
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review at Frontiers in Probabilistic Inference workshop at ICLR 2025

NO TRICK, NO TREAT:
PURSUITS AND CHALLENGES TOWARDS
SIMULATION-FREE TRAINING OF NEURAL SAMPLERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the sampling problem, where the aim is to draw samples from a dis-
tribution whose density is known only up to a normalization constant. Recent
breakthroughs in generative modeling to approximate a high-dimensional data
distribution have sparked significant interest in developing neural network–based
methods for this challenging problem. However, neural samplers typically incur
heavy computational overhead due to simulating trajectories during training. This
motivates the pursuit of simulation-free training procedures of neural samplers.
In this work, we propose an elegant modification to previous methods, which al-
lows simulation-free training with the help of a time-dependent normalizing flow.
However, it ultimately suffers from severe mode collapse. On closer inspection,
we find that nearly all successful neural samplers rely on Langevin precondition-
ing to avoid mode collapsing. We systematically analyze several popular methods
with various objective functions and demonstrate that, in the absence of Langevin
preconditioning, most of them fail to adequately cover even a simple target. Fi-
nally, we draw attention to a strong baseline by combining the state-of-the-art
MCMC method, Parallel Tempering (PT), with an additional generative model to
shed light on future explorations of neural samplers.

1 INTRODUCTION

Sampling is a fundamental task in statistics, with broad applications in Bayesian inference, rare
event sampling, and molecular simulation (Box & Tiao, 2011; Tuckerman, 2023; Dellago et al.,
2002; Du et al., 2024). Consider a target distribution with the following density function:

ptarget(x) =
p̃target(x)

Z
, Z =

∫
Ω

p̃target(x)dx, (1)

where p̃target(x) is the unnormalized density which we can evaluate for a given x, and Z is an
unknown normalization factor. We aim to generate samples following ptarget. These samples can
be used to estimate the normalization factor or the expectation over some test functions.

A “standard” solution to this problem is Markov chain Monte Carlo (MCMC), which runs a Markov
chain whose invariant density is ptarget. Building on top of MCMC, various advanced sampling
techniques have been developed, with the most efficient methods including Parallel Tempering
(PT) (Swendsen & Wang, 1986b; Earl & Deem, 2005), Annealed Importance Sampling (AIS) (Neal,
2001), and Sequential Monte Carlo (SMC) (Doucet et al., 2001). However, MCMC-based ap-
proaches typically suffer from slow mixing time and dependency between samples.

A growing trend of research directions therefore focus on the learned neural sampler, e.g., (Noé
et al., 2019), where we train a neural network to amortize the sampling procedure. Initial attempts
studied normalizing flows (NFs) and used them as proposals for importance sampling (IS) (Noé
et al., 2019; Midgley et al., 2023). Later, diffusion and control-based samplers gained notable at-
tention (Zhang & Chen, 2022; Doucet et al., 2022; Vargas et al., 2023; Berner et al., 2024; Vargas
et al., 2024; Albergo & Vanden-Eijnden, 2024) due to their success in generative modeling (Ho et al.,
2020; Song et al., 2021; Karras et al., 2022). These methods start with an easy-to-sample distribution
(e.g., Gaussian) and evolve them through a stochastic differential equation (SDE) or ordinary dif-
ferential equation (ODE). However, despite significant progress, these approaches typically require
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simulating the entire trajectory to evaluate the training objective. For instance, the most common
objective - the reverse KL divergence between the model path measure and the target path measure
- generally necessitates simulating the full trajectory for every sample and backpropagating through
it. This leads to substantial memory consumption and slows down the training process.

To this end, various objectives have been proposed to reduce computational costs. Some off-policy
objectives enable detaching the gradient from the simulation (Richter & Berner, 2024), while others
involve simulating only a partial path (Zhang et al., 2024). The ultimate goal, however, is to design
a sampler and training objective that can be optimized without any trajectory simulation follow-
ing lessons learned from diffusion and flow matching models (Ho et al., 2020; Song et al., 2021;
Lipman et al., 2023). While appealing, we argue that most current approaches are not well-suited
for such a design. This obstacle stems not only from how to modify the objective formulation for
simulation-free evaluation but also from these approaches’ reliance on tricks in network parameteri-
zation and sampling procedures that are not compatible with simulation-free training - most notably,
the Langevin preconditioning, first proposed by Zhang & Chen (2022). Through a simple example,
we demonstrate that even with the same objective and a mode covering initialization, simulation-free
training leads to significant mode collapse. We attribute this failure to the absence of the Langevin
preconditioning in the simulation-free training pipeline. To further support this claim, we provide
ablation studies, showing that most current approaches struggle without the Langevin precondition-
ing. This observation highlights critical caveats and considerations that must be addressed in future
work aimed at developing training-free objectives and pipelines.

Running simulations with the Langevin preconditioning also poses a new challenge: simulation
during training greatly increases the number of evaluations of the target density, which can be
prohibitively expensive in some applications. Consequently, it remains unclear whether these ap-
proaches are efficient compared to directly running MCMC and fitting a diffusion sampler post-hoc.
To investigate this, we compare the samplers with a state-of-the-art MCMC method, Parallel Tem-
pering (PT, Swendsen & Wang, 1986a; Earl & Deem, 2005). We find that PT serves as a remarkably
strong baseline that should not be overlooked.

In summary, our main contributions are as follows: (1) We provide a systematic review of current
samplers, focusing on classifying different approaches by their underlying process and objectives.
(2) We propose a simple direction for achieving it using Normalizing Flows. Unfortunately, this
attempt does not perform as desired, which we attribute to the absence of Langevin preconditioning
widely applied in other neural samplers. (3) We investigate the influence of Langevin precondi-
tioning. Our findings reveal that most approaches fail when the sampler is not parameterized with
the gradient of the target density. This indicates critical caveats and considerations that should be
addressed in developing simulation-free approaches. (4) Finally, we compare several diffusion neu-
ral samplers with PT, and find that they lag significantly behind the results obtained from running
traditional MCMC methods and fitting a diffusion model post hoc. This highlights key challenges
and critical considerations for enhancing the practicality of neural samplers in future work.

2 REVIEW OF DIFFUSION AND CONTROLLED SAMPLERS

Before discussing the potential design of a simulation-free training approach, we first present a
systematic review of current diffusion and controlled-based samplers in this section. Despite the
abundance of existing approaches, most samplers can be broadly categorized based on their sampling
processes and training objectives:

1. Sampling processes. We can write the sampling process as follows:

dXt =
[
µt(Xt) + σ2

t bt(Xt)
]
dt+ σt

√
2dWt, X0 ∼ pprior, (2)

fixing or learning {µt, σt, bt, pprior} results in different sampling strategies. Broadly, there are
three main types of processes:
• time-reversal sampler: the first involves training Equation (2) to approximate the time-reversal

of a target process that begins with the target ptarget and evolves toward a tractable distribution
such as pprior. The target process is typically designed with a tractable drift term to ensure
that its terminal density (approximately) converges to pprior, with common choices including
variance-preserving (VP) and variance-exploding (VE) SDEs and pinned Brownian motion
(PBM). This category includes methods like PIS (Zhang & Chen, 2022; Vargas et al., 2021),
DDS (Vargas et al., 2023), DIS (Berner et al., 2024), and iDEM (Akhound-Sadegh et al., 2024).
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Table 1: Properties of different sampling processes.

