
Published as a conference paper at ICLR 2025

MULTI-OBJECTIVE DIFFERENTIABLE NEURAL
ARCHITECTURE SEARCH

Rhea Sanjay Sukthanker1∗, Arber Zela1∗, Benedikt Staffler2, Samuel Dooley3,
Josif Grabocka4, Frank Hutter1,5
1 University of Freiburg, 2 Bosch Center for AI, 3 Meta,
4 University of Technology Nuremberg, 5 ELLIS Institute Tübingen

ABSTRACT

Pareto front profiling in multi-objective optimization (MOO), i.e., finding a diverse
set of Pareto optimal solutions, is challenging, especially with expensive objectives
that require training a neural network. Typically, in MOO for neural architecture
search (NAS), we aim to balance performance and hardware metrics across devices.
Prior NAS approaches simplify this task by incorporating hardware constraints into
the objective function, but profiling the Pareto front necessitates a computationally
expensive search for each constraint. In this work, we propose a novel NAS
algorithm that encodes user preferences to trade-off performance and hardware
metrics, yielding representative and diverse architectures across multiple devices
in just a single search run. To this end, we parameterize the joint architectural
distribution across devices and multiple objectives via a hypernetwork that can
be conditioned on hardware features and preference vectors, enabling zero-shot
transferability to new devices. Extensive experiments involving up to 19 hardware
devices and 3 different objectives demonstrate the effectiveness and scalability
of our method. Finally, we show that, without any additional costs, our method
outperforms existing MOO NAS methods across a broad range of qualitatively
different search spaces and datasets, including MobileNetV3 on ImageNet-1k, an
encoder-decoder transformer space for machine translation and a decoder-only
space for language modelling.

1 INTRODUCTION

The ability to make good tradeoffs between predictive accuracy and efficiency (in terms of latency
and/or energy consumption) has become crucial in an age of ever increasing neural networks
complexity and size (Alabdulmohsin et al., 2023; Hoffmann et al., 2022; Kaplan et al., 2020; Zhai
et al., 2022) and a plethora of embedded devices. However, finding the right trade-off remains a
challenging task that typically requires human intervention and a lot of trial-and-error across devices.
With multiple conflicting objectives, it becomes infeasible to optimize all of them simultaneously
and return a single solution. Ideally, NAS should empower users to choose from a set of diverse
Pareto optimal solutions that represent their preferences regarding the trade-off between objectives.
Neural Architecture Search (NAS) (White et al., 2023) provides a principled framework to search for
network architectures in an automated fashion. Several works (Cai et al., 2020; Chen et al., 2021a;
Elsken et al., 2019b; Wang et al., 2020b) have extended NAS for multi-objective optimization (MOO),
considering performance and hardware efficiency metrics like latency and energy consumption.
However, to the best of our knowledge, no existing gradient-based method returns the full Pareto front
for the MOO problem at hand without repeating their search routine multiple times with different
hardware constraints.
In this work, we propose a scalable and hardware-aware Multi-Objective Differentiable Neural
Architecture Search (MODNAS) algorithm that efficiently trains a single supernet which can be
used to read off Pareto-optimal solutions for different user preferences and different target devices,
without any additional search steps. To search across devices, we frame the problem as a multi-task,
multi-objective optimization problem, where each task (device) has multiple (conflicting) objectives,

∗Equal contribution. Email to: {sukthank, zelaa}@cs.uni-freiburg.de

1

Published as a conference paper at ICLR 2025

0

1

2 3

Figure 1: MODNAS overview. Given a set of T devices, MODNAS seeks to optimize M (potentially
conflicting) objectives across these devices. To this end, it employs a MetaHypernetworkHΦ(r, dt),
that takes as input a scalarization r, representing the user preferences, and a device embedding dt, to
yield an un-normalized architectural distribution α̃. The Architect uses α̃ to sample differentiable
discrete architectures, used in the Supernetwork to estimate accuracy and in the MetaPredictor
to estimate the other M − 1 loss functions (e.g. latency, energy consumption) for every device. By
iterating over devices and sampling scalarizations uniformly from the M -dimensional simplex, at
each iteration we update the MetaHypernetwork using multiple gradient descent (MGD).

e.g., classification accuracy and latency. The user’s preferences are modelled by a preference vector
that defines a scalarization (weighted sum), of the different objectives. This preference vector, along
with features of the hardware of interest, is fed to a hypernetwork (Ha et al., 2017) that outputs
continuous architectural parameters α. To search in the space of architectures, we employ a one-shot
model and a bi-level optimization scheme, as is typically done in gradient-based NAS. In our case,
however, the upper-level parameters are the hypernetwork weights, optimized in expectation over
different preference vectors and hardware devices via multiple gradient descent (Désidéri, 2012).
To evaluate our method, we conduct experiments on multiple NAS search spaces, including CNN
and Transformer architectures, and up to 3 objectives across 19 hardware devices. While other NAS
methods that utilize hardware constraints in their search objectives require substantial search costs
both for each new constraint and each new hardware, MODNAS addresses both in a zero-shot manner,
without extra search cost, while yielding higher quality solutions.
Our contributions can be summarized as follows:

1. We present a principled approach for Multi-objective Differentiable NAS, that leverages hyper-
networks and multiple gradient descent for fast Pareto-Front approximation across devices.

2. This work is the first to provide a global view of the Pareto solutions with just a single search
run, without the need to repeat search or fine-tune on new target devices.

3. Extensive evaluation of our method across 4 different search spaces (NAS-Bench-201, Mo-
bileNetV3, an encoder-decoder and a decoder-only Transformer space), 3 tasks (image classi-
fication, machine translation and language modeling), and up to 19 hardware devices and 3
objectives, show both improved efficiency and performance in comparison to previous approaches
that use a constrained objective in their search.

To facilitate reproducibility, we provide our code in https://github.com/automl/modnas.

2 BACKGROUND AND RELATED WORK

In this section, before describing our algorithm, we introduce some basic concepts, definitions and
related work. Refer to Appendix J for an extended related work.
Multi-objective optimization (MOO) for Multi-Task Learning. Consider a multi-task dataset D
consisting of N instances, where the feature vector of the i−th instance is denoted as xi ∈ X , and the
M -many associated target variables as y1i ∈ Y1, . . . , yMi ∈ YM . Moreover, consider there exists a
family of parametric models f(x;w) : X → {Y1 × · · · × YM}, parameterized by w, that maps the
input x to the joint space of the multiple tasks. To simplify the notation, we denote the prediction of the
m-th task as fm(x;w) : X → Ym, and the respective loss Lm(w) ≜ 1

N

∑N
i ℓm(ymi , fm(xi;w)).

The vector of the values of all loss functions is denoted as L(w) ≜ (L1(w), . . . ,LM (w)). MOO

2

https://github.com/automl/modnas

Published as a conference paper at ICLR 2025

then seeks to find a set of Pareto-optimal solutions w∗ that jointly minimize L(w)1:

w∗ ∈ argmin
w

L(w) (1)

Definition 2.1. (Pareto Optimality): A solution w2 dominates w1 iff Lm(w2) ≤ Lm(w1), ∀m ∈
{1, . . . ,M}, and L(w1) ̸= L(w2). In other words, a dominating solution has a lower loss value on
at least one task and no higher loss value on any task. A solution w∗ is called Pareto optimal iff there
exists no other solution dominating w∗.
Definition 2.2. (Pareto front): The sets of Pareto optimal points and their function values are called
Pareto set (Pw) and Pareto front (PL = {L(w)w∈Pw}), respectively.

Linear Scalarization. In MOO, a standard technique to solve the M -dimensional problem is
using a preference vector r ∈ S ≜ {RM |

∑M
m=1 rm = 1, rm ≥ 0,∀m ∈ {1, . . . ,M}} in

the M -dimensional probability simplex (Lin et al., 2019; Mahapatra & Rajan, 2020; Ruchte &
Grabocka, 2021). Every r ∈ S yields a convex combination of the loss functions in Equation 1
as Lr(w) = rTL(w). Given a preference vector r, one can apply standard, single-objective opti-
mization algorithms to find a minimizer w∗

r = argminw Lr(w). By sampling multiple r vectors,
one can compute Pareto-optimal solutions w∗

r that profile the Pareto front. Several methods (Hoang
et al., 2023; Lin et al., 2020; Navon et al., 2021; Phan et al., 2022) employ a hypernetwork (Ha et al.,
2017) to generate Pareto-optimal solutions given different preference vectors as input. In this work,
we utilize a hypernetwork conditioned on scalarizations to generate Pareto-optimal architectures.
Furthermore, we also extend the hypernetwork by conditioning it on different task vectors.
Multiple Gradient Descent (MGD). MOO can be solved to local optimality via MGD (Désidéri,
2012), as a natural extension of single-objective gradient descent, which iteratively updates w towards
a direction that ensures that all tasks improve simultaneously (called Pareto improvement): w′ ←
w − ξg∗w, where g∗w is a vector field that needs to be determined. If we denote by gmw = ∇wLm(w)
the gradient of the m-th scalar loss function, via Taylor approximation, the decreasing direction of
Lm when we update w towards g∗w is given by ⟨gmw , g∗w⟩ ≈ −(Lm(w′)− Lm(w))/ξ. In MGD g∗w
is chosen to maximize the slowest update rate among all objectives:

g∗w ∝ argmax
gw∈Rd,||gw||≤1

{
min

m∈[M]
⟨gw, gmw ⟩

}
. (2)

The early work of Désidéri (2012) has been extended in various settings, particularly multi-task
learning, with great promise (Lin et al., 2019; Liu & Vicente, 2021; Mahapatra & Rajan, 2020; Sener
& Koltun, 2018), but these approaches are applied to mainly a fixed architecture and extending them
to a supernet subsuming a search space of multiple architectures is non-trivial.
One-shot NAS and Bi-Level optimization. With the architecture space being intrinsically discrete,
large (often consisting of upto 1036 architectures) and hence expensive to search on, most existing
differentiable NAS approaches leverage the weight sharing paradigm and continuous relaxation to
enable gradient descent (Bender et al., 2018; Chen et al., 2021b; Dong & Yang, 2019; Liu et al.,
2019b; 2023; Movahedi et al., 2022; Pham et al., 2018; Xie et al., 2019; Xu et al., 2020a; Zhang
et al., 2021). Typically, in these approaches, architectures are stacks of cells, where the cell structure
is represented as a directed acyclic graph (DAG) with N nodes and E edges. Every transition from
node i to j, i.e. edge (i, j), is associated with an operation o(i,j) ∈ O, where O is a predefined
candidate operation set. Liu et al. (2019b) proposed a continuous relaxation of the search space
by parameterizing the discrete operation choices in the DAG edges via a learnable vector α. This
enables framing the NAS problem as a bi-level optimization one, with differentiable objectives w.r.t.
all variables:

argmin
α
Lval(w∗(α), α) s.t. w∗(α) = argmin

w
Ltrain(w, α), (3)

where Ltrain and Lval are the empirical losses on the training and validation data, respectively, w
are the supernetwork parameters, α ∈ A are the continuous architectural parameters, and w∗(α) :
A → Rd is a best response function that maps architectures to their optimal weights.
Comparison to single-objective constrained NAS. Early NAS methods predominantly targeted high
accuracy, whereas contemporary hardware-aware differentiable NAS approaches (Cai et al., 2018; Fu

1w can be replaced with any other parameter here, also architectural ones (see Section 3).

