s

k′n (85)

=

d/s−1∑
n=0

1

d
e−j 2π

d/s
kn(

d/s−1∑
k′=0

+

2d/s−1∑
k′=d/s

+

3d/s−1∑
k′=2d/s

+...+

sd/s−1∑
k′=(s−1)d/s

)x̂[k′]ej
2π
d/s

k′n (86)

=

d/s−1∑
n=0

1

d
e−j 2π

d/s
kn

d/s−1∑
k′=0

(x̂[k′] + x̂[k′ + d/s] + ...+ x̂[k′ + (s− 1)d/s])ej
2π
d/s

k′n (87)

=

d/s−1∑
n=0

e−j 2π
d/s

kn 1

d/s

d/s−1∑
k′=0

x̂[k′] + x̂[k′ + d/s] + ...+ x̂[k′ + (s− 1)d/s]

s
ej

2π
d/s

k′n (88)

=
x̂[k] + x̂[k + d/s] + ...+ x̂[k + (s− 1)d/s]

s
(89)

(90)

where equation 87 is because ej
2π
d/s

k′n has period of d/s in k′ and equation 89 is because d/s-
dimensional inverse Fourier transform and Fourier transform are canceled out. From equation 89
we have ŷ = D⇓sx̂. So D⇓sx̂ = F↓sD↓sF

−1x̂ for any x̂, and consequently, D⇓s = F↓sD↓sF
−1.
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B.1 CLOSED-FORM SOLUTIONS TO VECTOR-JACOBIAN PRODUCTS IN TYPE I GUIDANCE

When using Type I guidance, we are required to approximate the likelihood score, which can be
computed via vector-Jacobian product (Song et al. (2023)):

∇xt
log p(y|xt) ≈ (vT ∂E[x0|xt]

∂xt
)T (91)

where v = AT (σ2I +AΣt(xt)A
T )−1(y −AE[x0|xt]). Below we provide closed-form solution

to v under three common degradation operators: i) inpainting, ii) debluring, and iii) super resolution,
then we can approximate the conditional posterior mean E[x0|xt,y] as in illustrated in Algorithm 1.

Algorithm 1: PyTorch-style pseudocode for implementing Type I guidance
def type I guidance(x, y, A, sigma):

# ----------------------------------------------------------------
# Input:
# x: xt

# y: y
# A: include information of A and measurement noise std σ
# sigma: σt

# Output:
# cond x0 mean: Approximated E[x0|xt,y] based on Proposition 1
# ----------------------------------------------------------------
x = x.requires grad ()
x0 mean, x0 var = uncond x0 mean var(x, sigma) # Obtain mean and covariance of qt(x0|xt)
v = v solution(A, y, x0 mean, x0 var) # Compute v using closed-form solutions
likelihood score = torch.autograd.grad((v.detach() * x0 mean).sum(), x)[0]
cond x0 mean = x0 mean + sigma.pow(2) * likelihood score # Proposition 1
return cond x0 mean.clip(-1, 1)# Clip to the data range [-1, 1]

Inpainting. The observation model for image inpainting can be expressed as:

y = Dm︸︷︷︸
A

x0 + n (92)

and the closed-form solution to v in image inpainting is given by the following:

v =
ỹ −m⊙ E[x0|xt]

σ2 + r2t (xt)
(93)

where ỹ = DT
my = m ⊙ (x0 + ñ), ñ ∼ N (0, I) is the zero-filling measurements that fills the

masked region with zeros and processes the exact same size to x0. In practice, the measurements in
inpainting are usually stored in the form of ỹ, while y used here is for mathematical convenient.

Proof.

v = DT
m(σ2I +Dmr2t (xt)ID

T
m)−1(y −DmE[x0|xt]) (94)

= DT
m(σ2I + r2t (xt)DmDT

m)−1(y −DmE[x0|xt]) (95)

= DT
m((σ2 + r2t (xt))I)

−1(y −DmE[x0|xt]) (96)

=
DT

m(y −DmE[x0|xt])

σ2 + r2t (xt)
(97)

=
ỹ −m⊙ E[x0|xt]

σ2 + r2t (xt)
(98)

where equation 96 and equation 98 are because DmDT
m = I and DT

mDm = diag(m).