Underlying process Properties
non-ergodicity arbitrary pprior no mode switching

Reversal of VP/VE SDE ✗ ✗ ✓
Reversal of PBM ✓ ✗ ✓
Escorted Transport (geom. interpolate) ✓ ✓ ✗

• escorted transport sampler: the second trains Equation (2) to transport between a sequence of
prescribed marginal densities πt, typically defined by interpolation between pprior and ptarget,
with π0 = pprior and πT = ptarget. Representative methods include Escorted Jarzynski (Vaikun-
tanathan & Jarzynski, 2011), CMCD (Vargas et al., 2024), NETS / PINN-based transport (Máté
& Fleuret, 2023; Albergo & Vanden-Eijnden, 2024), LFTS (Tian et al., 2024), etc.

• annealed variance reduction sampler: Similar to the escorted transport sampler, these ap-
proaches prespecify an annealed target πt and set bt = 0 and µt = ∇ lnπt just like the
proposal in AIS (Neal, 2001; Jarzynski, 1997), the forward process remains fixed so no guid-
ance/escorting is learned. However, one approximates the reversal of this forward proposal so
that the Radon-Nikodym derivative (RND) between the time-reversal and the forward proposal
has a low variance, allowing a more efficient importance sampling. This category includes
methods like AIS (Neal, 2001; Jarzynski, 1997), MCD (Doucet et al., 2022; Zhang, 2021;
Hartmann et al., 2019), LDVI (Geffner & Domke, 2023), among others.

We compare the properties of different underlying processes in Table 1, including ergodicity (i.e.,
whether the sampler can mix within a finite number of steps (Albergo et al., 2023; Huang et al.,
2021; Zhang & Chen, 2022; Vargas et al., 2021; Grenioux et al., 2024)), flexibility on the choice
of prior, and the “smoothness” (Chemseddine et al., 2024; Woodard et al., 2009; Tawn et al.,
2020; Syed et al., 2022; Phillips et al., 2024) of the induced flow (i.e. the mass teleportation
problem, also known as mode switching).

2. Training objectives. There are mainly two families of objectives:

• path measure alignment: the first one aligns the path measure induced by the sampling process,
i.e., the SDE starting from pprior, with another process starting from the target distribution ptarget
and traversing in reverse. Common objectives include KL divergence (Zhang & Chen, 2022;
Vargas et al., 2021; 2023; Doucet et al., 2022; Lahlou et al., 2023; Berner et al., 2024; Vargas
et al., 2024), log-variance divergence (Richter & Berner, 2024), the (sub-)trajectory balance
objective (Zhang et al., 2024), and detailed balance objective (Bengio et al., 2021).

• marginal alignment: this approach aims to align the drift term or vector field of the sampling
process with a prescribed target, ensuring that the marginal distributions of the generated sam-
ples closely follow the desired trajectory at each time step. Common objectives in this category
include the physics-informed neural network (PINN) loss (Sun et al., 2024; Albergo & Vanden-
Eijnden, 2024), action matching loss (Albergo & Vanden-Eijnden, 2024), and score matching
with importance sampling (Akhound-Sadegh et al., 2024).

We compare the properties of different objectives in Table 2. Specifically, we assess whether they
support off-policy training, can be computed without simulation, require the costly calculation of
network divergence, and ensure unbiasedness.
We note that the simulation-free training can relate to several concepts in the neural sampler lit-
erature: (1) training without using MCMC, (2) detaching gradients on samples when evaluating
trajectory-based objectives, and (3) evaluating objectives at any time step without simulating the
trajectory. In this paper, we formally define simulation-free training as training with an objec-
tive that can be evaluated without simulating any ODE or SDE, aligning with the principles of
diffusion and flow matching methods.

Combining different underlying processes and objectives, we will recover many common neural
samplers. In the following, we briefly explain their design and categorize them in Table 3. We
include more details in Appendix C.

(1) Path Integral Sampler (PIS, Zhang & Chen, 2022) and concurrently (NSFS, Vargas et al., 2021):
PIS fixes pprior = δ0, σt = 1/

√
2 and learns a network fθ(·) = µt(·) + σ2

t bt(·) so that Equa-
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Table 2: Properties of different objectives. *KL divergence does not support simulation-free train-
ing in general. However, it can be calculated without simulation for some special cases. We will
provide an example later in Section 3. **KL divergence and log-variance divergence typically do
not require computing the divergence. However, Richter & Berner (2024) proposed objectives for
neural samplers based on the general Schrödinger Bridge that requires computing this divergence.

Objective Properties
off-policy sim-free div-free unbiased

KL ✗ ✗(✓*) ✓(✗**) ✓
LV ✓ ✗ ✓(✗**) ✓
TB/STB ✓ ✗ ✓ ✓
DB ✓ ✗ ✓ ✓
PINN ✓ ✓ ✗ ✓
AM ✓ ✗ ✓ ✓
SM w. IS ✓ ✓ ✓ ✗

tion (2) approximate the time-reversal of the following SDE (Pinned Brownian Motion):

dYt = − Yt

T − t
dt+ dWt, Y0 ∼ ptarget. (3)

We define Equation (3) as the time-reversal of Equation (2) when Yt ∼ XT−t. The network is
learned by matching the reverse KL (Zhang & Chen, 2022; Vargas et al., 2021) or log-variance
divergence (Richter & Berner, 2024) between the sampling and the target process.
Diffusion generative flow samplers (DFGS, Zhang et al., 2024) time-reversal the same pinned
Brownian motion but with a new introduction of local objectives including detailed balance and
(sub-)trajectory balance which has been shown equivalent to the log-variance objective with a
learned baseline rather than a Monte Carlo (MC) estimator (Nüsken & Richter, 2021).

