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Abstract

In pursuit of more inclusive Vision-Language001
Models (VLMs), this study introduces a Large002
Multilingual Multimodal Model called PALO.003
PALO offers visual reasoning capabilities in004
10 major languages, including English, Chi-005
nese, Hindi, Spanish, French, Arabic, Bengali,006
Russian, Urdu, and Japanese, that span a to-007
tal of ∼5B people (65% of the world popula-008
tion). Our approach involves a semi-automated009
translation approach to adapt the multimodal010
instruction dataset from English to the target011
languages using a fine-tuned Large Language012
Model, thereby ensuring high linguistic fidelity013
while allowing scalability due to minimal man-014
ual effort. The incorporation of diverse in-015
struction sets helps us boost overall perfor-016
mance across multiple languages especially017
those that are underrepresented like Hindi, Ara-018
bic, Bengali, and Urdu. The resulting models019
are trained across three scales (1.7B, 7B and020
13B parameters) to show the generalization and021
scalability where we observe substantial im-022
provements compared to strong baselines. We023
also propose the first multilingual multimodal024
benchmark for the forthcoming approaches to025
evaluate their vision-language reasoning capa-026
bilities across languages. Our codes, models027
and datasets will be publicly released.028

1 Introduction029

Propelled by advancements in generative AI, Large030

Multimodal Models (LMMs) (Liu et al., 2023b;031

Zhu et al., 2023; Dai et al., 2023) have emerged032

as a pivotal advancement in the field, seamlessly033

bridging the gap between vision and language tasks.034

While initial efforts such as LLaVA (Liu et al.,035

2023b) and miniGPT4 (Zhu et al., 2023) have036

demonstrated intriguing performance in synthesiz-037

ing effective textual responses based on visual in-038

puts, they have predominantly focused on English,039

leaving a significant gap in multimodal understand-040

ing for non-English languages. As a result, the041

Figure 1: PALO vs. English-VLMs. The plot compares
PALO with corresponding Vision-Language Models
(VLMs) across 10 different languages. These languages
include English, Chinese, Hindi, Spanish, French, Ara-
bic, Bengali, Russian, Urdu, and Japanese, collectively
covering approximately 5B people and 65% of the
global population. English-trained VLMs, such as
LLaVA and MobileVLM, exhibit poor performance on
low-resource languages including Hindi, Arabic, Ben-
gali, and Urdu, due to the under-representation of these
languages during their training phases. PALO, in con-
trast, is a unified model that can hold conversations
simultaneously in all the ten languages, demonstrating
consistent performance across the board.

existing LMMs generally overlook the linguistic 042

diversity of the global population, particularly lan- 043

guages spoken by large groups, such as Chinese, 044

Hindi, Spanish, French, Arabic, Bengali, Russian, 045

Urdu, and Japanese, which collectively account for 046

billions of native speakers. Our work addresses 047

this disparity by developing the first fully open- 048

source multilingual LMM called PALO, which en- 049

compasses ten major languages covering 65% of 050

the global population, with a special focus on lan- 051

guages underrepresented in the current multimodal 052

models. 053
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The challenge lies in the scarcity of high-quality054