Debluring. The observation model for image debluring can be expressed as:

y = x0 ∗ k + n (99)

where k is the blurring kernel and ∗ is convolution operator. By assuming ∗ is a circular convolu-
tion operator, we can convert equation 99 to the canonical form y = Ax0 + n by leveraging the
convolution property of Fourier transform:

y = F−1diag(k̂)F︸ ︷︷ ︸
A

x0 + n (100)
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and the closed-form solution to v in image debluring is given by the following:

v = F−1(
¯̂
k ⊙ F (y −AE[x0|xt])

σ2 + r2t (xt)
¯̂
k ⊙ k̂

) (101)

Proof. Since A is a real matrix, we have AT = AH = F−1diag(
¯̂
k)F , then

v = F−1diag(
¯̂
k)F (σ2I + F−1diag(k̂)F r2t (xt)IF

−1diag(
¯̂
k)F )−1(y −AE[x0|xt]) (102)

= F−1diag(
¯̂
k)F (σ2I + r2t (xt)F

−1diag(k̂)diag(
¯̂
k)F )−1(y −AE[x0|xt]) (103)

= F−1diag(
¯̂
k)F (σ2I + r2t (xt)F

−1diag(k̂ ⊙ ¯̂
k)F )−1(y −AE[x0|xt]) (104)

= F−1diag(
¯̂
k)F (F−1(σ2I + r2t (xt)diag(k̂ ⊙ ¯̂

k))F )−1(y −AE[x0|xt]) (105)

= F−1diag(
¯̂
k)F (F−1diag(σ2 + r2t (xt)k̂ ⊙ ¯̂

k)F )−1(y −AE[x0|xt]) (106)

= F−1diag(
¯̂
k)FF−1diag(σ2 + r2t (xt)k̂ ⊙ ¯̂

k)−1F (y −AE[x0|xt]) (107)

= F−1(
¯̂
k ⊙ F (y −AE[x0|xt])

σ2 + r2t (xt)k̂ ⊙ ¯̂
k
) (108)

Super resolution. According to (Zhang et al. (2020)), the observation model for image super reso-
lution can be approximately expressed as:

y = (x0 ∗ k)↓s + n (109)

By leveraging the convolution property of Fourier transform, we can convert equation 109 to the
canonical form y = Ax0 + n:

y = D↓sF
−1diag(k̂)F︸ ︷︷ ︸

A

x0 + n (110)

and the closed-form solution to v in image super resolution is given by the following:

v = F−1(
¯̂
k ⊙s

F↓s
(y −AE[x0|xt])

σ2 + r2t (xt)(
¯̂
k ⊙ k̂)⇓s

) (111)

where⊙s denotes block processing operator with element-wise multiplication (Zhang et al. (2020)).

Proof. Since A is a real matrix, we have AT = AH = F−1diag(
¯̂
k)FDT

↓s, then

v = F−1diag(
¯̂
k)FDT

↓s(σ
2I +D↓sF

−1diag(k̂)F r2t (xt)IF
−1diag(

¯̂
k)FDT

↓s)
−1(y −AE[x0|xt])

(112)

= F−1diag(
¯̂
k)FDT

↓s(σ
2I + r2t (xt)D↓sF

−1diag(k̂ ⊙ ¯̂
k)FDT

↓s)
−1(y −AE[x0|xt]) (113)

= F−1diag(
¯̂
k)FDT

↓s(D↓sF
−1(σ2I + r2t (xt)diag(k̂ ⊙ ¯̂

k))FDT
↓s)

−1(y −AE[x0|xt]) (114)

= F−1diag(
¯̂
k)FDT

↓s(D↓sF
−1diag(σ2 + r2t (xt)k̂ ⊙ ¯̂

k)FDT
↓s)

−1(y −AE[x0|xt]) (115)
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By Lemma 3, we have D↓sF
−1 = F−1

↓s D⇓s. Taking the hermitian transpose to both side and
leveraging F−1 = 1

dF
H and F−1

↓s = 1
d/sF

H
↓s , we also have FDT

↓s = sDT
⇓sF↓s. So

v = F−1diag(
¯̂
k)sDT

⇓sF↓s(F
−1
↓s D⇓sdiag(σ

2 + r2t (xt)k̂ ⊙ ¯̂
k)sDT

⇓sF↓s)
−1(y −AE[x0|xt])

(116)

= F−1diag(
¯̂
k)sDT

⇓sF↓s(F
−1
↓s diag(σ2 + r2t (xt)(k̂ ⊙ ¯̂

k)⇓s)F↓s)
−1(y −AE[x0|xt]) (117)