3

Published as a conference paper at ICLR 2025

et al., 2020; Jiang et al., 2021; Wan et al., 2020; Wang et al., 2021; Wu et al., 2019; 2021; Xu et al.,
2020b) are designed to identify architectures optimized for target hardware efficiency. Typically, these
methods integrate hardware constraints within their objectives, yielding a single optimal solution
and necessitating multiple search iterations to construct the Pareto front. Our proposed algorithm
addresses this by profiling the entire Pareto front in a single search iteration. While single-objective
constrained optimization is advantageous in scenarios demanding optimization of one objective under
a specific constraint, practical applications often require a suite of models adaptable to varying user
preferences even on a single device. Our efficient Pareto-front approximation algorithm provides
such a suite of optimal models to choose from.

3 HARDWARE-AWARE MULTI-OBJECTIVE DIFFERENTIABLE NEURAL
ARCHITECTURE SEARCH

We first formalize the multi-objective bi-level optimization NAS problem across multiple hardware
devices, and then introduce a scalable and differentiable method that combines MGD with linear
scalarizations to efficiently solve this problem.

3.1 PROBLEM DEFINITION & SKETCH OF SOLUTION APPROACH

In multi-objective NAS, the bi-level problem described in Equation 1 becomes more difficult, since
we are not only concerned with finding w∗ given a fixed architecture, but we want to optimize in the
space of architectures A as well. Assuming we have T hardware devices (target functions) and M
objectives (e.g. accuracy, latency, etc.), similar to (3), for every t ∈ {1 . . . T}, the Pareto set can be
obtained by solving the following bi-level optimization problem:

argmin
α

Lvalid
t (w∗(α), α) s.t. w∗(α) = argmin

w
Ltrain
t (w, α), (4)

where the M -dimensional loss vector Lt(w
∗(α), α) ≜

(
L1
t (w

∗(α), α), . . . ,LM
t (w∗(α), α)

)
is

evaluated ∀t ∈ {1, . . . , T}. Ltrain
t and Lvalid

t are the vectors with all M loss functions evaluated on
the train and validation splits of D, used in the lower- and upper-level problems of (4), respectively.

*

Figure 2: Architecture overview of
the MetaHypernetwork, which gets
as input a device embedding dt (in-
put to an embedding layer E) and
a scalarization r (input to K hyper-
networks) and yields an architecture
encoding α̃.

Our goal is to find Pareto-optimal architectures for each target
device, covering diverse and representative preferences for
different objectives. However, naively solving (4) for each
device t requires T independent bi-level searches, making
this very inefficient for large models. To overcome this, we
incorporate a single hypernetwork within the one-shot model
(supernetwork) commonly used in conventional NAS (Bender
et al., 2018; Liu et al., 2019b; Pham et al., 2018). This allows
us to generate architectures based on device embeddings and
preference vectors in just one search run, reducing the search
cost from O(T) to O(1).

3.2 ALGORITHM DESIGN AND COMPONENTS

Our search procedure is composed of four core modular com-
ponents (see Figure 1): (1) a MetaHypernetwork that gen-
erates the architectural distribution; (2) an Architect that
samples discrete architectures from this distribution; (3) a
Supernetwork that exploits the weight-sharing paradigm for
search efficiency and serves as a proxy for the network accu-
racy; and (4) a MetaPredictor that predicts hardware metrics and enables gradient propagation back
to the MetaHypernetwork. We now discuss each of these in detail.
MetaHypernetwork. In order to generate architectures across multiple devices, inspired by Wang
et al. (2022) and Lin et al. (2020), we propose a MetaHypernetwork that can meta-learn across
different hardware devices (see Figure 2). Hypernetworks are a class of neural networks that generate
the parameters of another model. They were initially proposed for model compression (Ha et al.,
2017) and were later adopted for NAS (Brock et al., 2018) and MOO (Lin et al., 2020; Navon et al.,
2021). Here, given a preference vector r = (r1, . . . , rM) and a hardware device feature vector dt, for

4

Published as a conference paper at ICLR 2025

device t ∈ {1, . . . , T}, we use the MetaHypernetwork HΦ(r, dt), parameterized by Φ, to generate
an un-normalized architecture distribution α̃Φ that is later used to compute the upper-level updates
in (4). Similar to Lee et al. (2021b), dt is a fixed-size feature vector that is obtained by evaluating
a fixed set of reference architectures on device t. The MetaHypernetwork is composed of 2 main
components (see Figure 2):

1. A bank of K independent hypernetworks: hpn1, . . . , hpnK , that parse the preference vector r and
generate the architectural parameters α̃1, . . . , α̃K , respectively.

2. A linear layer E, that learns a similarity map from device feature vectors to the bank of hpns. E
takes as input the device feature vector dt and outputs an attention vector of size K.

The final output, α̃Φ, of the MetaHypernetwork is computed as a weighted sum of the outputs of the
K hypernetworks, where the vector of weights is the output of the linear layer E. For a more detailed
description of the MetaHypernetwork we refer the reader to Appendix D.2.
In all experiments, we initialize the MetaHypernetwork to yield a uniform probability mass over
all architectural parameters for all scalarizations and device embeddings. By using the preference
vector r to create a linear scalarization of Lt and the MetaHypernetwork to model the architectural
distribution across T devices, the bi-level problem in (4) reduces to:

argmin
Φ

Er∼S
[
rTLvalid

t (w∗(αΦ), αΦ)
]

s.t. w∗(αΦ) = argmin
w

Er∼S
[
rTLtrain

t (w, αΦ)
]
, (5)

where αΦ are the normalized architectural parameters obtained from the Architect Λ(α̃Φ)

and rTLt(·, αΦ) =
∑M

m=1 rmLm
t (·, αΦ) is the scalarized loss for device t. Conditioning the

MetaHypernetwork on the hardware embeddings allows us to generate architectures on new test
devices without extra finetuning or meta-learning steps. Iniutively, the MetaHypernetwork, learns
to map the new test device, to the most similar device, in its learnt bank of embeddings (see also
Figure 12 in the appendix). We use the Dirichlet distribution Dir(β), β = (β1, . . . , βM), to sample
the preference vectors and approximate the expectation over the scalarizations using Monte Carlo
sampling. In our experiments, we set β1 = · · · = βM = 1, for a uniform sampling over the
(M − 1)-simplex, however, one can set these differently based on user priors or make it a learnable
parameter (Chen et al., 2021b).

Algorithm 1: MODNAS
Data: Dtrain; Dvalid; Supernetwork; device features

{dt}Tt=1; MetaHypernetwork HΦ; nr. of objectives
M ; Architect Λ; learning rates ξ1, ξ2.

1 while not converged do
2 for t ∈ {1, . . . , T} do
3 Sample scalarization r ∼ Dir(β)
4 Set arch params α̃Φ ← HΦ(r, dt)
5 Sample αΦ ∼ Λ(α̃Φ) from Architect

6 gtΦ ←
∑M

m=1 rm∇ΦLm
t (Dvalid;w, αΦ)

7 γ ← FrankWolfeSolver(g1Φ, . . . , g
T
Φ) ; // Alg.4

8 g∗Φ ←
∑T

t=1 γt · gtΦ
9 Φ← Φ− ξ1 · g∗Φ ; // update MetaHypernetwork

10 for t ∈ {1, . . . , T} do
11 Sample scalarization r ∼ Dir(β)
12 Set arch params α̃Φ ← HΦ(r, dt)
13 Sample αΦ ∼ Λ(α̃Φ) from Architect

14 gtw ←
∑M

m=1 rm∇wLm
t (Dtrain;w, αΦ)

15 g∗w ← 1
T

∑T
t=1 g

t
w

16 w ← w − ξ2 · g∗w ; // update Supernetwork

17 return HΦ

MetaPredictor. For the cheap-to-
evaluate hardware objectives, such
as latency, energy consumption,
we employ a regression model
pmθ (α, dmt) that predicts the target
labels ymt for objective m and
device t, given an architecture α
and device embedding dmt . We use
the same predictors as Lee et al.
(2021b) and optimize the MSE
loss: minθ Eα∼A,t∼[T]

(
ymt −

pmθ (α, dmt)
)2

, as done in Lee et al.
(2021a) for meta-learning perfor-
mance metrics across datasets.
In our experiments, we pretrain
a separate MetaPredictor for
every hardware objective m (e.g.
latency, energy, etc.) on a subset
of (α, ymt) pairs, and use its
predicted value directly in (5)
as Lm

t (·, αΦ) = pmθ (αΦ, d
m
t).

Since the MetaPredictor is in
principle a small neural network
this pretraining step is inexpensive.
During search, we freeze and do not further update the MetaPredictor parameters θ.
Supernetwork. For expensive objectives like neural network classification accuracy, we use a
Supernetwork that encodes the architecture space and shares parameters between architectures,

5

Published as a conference paper at ICLR 2025

providing a best response function w∗(αΦ) for the scalarized loss in (5). While any parametric model
could estimate this function, such as performance predictors (Lee et al., 2021a), this requires an
expensive prior step of creating the training dataset for the predictor, by training architectures from
scratch. To reduce memory costs of Supernetwork training, we: (1) use a one-hot encoding of αΦ for
differentiable architecture sampling (Cai et al., 2018; Dong & Yang, 2019; Xie et al., 2019), activating
only one architecture per step, and (2) entangle operation choice parameters in the Supernetwork,
further increasing memory efficiency of the supernetwork beyond weight sharing (Sukthanker et al.,
2023).
Architect. The Architect Λ(α̃) samples discrete architectural configurations from the un-
normalized distribution α̃Φ = HΦ(r, dt) and enables gradient estimation through discrete variables
for∇ΦLt(·, αΦ). Methods such as GDAS (Dong & Yang, 2019) utilize the Straight-Through Gumbel-
Softmax (STGS) estimator (Jang et al., 2017), that integrates the Gumbel reparameterization trick
to approximate the gradient. Here we employ the recently proposed ReinMax estimator (Liu et al.,
2023), that yields second-order accuracy without the need to compute second-order derivatives. See
Appendix A.1 for more details on these discrete samplers. Similar to the findings in Liu et al. (2023),
in our initial experiments, ReinMax outperforms the GDAS’ STGS estimator (see Figure 15 in the
Appendix), therefore, we use ReinMax in all experiments that follow.