multilingual multimodal data compared to English.055

Addressing the challenge of limited high-quality056

data, especially for under-represented languages057

such as Hindi, Arabic, Bengali, and Urdu, our ap-058

proach involves careful analysis and subsequent re-059

finement of translations produced by a state-of-the-060

art Large Language Model (LLM) (Brown et al.,061

2020) for each target language. By identifying and062

correcting translation inaccuracies through human063

intervention, we generate a high-quality multilin-064

gual dataset. This curated dataset then serves as065

the foundation for refining the target language an-066

notations, ensuring a more accurate and nuanced067

representation of the target language in training.068

Leveraging our high-quality multilingual vision-069

language instruction dataset and the recent ad-070

vances in large multimodal modeling, we develop071

PALO as a unified model that can simultaneously072

answer questions in ten different languages. Our073

training pipeline offers substantial gains in low-074

resource languages (underrepresented in the LLM075

training datasets) while maintaining (or further im-076

proving) performance on high-resource languages.077

The contributions of this work are as follows,078

• We develop PALO: the first multilingual Large079

Multimodal Model (LMM) covering ten major080

languages, facilitating vision-language reason-081

ing through a generic model capable of gener-082

ating responses in any of the ten languages.083

• We assemble an extensive multilingual (10084

languages) instruction-tuning dataset, through085

a critical analysis and subsequent refinement086

of a state-of-the-art Large Language Model’s087

target language translations. This dataset is088

pivotal in improving proficiency in processing089

and generating content that is linguistically090

precise across multiple languages.091

• We enhance the multilingual performance of092

state-of-the-art LMMs (Liu et al., 2023b; Chu093

et al., 2023) across three distinct scales i.e.,094

1.7B, 7B, and 13B parameters to demonstrate095

the scalability of our training pipeline. The096

resulting polyglot LMMs demonstrate per-097

formance gains on diverse language tasks098

with substantial improvements in understand-099

ing and generating content for low-resource100

languages, e.g., Hindi, Arabic, Bengali,101

and Urdu, without compromising its high-102

performance on high-resource languages e.g.,103

English, Chinese, French, and Spanish.104

2 Related Works 105

The introduction of Large Language Models 106

(LLMs) has significantly advanced the field of 107

natural language processing. However, the de- 108

velopment of multilingual LLMs has faced con- 109

siderable challenges, primarily due to the skewed 110

distribution of language data (Costa-jussà et al., 111

2022). English and European languages dominate 112

existing datasets, leaving widely spoken languages 113

such as Mandarin Chinese and Hindi underrepre- 114

sented (Eberhard et al., 2015). Moreover, integrat- 115

ing multiple languages into LLMs often leads to 116

a decline in English language performance (Scao 117

et al., 2022), highlighting a major challenge in 118

maintaining cross-lingual performance. 119

Recent efforts have aimed to address these chal- 120

lenges by developing multilingual LLMs with en- 121

hanced capabilities (Almazrouei et al., 2023; Tou- 122

vron et al., 2023; Le Scao et al.; Wei et al., 2023). 123

BLOOM (Le Scao et al.), trained on the ROOTS 124

corpus (Laurençon et al., 2022) that comprises 125

sources in 46 languages, marks a substantial step 126

forward in making LLMs accessible across a wide 127

range of languages, including those with fewer re- 128

sources. PaLM (Chowdhery et al., 2023) show- 129

cases the advantages of scaling, achieving im- 130

proved results in both monolingual and multilin- 131

gual tasks through sophisticated training techniques 132

and a novel pathways architecture. 133

Advancements in Large Multimodal Models 134

(LMMs) have evolved from basic image-level in- 135

teractions (Liu et al., 2023b; Chu et al., 2023) to 136

offering flexibility by focusing on region-specific 137

analysis (Rasheed et al., 2023) and spatio-temporal 138

conversations (Maaz et al., 2023; Lin et al., 2023), 139

highlighting the significant progress in this domain. 140

However, the exploration of multilingual capabili- 141

ties has been limited. Qwen (Bai et al., 2023) and 142

mPLUG-Owl (Ye et al., 2023) extend LMM func- 143

tionalities to process visual inputs in both English 144

and Chinese, showcasing its adaptability in process- 145

ing bilingual visual information. Ziya-Visual (Lu 146

et al., 2023) demonstrates the translation of En- 147

glish image-text datasets into Chinese, employing 148

in-context learning for instruction-response genera- 149

tion. However, these LMMs remain limited to two 150

languages. 151

We introduce PALO, the first fully open-source 152

LMM, offering visual reasoning capabilities across 153

ten major languages, addressing the gap in mul- 154

tilingual LMMs. In contrast to GPT-4 (Achiam 155
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Figure 2: Architecture overview of PALO. (left) The model consists of a vision encoder that encodes the image,
followed by a projector that projects the vision features into the input embedding space of the language model.
The user’s text query is tokenized, and the tokens are concatenated with the vision tokens before being input into
the causal language model to generate the response. For the PALO 7B and 13B variants, Vicuna is used as the
Large Language Model while MobileLLaMA (Chu et al., 2023) is used as the Small Language Model in our
MobilePALO-1.7B variant. CLIP ViT-L/336px is used as the vision encoder in all variants. (right) Projectors used in
different variants of PALO are shown. For the PALO 7B and 13B, following (Liu et al., 2023b), we use a two-layer
MLP projector with GELU activation. For our mobile version of PALO (MobilePALO-1.7B), we use a Lightweight
Downsample Projector (LDP) from (Chu et al., 2023). It utilizes depth-wise separable convolutions to downsample
the image tokens, making it faster than a standard MLP projector.