(2) Denoising Diffusion Sampler (DDS, Vargas et al., 2023) and time-reversed Diffusion Sampler
(DIS, Berner et al., 2024): both DDS and DIS fix µt(Xt, t) = βT−tXt, σt = v

√
βT−t, pprior =

N (0, v2I), and learn a network fθ(·, t) = bt(·, t)/2 so that Equation (2) approximates the time-
reversal of the VP-SDE:

dYt = −βtYtdt+ v
√

2βtdWt, Y0 ∼ ptarget. (4)
In an optimal solution, fθ will approximate the score fθ(·, t) ≈ ∇ log pT−t(·), where pt(X) =∫
N (X|

√
1− λtY, v

2λtI)ptarget(Y )dY and λt = 1 − exp(−2
∫ t

0
βsds). Similar to PIS, the

network can be trained either with reverse KL divergence or log-variance divergence.
(3) Iterated Denoising Energy Matching (iDEM, Akhound-Sadegh et al., 2024): iDEM fixes

µt(Xt, t) = 0, pprior = N (0, T 2I), and learns a network fθ(·, t) = bt(·, t)/2 to approximate
the score fθ(·, t) ≈ ∇ log pT−t(·), where log pT−t is estimated by target score identity (TSI,
De Bortoli et al., 2024) with a self-normalized importance sampler:

∇ log pT−t(Xt) ≈
∑
n

p̃target(X
(n)
T )∑

m p̃target(X
(m)
T )

∇ log p̃target(X
(n)
T ), X

(n)
T ∼ qT |t(XT |Xt), (5)

qT |t(XT |Xt) is the importance sampling proposal chosen as qT |t(XT |Xt) ∝ pt|t(Xt|XT ). In
an optimal solution, the sampling process approximates the time-reversal of a VE-SDE:

dYt =
√
2tdWt, Y0 ∼ ptarget. (6)

One can re-interpret the estimator regressed in iDEM in terms of the optimal drift solving a
stochastic control problem (Huang et al., 2021). The optimal control f∗

σinit
can be expressed in

terms of the score (e.g. See Remark 3.5 in Reu et al. (2024)), for any σinit > 0 :

f∗
σinit

(Xt, t) = −∇ log ϕT−t(Xt) = − Xt

T − t+ σ2
init

+∇ log pT−t(Xt), (7)

where ϕt(Xt) is the value function. It can be expressed as a conditional expectation via the
Feynman-Kac formula with Hopf-Cole transform (Hopf, 1950; Cole, 1951; Fleming, 1989):

ϕt(Xt) = EXT∼qT |t(XT |Xt)

[
p̃target

N (0, T + σ2
init)

(XT )

]
. (8)
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Table 3: We obtain common neural samplers by combining different underlying processes and ob-
jectives. DDS: Vargas et al. (2023); DIS: Berner et al. (2024); DDS/DIS/PIS-LV: (Richter & Berner,
2024); CMCD: (Vargas et al., 2024); NETS: Albergo & Vanden-Eijnden (2024); PINN-based: Sun
et al. (2024); RDMC: Huang et al. (2023); iDEM: Akhound-Sadegh et al. (2024); SFS: Huang et al.
(2021); LFIS: Tian et al. (2024); GFN: Zhang et al. (2024). *RDMC and SFS only estimate the
score/optimal control function by importance sampling, and do not evolve network training.

KL LV TB/STB DB PINN AM Score Estimation

Reversal of VP/VE SDE DDS,
DIS

DDS-LV,
DIS-LV PINN-based RDMC*,

iDEM

Reversal of PBM PIS PIS-LV DGFS DGFS SFS*

Escorted Transport CMCD CMCD PINN-based,
NETS, LFIS NETS

Note the MC Estimator of ∇ log ϕT−t(Xt) (e.g. Equation 8) was used in Schrödinger-Föllmer
Sampler (SFS, Huang et al., 2021) to sample from time-reversal of pinned Brownian Motion,
yielding an estimator akin to the one used in iDEM.

(4) Monte Carlo Diffusion (MCD, Doucet et al., 2022): unlike other neural samplers, MCD’s sam-
pling process is fixed as µt = 0, σt = 1, bt(Xt, t) = ∇ log πt(Xt), where πt is the geometric
interpolation between target and prior, i.e., πt(Xt) = pβt

target(Xt)p
1−βt

prior (Xt). It can be viewed
as sampling with AIS using ULA as the kernel. Note, that this transport is non-equilibrium, as
the density of Xt is not necessary πt(Xt). Therefore, MCD trains a network to approximate the
time-reversal of the forward process and perform importance sampling (more precisely, AIS) to
correct the bias of the non-equilibrium forward process.

(5) Controlled Monte Carlo Diffusion (CMCD, Vargas et al., 2024) and Non-Equilibrium Transport
Sampler (NETS, Máté & Fleuret, 2023; Albergo & Vanden-Eijnden, 2024): Similar to MCD,
CMCD and NETS also set bt(Xt, t) = ∇ log πt(Xt) and πt is the interpolation between target
and prior1. Different from MCD where the sampling process is fixed, CMCD and NETS learn
fθ(·, t) = µt(·, t) so that the marginal density of samples Xt simulated by Equation (2) will
approximate πt. As a special case, Liouville Flow Importance Sampler (LFIS, Tian et al., 2024)
fixes σt = 0 and learns an ODE to transport between πt.

3 SIMULATION-FREE TRAINING WITH NORMALIZING FLOW INDUCED SDES

In this section, we propose a potential design for simulation-free training of DDS and CMCD using
normalizing flows (NF)2. Consider a time-dependent normalizing flow defined as Fθ : X × [0, T ] →
X . We denote the density of the samples drawn from the normalizing flow as qθ(Xt, t). A key
property of NFs that enables simulation-free training is their ability to generate samples Xt ∼
qθ(Xt, t) through two distinct approaches (Bartosh et al., 2024):

1. Drawing from the base distribution Xbase ∼ pbase and transforming it via Fθ(Xbase, t);
2. Drawing an initial sample Xbase ∼ pbase, X0 = Fθ(Xbase, 0) and evolving through an

ODE: dXt = ∂tFθ(Xbase, t)dt = (∂tFθ(Xbase, t)|Xbase=F−1
θ (Xt,t)

)dt. For simplicity, we write

F̃θ(Xt, t) = ∂tFθ(Xbase, t)|Xbase=F−1
θ (Xt,t)

. Additionally, the following SDE will have the same
marginal density as the ODE for any σ ≥ 0:

dXt =
(
F̃θ(Xt, t) + σ2

t∇ log qθ(Xt, t)
)
dt+ σt

√
2dWt. (9)

The first approach allows us to directly generate samples along the trajectory without simulation,
while the second approach allows the use of the same objective as previously described in control-
based samplers. In the following, we introduce NF-DDS, leveraging normalizing flows to achieve a

1CMCD defines πt with geometric interpolation between target and prior πt(Xt) = pβt
target(Xt)p

1−βt
prior (Xt).

In contrast, NETS defines πt differently depending on the target distribution. For example, with a GMM target,
πt is constructed as a GMM whose components’ means and variances are linearly interpolated between the
target mixture components and a Gaussian around 0. We will denote this as mode interpolation.

2We use NF to refer to an invertible network rather than continuous normalizing flows (Chen et al., 2018).
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(a) Initialization of NF-DDS, samples generated
at different time steps 0, 0.8, 1.0. As we can see,
the initialization already covers all modes.

(b) NF-DDS after training with Equation (13), samples gen-
erated at different time steps 0, 0.8, 1.0. Unlike DDS, NF-
DDS fails to capture all modes.

simulation-free training objective. In Appendix E, we present an alternative approach, NF-CMCD,
which coincides with matching the reverse Fisher divergence between marginals in all time steps.