= F−1diag(
¯̂
k)sDT

⇓sF↓sF
−1
↓s diag(σ2 + r2t (xt)(k̂ ⊙ ¯̂

k)⇓s)
−1F↓s(y −AE[x0|xt]) (118)

= F−1(
¯̂
k ⊙ sDT

⇓s
F↓s(y −AE[x0|xt])

σ2 + r2t (xt)(k̂ ⊙ ¯̂
k)⇓s

) (119)

= F−1(
¯̂
k ⊙s

F↓s(y −AE[x0|xt])

σ2 + r2t (xt)(
¯̂
k ⊙ k̂)⇓s

) (120)

B.2 CLOSED-FORM SOLUTIONS TO PROXIMAL PROBLEMS IN TYPE II GUIDANCE

When using Type II guidance, we are required to solve the following auto-weighted proximal prob-
lem:

Eq[x0|xt,y] = argmin
x0

∥y −Ax0∥2 + σ2∥x0 − E[x0|xt]∥2Σ−1
t (xt)

(121)

which has general closed-form solution given by

Eq[x0|xt,y] = (Σt(xt)
−1 +

1

σ2
ATA)−1(

1

σ2
ATy +Σt(xt)

−1E[x0|xt]) (122)

The derivation of equation 122 can be directly obtained via computing the mean of qt(x0|xt,y) by
using the Bayes’ theorem for Gaussian variables (Bishop (2006)).

Below we provide closed-form solution to Eq[x0|xt,y] under three common degradation operators
same as for Type I guidance, then we can directly replace the denoising result in unconditional
diffusion step with the closed-form solution of Eq[x0|xt,y] to solve target inverse problem. The
closed-form results are obtained by borrowing the results from (Zhu et al. (2023)) and setting ρt to

σ2

r2t (xt)
.

Inpainting. The observation model for image inpainting see equation 92, and the closed-form
solution to Eq[x0|xt,y] is given as follows:

Eq[x0|xt,y] =
ỹ + ρtE[x0|xt]

ρt +m
, ρt =

σ2

r2t (xt)
(123)

Debluring. The observation model for image debluring see equation 99 and equation 100, and the
closed-form solution to Eq[x0|xt,y] is given as follows:

Eq[x0|xt,y] = F−1
¯̂
k ⊙ Fy + ρtFE[x0|xt]

¯̂
k ⊙ k̂ + ρt

, ρt =
σ2

r2t (xt)
(124)

Super resolution. The observation model for image super resolution see equation 109 and equa-
tion 110, and the closed-form solution to Eq[x0|xt,y] is given as follows:

Eq[x0|xt,y] = F−1 1

ρt
(d− ¯̂

k ⊙s
(k̂ ⊙ d)⇓s

(
¯̂
k ⊙ k̂)⇓s + ρt

), ρt =
σ2

r2t (xt)
(125)

where d = k̂⊙ (Fy↑s)+ ρtFE[x0|xt] and ↑s denotes the standard s-fold upsampling, i.e., upsam-
pling the spatial size by filling the new entries with zeros (Zhang et al., 2020).
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C USING CONJUGETE GRADIENT METHOD FOR GENERAL POSTERIOR
COVARIANCE

For general posterior covariance, the closed-form solution for v or Eq[x0|xt,y] is usually unavail-
able. However, we can still approximate their solutions by using numerical solutions of linear equa-
tions. Specifically, we can see that for Type II guidance, Eq[x0|xt,y] satisfies the following linear
equation:

(Σt(xt)
−1 +

1

σ2
ATA)Eq[x0|xt,y] =

1

σ2
ATy +Σt(xt)

−1E[x0|xt] (126)

Since Σt(xt)
−1 + 1

σ2A
TA is in fact the precision matrix of qt(x0|xt,y), we know that it is sym-

metric and positive-definite. Therefore, we can solve equation 126 using conjugate gradient (CG)
method (Hestenes et al. (1952)).

Likewise, for Type I guidance, it easy to see that σ2I + AΣt(xt)A
T is symmetric and positive-

definite. To approximate v, we define a temporal variable u, and approximate it using CG to solve
the following linear equation:

(σ2I +AΣt(xt)A
T )u = y −AE[x0|xt] (127)

Then v can be obtained as follows:
v = ATu (128)

In our experiments, only the Convert-type posterior covariance (Section 4.2) requires to use the
CG method, as the posterior covariances used in prior works and Analytic-type posterior covari-
ance (Section 4.3) are isotropic that possess closed-form solutions. We use the black box CG method
implemented in scipy.sparse.linalg.cg with default hyper-parameter setting.