3.3 OPTIMIZING THE MetaHypernetwork VIA MGD

We denote the gradient of the scalarized loss in (5) with respect to the MetaHypernetwork
parameters Φ, shared across all devices t ∈ 1, . . . , T , as: gtΦ = rT∇ΦLt(·, αΦ) =∑M

m=1 rm∇ΦLm
t (·, αΦ), where αΦ is the discrete architectural sample from the Architect Λ(α̃Φ).

0.72
0.86

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN

CMA-ES+LaMOO
CMA-ES
LS

MO-ASHA
RS-BO
LS-BO

qEHVI
NSGA-II
Global opt.

Figure 3: Hypervolume (HV) of MODNAS and
baselines across 19 devices on NAS-Bench-201.
For every device, we optimize for 2 objectives,
namely latency (ms) and test accuracy on CIFAR-
10. For each method, metric and device we report
the mean of 3 independent search runs. Higher
area in the radar plot indicates better HV. Test
devices are colored in red around the plot.

Multiple Gradient Descent (MGD) (Désidéri,
2012; Sener & Koltun, 2018) provides a plausible
approach to estimate the update directions for ev-
ery task simultaneously by maximizing (2). Via
the Lagrangian duality, the optimal solution to
equation 2 is g∗Φ ∝

∑T
t=1 γ

∗
t g

t
Φ, where {γ∗

t }Tt=1
is the solution of the following minimization
problem:

min
γ1,...,γT

{∥∥∥∥∥
T∑

t=1

γtg
t
Φ

∥∥∥∥∥
2

2

∣∣∣∣ T∑
t=1

γt = 1, γt ≥ 0,∀t
}

The solution to this problem is either 0 or, given
a small step size ξ, a descent direction that mono-
tonically decreases all objectives at the same
time and terminates when it finds a Pareto sta-
tionary point, i.e. gtΦ = 0,∀t ∈ {1, . . . , T}.
When T = 2, the problem above simplifies
to minγ∈[0,1]

∥∥γg1Φ + (1− γ)g2Φ
∥∥2
2
, which is a

quadratic function of γ with a closed form solu-
tion:

γ∗ = max

(
min

((g2Φ − g1Φ)
Tg2Φ

∥g1Φ − g2Φ∥
2

2

, 1
)
, 0

)
.

When T > 2, we utilize the Frank-Wolfe
solver (Jaggi, 2013) as in Sener & Koltun (2018),
where the analytical solution in for T = 2 is used inside the line search. We provide the full algorithm
to compute γ∗ in Algorithm 4 in Appendix A.3.
In Algorithm 1 and Figure 1 we provide the pseudocode and an illustration of the overall search phase
of MODNAS. For every mini-batch sample from Dvalid, we iterate over the device features dt (line
2), sample one scalarization r and condition the MetaHypernetwork on both r and dt to generate
the un-normalized architectural distribution α̃Φ (lines 3-4). We then compute the device-specific
gradient in line 6 which is used to estimate the γ coefficients (line 7) used from MGD to update Φ
(lines 8-9). Similarly to Liu et al. (2019b), we use the first-order approximation to obtain the best

6

Published as a conference paper at ICLR 2025

response function in the lower level (lines 10-14) and repeat the same procedure for the upper-level
(lines 2-6), except now the Supernetwork weights w are updated with the mean gradient (line 15),
over devices.

4 EXPERIMENTS

In this section, we firstly demonstrate the scalability and generalizability of our MODNAS approach
on a NAS tabular benchmark (Section 4.1). Then, we validate MODNAS on larger search spaces for
Machine Translation (Section 4.2), Image Classification and Language Modeling (Section 4.3).

The trained MetaHPN approximates the Pareto front by generating architectures given:

1) preference vectors

2) device type

Figure 4: Illustration of MODNAS inference.

Search Spaces and Datasets. We
evaluate MODNAS on 4 search
spaces: (1) NAS-Bench-201 (Dong
& Yang, 2020; Li et al., 2021) with
19 devices and CIFAR-10 dataset;
(2) MobileNetV3 from Once-for-All
(OFA) (Cai et al., 2020) with 12
devices and ImageNet-1k dataset;
(3) Hardware-Aware-Transformer
(HAT) (Wang et al., 2020b) on the machine translation benchmark WMT’14 En-De across 3 different
hardware devices; (4) HW-GPT-Bench (Sukthanker et al., 2024) – a GPT-2 based search space used
for language modeling on the OpenWebText (Gokaslan & Cohen, 2019) across 8 devices. We refer to
Appendices E and F for more details on these search spaces.
Evaluation. At test time, in order to profile the Pareto front with MODNAS on unseen devices, we
sample 24 equidistant preference vectors r from the M -dimensional probability simplex and pass
them through the pretrained MetaHypernetwork HΦ(r, dt) to get 24 architectures. Here the test
device feature dt is obtained similarly as for the train devices. See Figure 4 or an illustration.

10 20 30 40 50
Num. evaluations

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

titan_rtx_256

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

Figure 5: HV over number of evalu-
ated architectures on NAS-Bench-201
of MODNAS and the blackbox MOO
baselines on a test device. For MOD-
NAS we only do 24 full evaluations.

Baselines. We compare MODNAS against several base-
lines2, such as Random Search (RS), Local Search (LS) and
various Evolutionary Strategy and Bayesian Optimization
MOO methods. Please refer to Appendix B for a more
comprehensive description of each of them. Furthermore,
we also evaluate the MetaHypernetwork with randomly
initialized weights (RHPN).
Metrics. To assess the quality of the Pareto set solu-
tions, we use the hypervolume (HV) indicator, which
is a standard metric in MOO. Given a reference point
ρ = [ρ1, . . . , ρm] ∈ RM

+ that is an upper bound for all ob-
jectives {fm(·;w, α)}Mm=1, i.e. supαf

m(·;w, α) ≤ ρm,
∀m ∈ [M], and a Pareto set Pα ⊂ A, HV(Pα) measures
the region of non-dominated points bounded above from ρ:

λ
({

q ∈ RM
+ | ∃α ∈ Pα : q ∈

M∏
m=1

[fm(·;w, α), ρm]
})

,

where λ(·) is the Euclidean volume. HV can be interpreted as the total volume of the union of the
boxes created by the Pareto front.

4.1 SIMULTANEOUS PARETO SET LEARNING ACROSS 19 DEVICES AND ABLATIONS

We firstly validate the scalability and learning capability of MODNAS by evaluating on the NAS-
Bench-201 (Dong & Yang, 2020) cell-based convolutional space. Here we want to optimize both
latency and classification accuracy on all devices. We utilize the same set of 19 heterogeneous devices
as Lee et al. (2021b), from which we use 13 for search and 6 at test time. For the latency predictor,
we use the one from HELP, namely a graph convolutional network (GCN), which we pretrain for 3
GPU hours on the ground truth latencies on the 13 search devices as described in Section 3. We run

2For baselines, we use SyneTune (Salinas et al., 2022): https://github.com/awslabs/syne-tune

7

https://github.com/awslabs/syne-tune

Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

gold_6226
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP 0.77

0.88

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

Figure 7: Pareto front on Eyeriss (left) and HV across
devices (right) of MODNAS ran with various latency
constraints on NAS-Bench-201. See Fig. 21 in Ap-
pendix H for all results.

Glob
al

op
t.

MODNAS RS

MO-A
SHA

NSGA-II

RHPN
qE

HVI

MO-R
E

RS-B
O

LS
-B

O
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H
yp

er
vo

lu
m

e

0.96

0.92

0.83 0.82
0.81

0.77

0.73 0.73
0.71

0.65

FPGA

error0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

fpga_latency

0.0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

fpga_energy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Global opt.
RS
RHPN
MODNAS
LS-BO
MO-RE
MO-ASHA
NSGA-II
RS-BO
qEHVI

Figure 8: HV (left) and Pareto front (right) of
MODNAS and baselines on FPGA with 3 nor-
malized objectives: error, latency and energy
usage. HV is computed using the (1, 1, 1) refer-
ence point on the right 3D plot. See Fig. 16 for
results on Eyeriss.

the MODNAS search (see Appendix D for more details on the search hyperparameters), as described
in Algorithm 1, for 100 epochs (22 GPU hours on a single NVidia RTX2080Ti) and show the HV in
Figure 3 of the evaluated Pareto front in comparison to the baselines, for which we allocate the same
search time budget across all devices equivalent to the MODNAS search + evaluation.

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

fpga

MGD
MC Sampling
Sequential
Mean

Figure 6: HV over search epochs of dif-
ferent gradient schemes in MODNAS.

Most notably, MODNAS consistently outperforms all other
baselines across every device. For the baselines, we con-
duct 19 separate search runs (one for each device), whereas
MODNAS leverages meta-learning to generate the Pareto
set on each device using the same MetaHypernetwork in
a single search run. Interestingly, the trained MODNAS
attention-based MetaHypernetwork significantly outper-
forms the RHPN baseline in profiling the Pareto front,
demonstrating its effectiveness in optimizing across multi-
ple devices and conflicting objectives simultaneously. In
Figure 20a in the Appendix, we compare MODNAS with
additional baselines, running them at double the budget
used for the experiments in Figure 3. Figure 5 (see Fig-
ure 23 in the appendix for all devices) shows that most baselines require more than twice the number
of architecture evaluations to reach the same HV as MODNAS. Results show that MODNAS remains
the top performer across hardware devices on average. Furthermore, in the appendix, Figure 20
presents radar plots for four additional metrics, and Figure 18 and 17 results on NB201 when
optimizing CIFAR-100 accuracy and device latency.
Reliably learnt embeddings for hardware devices. To demonstrate the effectiveness of our
MetaHypernetwork in learning hardware device similarities, Figure 12 in the appendix shows
K-means clustering of original and MetaHypernetwork embeddings, reduced via t-SNE. The
MetaHypernetwork successfully clusters similar devices, confirming its efficacy.
MetaHypernetwork update schemes: robustness of MGD. We compare the MGD update scheme
for the MetaHypernetwork Φ (line 9 in Alg. 1) against (1) the mean gradient over tasks: Φ ←
Φ−ξ 1

T

∑T
t=1 g

t
Φ; (2) sequential updates with all single tasks’ gradients: Φ← Φ−ξgtΦ, ∀t; (3) single

updates using gradients of MC samples over tasks: Φ ← Φ − ξgtΦ, t ∼ {1, . . . T}. Figure 6 (see
Figure 24 in Appendix H for more results) shows the HV over search epochs for these schemes. MGD,
by accounting for inter-task dependencies, achieves higher final HV, better anytime performance, and
faster convergence than the other schemes.
Scalability to three objectives. We show the scalability of MODNAS to 3 objectives, namely,
accuracy, latency and energy consumption. For this experiment we use the FPGA and Eyeriss tabular
energy usage values from HW-NAS-Bench (Li et al., 2021). In addition to the MetaPredictor for
latency, we pretrain a second predictor on the energy usage objective. We then run MODNAS and the
MOO baselines with the same exact settings as for 2 objectives. Results shown in Figure 8 indicate
that MODNAS can scale to M > 2 without additional search costs or hyperparameter tuning and yet
achieves HV close to the global optimum front of the NAS-Bench-201 space.
MODNAS vs. constrained single-objective optimization. To compare against single-objective
NAS with hardware constraints in the objective, we run MetaD2A+HELP (Lee et al., 2021b). Since
MetaD2A + HELP is not able to profile the Pareto front directly, we run the NAS search 24 times with

8

Published as a conference paper at ICLR 2025

different constraints, which we compute by denormalizing the same 24 equidistant preference vectors
we use to evaluate MODNAS. We also extend MODNAS to incorporate user prior constraints over
the multiple objectives being optimized during search. Namely, we add a normalized constraint cm,
such that if the predicted value from the MetaPredictor during search satisfies this constraint, i.e.
pmθ (αΦ, d

m
t) ≤ cm, we remove the gradient w.r.t. to that objective in lines 6 and 14 of Algorithm 1.