et al., 2023) which is closed-source and only ac-156

cessible via APIs, ours is the largest effort in the157

open-source domain to extend LMM capabilities158

to multiple languages.159

3 PALO: A Polyglot LMM160

Towards more globally accessible Vision-Language161

Models (VLMs), our model PALO (Polyglot Large162

Multimodal Model) is designed to comprehend and163

generate content in ten major languages, serving an164

audience that spans nearly two-thirds of the global165

population. The architecture of PALO is derived166

from LLaVA (Large Language and Vision Assis-167

tant) (Liu et al., 2023b,a) for our larger-scale mod-168

els (7/13B), and from MobileVLM for our mobile-169

efficient model (1.7B), ensuring that PALO remains170

versatile across different computational settings.171

The architecture seamlessly integrates a vision172

encoder with a language model (see Figure 2).173

Given an input image and user text query, the model174

generates an accurate natural language response.175

PALO uses CLIP ViT-L/14 (Radford et al., 2021)176

as the vision encoder followed by a projector177

to transform vision tokens to the input embed-178

ding space of the language model. Following179

LLaVA (Liu et al., 2023b), we use a two-layer180

MLP with GELU activation as the projector for our181

7/13B models. However, a lightweight downsam-182

ple projector (LDP) (Chu et al., 2023) is used for 183

MobilePALO-1.7B model. LDP utilizes depth-wise 184

separable convolutions to downsample the vision 185

tokens, largely reducing the input tokens to the 186

language model and hence significantly reducing 187

the training and inference time. Further, convolu- 188

tions in LDP have fewer parameters as compared 189

to MLP, making our mobile model both parameter 190

and compute-efficient. The projector used in the 191

different PALO versions are shown in Figure 2. 192

The projected vision tokens are then concate- 193

nated with the tokenized user text query and passed 194

to the language model for generating the response. 195

As PALO trains on ten languages using an exten- 196

sive multi-modal instruction tuning dataset, this not 197

only enables more effective utilization of the tok- 198

enizer’s capacity but also expands the search space, 199

providing a richer context and more challenging 200

examples for training. the language model. This 201

approach significantly enhances the ability of the 202

model to understand and generate responses across 203

a diverse set of languages. 204

We use Vicuna (Zheng et al., 2023) as the large 205

language model (LLM) in our 7/13B models and 206

MobileLLaMA (Chu et al., 2023) as the small lan- 207

guage model (SLM) in MobilePALO-1.7B model. 208

Vicuna fine-tunes LLaMA-2 on user-shared conver- 209

sations collected from ShareGPT, while LLaMA-2 210

is pre-trained on 2T tokens collected from different 211
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public sources (Touvron et al., 2023). On the other212