D CONVERTING OPTIMAL SOLUTIONS BETWEEN DIFFERENT PERTURBATION
KERNELS

Suppose we are given a family of optimal solutions qt defined by the following MLE objectives for
all t ∈ [0, T ]:

max
qt

Ex0∼p(x0),ϵ∼N (0,I) log qt(x0|xt = st(x0 + σtϵ)) (129)

As can be seen, qt equal to the optimal solutions to equation 15 when the perturbation kernels
pt(xt|x0) are set to N (xt|stx0, s

2
tσ

2
t I). Now, suppose we want to perform sampling based on the

diffusion ODE (SDE) under the perturbation kernels N (xt|s̃tx0, s̃
2
t σ̃

2
t I). This means that we are

required to provide optimal solutions q̃t defined by the following objectives for all t ∈ [0, T ]:

max
q̃t

Ex0∼p(x0),ϵ∼N (0,I) log q̃t(x0|xt = s̃t(x0 + σ̃tϵ)) (130)

The idea is that, q̃t can be directly represented by qt, so we do not require to perform re-training:

q̃t(x0|xt = x) = qt′(x0|xt′ =
st′

s̃t
x), σt′ = σ̃t (131)

Proof. We only need to show that q̃t defined by equation 129 and equation 131 are equivalent to q̃t
defined by equation 130. From equation 131, we actually know that qt′(x0|xt′ = x) = q̃t(x0|xt =
s̃t
st′

x), plug it in equation 129 at t′ we have

max
q̃t

Ex0∼p(x0),ϵ∼N (0,I) log q̃t(x0|xt = s̃t(x0 + σt′ϵ)), σt′ = σ̃t (132)

which is equivalent to equation 130.

For example, suppose we are given optimal solutions qt under DDPM perturbation kernels, i.e.,
pt(xt|x0) = N (xt|

√
ᾱtx0, β̄tI). We aim to convert these solutions to optimal solutions q̃t under

perturbation kernels used in Section 2.2, i.e., pt(xt|x0) = N (xt|x0, t
2I). We can realize it using
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following two steps: (1) finding t′ such that
√

β̄t′
ᾱt′

= t, and (2) scaling the input of qt′ by the factor
of
√
ᾱt′ . Formally,

q̃t(x0|xt = x) = qt′(x0|xt′ =
√
ᾱt′x),

√
β̄t′

ᾱt′
= t (133)

E ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

E.1 RESULTS ON COMPLETE VERSION OF PRIOR WORKS

Aside from using Gaussians to approximate the posteriors, prior works also propose several tricks
to improve the performance. However, to eliminate the influence other than the choice of posterior
covariance, results reported Table 3 based on the re-implementations that remove these tricks. For
the sake of completeness, we also re-implement these tricks and to investigate if replace the last
sampling steps on these complete re-implementations with our techniques can also improve the
performance.

Dataset Method Inpaint (Random) Deblur (Gaussian) Deblur (Motion) Super resolution (4×)
PSNR ↑ LPIPS ↓ FID ↓ PSNR ↑ LPIPS ↓ FID ↓ PSNR ↑ LPIPS ↓ FID ↓ PSNR ↑ LPIPS ↓ FID ↓

FFHQ
ΠGDM 25.48 0.2605 77.46 25.74 0.2421 71.19 25.16 0.2607 75.15 25.70 0.2442 72.41

Analytic (Ours) 33.38 0.0852 28.63 27.32 0.1971 59.80 25.97 0.2336 69.82 26.79 0.2195 68.84
Convert (Ours) 33.23 0.0822 27.50 27.29 0.1969 59.31 25.99 0.2324 66.18 26.80 0.2183 67.17

ImageNet
ΠGDM 22.79 0.4293 141.80 22.82 0.4095 127.41 22.45 0.4267 132.38 22.88 0.4098 127.40

Analytic (Ours) 28.91 0.1484 37.98 23.89 0.3583 103.67 23.05 0.3947 126.39 23.57 0.3867 116.87
Convert (Ours) 29.01 0.1394 33.46 23.98 0.3568 100.50 23.05 0.3944 131.48 23.68 0.3846 116.27

Table 4: Results for complete version of ΠGDM on FFHQ and ImageNet dataset. ΠGDM
introduces adaptive weight to adjust the guidance strength according to the timestep. We use bold
and underline for the best and second best, respectively.