In Figure 7 (other devices in Figure 21) we can see that when increasing the latency constraint to 1
(only cross-entropy optimized), though the HV decreases, MODNAS returns Pareto sets with more
performant architectures. MetaD2A+HELP, despite multiple search runs, prioritizes performance
over diversity, resulting in less varied solutions.

4.2 PARETO FRONT PROFILING ON TRANSFORMER SPACE

MODNAS

qE
HVI

NSGA-II

MO-A
SHA LS

MO-R
E RS

RHPN
LS

-B
O

HAT

RS-B
O

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

H
yp

er
vo

lu
m

e

0.72

0.69 0.69 0.69

0.68
0.67

0.65

0.64 0.64 0.64

0.61

RaspberryPi-CPU

3000 4000 5000 6000 7000 8000 9000
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
BL

EU

RaspberryPi-CPU
RS
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RHPN
MODNAS
HAT

Figure 9: HV and Pareto fronts of MODNAS and
baselines across devices on the HAT space.

To demonstrate its effectiveness beyond im-
age classification and CNN spaces, we ap-
ply MODNAS to the hardware-aware Trans-
former (HAT) search space from Wang
et al. (2020b) on the WMT’14 En-De (Jean
et al., 2015; Macháček & Bojar, 2014) ma-
chine translation task. We pretrain the
MetaPredictor (details in Appendix D.1)
for 5 GPU hours on 2000 architecture sam-
ples from the search space and then con-
duct the search for 110 epochs (6 days on 8
NVIDIA RTX A6000 GPUs) using 2 search
devices, adhering to the same hyperparameters as Wang et al. (2020b) to optimize for latency and
validation cross entropy loss. We allocate to each baseline 2.5×more runtime budget than MODNAS,
resulting in 1300 (RS-BO) to 6000 (MO-ASHA) total architecture evaluations, whereas MODNAS
evaluates only 24 generated architectures. Details on the HAT search space and search hyperpa-
rameters are in Appendix E. We evaluate MODNAS on all 3 devices (2 search and 1 test) using
the BLEU score, and results in Figure 9 show that MODNAS outperforms all baselines, achieving
a higher hypervolume (left plot) of the generated Pareto fronts (right plot). For HAT, we evaluate
the architectures provided in their paper. Additional results on other training devices and evaluation
metrics are presented in Figures 28, 29 and 30 in the Appendix.

4.3 EFFICIENT DIFFERENTIABLE MOO STARTING FROM PRETRAINED SUPERNETWORKS

MODNAS
LS-

BO

MO-ASH
A

RS-B
O

qE
HVI

MO-RE

NSG
A-I

I RS
RHPN HELP LS

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Hy
pe

rv
ol

um
e

0.76

0.74
0.73 0.73 0.73

0.72
0.71

0.67 0.67

0.65
0.64

Average HV (12 devices) for OFA

Figure 10: Average HV
of MODNAS and baselines
across 12 devices on OFA
space. For every device we op-
timize for 2 objectives, namely
latency (ms) and test accuracy
on ImageNet-1k.

Image Classification on ImageNet-1k. We now evaluate MODNAS
on ImageNet-1k using the MovileNetV3 search space from Once-for-
All (OFA) (Cai et al., 2020). For this experiment, we run MODNAS
using 11 search (and 1 test) devices starting with the pretrained OFA
supernetwork and run the search further for 1 day on 8 RTX2080Ti
GPUs. During the search, we only update the MetaHypernetwork
weights and keep the pretrained Supernetwork weights frozen. De-
tails on the search space and hyperparameters are in Appendices E
and D.3. We use the simple MLP from Lee et al. (2021b) as
our MetaPredictor, pretraining it for 6 hours on 5000 sampled
architecture-latency pairs. To evaluate the 24 points generated by
our MetaHypernetwork and baselines, we use the OFA pretrained
Supernetwork. Results in Figure 10 show that MODNAS achieves
a higher average HV across all devices compared to baselines, which
we run for 192 hours using the OFA pretrained accuracy predictor
(see Figure 34 for all results and Figure 33 for the Pareto fronts).
Comparison to Zero-Cost Proxies. We also compare the HV of
the Pareto front obtained by MODNAS to that produced by NSGA-
II (Deb et al., 2002), which uses a zero-cost proxy (ZCP) (Abdelfat-
tah et al., 2021) (we chose Zico (Li et al., 2023)) for performance estimation instead of the actual
accuracy. Table 6 in the appendix presents the results of this experiment on two devices. As shown,
despite its improved runtime efficiency, the ZCP-guided search underperforms compared to both the
existing baselines and MODNAS, which optimize for accuracy directly.

9

Published as a conference paper at ICLR 2025

0.2 0.3 0.4 0.5
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

A100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

Figure 11: Pareto front of MOD-
NAS and baselines on the HW-
GPT-Bench, A100 GPU.

Language Modeling with GPT-2. With the rapid growth of
language model sizes, it is crucial to identify transformer variants
that are efficient during inference (latency) while maintaining
competitive performance. We apply MODNAS to the GPT-S
space from HW-GPT-Bench (Sukthanker et al., 2024), which
features a non-convex Pareto front between perplexity and hard-
ware metric objectives. Using pretrained Supernetwork weights
from HW-GPT-Bench, we conduct a single 6-hour search on 4
Nvidia A100 GPUs, optimizing for energy consumption (Wh)
and perplexity across 8 different GPU devices. See Appendix D
for details on the MetaHypernetwork architecture and search
hyperparameters. The Supernetwork weights are kept frozen
while updating the MetaHypernetwork. Figure 11 shows that,
with the same time budget, MODNAS matches or surpasses other
MOO baselines, demonstrating its effectiveness in optimizing beyond convex Pareto fronts.

4.4 COMPUTATIONAL COMPLEXITY

Table 1: Cost of MODNAS and other methods. N is
the number of trained architectures during search, T the
number of devices and C the number of constraints.

Method Search Cost Pareto Set Build Cost

LEMONADE (Elsken et al., 2019a) O(NT) O(1)
Blackbox MOO (Daulton et al., 2020; Zhao et al., 2022) O(NT) O(1)
ProxylessNAS (Cai et al., 2018) O(CT) O(1)
MetaD2A + HELP (Lee et al., 2021a;b) O(N) O(CT)
OFA (Cai et al., 2020) + HELP (Lee et al., 2021b) O(1) O(CT)
MODNAS (Ours) O(1) O(1)

Ignoring the cost to train final architectures
in the Pareto set, methods like MetaD2A +
HELP (Lee et al., 2021a;b) have a worst-
case time complexity of O(CT) to build
the Pareto set, where T is the number of
devices and C is the number of constraints.
MODNAS reduces this to O(1) by con-
ditioning a single MetaHypernetwork on
both device types and constraints. Methods
like LEMONADE (Elsken et al., 2019a) and ProxylessNAS (Cai et al., 2018) apply constraints
during the search phase, requiring an independent search per device. Black-box methods such as
LEMONADE, NSGA-II (Deb et al., 2002), or qEHVI (Daulton et al., 2020) trainO(NT) architectures
or a surrogate based on O(N) architectures in the case of MetaD2A + HELP. In contrast, MODNAS
and OFA have a cost of O(1) as they train a single supernetwork. Although MODNAS iterates over T
devices to compute g∗Φ and g∗w, Figure 25 in Appendix H.1 shows that MODNAS generalizes well on
17 test devices with only 2 search devices due to its meta-learning capabilities. See Tables 1 and 5 in
the Appendix for more details.

5 CONCLUSIONS, BROADER IMPACT AND LIMITATIONS

In this paper, we propose a novel hardware-aware differentiable NAS algorithm for profiling the
Pareto front in multi-objective problems. In contrast to constraint-based NAS methods, ours can
generate Pareto optimal architectures across multiple devices with a single hypernetwork that is
conditioned on preference vectors encoding the trade-off between objectives. Experiments across
various hardware devices (up to 19), objectives (accuracy, latency and energy usage), search spaces
(CNNs and Transformers), and applications (classification, machine translation, language modeling)
demonstrate the effectiveness and efficiency of our method.
Broader Impact. In an era of large-scale models (e.g. foundation models), speeding up the search
and training cost for inference-optimal neural architectures is an important aspect of responsible
research (Cai et al., 2024; Muralidharan et al., 2024; Zhang et al., 2024). The main goal of this work
is to improve the search costs, as well as the efficiency of the found architectures in terms of various
hardware metrics, therefore reducing the energy consumption and CO2 footprint. The energy savings
of these architectures will be amplified as they might be deployed on a large number of devices.
Limitations. While our differentiable multi-objective search method shows promising results, there
are potential limitations. MODNAS inherits challenges common to gradient-based search, such as
the risk of failure without proper tuning or regularization (Zela et al., 2020). For example, gradients
may favor one objective, leading to local optima that hinder exploration of the full Pareto front.
Additionally, the method relies on differentiable proxies for objectives, which may not always align
with ground truth values.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This research was partially supported by the following sources: TAILOR, a project funded by EU
Horizon 2020 research and innovation programme under GA No 952215; the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under grant number 417962828; the European
Research Council (ERC) Consolidator Grant “Deep Learning 2.0” (grant no. 101045765). Robert
Bosch GmbH is acknowledged for financial support. The authors acknowledge support from EL-
LIS and ELIZA. The authors gratefully acknowledge the Gauss Center for Supercomputing eV
(www.gauss-centre.eu) for funding this project by providing computing time on the GCS supercom-
puter JUWELS at Jülich Supercomputing Center (JSC). Funded by the European Union. Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the ERC. Neither the European Union nor the ERC can be held responsible for
them.