hand, MobileLLaMA performs pretraining on 1.3T213

tokens from RedPajama-v1 (Computer, 2023) fol-214

lowed by fine-tuning on a publicly available version215

of ShareGPT data (Huggingface).216

3.1 Dataset217

The primary contribution of our work lies in the218

meticulous preparation of a comprehensive multi-219

lingual vision-language instruction-tuning dataset.220

We begin by selecting a state-of-the-art LMM221

model (Liu et al., 2023b) for our focus. To tai-222

lor the instruction-tuning dataset more effectively223

for multiple languages in a scalable way, we lever-224

age an LLM model (Brown et al., 2020) to develop225

a semi-automated translation pipeline. This ap-226

proach involves translating the English dataset into227

the target languages, thereby creating a robust mul-228

tilingual dataset, which significantly broadens the229

linguistic scope and applicability of the model.230

Translation Process and Challenges: A naive231

translation approach from English to the target lan-232

guages using an LLM model (Brown et al., 2020)233

effectively conveys the basic meanings but intro-234

duces several linguistic challenges specific to each235

language. Issues such as punctuation, grammati-236

cal nuances, translation consistencies, and gender237

usage errors are observed via a direct LLM-based238

translation (refer Figure.3). These challenges vary239

greatly due to the linguistic diversity of the lan-240

guages involved, from the tonal complexities of241

Chinese to the script variances in Hindi and the242

gender-specific intricacies of languages like Span-243

ish, Arabic and Russian. For instance, in the case of244

Arabic, common punctuation mistakes involve in-245

correct spacing around commas and periods. Nun-246

nation, vital in Arabic grammar, is sometimes omit-247

ted or wrongly applied. Additionally, certain En-248

glish words remain untranslated in the translated249

text, and there are instances where verbs are in-250

correctly converted to nouns alongside incorrect251

gender alignment in translations that pose signifi-252

cant concerns, given the gender-specific nature of253

grammar in some target languages.254

Addressing the Challenges: To improve the qual-255

ity of the translated dataset, we employ a combi-256

nation of automated and manual verification steps.257

In this semi-automated pipeline, a team of native258

speakers for each language provides detailed re-259

view and correction of a small subset from initial260

translations, addressing language-specific issues,261

gender accuracy, and overall linguistic integrity.262

Figure 3: Qualitative results showing the impact of
fine-tuning. Comparative visualization of English to
Arabic translations before and after fine-tuning the
LLM. The figure shows improvements in language-
specific issues such as accurate vocabulary usage, gen-
der agreement, and grammatical correctness, highlight-
ing the enhanced performance of the fine-tuned model.

Automated scripts are tailored for each language 263

to correct common punctuation mistakes and opti- 264

mize the verification process. 265

Fine-tuning of the LLM: Acknowledging the lim- 266

itations of the LLM for multilingual translations, 267

we leverage manually verified and corrected trans- 268

lations (1K conversations per language) as a high- 269

quality dataset for fine-tuning the LLM. This fine- 270

tuning is focused not only on improving translation 271

accuracy but also on aligning the outputs with the 272

specific attributes of each language, such as tone 273

and orthography. The enhanced and fine-tuned 274

LLM is then employed to translate the extensive 275

VLM instruction tuning dataset (Liu et al., 2023b) 276

comprising approximately 150K instructions (i.e. 277

LLaVA-Instruct-150K from (Liu et al., 2023b)) 278

from English into the respective languages. We 279

use GPT3.5-Turbo as the translation model and 280

finetune it using OpenAI finetuning platform. 281

Impact of the Refined Dataset: This process re- 282

sults in a comprehensive and high-quality multilin- 283

gual dataset, crucial for the effective fine-tuning of 284

PALO. The improved dataset not only addresses 285

specific aspects of each language but also markedly 286

improves the ability of the model to process and 287

generate contextually relevant and grammatically 288

accurate content in all included languages. For in- 289

stance, Figure 3 highlights two key improvements 290

in English to Arabic translation, the first example 291

shows enhanced lexical precision, and the second 292

shows improved grammatical concordance. Inte- 293

grating this dataset into the LMM’s training process 294

is the key to expanding its capabilities to include 295

both English and nine other languages effectively. 296
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Model Eng. Chinese French Spanish Russ. Japan. Arabic Hindi Bengali Urdu Avg.H Avg.L Avg.

LLaVA-7B 67.9 55.7 62.4 64.5 55.3 59.2 38.9 29.4 13.9 21.8 60.8 26.0 46.9
PALO-7B 64.2 55.7 58.3 61.0 57.4 57.5 57.8 57.6 51.7 55.3 59.0 55.6 57.7

-3.7 0.0 -4.1 -3.5 +2.1 -1.7 +18.9 +28.2 +37.8 +33.5 -1.8 +29.6 +10.8

LLaVA-13B 69.5 62.9 67.5 64.6 62.3 65.3 37.2 27.8 20.4 22.1 65.4 26.9 49.9
PALO-13B 65.5 62.1 66.4 65.9 62.4 60.6 56.9 66.8 53.5 59.6 63.8 59.2 61.9

-4.0 -0.8 -1.1 +1.3 +0.1 -4.7 +19.7 +39.0 +33.1 +37.5 -1.5 +32.3 +12.0

MobileVLM-1.7B 46.6 23.2 28.1 29.1 28.1 26.4 12.4 13.7 15.6 15.6 30.3 14.3 23.9
MobilePALO-1.7B 48.2 34.0 42.6 40.1 38.2 32.5 32.8 26.8 19.9 24.1 39.3 25.9 33.9

+1.6 +10.8 +14.5 +11.0 +10.1 +6.1 +20.4 +13.1 +4.3 +8.5 +9.0 +11.6 +10.0

Table 1: Standard VLMs vs PALO on multi-lingual multimodal evaluation. The table shows the comparison
of LLaVA and MobileVLM with PALO on ten languages on the specially adapted multilingual version of LLaVA-
Bench (In-the-Wild). LLaVA 7/13B and MobileVLM-1.7B are fine-tuned on LLaVA-Instruct-665K, and PALO
is fine-tuned on LLaVA-Instruct-665K plus the LLaVA-Instruct-150K translated in all ten languages. All models
are pretrained on CC-595K (Liu et al., 2023b) dataset. Avg.H and Avg.L represent the average over high-resource
(English, Chinese, French, Spanish, Russian and Japanese) and low-resource (Arabic, Hindi, Bengali and Urdu)
languages respectively. Avg. represents the average over all the languages.