NF-DDS: Recall that in DDS, we match the sampling process in Equation (9) with the time-reversal
of a VP-SDE starting from the target density:

dYt = −βtYtdt+ v
√
2βtdWt, Y0 ∼ ptarget. (10)

To have a bounded RND between the target path measure and Equation (9), we set σt = v
√

βT−t.
We rewrite the sampling process for easy reference:

dXt =
(
F̃θ(Xt, t) + v2βT−t∇ log qθ(Xt, t)

)
dt+ v

√
2βT−tdWt. (11)

By Nelson’s condition (Nelson, 1967; Anderson, 1982), we can write its time-reversal as

dYt = −
(
F̃θ(Yt, T − t)− v2βt∇ log qθ(Yt, T − t)

)
dt+ v

√
2βtdWt, Y0 ∼ qθ(Y0, T ). (12)

By Girsanov theorem, the KL divergence DKL[Q||P] between the path measure induced by Equa-
tion (12) (denoted as Q) and Equation (10) (as P) is tractable (derivation details in Appendix D):∫ T

0

1

4v2βT−t

Eqθ(Y,t)∥F̃θ(Y, t)−v2βT−t∇ log qθ(Y, t)−βT−tY ∥2dt+DKL[qθ(·, T )||ptarget]. (13)

Failure of NF-DDS: Although NF-DDS enables simulation-free training for DDS, it struggles to
perform well even on simple tasks. We evaluate NF-DDS by training it on a 2D 3-mode Gaussian
Mixture target distribution. Figures 1a and 1b illustrate the initialization and the outcomes after
training. Despite starting with an initialization that covers all modes, and being optimized using the
same objective as DDS, NF-DDS fails to achieve satisfactory results.

What is the difference between DDS and NF-DDS leading to this performance discrepancy? Ex-
cluding the influence of objectives, the only difference left is the model. Specifically, DDS adopts
the network proposed by PIS (Zhang & Chen, 2022):

fθ(·, t) = NN1,θ(·, t) + NN2,θ(t) ◦ ∇ log ptarget(·), (14)

and initializes NN1,θ ≈ 0 and NN2,θ = 1. In the early stages of training, DDS simulation closely
resembles running MCMC with Langevin dynamics. In fact, nearly all algorithms discussed in
Section 2 incorporate a similar term, either explicitly or implicitly. If simulating these Langevin
terms plays a crucial role, then modifying current algorithms to achieve simulation-free training
may not be straightforward or even infeasible. Therefore, in the next section, we provide ablation
studies on the influence of the Langevin term, which we denote as Langevin preconditioning, in both
time-reversal sampler and escorted transport sampler, trained with different objectives.

4 ABLATION ON LANGEVIN PRECONDITIONING AND ITS IMPLICATIONS

In this section, we ablate the effectiveness of the Langevin preconditioning on examples of different
neural samplers. For the time-reversal sampler, we take DDS as an example, while for the escorted
transport sampler, we take CMCD as an example. We will explore objectives including reverse KL,
Log-var divergence, trajectory balance, and PINN.

First, we discuss how to remove Langevin preconditioning in different samplers:

6
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Table 4: Sample quality of time-reversal sampler and escorted transport sampler trained with differ-
ent objectives. We compare their performances both with and without the Langevin preconditioning.
We measure MMD, EUBO and ELBO. MMD can have a comprehensive reflection on the sample
quality, and the difference between EUBO and ELBO measures the mode coverage: large EUBO
indicates mode collapsing. As some methods diverge in the end, we report the results with early
stopping, according to ELBO. N/A denotes unstable training, and no reasonable result is obtained.

Obj. DDS CMCD
w. LG w/o LG w. log ptarget distil init. w/o LG + init. w. LG w/o LG distil init. w/o LG + init.

MMD (↓)

rKL 0.074 1.497 4.260
0.121

0.333 0.075 4.011 1.827
LV 0.064 1.938 1.995 0.014 0.017 N/A 0.079 0.036
TB 0.054 4.413 4.550 0.015 0.035 N/A 0.130

ELBO (↑) /EUBO (↓)

rKL -0.45/0.49 -1.93/28.52 -2.36/35.02
-0.88/0.64

-1.14/3.03 -0.40/0.45 -4.45/193.06 -3.28/3×105

LV -0.90/0.77 -2.07/16.26 -1.96/17.19 -0.53/0.44 -0.28/0.33 N/A -0.89/0.82 -0.53/0.77
TB -1.73/1.36 -2.62/23.00 -2.61/28.75 -0.46/0.45 -0.52/0.77 N/A -0.77/1.20

• DDS without Langevin Preconditioning. DDS’s Langevin preconditioning occurs in its network
parameterization. Therefore, to eliminate the help of Langevin during simulation in the training
process, we can simply replace the network in Equation (14) by a standard MLP. To ensure the
model capacity, we increase the MLP size to 5 layers with 256 hidden units.

• CMCD without Langevin Preconditioning. Unlike DDS, Langevin preconditioning in CMCD nat-
urally emerges from its formulation. Specifically, CMCD defines the drift terms for the sampling
and “target” processes as fθ(Xt, t) + σ2

t∇ log πt(Xt) and −(fθ(Yt, T − t)− σ2
t∇ log πT−t(Yt))

respectively. By aligning their path measures, the marginal density of the sampling process at time
t is ensured to match πt in accordance with Nelson’s condition (Nelson, 1967). In order to elim-
inate the Langevin preconditioning ∇ log πt(Xt) during simulation in training, we redefine the
sampling and ”target” processes as fθ(Xt, t) and −(fθ(Yt, T − t)− 2σ2

t∇ log πT−t(Yt)). Align-
ing their path measures still ensures that the marginal density of the sampling process at time t
matches πt, while the training simulation does not rely on the help of Langevin preconditioning.

• PINN without Langevin Preconditioning. In CMCD/NETS, sampling process is defined as dXt =(
fθ(Xt, t) + σ2

t∇ log πt(Xt)
)
dt+σt

√
2dWt, and the objective is independent of the value of σt.

Therefore, we simply set σt = 0 during training to eliminate the Langevin preconditioning.

Additionally, we investigate the performance of DDS and CMCD when the initialization is close
to optimal. To achieve this, we first train DDS and CMCD with Langevin preconditioning until
convergence. Then, we use a new network without Langevin preconditioning to distill the teacher
output with Langevin preconditioning at each time step using an L2 loss. After distillation, we fine-
tune the student network using different objectives. This allows us to examine whether Langevin
preconditioning primarily aids in localizing the model in the early training stage or also contributes
to stabilizing the results in the end of training.

For DDS, we also test the results using a network conditioned on the target density instead of the
target score: fθ(X, t) = NNθ(X, log p̃target(X), t). This allows us to verify whether neural samplers
require an explicit score term to ensure that the simulation behaves similarly to running Langevin
dynamics, or if they only need some information about the target density.

We present results for DDS and CMCD using reverse KL (rKL), log-variance divergence (LV),
and trajectory balance (TB) on a 40-mixture Gaussian target proposed by Midgley et al. (2023) in
Table 4. Our findings reveal the following key observations:

• Most objectives significantly collapse without Langevin preconditioning. We note that, at
initialization, the samples from the neural samplers already cover all modes, meaning there is
no inherent exploration issue. However, even with this favorable initialization, the absence of
Langevin preconditioning leads to severe collapse in most objectives.