(a) Inpainting (Random) (b) Deblur (Gaussian) (c) Deblur (Motion) (d) SR (4×)

Figure 4: Quantitative results (LPIPS) for complete version of DPS on FFHQ dataset. We
report the LPIPS performance under different ζ.

(a) Inpainting (Random) (b) Deblur (Gaussian) (c) Deblur (Motion) (d) SR (4×)

Figure 5: Quantitative results (PSNR) for complete version of DPS on FFHQ dataset. We report
the PSNR performance under different ζ.

ΠGDM ΠGDM introduces adaptive weight in front of the likelihood score ∇xt
log pt(y|xt) (Sec-

tion 3.3, Song et al. (2023)), which will adjust the guidance strength according to the timestep.
Specifically, they replace the likelihood score with r2t∇xt

log pt(y|xt), where r2t =
σ2
t

1+σ2
t

.
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(a) Inpainting (Random) (b) Deblur (Gaussian) (c) Deblur (Motion) (d) SR (4×)

Figure 6: Quantitative results (FID) for complete version of DPS on FFHQ dataset. We report
the FID performance under different ζ.

(a) Inpainting (Random) (b) Deblur (Gaussian) (c) Deblur (Motion) (d) SR (4×)

Figure 7: Quantitative results (SSIM) for complete version of DPS on FFHQ dataset. We report
the SSIM performance under different ζ.

DPS As mentioned in Section 3.1, DPS introduce a trick to determine the strength of the guidance.
Since this trick involves a hyper-parameter ζ, we report the performance under different ζ.

Table 4 summarizes the results for complete version of ΠGDM. ΠGDM refer to our re-
implementation of complete version of ΠGDM, Analytic and Convert refer to complete ver-
sion of ΠGDM with the last few sampling steps are replaced with Type I guidance using optimal
posterior covariance presented in Section 4.3 and Section 4.2 8, respectively. Figure 4, 5, 6, and 7
summarizes the quantitative results for complete version of DPS. DPS refer to our re-implementation
of complete version of DPS, and similarly, Analytic and Convert refer to complete version of
DPS with the last few sampling steps are replaced by our techniques.

E.2 ADDITIONAL QUANTITATIVE RESULTS

In this section, we report the SSIM performance for supplementary results of Type I guidance, and
PSNR, SSIM, and FID performance for supplementary results of Type II guidance.

Dataset Method Inpaint (Random) Deblur (Gaussian) Deblur (Motion) Super resolution (4×)
SSIM ↑ SSIM ↑ SSIM ↑ SSIM ↑

FFHQ

DPS 0.8891 0.6284 0.4904 0.7719
ΠGDM 0.8784 0.7890 0.7543 0.7850

Analytic (Ours) 0.9272 0.7926 0.7579 0.7878
Convert (Ours) 0.9279 0.7905 0.7584 0.7878

ImageNet

DPS 0.8623 0.4603 0.3582 0.5860
ΠGDM 0.7658 0.5946 0.5534 0.5925

Analytic (Ours) 0.8481 0.6009 0.5611 0.5958
Convert (Ours) 0.8559 0.6007 0.5634 0.5869

Table 5: Quantitative results (SSIM) on FFHQ and ImageNet dataset for Type I guidance. We
use bold and underline for the best and second best, respectively.

8Same to Section 5.2, we replace when σt < 0.2, and it should be noted that we do not use adaptive weight
here.
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(a) Inpainting (Random) (b) Deblur (Gaussian) (c) Deblur (Motion) (d) SR (4×)

Figure 8: Quantitative results (PSNR) on FFHQ dataset for Type II guidance. We report the
PSNR performance under different λ.

(a) Inpainting (Random) (b) Deblur (Gaussian) (c) Deblur (Motion) (d) SR (4×)

Figure 9: Quantitative results (FID) on FFHQ dataset for Type II guidance. We report the FID
performance under different λ.

(a) Inpainting (Random) (b) Deblur (Gaussian) (c) Deblur (Motion) (d) SR (4×)

Figure 10: Quantitative results (SSIM) on FFHQ dataset for Type II guidance. We report the
SSIM performance under different λ.

E.3 TIME COMPLEXITY

The speed of inference of our method depends on whether Analytic or Convert is chosen.