.REFERENCES

M. Abdelfattah, A. Mehrotra, L. Dudziak, and N. Lane. Zero-cost proxies for lightweight NAS.
In Proceedings of the International Conference on Learning Representations (ICLR’21), 2021.
Published online: iclr.cc. 9

Ibrahim Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in shape:
Scaling laws for compute-optimal model design. Thirty-seventh Conference on Neural Information
Processing Systems, 2023. 1

Stephan Patrick Baller, Anshul Jindal, Mohak Chadha, and Michael Gerndt. Deepedgebench:
Benchmarking deep neural networks on edge devices. 2021 IEEE International Conference on
Cloud Engineering (IC2E), pp. 20–30, 2021. 44

G. Bender, P-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le. Understanding and simplifying
one-shot architecture search. In Proceedings of the 35th International Conference on Machine
Learning (ICML’18), volume 80. Proceedings of Machine Learning Research, 2018. 3, 4, 43, 44

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. Hardware-aware neural architecture search: Survey and taxonomy. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4322–4329,
8 2021. Survey Track. 44

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13:281–305, 2012. 21

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations, 2018. 4

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-All: Train one network and specialize it
for efficient deployment. In International Conference on Learning Representations (ICLR), 2020.
1, 7, 9, 10, 21, 27, 28, 43

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2018. 3, 6, 10, 44

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and
Pavlo Molchanov. Flextron: Many-in-one flexible large language model. arXiv preprint
arXiv:2406.10260, 2024. 10

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 12270–12280, 2021a. 1, 21

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
based regularization. In International conference on machine learning, pp. 1554–1565. PMLR,
2020. 43

11

iclr.cc

Published as a conference paper at ICLR 2025

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. DrNAS:
Dirichlet neural architecture search. In International Conference on Learning Representations,
2021b. 3, 5

Richeek Das and Samuel Dooley. Fairer and more accurate tabular models through nas. Algorithmic
Fairness through the Lens of Time Workshop at NeurIPS, 2023. 44

S. Daulton, M. Balandat, and E. Bakshy. Differentiable expected hypervolume improvement for
parallel Multi-Objective Bayesian optimization. In Advances in Neural Information Processing
Systems, volume 33, pp. 9851–9864. Curran Associates, Inc., 2020. 10, 21

Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Multi-objective bayesian
optimization over high-dimensional search spaces. In Uncertainty in Artificial Intelligence, pp.
507–517. PMLR, 2022. 43

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. In Parallel Problem Solving
from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000
Proceedings 6, pp. 849–858. Springer, 2000. 43

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197,
2002. 9, 10, 21, 43

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350:313–318, 2012. 2, 3, 6, 43

X. Dong and Y. Yang. Searching for a robust neural architecture in four gpu hours. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 3, 6,
28, 30, 43

X. Dong and Y. Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. In Proceedings of the International Conference on Learning Representations (ICLR’20),
2020. Published online: iclr.cc. 7, 22, 27

Samuel Dooley, Rhea Sanjay Sukthanker, John P Dickerson, Colin White, Frank Hutter, and Micah
Goldblum. Rethinking bias mitigation: Fairer architectures make for fairer face recognition. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. 44

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane.
Brp-nas: Prediction-based nas using gcns. Advances in Neural Information Processing Systems,
33:10480–10490, 2020. 22, 44

T. Elsken, J. Metzen, and F. Hutter. Efficient multi-objective neural architecture search via lamarckian
evolution. In International Conference on Learning Representations, 2019a. 10

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In International Conference on Learning Representations, 2019b.
1, 43

Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang Wang.
AutoGAN-distiller: Searching to compress generative adversarial networks. In Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 3292–3303. PMLR, 13–18 Jul 2020. 3, 44

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019. 7, 27

Nyoman Gunantara. A review of multi-objective optimization: Methods and its applications. Cogent
Engineering, 5(1):1502242, 2018. 43

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16,
pp. 544–560. Springer, 2020. 44

12

iclr.cc
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Published as a conference paper at ICLR 2025

D. Ha, A. Dai, and Q. Le. Hypernetworks. In Proceedings of the International Conference on
Learning Representations (ICLR’17), 2017. 2, 3, 4

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search
via mixed-level reformulation. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11990–11999, 2020. 30, 44

Long P Hoang, Dung D Le, Tran Anh Tuan, and Tran Ngoc Thang. Improving pareto front learning
via multi-sample hypernetworks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 7875–7883, 2023. 3, 43

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Laurent Sifre.
An empirical analysis of compute-optimal large language model training. In Advances in Neural
Information Processing Systems, volume 35, pp. 30016–30030. Curran Associates, Inc., 2022. 1

Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao Liu, Shih-Chieh
Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas: Multi-objective neural
architecture search using reinforcement learning. arXiv preprint arXiv:1806.10332, 2018. 44

C. Igel, Nikolaus Hansen, and Stefan Roth. Covariance matrix adaptation for multi-objective
optimization. Evolutionary Computation, 15:1–28, 2007. 21

Rafael C Ito and Fernando J Von Zuben. Ofa 2: A multi-objective perspective for the once-for-all
neural architecture search. arXiv preprint arXiv:2303.13683, 2023. 44

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
Conference on Machine Learning, 2013. 6, 20

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In Proceedings of the International Conference on Learning Representations (ICLR’17), 2017.
Published online: iclr.cc. 6, 19

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. Montreal
neural machine translation systems for wmt’15. In Proceedings of the tenth workshop on statistical
machine translation, pp. 134–140, 2015. 9

Qian Jiang, Xiaofan Zhang, Deming Chen, Minh N Do, and Raymond A Yeh. Eh-dnas: End-to-end
hardware-aware differentiable neural architecture search. arXiv preprint arXiv:2111.12299, 2021.
4, 44

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020. 1

Sunghoon Kim, Hyunjeong Kwon, Eunji Kwon, Youngchang Choi, Tae-Hyun Oh, and Seokhyeong
Kang. Mdarts: Multi-objective differentiable neural architecture search. In 2021 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 1344–1349. IEEE, 2021. 44

Ivan Lazarevich, Matteo Grimaldi, Ravi Kumar, Saptarshi Mitra, Shahrukh Khan, and Sudhakar
Sah. Yolobench: Benchmarking efficient object detectors on embedded systems. 2023 IEEE/CVF
International Conference on Computer Vision Workshops (ICCVW), pp. 1161–1170, 2023. 44

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid neural architecture search by learning to
generate graphs from datasets. In International Conference on Learning Representations, 2021a.
5, 6, 10

Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. Hardware-adaptive efficient latency
prediction for nas via meta-learning. In Advances in Neural Information Processing Systems,
volume 34, pp. 27016–27028. Curran Associates, Inc., 2021b. 5, 7, 8, 9, 10, 22, 23, 28, 41

13

iclr.cc

Published as a conference paper at ICLR 2025

Jaeseong Lee, Duseok Kang, and Soonhoi Ha. S3nas: Fast npu-aware neural architecture search
methodology. arXiv preprint arXiv:2009.02009, 2020. 44

Jayoung Lee, Pengcheng Wang, Ran Xu, Sarthak Jain, Venkat Dasari, Noah Weston, Yin Li, Saurabh
Bagchi, and Somali Chaterji. Virtuoso: Energy- and latency-aware streamlining of streaming
videos on systems-on-chips. ACM Trans. Des. Autom. Electron. Syst., 28(3), April 2023. ISSN
1084-4309. 44

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue
Wang, and Yingyan (Celine) Lin. Hw-nas-bench: Hardware-aware neural architecture search
benchmark. In International Conference on Learning Representations, 2021. 7, 8, 28

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. Zico: Zero-shot NAS via
inverse coefficient of variation on gradients. In The Eleventh International Conference on Learning
Representations, 2023. 9

L. Li and A. Talwalkar. Random search and reproducibility for neural architecture search. In J. Peters
and D. Sontag (eds.), Proceedings of The 36th Uncertainty in Artificial Intelligence Conference
(UAI’20), pp. 367–377. PMLR, 2020. 21, 44

Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. Massively parallel hyperparameter tuning. ArXiv, abs/1810.05934, 2018. 21

X. Lin, H. Zhen, Z. Li, Q. Zhang, and S. Kwong. Pareto multi-task learning. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019. 3, 43

Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Tak Wu Kwong. Controllable pareto multi-task
learning. ArXiv, abs/2010.06313, 2020. 3, 4, 23, 43

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan Loddon Yuille, and
Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 82–92,
2019a. 44

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In International
Conference on Learning Representations, 2019b. 3, 4, 6, 43

Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, and Jianfeng Gao. Bridging discrete and
backpropagation: Straight-through and beyond. Thirty-seventh Conference on Neural Information
Processing Systems, 2023. 3, 6, 19, 43

Suyun Liu and Luís Nunes Vicente. The stochastic multi-gradient algorithm for multi-objective
optimization and its application to supervised machine learning. Annals of Operations Research,
pp. 1572–9338, 2021. 3, 43

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti.
Nsganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part I 16, pp. 35–51. Springer, 2020. 43

Matouš Macháček and Ondřej Bojar. Results of the WMT14 metrics shared task. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, pp. 293–301, Baltimore, Maryland, USA,
June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-3336. 9, 27

D. Mahapatra and V. Rajan. Multi-task learning with user preferences: Gradient descent with
controlled ascent in pareto optimization. In Proceedings of the 36th International Conference on
Machine Learning (ICML’20), pp. 6597–6607. Proceedings of Machine Learning Research, 2020.
3, 43

Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax pareto fairness: A multi objective
perspective. In International Conference on Machine Learning, pp. 6755–6764. PMLR, 2020. 44

14

Published as a conference paper at ICLR 2025

Rohit Mohan, Thomas Elsken, Arber Zela, Jan Hendrik Metzen, Benedikt Staffler, Thomas Brox,
Abhinav Valada, and Frank Hutter. Neural architecture search for dense prediction tasks in
computer vision. Int. J. Comput. Vision, 131(7):1784–1807, April 2023. ISSN 0920-5691. 44

Michinari Momma, Chaosheng Dong, and Jia Liu. A multi-objective/multi-task learning framework
induced by pareto stationarity. In International Conference on Machine Learning, pp. 15895–15907.
PMLR, 2022. 43

Sajad Movahedi, Melika Adabinejad, Ayyoob Imani, Arezou Keshavarz, Mostafa Dehghani, Azadeh
Shakery, and Babak N Araabi. λ-darts: Mitigating performance collapse by harmonizing operation
selection among cells. The Eleventh International Conference on Learning Representations, 2022.
3

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.
10

Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. Learning the pareto front with
hypernetworks. International Conference on Learning Representations, 2021. 3, 4, 43

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
objective bayesian optimization using random scalarizations. In Uncertainty in Artificial Intelli-
gence, pp. 766–776. PMLR, 2020. 21

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via parameter
sharing. In International Conference on Machine Learning, 2018. 3, 4, 44