• Langevin preconditioning cannot be replaced by alternative target information, such as
log ptarget. This suggests that neural samplers require an explicit score term to ensure that the
simulation behaves similarly to Langevin dynamics.
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Table 5: Sample quality (MMD) by
NETS trained with PINN loss (Albergo &
Vanden-Eijnden, 2024, Alg 1), both with
and without LG in the simulation process
during training. As NETS used a dif-
ferent prior and interpolation (N (0, 2I),
mode interpolation) compared to CMCD
(N (0, 302I), geometric interpolation), we
present the results by both settings for a fair
investigation. N/A suggests diverging.

interpolant prior train w. LG train w/o LG

geom N (0, 2I) 6.9529 7.0091
N (0, 302I) 0.3368 0.1721

mode N (0, 2I) 0.0034 0.0040
N (0, 302I) N/A N/A

Figure 2: Sample quality vs target evaluation times
for different approaches with different objectives on
GMM-40 target. *NETS uses mode interpolation,
which is distinct from that employed in others.

• If the initialization is close to optimal, TB and LV refine the solution more stably, while rKL
remains prone to mode collapse. This suggests that future work could explore a training pipeline
where the sampler is first warmed up using Langevin dynamics, followed by fine-tuning with these
objectives to reduce the number of target energy evaluations during sampling.

We also include results obtained by NETS with the PINN loss in Table 5. Since NETS employs a
different prior and interpolation scheme compared to CMCD in Table 4, we present results for both
settings to ensure a fair comparison. Surprisingly, we observe that the PINN loss is relatively robust
to Langevin preconditioning during simulation. Additionally, by design, the PINN loss naturally
supports simulation-free training. However, its performance is highly sensitive to the choice of prior
and interpolation: a large prior leads to diverging in mode interpolation, while a smaller one also
fails under geometric interpolation. Furthermore, the PINN loss requires computing an expensive
divergence term, making it challenging to apply to simulation-free approaches with normalizing
flows proposed in Section 3.

Finally, the critical role of Langevin preconditioning naturally raises an important question: Is sim-
ulation during training with Langevin preconditioning more efficient than directly generating data
with Langevin dynamics and fitting a model post hoc? Unfortunately, the answer is no. In Figure 2,
we compare several neural samplers against an alternative approach where Parallel Tempering (PT)
(PT, Swendsen & Wang, 1986a; Earl & Deem, 2005) is first used to generate samples, followed by
fitting a diffusion model. We assess both sample quality and the number of target energy evalua-
tions required. The results clearly show that almost all neural samplers require several orders of
magnitude more target evaluations compared to PT.

5 DISCUSSIONS AND CONCLUSIONS

Motivated by the pursuit of simulation-free training, we reviewed neural samplers from the perspec-
tive of sampling processes and training objectives, as well as revisiting their dependence on Langevin
preconditioning. Our findings reveal that most training methods for diffusion and control-based neu-
ral samplers heavily rely on Langevin preconditioning. While PINN appears to be an exception, it
still requires evaluating both the target density and the model’s divergence at every time step along
the trajectory, making it no more efficient in practice. This highlighted critical caveats in scaling
neural samplers to high-dimensional and real-world problems. In fact, while significant advances
have been made in learning neural samplers directly from unnormalized densities, the most efficient
and practical approach remains running MCMC first and fitting a generative model post hoc.

Our results leave several open questions and reveal some future directions worth exploring. We
include a detailed discussion in Appendix A.
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Saifuddin Syed, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet. Non-
reversible parallel tempering: a scalable highly parallel mcmc scheme. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(2):321–350, 2022.

Nicholas G Tawn, Gareth O Roberts, and Jeffrey S Rosenthal. Weight-preserving simulated temper-
ing. Statistics and Computing, 30(1):27–41, 2020.

Yifeng Tian, Nishant Panda, and Yen Ting Lin. Liouville flow importance sampler. In Forty-first
International Conference on Machine Learning, 2024.

Mark E Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford university
press, 2023.

Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations. The
Journal of chemical physics, 134(5), 2011.

11

https://arxiv.org/abs/2409.09787
https://arxiv.org/abs/2409.09787
https://link.aps.org/doi/10.1103/PhysRevLett.57.2607
https://link.aps.org/doi/10.1103/PhysRevLett.57.2607


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review at Frontiers in Probabilistic Inference workshop at ICLR 2025

Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D Lawrence, and
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A FURTHER DISCUSSION

Our results reveal several open questions and future directions worth exploring:

First, talking about neural samplers, many works focus on learning models directly from the un-
normalized density, avoiding the use of any data from the target density. However, given that the
Langevin preconditioning plays a crucial role in most approaches, we may equivalently interpret the
training process as running several steps of MCMC to obtain approximate samples. This interpre-
tation, blurring the distinction between data-driven and data-free approaches, challenges the defini-
tion of these “data-free” neural samplers. Furthermore, as our results demonstrate, a straightforward
two-step approach—first running Parallel Tempering (PT) to obtain samples, followed by fitting a
diffusion model—yields significantly higher efficiency compared to nearly all neural samplers. This
observation further questions the practical justification and motivation of “data-free” neural sam-
plers. Therefore, rather than attempting to completely avoid the use of data, a more promising and
practical direction may involve developing objective functions or training pipelines that rely
on a limited amount of data for a more efficient acquisition of information from each target
density evaluation.

However, we emphasize that while we advocate for the explicit utilization of data, we acknowledge
that it may not always be feasible, or even reasonable, for newly developed approaches to sur-
pass these well-established baselines from the outset. The methods developed within “data-free”
training pipelines remain valuable and can provide inspiration for approaches that more effectively
leverage data, potentially leading to improved efficiency and performance in neural samplers.

Based on our observations, PINN loss appears to be an example with such potential. It demonstrates
greater robustness in the absence of Langevin preconditioning and naturally supports simulation-free
training by its design. However, it still requires extensive target evaluations along the entire trajec-
tory and tends to be more sensitive to hyperparameters. Therefore, future research could focus on
learning better priors or interpolations. A straightforward approach may involve first obtaining
approximate samples from the target distribution using methods such as MCMC, then learning pri-
ors or interpolants from these samples, and finally leveraging the learned hyperparameters to refine
the sample quality, in an iterative manner.

B TAXONOMY OF OBJECTIVE FUNCTIONS

In this section, we briefly describe different objectives that we reviewed and used in the main text.

B.1 PATH MEASURE ALIGNMENT OBJECTIVES

The path measure alignment framework aims to align the sampling process starting from pprior to a
“target” process starting from ptarget. In the following, we denote Q as the sampling process and P as
the “target” process. However, we should note that this notation does not necessarily imply that Q is
the process parameterized by the model. In fact, this is only true for samplers like PIS or DDS. For
escorted transport samplers like CMCD, both Q and P involve the model, and for annealed variance
reduction sampler like MCD, Q is fixed, and the model only appears in P. We now describe five
commonly used objectives:

Reverse KL divergence. Reverse KL divergence is defined as

DKL[Q||P] = EQ

[
log

dQ
dP

]
. (15)

In practice, we approximate the expectation with Monte Carlo estimators, and calculate the log
Radon–Nikodym derivative log dQ

dP , either through Gaussian approximation via Euler–Maruyama
discretization or by applying Girsanov’s theorem.