In the case of Analytic, our method does not impose any additional computational cost for online
inference compared to previous works. The computational expense arises from the offline pre-
calculation of r̂2t using equation 24. Similar to Bao et al. (2022b), a small number of Monte Carlo
samples is typically adequate for obtaining an accurate r̂t. With a pre-trained unconditional model
and training dataset, we compute r̂t offline and deploy it alongside the pre-trained unconditional
model. As a result, the online inference cost of our method is the same as previous methods. In our
paper, we initially calculate r̂t using a randomly selected 0.5% of the training set and reuse it for all
our experiments. This process takes a couple of hours on a single 1080Ti GPU.

For Convert, the CG method can introduce additional computational cost. However, we’ve ob-
served that CG converges rapidly (∼ 5 steps when initialize at Dt(xt) ≈ E[x0|xt]) and is only
employed during the last few sampling steps. The additional computational cost of CG is negligible
compared to the overall inference time.

E.4 IMPLEMENTATION OF DDNM SOLUTIONS

Using DDNM solution (equation 11) for Type II guidance in noiseless inverse problems requires to
compute the pseudo-inverse A† for a given linear operator A. Below we present the implementa-
tions of the pseudo-inverses used in our experiments.
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Inpainting. We construct the DDNM solution Eq[x0|xt,y] for the inpainting case A = Dm as
follows

Eq[x0|xt,y] = ỹ + (1−m)⊙ E[x0|xt] (134)

Proof. Since DmDT
m = I is non-singular, we can directly obtain A† by A† =

DT
m(DmDT

m)−1 = DT
m. Plug in equation 11, we have

Eq[x0|xt,y] = DT
my + (I −DT

mDm)E[x0|xt] (135)
= ỹ + (I − diag(m))E[x0|xt] (136)
= ỹ + diag(1−m)E[x0|xt] (137)
= ỹ + (1−m)⊙ E[x0|xt] (138)

Debluring. We construct the pseudo inverse A† for the linear operator in the debluring case A =

F−1diag(k̂)F as follows
A† = F−1diag(k̂)†F (139)

where diag(k̂)† is defined as diag(k̂)† = diag([l1, l2, ...]
T ) with li = 0 if k̂i = 09 otherwise

li = 1/k̂i.

Proof. It is easy to see that with the above construction, A† satisfies AA†A = A.

Super resolution. We directly use torch.nn.functional.interpolate in place of A† for
the super resolution case.

E.5 QUALITATIVE RESULTS

In this section, we present additional visual examples using FFHQ datasets to showcase the ca-
pabilities of our method. Figure 11, 12, 13, and 14 serve as complementary visual examples to
Table 3. These illustrations consistently demonstrate that our optimal covariances generate supe-
rior images compared to previous heuristic covariances in Type I guidance. Furthermore, Figure 15
demonstrates how our methods can enhance the robustness of DiffPIR against the hyper-parameter
λ, taking random inpainting as an example. We also display the notable performance improvement
of ΠGDM with the adaptive weight, i.e., complete version of ΠGDM, in Figure 16, 17, 18, and 19.
Lastly, Figure 20 illustrates that our methods can enhance the DPS robustness to the hyper-parameter
ζ, using random inpainting as an example.

9Numerically, |k̂i| is always larger than zero. We threshold k̂i to zero when |k̂i| < 3 × 10−2 similar to
Wang et al. (2023)
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Figure 11: Qualitative results for Table 3 on random inpainting.
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Figure 12: Qualitative results for Table 3 on Gaussian debluring.
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Figure 13: Qualitative results for Table 3 on motion debluring.
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Figure 14: Qualitative results for Table 3 on super resolution (4×).
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(a) DiffPIR

(b) Analytic

(c) Convert

Figure 15: Qualitative results for Type II guidance on random inpainting. As can be seen, our
methods significantly improve DiffPIR robustness to the hyper-parameter λ.
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Figure 16: Qualitative results for complete ΠGDM on random inpainting.
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Figure 17: Qualitative results for complete ΠGDM on Gaussian debluring.
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Figure 18: Qualitative results for complete ΠGDM on motion debluring.

32



Under review as a conference paper at ICLR 2024

Figure 19: Qualitative results for complete ΠGDM on super resolution (4×).
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(a) DPS

(b) Analytic

(c) Convert

Figure 20: Qualitative results for complete version of DPS on random inpainting. As can be
seen, our methods significantly improve DPS robustness to the hyper-parameter ζ.
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