Hoang Phan, Ngoc Tran, Trung Le, Toan Tran, Nhat Ho, and Dinh Phung. Stochastic multiple target
sampling gradient descent. Advances in neural information processing systems, 35:22643–22655,
2022. 3, 43

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI’19. AAAI Press, 2019. ISBN 978-1-57735-809-1. 21

Binxin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. Speedy perfor-
mance estimation for neural architecture search. In Advances in Neural Information Processing
Systems, 2021. 22

Michael Ruchte and Josif Grabocka. Scalable pareto front approximation for deep multi-objective
learning. In 2021 IEEE international conference on data mining (ICDM), pp. 1306–1311. IEEE,
2021. 3, 25

David Salinas, Valerio Perrone, Olivier Cruchant, and C. Archambeau. A multi-objective perspective
on jointly tuning hardware and hyperparameters. ArXiv, abs/2106.05680, 2021. 21

David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, and Cedric Archam-
beau. Syne tune: A library for large scale hyperparameter tuning and reproducible research. In
International Conference on Automated Machine Learning, AutoML 2022, 2022. 7

Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. Advances in neural information
processing systems, 29, 2016. 44

Robin Schmucker, Michele Donini, Muhammad Bilal Zafar, David Salinas, and C. Archambeau.
Multi-objective asynchronous successive halving. ArXiv, abs/2106.12639, 2021. 21

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Neural
Information Processing Systems, 2018. 3, 6, 43

Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy Sidhu. Squeezenas: Fast neural architecture
search for faster semantic segmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pp. 0–0, 2019. 44

15

Published as a conference paper at ICLR 2025

Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regularization
in stochastic gradient descent. In International Conference on Learning Representations, 2021. 43

Rhea Sanjay Sukthanker, Arjun Krishnakumar, Mahmoud Safari, and Frank Hutter. Weight-
entanglement meets gradient-based neural architecture search. arXiv preprint arXiv:2312.10440,
2023. 6, 43

Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Joerg K.H. Franke, and Frank Hutter.
Hw-gpt-bench: Hardware-aware architecture benchmark for language models. arXiv preprint
arXiv:2405.10299, 2024. 7, 10, 23, 27, 28, 39, 41

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. Le. Mnasnet: Platform-
aware neural architecture search for mobile. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019. 44

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12965–12974, 2020. 4

Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra. Attentivenas: Improving neural
architecture search via attentive sampling. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 6418–6427, 2021. 4, 44

H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. Hat: Hardware-aware transformers for
efficient natural language processing. arXiv:2005.14187[cs.CL], 2020a. 27

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. HAT:
Hardware-aware transformers for efficient natural language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7675–7688, Online, July
2020b. Association for Computational Linguistics. 1, 7, 9, 23, 28

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022. 4, 23

Colin White, Mahmoud Safari, Rhea Sanjay Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela,
Debadeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. ArXiv,
abs/2301.08727, 2023. 1

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10734–10742, 2019. 4, 44

Yan Wu, Zhiwu Huang, Suryansh Kumar, Rhea Sanjay Sukthanker, Radu Timofte, and Luc Van Gool.
Trilevel neural architecture search for efficient single image super-resolution. arXiv preprint
arXiv:2101.06658, 2021. 4, 44

S. Xie, H. Zheng, C. Liu, and L. Lin. SNAS: stochastic neural architecture search. In International
Conference on Learning Representations, 2019. 3, 6

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020a. 3

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Bowen Shi, Qi Tian, and Hongkai Xiong.
Latency-aware differentiable neural architecture search. arXiv preprint arXiv:2001.06392, 2020b.
4, 44

Xinmin Yang, Wei Yao, Haian Yin, Shangzhi Zeng, and Jin Zhang. Gradient-based algorithms for
multi-objective bi-level optimization. Science China Mathematics, 2024. 43

16

Published as a conference paper at ICLR 2025

Feiyang Ye, Baijiong Lin, Xiaofeng Cao, Yu Zhang, and Ivor W. Tsang. A first-order multi-gradient
algorithm for multi-objective bi-level optimization. In ECAI, volume 392 of Frontiers in Artificial
Intelligence and Applications, pp. 2621–2628. IOS Press, 2024. 43

Mao Ye and Qiang Liu. Pareto navigation gradient descent: a first-order algorithm for optimization
in pareto set. In Uncertainty in Artificial Intelligence, pp. 2246–2255. PMLR, 2022. 43

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
Understanding and robustifying differentiable architecture search. In International Conference on
Learning Representations, 2020. 10, 43

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022. 1

Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and Haonan Lu. Laptop-diff: Layer pruning
and normalized distillation for compressing diffusion models. arXiv preprint arXiv:2404.11098,
2024. 10

Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. Fast hardware-aware
neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 692–693, 2020. 44

Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang, Ehsan Abbasnejad, and Reza Haffari. idarts:
Differentiable architecture search with stochastic implicit gradients. In International Conference
on Machine Learning, 2021. 3

Qi Zhang, Peiyao Xiao, Shaofeng Zou, and Kaiyi Ji. MGDA converges under generalized smoothness,
provably. In The Thirteenth International Conference on Learning Representations, 2025. 43

Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian. Multi-
objective optimization by learning space partition. In International Conference on Learning
Representations, 2022. 10, 21

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceedings of the
International Conference on Learning Representations (ICLR’17), 2017. 43

17

Published as a conference paper at ICLR 2025

Appendix

Table of Contents
A Algorithmic components 19

A.1 Discrete Samplers . 19
A.2 Details on the Architect Gradient Computation 19
A.3 Frank-Wolfe Solver . 20

B Multi-objective NAS algorithms 21

C Evaluation Details 21
C.1 Other Metrics . 21
C.2 MODNAS-SoTL . 22

D Experimental Details 22
D.1 MetaPredictor Architectures . 22
D.2 MetaHypernetwork Architecture . 23
D.3 MODNAS Hyperparameter Configurations . 25
D.4 Normalization of objectives . 25

E Details on Search Spaces 27

F Datasets and Devices 27

G Runtime Comparison 28

H Additional Experiments 28
H.1 Additional Results on NAS-Bench-201 . 28
H.2 Additional Results on Hardware-aware Transformers (En-De) 39
H.3 Additional Results on the HW-GPT space . 39
H.4 Additional Results on MobileNetV3 . 41

I Further Discussion on the Robustness of MODNAS 43

J Extended Related Work 43

18

Published as a conference paper at ICLR 2025

A ALGORITHMIC COMPONENTS

In this section, we provide the pseudocodes for some of the algorithmic components we use in
MODNAS.

A.1 DISCRETE SAMPLERS

Given the architecture parameters α̃Φ from the MetaHypernetwork, we obtain a differen-
tiable discrete architecture sample from the Architect as αΦ ← π − stop_g(π) + αΦ, where
αΦ ∼ Cat

(
softmax1(~αΦ)

)
and

π ← 2 · softmax1
(
stop_g

(
ln(

αΦ + softmaxτ (~αΦ)

2
)− ~αΦ

)
+ ~αΦ

)
− softmax1(~αΦ)

2
.

Here, Cat is the categorical distribution, τ is the temperature in the tempered softmax
softmaxτ (α)i =

exp(αi/τ)∑|O|
j=1 exp(αj/τ)

, and stop_g(·) duplicates its input and detaches it from backprop-

agation. Refer to the ReinMax paper (Liu et al., 2023) for more details. The algorithm pseudocode
on how a one-hot encoded (discrete) architecture is sampled given an unnormalized architectural
distribution α̃ is given in Algorithm 2 and Algorithm 3, for the Straight-Through (Jang et al., 2017)
and ReinMax (Liu et al., 2023) gradient estimators, respectively.

Algorithm 2: Straight− Through (Jang
et al., 2017)
Data: α̃: softmax input, τ : temperature
Result: α: one-hot samples

1 π0 ← softmax1(α̃)
2 α ∼ Cat(π0)
3 π1 ← softmaxτ (α̃)
4 α← π1 − stop_g(π1) + α
5 return α

Algorithm 3: ReinMax (Liu et al., 2023)
Data: α̃: softmax input, τ : temperature
Result: α: one-hot samples

1 π0 ← softmax1(α̃)
2 α ∼ Cat(π0)

3 π1 ← α+softmaxτ (α̃)
2

4 π1 ← softmax1
(
stop_g

(
ln(π1)−α̃

)
+α̃
)

5 π2 = 2 · π1 − 1
2 · π0

6 α← π2 − stop_g(π2) + α
7 return α

A.2 DETAILS ON THE Architect GRADIENT COMPUTATION

In this section, we provide additional details on how the Architect utilizes the Straight-Through
Estimator (STE) to backpropagate through the sampling of discrete architectural parameters.
Forward pass:

1. The MetaHypernetwork parameterizes the unnormalized architectural distribution: α̃ = HΦ,
where Φ are the MetaHypernetwork parameters.

2. α̃ is passed to Architect and it does the following steps:
(a) Normalizes α̃ and samples a one-hot (discrete) α: α ∼ Cat(softmax(α̃)).
(b) Sets the Supernetwork architectural parameters to the one-hot α, i.e. resulting in a single

subnetwork by masking the Supernetwork.
(c) Passes α as input to MetaPredictor.

3. The Supernetwork and MetaPredictor do a forward pass using the training data (e.g., images)
and hardware embedding, respectively.

4. Compute the scalarized loss function.

The main problem now is that we cannot directly backpropagate the gradient computation through
the Architect to update the MetaHypernetwork parameters Φ. This is due to the sampling from
the Categorical distribution in step 2/(a) above being non-differentiable. The STE approximates the
gradient for the discrete architectural parameters by ignoring this actual non-differentiable sampling
operation.

19

Published as a conference paper at ICLR 2025

Backward pass:

1. Calculate the gradient of the scalarized loss with respect to the discrete architectural parameters α:
∂L/∂α.

2. Propagate this gradient back to Φ (MetaHypernetwork parameters) via the probability distribu-
tion:

∇ΦL =
∂L
∂α

∂α

∂softmax
∇Φsoftmax(HΦ).

STE backpropagates "through" a proxy that treats the non-differentiable function (sampling of
α) as an identity function (as a result ∂α

∂softmax = 1) and computes the gradient w.r.t. to the
MetaHypernetwork parameters:

∇ΦL =
∂L
∂α
∇Φsoftmax(HΦ)

.

To recap, during the forward pass the Architect samples a discrete architecture from an architecture
distribution parameterized by the MetaHypernetwork, and during backpropagation the STE is
utilized to propagate back through the sampling operation and update the MetaHypernetwork
parameters, hence the distribution from which the discrete architectures in the next iteration will be
sampled.

A.3 FRANK-WOLFE SOLVER

In this section, we provide the pseudocode of the Frank-Wolfe solver (Jaggi, 2013) used to compute
the gradient coefficients used for the MGD updates. To solve the constrained optimization problem,
the Frank-Wolfe solver uses analytical solution for the line search with T = 2 (Algorithm 5).