Log-variance divergence. Log-variance divergence optimizes the second moment of the log ratio

Dlogvar[Q||P] = VarQ̃

(
log

dQ
dP

)
. (16)
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Unlike KL divergence, which requires the expectation to be taken with respect to Q, log-variance
allows the variance to be computed under a different measure Q̃. This flexibility suggests that we
can detach the gradient of the trajectory or utilize a buffer to stabilize training. On the other hand,
when the variance is taken under Q, the gradient of log-variance divergence w.r.t parameters in Q is
the same as that of reverse KL divergence (Richter et al., 2020):

d

dθ
VarQ̃

(
log

dQθ

dP

) ∣∣∣∣∣
Q̃=Qθ

=
d

dθ
DKL[Qθ||P]. (17)

However, we note that this conclusion holds only in expectation. In practice, when the objective is
calculated with Monte Carlo estimators, they will exhibit different behavior.

Trajectory balance. Trajectory balance optimizes the squared log ratio

DTB[Q||P] = EQ̃

[(
log

dQ
dP

− k

)2
]
, (18)

which is equivalent to the log-variance divergence with a learned baseline k.

Sub-trajectory balance. TB loss matches the entire Q and P as a whole. Alternatively, we can
match segments of each trajectory individually to ensure consistency across the entire trajectory.
This approach leads to the sub-trajectory balance objective. For simplicity, though it is possible to
define sub-trajectory balance in continuous time, we define it with time discretization.

With Euler–Maruyama discretization, we discretize Q and P into sequential produce of measure,
with density given by:

p0(X0)

N−1∏
n=0

pF (Xn+1|Xn) and p̃target(XN )

N−1∏
t=0

pB(Xn|Xn+1). (19)

Note that the density for discretized P can be unnormalized.

Then, we introduce a sequence of intermediate densities {πn}Nn=0, where the boundary conditions
are given by π0 = pprior and πN = p̃target. These intermediate distributions can either be prescribed
as a fixed interpolation between the target and prior distributions or be learned adaptively through a
parameterized neural network.

Finally, we define the sub-trajectory balance objective as

DSTB[Q||P] = EQ̃

 ∑
0≤i<j≤N

(
log

πi(xi)
∏j−1

n=i pF (xn+1|xn)

πj(xj)
∏j−1

n′=i pB(xn′ |xn′+1)
+ ki − kj

)2
 . (20)

Detailed balance. Detailed balance can be viewed as an extreme case of sub-trajectory balance,
where instead of summing over sub-trajectories of all lengths, we only calculate the sub-trajectory
balance over each discretization step:

DDB[Q||P] = EQ̃

 ∑
0≤i≤N−1

(
log

πi(xi)pF (xi+1|xi)

πj(xi+1)pB(xi|xi+1)
+ ki − ki+1

)2
 . (21)

B.2 MARGINAL ALIGNMENT OBJECTIVES

Unlike path measure alignment, marginal alignment objectives directly enforce the sampling process
at each time step t to match with some marginal πt. πt can be either prescribed as an interpolation
between the target and prior, with boundary conditions π0 = pprior and πT = ptarget, or be learned
through a network under the constraint of the boundary conditions. Commonly used objectives in
this framework include PINN and action matching:
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PINN. For the sampling process defined by dXt =
(
fθ(Xt, t) + σ2

t∇ log πt(Xt)
)
dt + σt

√
2dWt,

the PINN loss is given by

LPINN =

∫ T

0

Eq̃t(Xt)||∇ · fθ(Xt, t) + log πt(Xt) · fθ(Xt, t) + (∂t log πt)(Xt) + ∂tF (t)||2dt,

(22)

where F (t) is parameterized by a neural network. Note that the expectation can be taken over an
arbitrary q̃t, as long as the marginal of Q at time t is absolute continuous to q̃t. We also note PINN
does not depend on the specific value of σt in the sampling process.

Action matching. Similar to PINN, an action matching-based (Neklyudov et al., 2023) objective is
derived by (Albergo & Vanden-Eijnden, 2024) for the PDE-constrained optimization problem

LAM =

∫ T

0

Eqt(Xt)

[
1

2
||∇ϕt(Xt)||2 + ∂tϕt(Xt)

]
dt

+ Epprior(X0) [ϕ0(X0)]− Eptarget(XT ) [ϕT (XT )] , (23)

where the vector field bt = ∇ϕt, induced by a scalar potential, and ϕt is called the “action”.

C DETAILED SUMMARY OF SAMPLERS

In this section, we provide a more detailed review of diffusion and control-based neural samplers.
We also discuss how these neural samplers rely on the Langevin preconditioning in the end.

C.1 SAMPLING PROCESS AND OBJECTIVES

We write the sampling process as follows:

dXt =
[
µt(Xt) + σ2

t bt(Xt)
]
dt+ σt

√
2dWt, X0 ∼ pprior, (24)

(1) Path Integral Sampler (PIS, Zhang & Chen, 2022) and concurrently (NSFS, Vargas et al., 2021):
PIS fixes pprior = δ0, σt = 1/

√
2 and learns a network fθ(·) = µt(·) + σ2

t bt(·) so that Equa-
tion (24) approximate the time-reversal of the following SDE (Pinned Brownian Motion):

dYt = − Yt

T − t
dt+ dWt, Y0 ∼ ptarget. (25)

We define Equation (25) as the time-reversal of Equation (24) when Yt ∼ XT−t. The network is
learned by matching the reverse KL (Zhang & Chen, 2022; Vargas et al., 2021) or log-variance
divergence (Richter & Berner, 2024) between the path measures of the sampling and the target
process.

(2) Diffusion generative flow samplers (DFGS, Zhang et al., 2024) learns to sample from the same
process as PIS, but with a new introduction of local objectives including detailed balance and
(sub-)trajectory balance. In fact, trajectory balance can been shown to be equivalent to the log-
variance objective with a learned baseline rather than a Monte Carlo (MC) estimator for the first
moment (Nüsken & Richter, 2021).

(3) Denoising Diffusion Sampler (DDS, Vargas et al., 2023) and time-reversed Diffusion Sampler
(DIS, Berner et al., 2024): both DDS and DIS fix µt(Xt, t) = βT−tXt, σt = v

√
βT−t, pprior =

N (0, v2I), and learn a network fθ(·, t) = bt(·, t)/2 so that Equation (24) approximates the
time-reversal of the VP-SDE:

dYt = −βtYtdt+ v
√

2βtdWt, Y0 ∼ ptarget. (26)

Similar to PIS, the network can be trained either with reverse KL divergence or log-variance
divergence. In an optimal solution, fθ will approximate the score fθ(·, t) ≈ ∇ log pT−t(·),
where pt(X) =

∫
N (X|

√
1− λtY, v

2λtI)ptarget(Y )dY and λt = 1− exp(−2
∫ t

0
βsds).