4 Experiments297

4.1 Implementation Details298

Similar to the LLaVA and MobileVLM baselines,299

we pretrain our models on a subset of CC3M300

dataset called CC-595K (Liu et al., 2023b). During301

pretraining, only the projector is learned and the302

rest of the model components are kept frozen. We303

train the model for 1 epoch with an overall batch304

size of 256 with 32 batch size per GPU on eight305

A-100 40GB GPUs. The model is optimized using306

Adam optimizer and cosine LR scheduler with a307

learning rate of 2e-3. The pertaining takes around308

1.5 hours for 1.7B, 5 hours for 7B and almost 9309

hours for the 13B model.310

We fine-tune our model on a diverse instruc-311

tion dataset comprising conversations from ten312

languages. Specifically, 665K instructions from313

LLaVA-Instruct-665K (Liu et al., 2023a) are used314

for English, and approximately 150K conversations315

from LLaVA-Instruct-150K (Liu et al., 2023b) for316

Chinese, French, Spanish, Russian, Japanese, Ara-317

bic, Hindi, Bengali and Urdu, summing up to al-318

most 2.1M instructions in total. During fine-tuning,319

only the vision encoder is kept froze and the rest320

of the model is trained. Projector is fully trained321

while language model is LORA (Hu et al., 2022)322

fine-tuned with α = 128. We train the model for323

1 epoch with an overall batch size of 128 with 16324

batch size per GPU on eight A-100 GPUs. We use325

40GB A-100 GPUs for 1.7/7B variants and 80GB326

A-100 GPUs for 13B variants. The model is opti-327

mized using Adam optimizer and cosine LR sched-328

uler with 2e-5 base learning rate for the projector329

and 2e-4 for the language model. The finetuning330

takes around 12 hours for 1.7B, 42 hours for 7B 331

and almost 76 hours for the 13B model. 332

4.2 High-resource vs Low-resource Languages 333

Our work trains and evaluates on ten languages 334

divided into two groups, high-resource and low- 335

resource languages. English, Chinese, French, 336

Spanish, Russian and Japanese are considered high- 337

resource languages as the language model training 338

data contains a reasonable number of samples from 339

these languages. On the other hand, Arabic, Hindi, 340

Bengali and Urdu are categorized as low-resource 341

languages as they are under-represented in the lan- 342

guage model training data. 343

For example, LLaMA-2 (Touvron et al., 2023) 344

pretraining data contains almost 2 trillion tokens, 345

out of which 89.7% are of English and almost 346

1.92% is for Chinese, French, Spanish, Russian, 347

Japanese, and 21 more similar languages. While 348

the representation of Arabic, Hindi, Bengali and 349

Urdu is negligible. Similarly, MobileLLaMA (Chu 350

et al., 2023) pretrains on RedPajama-v1 (Computer, 351

2023) dataset which consist of almost 1.3 trillion 352

tokens, predominantly English tokens. 353

4.3 Results 354

In evaluating the multilingual capabilities of VLMs, 355

we conduct a comprehensive evaluation across 356

various languages, utilizing a high-quality eval- 357

uation set. This set is constructed by translat- 358

ing the LLaVA-Bench (In-the-Wild) (Liu et al., 359

2023b) into all target languages using GPT-4- 360

Turbo (Achiam et al., 2023), with particular at- 361

tention to preserving linguistic authenticity and 362
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Data English Chinese French Spanish Russian Japanese Arabic Hindi Bengali Urdu Avg.