Algorithm 4: FrankWolfeSolver (Jaggi, 2013)

Data: g1Φ, . . . , gTΦ
Result: γ = (γ1, . . . , γT)

1 Initialize γ ← (1
T , . . . , 1

T)
2 PrecomputeM s.t.Mi,j = (giΦ)

T(gjΦ)
3 repeat
4 t̂← argminr

∑T
t=1 γtMrt

5 et̂ ←Mt̂,· ; // t̂-th row of M
6 δ̂ ← argminδ

(
(1− δ)γ + δet̂

)TM((1− δ)γ + δet̂
)

; // using Algorithm 5

7 γ ← (1− δ̂)γ + δ̂et̂
8 until δ̂ ∼ 0 or Number of Iterations Limit;
9 return γ

Algorithm 5: Solver minδ∈[0,1] ||δθ + (1− δ)θ̄||22
1 if θTθ̄ ≥ θTθ then
2 δ ← 1

3 else if θTθ̄ ≥ θ̄Tθ̄ then
4 δ ← 0
5 else
6 δ ← (θ̄−θ)Tθ̄

||θ−θ̄||22
7 return δ

20

Published as a conference paper at ICLR 2025

B MULTI-OBJECTIVE NAS ALGORITHMS

This section elaborates on the multi-objective NAS methods we utilize as baselines in Section 4.

• Random Search (RS) is a robust baseline for both single-objective (Bergstra & Bengio, 2012; Li
& Talwalkar, 2020) and multi-objective (Cai et al., 2020; Chen et al., 2021a) architecture searches.
This baseline involves randomly sampling architectures from the search space and computing the
Pareto front from these samples. While RS is computationally efficient and often effective, it may
not always find the optimal architectures, especially in larger search spaces.

• Local Search (LS) is adapted to refine solutions near Pareto-optimal points in multi-objective
optimization, iteratively improving solutions within defined neighborhoods.

• Multi-objective Asynchronous Successive Halving (MO-ASHA) (Schmucker et al., 2021) is a
multi-fidelity method that utilizes an asynchronous successive halving scheduler (Li et al., 2018) and
non-dominating sorting for budget allocation. MO-ASHA uses the NSGA-II selection mechanism
and the ϵ-net (Salinas et al., 2021) exploration strategy that ranks candidates in the same Pareto
set by iteratively selecting the one with the largest Euclidian distance from the previous set of
candidates.

• Multi-Objective Regularized Evolution (MO-RE) builds on Regularized Evolution (RE) (Real
et al., 2019), which evolves a population of candidates through mutation and periodically removes
the oldest individuals, thus regularizing the population. MO-RE adapts this by using multi-objective
non-dominated sorting to score candidates, with parents sampled based on these scores.

• Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) is a multi-objective
evolutionary algorithm designed to find a Pareto set of architectures. It ranks architectures using non-
dominated sorting and maintains diversity with crowding distance. Through selection, crossover,
and mutation, NSGA-II evolves populations towards the Pareto front, although it is known for
being sample inefficient.

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Igel et al., 2007) is an evolu-
tionary algorithm particularly effective in continuous optimization problems. In a multi-objective
context, it adapts its covariance matrix to the shape of the search space, iteratively updating its sam-
pling distribution to favor promising regions. This method efficiently handles complex, non-linear
optimization landscapes and can be adapted to multi-objective scenarios by using techniques such
as Pareto-based selection to maintain a diverse set of solutions.

• Latent Action MOO (LaMOO) (Zhao et al., 2022) uses a parametric model and Monte Carlo Tree
Search (MCTS) to learn to partition the objective space based on the dominance number, which
indicates the vicinity of a point to the Pareto front relative to the other samples. qEHVI+LaMOO
and CMA-ES+LaMOO use the original qEHVI and CMA-ES, respectively, as an inner routine in
the learned subspaces.

• Bayesian Optimization with Random Scalarizations (RS-BO) (Paria et al., 2020) uses an
acquisition function based on random linear scalarizations of objectives across multiple points to
find the Pareto-optimal set that minimizes Bayesian regret.

• Bayesian Optimization with Linear Scalarizations (LS-BO) is similar to RS-BO but optimizes
a single objective derived from a fixed linear combination of two objectives instead of using
randomized linear scalarizations.

• Expected Hypervolume Improvement (qEHVI) (Daulton et al., 2020) is a Bayesian optimization
acquisition function that explores the Pareto front by quantifying potential hypervolume improve-
ment. This approach measures the volume dominated by Pareto-optimal solutions and guides
the search towards regions likely to offer better trade-offs, aiding in the discovery of diverse
Pareto-optimal solutions.

C EVALUATION DETAILS

C.1 OTHER METRICS

For NAS-Bench-201, in addition, we evaluate the generational distance (GD) and inverse generational
distance (IGD) (see Appendix C). See Figure 20 for the results complementary to the hypervolume
radar plot in Figure 3 of the main paper.

21

Published as a conference paper at ICLR 2025

Generational Distance (GD) and Inverse Generational Distance (IGD). Given a reference set
S ⊂ A and a Pareto set Pα ⊂ A with dim(A) = K, the GD indicator is defined as the distance
between every point α ∈ Pα and the closest point in s ∈ S, averaged over the size of Pα:

GD(Pα,S) =
1

|Pα|

(∑
α∈Pα

min
s∈S

d(α, s)2
)1/2

,

where d(α, s) =
√∑K

k=1(αk − sk)2 is the Euclidean distance from α to its nearest reference point
in S .
The inverted generational distance (IGD) is computed as IGD(Pα,S) = GD(S,Pα).

Generational Distance Plus (GD+) and Inverse Generational Distance Plus (IGD+).
GD+(Pα,S) = IGD+(S,Pα) replaces the euclidean distance d(α, s) in GD with:

d+(α, s) =

√√√√ K∑
k=1

(max{αk − sk, 0})2

C.2 MODNAS-SOTL

On the NAS-Bench-201 search space, since the architectures evaluated with the supernetwork weights
are not highly correlated to the ones trained independently from scratch, we employ the Sum of
Training Losses (SoTL) proxy from Ru et al. (2021). To profile the Pareto front with SoTL, we firstly
evaluate the 24 architectures using the exponential moving average of the sum of training losses for
the initial 12 epochs of training as

∑12
e=1 0.9

12−eLtrain(w, α), and then train from scratch only the
subset of architectures in the Pareto set built using the SoTL evaluations. We present the results of
MODNAS-SoTL in Figure 20, where we compare to the other baselines as well. As we see, we can
further decrease the evaluation cost via MODNAS-SoTL, by trading off the number of solutions in
the Pareto set with HV.

D EXPERIMENTAL DETAILS

D.1 MetaPredictor ARCHITECTURES

For all search spaces we set the dimensionality of the hardware embedding to 10. This corresponds
to latency evaluations on a set of 10 reference architectures, which are the same used by Lee et al.
(2021b).

NAS-Bench-201. For the NAS-Bench-201 (Dong & Yang, 2020) search space we use a Graph
Convolutional Network (GCN) as proposed in Dudziak et al. (2020). Furthermore, in addition to
the one-hot operation encoding and adjacency matrix corresponding to the architecture cells, we
also input the hardware embedding to this predictor, as done by Lee et al. (2021b). The number
of nodes in the GCN is 8 and the dimensionality of the layers is set to 100 following HELP (Lee
et al., 2021b). In order to show the effectiveness of our MetaHypernetwork to learn the hardware
device similarities, in Figure 12 we cluster the original device embedding vectors and the learned
MetaHypernetwork embeddings using K-means clustering after reducing their dimensionality using
t-SNE. As we can see, the MetaHypernetwork learns to cluster similar devices together in latent
space, demonstrating the efficacy of our algorithm.

MobileNetV3 (OFA). Following HELP (Lee et al., 2021b), we employ a simple feedforward neural
network in the MobileNetV3 search space. The input dimension of the MetaPredictor is set to 160,
matching the concatenated architecture encoding dimension. We set the size of the hidden layers to
100. Specifically, the MetaPredictor comprises 2 linear layers with ReLU activation for processing
the 160-dimensional one-hot architecture encoding and 2 linear layers for processing the hardware
embedding. The outputs from these two paths are concatenated and passed through a final linear
layer to predict the latency.

22

Published as a conference paper at ICLR 2025

600 400 200 0 200 400
TSNE Dimension 1

200

100

0

100

200
TS

NE
 D

im
en

sio
n

2

silver_4210r

pixel3

essential_ph_1

gold_6240

fpga

pixel2

1080ti_1

1080ti_32 samsung_s7
titanx_1

titanx_32

gold_6226

silver_4114samsung_a50

titan_rtx_256raspi4

eyeriss

1080ti_256
titanx_256

TSNE Projection for Hardware Embeddings

Cluster 0
Cluster 1
Cluster 2
Cluster 3

(a) Original hardware embeddings

300 250 200 150 100 50 0 50 100
TSNE Dimension 1

400

300

200

100

0

100

200

300

TS
NE

 D
im

en
sio

n
2

1080ti_1

1080ti_32
titanx_1

titanx_32
gold_6226

1080ti_256

samsung_a50

pixel3

titanx_256

titan_rtx_256
pixel2

raspi4
samsung_s7
eyeriss

silver_4114

silver_4210r

essential_ph_1
gold_6240

fpga

TSNE Projection for Device Pool Similarities
Cluster 0
Cluster 1
Cluster 2
Cluster 3

(b) MetaHypernetwork embeddings

Figure 12: K-means clustering on the t-SNE projections of the original hardware device embeddings
and learned embeddings from the MetaHypernetwork on NB201.

Seq-Seq Transformer (HAT). HELP 3 does not release the architecture or the meta-learned
pretrained predictor for HAT(Wang et al., 2020b). However, HAT 4 releases code and pretrained
models for each of the devices and tasks trained independently. Hence, we build our single per-task
MetaPredictor based on the architecture of the HAT predictor, i.e. a simple feedforward neural
network. The input dimension corresponds to the one-hot architecture encoding of the candidate
Transformer architecture. Additionally, to condition on the hardware embedding, we include 2
extra linear layers for processing the hardware embedding, which is then concatenated with the
processed architecture encoding to produce the final latency prediction. The hidden dimension of the
MetaHypernetwork is set to 400, with 6 hidden layers. The predictor’s input feature dimension is
130.

HW-GPT-Bench. We utilize the raw energy observations released in (Sukthanker et al., 2024)
to train a single hardware-aware meta-predictor across energy observations from eight GPU types.
Our meta-predictor is a simple MLP, similar to the one in HAT, with 4 hidden layers, 2 layers for
processing the hardware embedding (which the network is conditioned on). The MLP’s hidden
dimension is 256, and the input feature dimension matches the one-hot encoded architecture feature
map for this space, i.e., 80.