(4) Iterated Denoising Energy Matching (iDEM, Akhound-Sadegh et al., 2024): iDEM fixes
µt(Xt, t) = 0, pprior = N (0, T 2I), and learns a network fθ(·, t) = bt(·, t)/2 to approximate

15
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the score fθ(Xt, t) ≈ ∇ log pT−t(Xt). This is achieved by writing the score with target score
identity (TSI, De Bortoli et al., 2024), and estimating it with a self-normalized importance
sampler:

∇ log pT−t(Xt)
TSI
=

∫
pT |T (XT |Xt)∇ log p̃target(XT )dXT (27)

Bayes’ Rule
=

∫
p̃target(XT )pt|T (Xt|XT )∫

p̃target(XT )pt|T (Xt|XT )dXT
∇ log p̃target(XT )dXT (28)

=

∫
qT |t(XT |Xt)

p̃target(XT )pt|T (Xt|XT )∇ log p̃target(XT )

qT |t(XT |Xt)
∫
qT |t(XT |Xt)

p̃target(XT )pt|T (Xt|XT )

qT |t(XT |Xt)
dXT

dXT .

(29)

By choosing qT |t(XT |Xt) ∝ pt|T (Xt|XT ), we obtain

∇ log pT−t(Xt) =

∫
q(XT |Xt)

p̃target(XT )∇ log p̃target(XT )∫
q(XT |Xt)p̃target(XT )dXT

dXT (30)

≈
∑
n

p̃target(X
(n)
T )∑

n p̃target(X
(n)
T )

∇ log p̃target(X
(n)
T ), X

(n)
T ∼ qT |t(XT |Xt) (31)

=: ̂∇ log pT−t(Xt). (32)

Then, iDEM matches fθ(Xt, t) with ̂∇ log pT−t(Xt) by L2 loss. In optimal, the sampling
process will approximate the time-reversal of a VE-SDE:

dYt =
√
2tdWt, Y0 ∼ ptarget. (33)

Several extensions have been developed based on iDEM: Bootstrapped Noised Energy Matching
(BNEM, OuYang et al., 2024) generalizes the self-normalized importance sampling estimator
of the score to the energy function, enabling the training of energy-parameterized diffusion
models. They also proposed a bootstrapping approach to reduce the training variance. Dif-
fusive KL (DiKL, He et al., 2024) integrates this estimator with variational score distillation
techniques (Poole et al., 2022; Luo et al., 2024) to train a one-step generator as the neural sam-
pler. Also, DiKL proposes using MCMC to draw samples from pT |t(XT |Xt) to estimate the
score, instead of relying on the self-normalized importance sampling estimator with the proposal
qT |t(XT |Xt) ∝ pt|T (Xt|XT ), leading to lower variance during training.
We also note that iDEM’s score estimator is closely related to stochastic control problems. One
can re-express the estimator regressed in iDEM in terms of the optimal drift of a stochastic
control problem (Huang et al., 2021), the optimal control f∗ can be expressed in terms of the
score (e.g. See Remark 3.5 in Reu et al. (2024)) :

f∗
t (Xt) = −∇ log ϕT−t(Xt) = −∇ ln νrefT−t(XT ) +∇ log pT−t(Xt), (34)

where ϕt(Xt) is the value function, which can be expressed as a conditional expectation via the
Feynman-Kac formula followed by the Hopf-Cole transform (Hopf, 1950; Cole, 1951; Fleming,
1989):

ϕt(x) = EXT∼qT |t(XT |x)

[
p̃target

νrefT

(XT )

]
. (35)

Where in the case for VE-SDE (i.e. iDEM) and νreft (x) = N (x|0, t + σ2
prior) and thus

ϕT−t(Xt) =
Xt

T−t+σ2
init

+∇ log pT−t(Xt).

Note the MC Estimator of ∇ log ϕT−t(Xt) (e.g. Equation 8) was used in Schrödinger-Föllmer
Sampler (SFS, Huang et al., 2021) to sample from time-reversal of pinned Brownian Motion,
yielding an akin estimator to the one used in iDEM, in particular they carry out an MC estimator
of the following quantity:

∇ϕT−t(x) =
EZ∼N (0,I)

[
∇ p̃target

νref
T

(µT |T−tx+ σT |T−tZ)
]

EZ∼N (0,I)

[
p̃target

νref
T

(µT |T−tx+ σT |T−tZ)
] . (36)
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Where, we have assumed that qT |t(xT |xt) = N (xT |µT |txt, σT |t) as is the case with most time
reversal based samplers and generative models.

(5) Monte Carlo Diffusion (MCD, Doucet et al., 2022): unlike other neural samplers, MCD’s sam-
pling process is fixed as µt = 0, σt = 1, bt(Xt, t) = ∇ log πt(Xt), where πt is the geometric
interpolation between target and prior, i.e., πt(Xt) = pβt

target(Xt)p
1−βt

prior (Xt). It can be viewed
as sampling with AIS using ULA as the kernel. Note, that this transport is non-equilibrium, as
the density of Xt is not necessary πt(Xt). Therefore, MCD trains a network to approximate the
time-reversal of the forward process and perform importance sampling (more precisely, AIS) to
correct the bias of the non-equilibrium forward process.

(6) Controlled Monte Carlo Diffusion (CMCD, Vargas et al., 2024) and Non-Equilibrium Transport
Sampler (NETS, Máté & Fleuret, 2023; Albergo & Vanden-Eijnden, 2024): Similar to MCD,
CMCD and NETS also set bt(Xt, t) = ∇ log πt(Xt) and πt is the interpolation between target
and prior. Different from MCD where the sampling process is fixed, CMCD and NETS learn
fθ(·, t) = µt(·, t) so that the marginal density of samples Xt simulated by Equation (2) will
approximate πt. As a special case, Liouville Flow Importance Sampler (LFIS, Tian et al., 2024)
fixes σt = 0 and learns an ODE to transport between πt.

C.2 LANVEGIN PRECONDITIONING IN DIFFUSION/CONTROL-BASED NEURAL SAMPLERS

Explicit Langevin preconditioning. In samplers including PIS, DDS, DFGS, DIS, etc., The
network is parameterized with a skip connection using Lanvegin preconditioning:

fθ(·, t) = NN1,θ(·, t) + NN2,θ(t) ◦ ∇ log ptarget(·). (37)

In samplers like MCD, the forward process is a sequence of Lanvegin dynamics with invariant
density πt as the interpolation between prior and target. In CMCD and NETS, the drift of forward
process is given by the network output plus a score term:

fθ(Xt, t) + σ2
t∇ log πt(Xt). (38)

Implicit Langevin preconditioning. In iDEM, we regress the network with

∇ log pT−t(Xt) ≈
∑
n

p̃target(X
(n)
T )∑

n p̃target(X
(n)
T )

∇ log p̃target(X
(n)
T ), X

(n)
T ∼ qT |t(XT |Xt). (39)

Note that while the network does not explicitly depend on the score of the target density, the objec-
tive compels it to learn gradient information. This gradient information is utilized during simulation
when collecting the buffer every few iterations, effectively inducing an implicit Langevin precondi-
tioning.