665K-English 67.9 55.7 62.4 64.5 55.3 59.2 38.9 29.4 13.9 21.8 46.9
150K-Chinese 59.3 55.0 60.0 57.0 32.9 40.5 21.2 20.3 21.7 19.3 38.7
150K-French 51.0 41.0 57.8 54.4 35.4 54.6 17.6 23.2 13.1 16.7 36.5
150K-Spanish 61.1 52.2 54.8 61.6 50.1 51.7 27.8 24.4 15.4 18.5 41.8
150K-Russian 55.2 51.1 62.2 60.6 57.8 50.9 25.3 28.2 13.6 16.7 42.2
150K-Japanese 54.5 41.1 59.2 57.6 36.1 57.6 18.0 23.6 13.3 18.4 37.9
150K-Arabic 67.8 42.9 56.4 54.7 38.4 44.7 56.0 25.7 19.4 33.4 43.9
150K-Hindi 52.2 39.1 56.8 54.0 35.0 33.4 18.4 54.1 12.8 23.8 37.9
150K-Bengali 26.4 40.2 56.0 54.5 37.3 26.0 12.8 16.3 34.8 14.0 31.8
150K-Urdu 28.9 30.6 44.6 50.1 22.5 16.0 22.1 25.5 20.9 47.7 30.9
Combined 64.2 55.7 58.3 61.0 57.4 57.5 57.8 57.6 51.7 55.3 57.7

Table 2: Ablation on multi-lingual fine-tuning dataset. The table shows an effect of performance on ten languages
when using fine-tuning data from different languages. Models with 7B parameters are used for this ablation.