No Langevin preconditioning. LFIS does not rely on Langevin preconditioning during simulation.
Like NETS, it employs the PINN loss, but its sampling process is governed by an ODE. Thus, similar
to our discussion in the main text on eliminating Langevin preconditioning for PINN-based CMCD,
LFIS inherently removes this dependency in its design.

LFIS adopts several tricks to stabilize the training and ensure mode covering: it learns the ODE
drift progressively, starting from the prior and gradually transitioning to the target. Additionally,
it employs separate networks for different time steps to prevent forgetting. But even without these
tricks, our results in Table 5 confirm the robustness of the PINN loss to Langevin preconditioning
when the interpolation and prior are carefully tuned.
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D NF-DDS

Here we present a derivation of the NF-DDS objective.

DKL[Q||P]

=EQ

[∫ T

0

1

4v2βt
∥F̃θ(Yt, T − t)− v2βt∇ log qθ(Yt, T − t)− βtYt∥2dt

]
+DKL[qθ(·, T )||ptarget]

=

∫ T

0

EQ

[
1

4v2βt
∥F̃θ(Yt, T − t)− v2βt∇ log qθ(Yt, T − t)− βtYt∥2

]
dt+DKL[qθ(·, T )||ptarget]

=

∫ T

0

1

4v2βt
Eqθ(Y,T−t)∥F̃θ(Y, T − t)− v2βt∇ log qθ(Y, T − t)− βtY ∥2dt+DKL[qθ(·, T )||ptarget]

=

∫ T

0

1

4v2βT−t
Eqθ(Y,t)∥F̃θ(Y, t)− v2βT−t∇ log qθ(Y, t)− βT−tY ∥2dt+DKL[qθ(·, T )||ptarget].

(40)

E NF-CMCD

In this section, we proposed a CMCD variation with normalizing flow for simulation-free training.

In CMCD, we match the forward sampling process:

dXt =
(
F̃θ(Xt, t) + σ2

t∇ log qθ(Xt, t)
)
dt+ σt

√
2dWt, X0 ∼ qθ(X0, 0), (41)

with a target backward process, calculated by Nelson’s condition assuming the marginal of the SDE
at each time step matches with a prescribed marginal density e.g. πt(·) = pβt

target(·)p
1−βt

prior (·):

dYt = −
(
F̃θ(Yt, T − t) + σ2

T−t∇ log qθ(Yt, T − t)

− 2σ2
T−t∇ log πT−t(Yt, T − t)

)
dt+ σT−t

√
2dWt, Y0 ∼ ptarget. (42)

Again, similar to NF-DDS, the time-reversal of Equation (41) can be calculated by Nelson’s condi-
tion:

dYt = −
(
F̃θ(Yt, T − t)− σ2

T−t∇ log qθ(Yt, T − t)
)
dt+ σT−t

√
2dWt, Y0 ∼ qθ(Y0, T ). (43)

By Girsanov theorem, the KL divergence between the path measure by Equation (43) (denoted as
Q) and Equation (42) (as P) is:

DKL[Q||P] =
∫ T

0

1

σt
Eqθ(Y,t)∥σ

2
t∇ log qθ(Y, t)− σ2

t∇ log πt(Y, t)∥2dt+DKL[qθ(·, T )||ptarget].

(44)

This coincides with the Fisher divergence between each marginal.

After training, we can sample from

dXt =
(
F̃θ(Xt, t) + σ2

t∇ log πt(Xt)
)
dt+ σt

√
2dWt, X0 ∼ qθ(X0, 0), (45)

with approximate reversal

dYt = −
(
F̃θ(Yt, T − t)− σ2

T−t∇ log πT−1(Yt)
)
dt+ σT−t

√
2dWt, Y0 ∼ p̃target. (46)

F ADDITIONAL EXPERIMENT DETAILS

F.1 EVALUATION METRICS

In this paper, we evaluate the samples quality by ELBO, EUBO and MMD. The ELBO (Evidence
Lower Bound) is a lower bound of the (log) normalization factor, reflecting how well the model is
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concentrated within each mode; on the other hand, EUBO (Evidence Upper Bound, Blessing et al.,
2024) provides an upper bound, representing if the model successfully covers all modes.

The MMD (Maximum Mean Discrepancy) measures the distributional discrepancy between the gen-
erated samples and the target distribution. We base our MMD implementation on the code by Chen
et al. (2024) at https://github.com/Wenlin-Chen/DiGS/blob/master/mmd.py,
using 10 kernels and fixing the sigma = 100.

For all experiments, we evaluate ELBO, EUBO and MMD with 10000 samples.

F.2 HYPERPARAMETERS

Table 6: Hyperparameters used for experiments.

method objective prior lr precond network size

DDS

rKL N (0, 302I) 5e-4 LG [64, 64]
LV N (0, 302I) 5e-4 LG [64, 64]
TB N (0, 302I) 5e-4 LG [64, 64]
rKL N (0, 302I) 5e-4 - / log ptarget [256, 256, 256, 256, 256]
LV N (0, 302I) 5e-4 - / log ptarget [256, 256, 256, 256, 256]
TB N (0, 302I) 5e-4 - / log ptarget [256, 256, 256, 256, 256]

CMCD

rKL N (0, 302I) 5e-4 LG [64, 64]
LV N (0, 302I) 5e-3 LG [64, 64]
TB N (0, 302I) 5e-4 LG [64, 64]
rKL N (0, 302I) 5e-4 - [256, 256, 256, 256, 256]

We summarize the hyperparameters for DDS and CMCD in Table 6. These hyperparameters are
chosen according to Blessing et al. (2024). For PINN-based experiments shown in Table 5, we
follow the hyperparameter used in NETS (Albergo & Vanden-Eijnden, 2024), including network
size, learning rate and its schedule. etc.

G ADDITIONAL EXPERIMENTAL RESULTS
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KL

LV

TB

Init.

w. LG w/o LG w. log 𝑝target w/o LG, w. distil init

Figure 3: Sampled obtained by DDS with different settings. The first line shows the initialization.

KL

LV

TB

Init.

w. LG w/o LG w/o LG, w. distil init

N/A

N/A

Figure 4: Sampled obtained by CMCD with different settings. The first line shows the initialization
and N/A indicates diverging. We can see when trained with Langevin preconditioning, we can see
that CMCD already captures modes after initialization.
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geom interpolate, prior 𝑁(0, 2𝑰)

w. LG w/o LG

geom interpolate, prior 𝑁(0, 302𝑰)

mode interpolate, prior 𝑁(0, 2𝑰)

mode interpolate, prior 𝑁(0, 302𝑰)

Figure 5: Sampled obtained by PINN with different settings. As we can see, PINN seems to be
highly robust to Langevin preconditioning. However, it is more sensitive to the choice of prior and
interpolation.
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