mitigating common issues of automated transla-363

tions through careful human correction. The bench-364

mark comprises 24 diverse and challenging images365

from different domains, such as indoor and outdoor366

scenes, memes, and artwork, each with detailed367

descriptions and a set of 60 questions designed to368

test the understanding and generalization abilities369

of the model.370

The results in Table 1 show that PALO obtains371

robust performance in high-resource languages, as372

shown by the 7/13B models scoring an average of373

59.0 and 63.8 respectively across these languages.374

This demonstrates that our multilingual extension375

has been effectively integrated without compromis-376

ing the original capabilities of the model. Further,377

the model shows good performance improvements378

in low-resource languages, with average scores ris-379

ing from 26.0 and 26.9 to 55.6 and 59.2 points, for380

the 7B and 13B models, respectively.381

The overall performance across all ten languages382

also improves, with the 7B model achieving an av-383

erage score of 57.65, and the 13B model reaching384

61.97. The data reflects that our approach success-385

fully creates a more inclusive, diverse, and high-386

performing VLM, capable of handling the complex387

landscape of global languages in vision-language388

tasks (see Figures 4 and 5 for qualitative results).389

Our mobile model demonstrates consistent im-390

provements across both high-resource and low-391

resource languages, with an overall average gain of392

33.9 points compared to the MobileVLM baseline393

of 23.9 points. Contrary to the trend observed in394

the 7/13B model, our mobile version also shows395

improvements in high-resource languages such as396

English and Chinese. This performance difference397

is attributed to the language model pretraining data.398

LLaMA-2 is trained on 2 trillion tokens with a bet-399

ter representation of high-resource languages com-400

pared to MobileLLaMA, which is predominantly 401

trained on 1.3 trillion English tokens. 402

4.4 Ablations 403

Table 2 shows an ablation where we trained our 404

7B model on 150K translated instructions from 405

each language and evaluated all models across all 406

languages. The results show that the baseline per- 407

forms better than the language-specific fine-tuned 408

models for high-resource languages, including Chi- 409

nese, French, Spanish, and Japanese. This is be- 410

cause these languages have less multi-modal data 411

compared to the baseline (i.e., the English model 412

is trained on 665K instructions, while language- 413

specific models are trained on 150K instructions), 414

and due to the noisy semi-automatic translation pro- 415

cess. Conversely, the language-specific fine-tuned 416

models perform better in the case of Arabic, Hindi, 417

Bengali, and Urdu, as these languages are under- 418

represented in the LLM pretraining data. Lastly, 419

combined training further improves performance 420

on low-resource languages. Further, we found that 421

increasing the quantity of translated multi-modal 422

training data enhances performance. For instance, 423

translating an additional 72K instructions from the 424

GQA dataset (Hudson and Manning, 2019) into 425

Bengali and training with a total of 222K instruc- 426

tions improves Bengali results from 34.8 to 38.3. 427

This study is limited to 150K instructions for each 428

language due to resource constraints. 429

5 Conclusion 430

We introduce PALO, a polyglot LLM for 5B people, 431

covering almost two-thirds of the world’s popula- 432

tion. It takes image and user text query as input 433

and effectively converse in both high-resource lan- 434

guages such as English, Chinese, French, Span- 435

ish, Russian and Japanese, and low-resource lan- 436
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Figure 4: Qualitative results demonstrating the multilingual capabilities of PALO. When presented with user
queries, the model generates accurate textual responses related to the visual content and the relevant language.
The figure highlights its ability to bridge vision and language understanding across diverse languages. In this
illustration, we explore dialogues in two high-resource languages—Spanish and Chinese—and two low-resource
languages—Hindi and Arabic. PALO accurately interprets the unusual aspects of an image featuring two individuals
in medieval attire within a contemporary supermarket setting. The model exhibits its creative imagination in
Chinese, proposing a backstory where these characters might be a king and queen from a storybook. In Hindi, PALO
demonstrates scenario-building by describing a possible situation that brought the medieval couple into the current
day as time travellers. At the bottom, PALO displays a touch of humour in Arabic, conjuring up a playful dialogue
that a king might say, showcasing its subtle understanding of context and culture-specific humour. This image
effectively visualizes the advanced ability to process and generate content in multiple languages, reflecting high
linguistic precision and cultural intelligence.

guages such as Arabic, Hindi, Bengali and Urdu.437

To train our model on ten languages, we translate438

150K instructions into each language using custom-439

tailored LLMs. To fine-tune an LLM on a language-440

translation task, we use 1K human-annotated con-441

versations for each targeted language. Our final442

model simultaneously provides competency in ten443

languages and provides an overall performance444

improvement on vision-language evaluation. We445

train PALO across three scales (1.7B, 7B, and 13B)446

to demonstrate its generalization and scalability447

across ten languages. Our codes, models, and448

datasets will be publicly released.449

6 Limitations 450

The semi-automated translation process we em- 451

ploy, while efficient, might not fully grasp the deep 452

contextual and cultural nuances inherent to each 453

language. This could impact the capability of the 454

model to comprehend and generate content with the 455

necessary cultural depth, accuracy and precision. 456

Additionally, our selection of ten languages, though 457

it spans two-thirds of the global population, still 458

leaves out a considerable number of the world’s 459

languages, indicating room for further expansion 460

to further expansion to enhance linguistic diversity 461

and inclusivity within VLMs. 462
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Figure 5: Qualitative results demonstrating the visual reasoning of PALO and its adeptness in multiple
languages. PALO responds accurately to visual content in a contextually appropriate manner for each language. We
illustrate a conversation in three high-resource languages—French, Russian and Japanese and one low-resource
language—Urdu. In the French segment, the model shows practical reasoning by suggesting a recipe that utilizes
the available ingredients in the fridge, connecting visual perception to culinary suggestions. In Russian, PALO
identifies items rich in Vitamin C and in the Urdu example, the model organizes the fridge contents into food groups,
demonstrating its ability to classify items and apply nutritional knowledge. This effectively highlights its ability
to switch between languages while maintaining the context of the conversation, reflecting its capacity to generate
relevant and culturally aware content in both high-resource and low-resource languages.

7 Potential Risks463

The use of semi-automated translations could bring464

forward potential risks tied to biases inherent in465

LLMs, particularly for low-resource languages.466

The model must account for nuances in visual data, 467

such as the interpretation of cultural symbols or 468

gestures, to prevent any misrepresentations. The 469

interpretations of the model, influenced by these 470

8



biases, could lead to inaccuracies in contexts that471

are culturally sensitive. There is a need to evaluate472

and adopt necessary training to mitigate such risks.473

8 Use of Data and AI Assistant474

We use LLaVA-Instruct (Liu et al., 2023b) dataset,475

licensed under Creative Commons Attribution476

(CCA) 4.0 International, available for use in re-477

search. Further, the use of GPT models abides478

by (OpenAI). Respecting source license informa-479

tion, we will release all datasets created in this480

work under CCA 4.0 International license.481

9 Human Annotations482

The LLaVA-Bench (Liu et al., 2023b) evaluation483

for each language is verified and corrected by anno-484

tators selected to represent a diverse mix of genders485

and demographics. Annotators are provided with486

the English version alongside the translated version.487

They are given specific instructions to neutralize488

the tone and biases during the correction process.489
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