D.2 MetaHypernetwork ARCHITECTURE

Given a preference vector r ∈ RM , we use the hypernetwork hϕ(r) : RM → A, parameterized
by ϕ ∈ Rn, to generate an un-normalized architecture distribution α̃ that is later used to compute
the upper-level updates in (4). In our experiments, hϕ is composed of M − 1 5 embedding layers
em, m ∈ {2, . . . ,M} with nm possible learnable vectors of size dim(A)

M−1 . The output of hϕ is the
concatenation of all M − 1 outputs of em, such that its size matches dim(A). See Figure 13 for
details.
In order to enable the hypernetwork to generate architectures across multiple devices, inspired by
Wang et al. (2022) and Lin et al. (2020), we propose a MetaHypernetwork HΦ(r, dt) : RM ×
HM−1 → A that can meta-learn across T different hardware devices (see Figure 1). The input to
HΦ is a concatenation of device feature vectors across all metrics, i.e. dt = ⊕M

m=2d
m
t . Similar to

Lee et al. (2021b), dmt ∈ H is a fixed-size feature vector representative of device t ∈ {1, . . . , T} and
objective m ∈ {2, . . . ,M}, that is obtained by evaluating a fixed set of reference architectures for a
given metric. The MetaHypernetwork, with Φ = ∪Kk=0ϕk parameters, contains a bank of K > T
hypernetworks {hϕk

(r)}Kk=1 and an additional linear layer eϕ0
(dt) : HM−1 → RK at the beginning,

that learns a similarity map for every device feature to the hypernetworks’ bank. If we denote by

3https://github.com/HayeonLee/HELP
4https://github.com/mit-han-lab/hardware-aware-transformers
5m = 1 (CE loss) does not have an hardware embedding.

23

https://github.com/HayeonLee/HELP
https://github.com/mit-han-lab/hardware-aware-transformers

Published as a conference paper at ICLR 2025

hϕ1:k
= (hϕ1

· · ·hϕk
)T the vector of all hypernetworks in the bank, then, given a preference vector r,

to obtain α̃ for device t, we compute a weighted mixture of predictions of all hϕ in the hypernetwork
bank as follows:

α̃Φ = HΦ(r, dt) =

K∑
k=1

eϕ0(dt)[k] · hϕk
(r)

= eϕ0
(dt) · hϕ1:k

(r).

*

Figure 13: MetaHypernetwork architecture
overview in the case of M objectives. Note that
m = 1 is reserved for the accuracy objective,
which we model through the cross-entropy loss
in the Supernetwork. The initial linear layer eϕ0

gets the dt hardware embedding and outputs a
weight that scales each of the K hypernetworks’
(orange boxes) outputs from the hypernetwork
bank. The scaled architectural parameters are then
summed up element-wise. All individual hyper-
network hϕk

get as input the same scalarization
r. Each of them has M − 1 embedding layers
with dimensions nm× dim(A)

M−1 , ∀m ∈ {2, . . . ,M}
that gets as input the scalarizations for objectives
m = 2, . . . ,m = M , and yields a vector of size
dim(A)
M−1 . The output from the M − 1 embedding

layers are concatenated to give the architecture en-
coding α̃.

We keep the MetaHypernetwork architecture
similar across search spaces. The only thing
we adapt is the output dimensionality of the
hypernetwork (in the hypernetwork bank of
MetaHypernetwork), which corresponds to the
dimensionality of the architecture parameters
of the respective search space. We set the size
of the initial hardware embedding layer and the
hypernetwork bank to 50 for all search spaces.
Furthermore, each hypernetwork has 100 pos-
sible learnable embeddings em, for every ob-
jective m ∈ {2, . . . ,M}, to map the scalar-
ization vector to an architecture. We quantize
the continuous sampled rm ∈ [0, 1] to the dis-
crete [0, 1, . . .100] interval before indexing the
respective embedding layers. See Figure 2 for
an illustration of the MetaHypernetwork archi-
tecture.
For the NAS-Bench-201 search space, we use
a single embedding layer of dimensionality 30,
corresponding to the dimensionality of the ar-
chitecture space: 6× 5 (6 edges and 5 operation
choices on each edge). For the 3-objective ex-
periment, we include an additional embedding
for the energy usage objective, concatenated
with the latency embedding before passing it
to the MetaHypernetwork. The individual hy-
pernetworks in the MetaHypernetwork bank
have 2 embedding layers with dimensionality
15, whose outputs are concatenated to match the
architecture space dimensions.
In the MobileNetV3 space, we use 4 embedding
layers – for depth, expansion ratio, kernel size,
and resolution. The space comprises 5 blocks,
each with 3 depth choices, making the depth em-
bedding layer dimensionality 5× 3. The kernel
and expansion embedding layers have dimen-
sions 5× 4× 3, corresponding to 5 blocks with
a maximum depth of 4 and 3 possible kernel
size or expansion ratio choices. The resolution
embedding layer has a dimension of 25, repre-
senting 25 possible resolution choices.
In the Seq-Seq Transformer (HAT) space, the individual hypernetworks of the MetaHypernetwork
utilize 9 embedding layers (the encoder layer count is fixed; see Table 3):

• 2 embedding layers of size 2 for the encoder and decoder blocks to map the scalarization to the
embedding dimension architecture parameter, held constant throughout the encoder or decoder
block.

• 2 embedding layers with dimensions 6× 3 (6 encoder/decoder layers, 3 choices) for the linear
layer size in every attention block for both encoder and decoder.

24

Published as a conference paper at ICLR 2025

• 2 embedding layers with dimensions 6× 2 for the number of heads in each attention block.
• 1 embedding layer of size 6 to encode the 6 possible choices for the number of layers in the

decoder.
• 1 embedding layer of size 6 × 3 (6 encoder layers, 3 choices) for the arbitrary encoder layer

choice for attention.
• 1 embedding layer of size 6 × 2 (6 encoder layers, 2 choices) for the number of heads in the

encoder-decoder attention.

For the HW-GPT-Bench space, the individual hypernetworks of the MetaHypernetwork contain 5
embedding layers:

• 1 embedding layer of dimension 1× 3 for mapping the scalarization to the embedding dimension
architecture parameter of the language model, with 3 choices.

• 1 embedding layer of dimension 1×3 for mapping the scalarization to the layer number dimension
architecture parameter of the language model, with 3 choices.

• 1 embedding layer of dimension 12× 3 for mapping the scalarization to the mlp_ratio dimension
architecture parameter of the language model, with 12 layers and 3 mlp_ratio choices per layer.

• 1 embedding layer of dimension 12×3 for mapping the scalarization to the num_heads dimension
architecture parameter of the language model, with 12 layers and 3 choices per layer.

• 1 embedding layer of dimension 2 for toggling the bias in linear layers on or off.

D.3 MODNAS HYPERPARAMETER CONFIGURATIONS

In Table 2, we show the search hyperparameters and their corresponding values we use to conduct
our experiments with MODNAS. For the convolutional spaces we subtract a cosine similarity penalty
from the scalarized loss following (Ruchte & Grabocka, 2021):

gtΦ ← rT∇ΦLt(Dvalid,w, αΦ)− λ∇Φ
rTLt(Dvalid,w, αΦ)

||r|| ||Lt(Dvalid,w, αΦ)||
, (6)

where || · || is the l2 norm. We set λ to 0.001. Empirically we did not observe significant differences
on disabling the cosine penalty term.

D.4 NORMALIZATION OF OBJECTIVES

Since our method relies on a scalarization of different objectives, it is important that the objectives
being optimized are on the same scale. For simplicity, lets consider the scenario where the two
objectives of interest are the cross-entropy loss and latency. Since we pretrain and freeze our
MetaPredictor, the latency-scale remains constant throughout the search, while the cross-entropy
loss of the Supernetwork (likely) decreases over time. To this end, we use the following max-min
normalization to normalize the objectives:

Lm
t (·, αΦ) =

Lm
t (·, αΦ)−min(L̄)

max(L̄)−min(L̄)
, (7)

where L̄ =
⋃N

i=1 stop_g
(
Lm
t (·, αi)

i
)

is the set of losses evaluated on N architectures and potentially
N previous steps. For the latency objective, we precompute these sample-statistics using N samples
(ground-truth for NAS-Bench-201 and predicted for OFA and HAT spaces) from the search space,
whilst for the cross-entropy loss we compute them throughout the search. Furthermore, to take into
account the decreasing cross-entropy, we reset the cross-entropy loss statistics after every epoch.

25

Published as a conference paper at ICLR 2025

Table 2: Hyperparameters used on different search spaces

Search Space Hyperparameter Type Value

NAS-Bench-201

MetaHypernetwork

learning rate 3e-4
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 0.025
momentum 0.9
weight decay 0.0027
learning rate scheduler cosine
epochs 100
batch size 256
gradient clipping 5
cutout true
cutout length 16
initial channels 16
optimizer SGD
train portion 0.5

MobileNetV3 (OFA)

MetaHypernetwork

learning rate 1e-5
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 1e-3
momentum 0.9
weight decay 3e-5
learning rate scheduler cosine
epochs 50
batch size 32
bn_momentum 0.1
bn_eps 1e-5
dropout 0.1
width 1.2
optimizer SGD
train portion 1.0

Seq-Seq Transformer (HAT)

MetaHypernetwork

learning rate 3e-4
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 1e-7
momentum 0.9
weight decay 0.0
learning rate scheduler cosine
epochs 110
batch size/max-tokens 4096
criterion smoothed_cross_entropy
attention-dropout 0.1
dropout 0.3
precision float32
optimizer Adam
train portion 1.0

HW-GPT-Bench

MetaHypernetwork

learning rate 1e-5
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 0.000316
momentum -
weight decay 0.1
learning rate scheduler cosine
steps 800k
batch size/max-tokens 32768
criterion cross_entropy
attention-dropout 0.0
dropout 0.0
precision bfloat16
optimizer AdamW
train portion 1.0

26

Published as a conference paper at ICLR 2025

E DETAILS ON SEARCH SPACES

Table 3: Encoder-Decoder Search Space for HAT.

Module Searchable Dim Choices
Encoder No. of Layers [6] (fixed)

Embedding dim [640, 512]
No. of heads [8, 4]
FFN dim [3072, 2048, 1024]

Decoder No. of layers [6, 5, 4, 3, 2, 1]
Embedding dim [640, 512]
No. of heads [8, 4]
FFN dim [3072, 2048, 1024]
Arbitrary-Encoder-Layer [-1, 1, 2]
Enc-Dec attention num heads [8, 4]

NAS-Bench-201 (Dong & Yang, 2020) is a con-
volutional, cell-based search space. The search
space consists of 3 stages, each with number
of channels 16, 32 and 64, respectively. Each
stage contains a convolutional cell repeated 5
times. Here, every cell is represented as a di-
rected acyclic graph (DAG) which has 4 nodes,
densely connected with 6 edges. Each edge has
5 possible operation choices: a skip connection,
a zero operation, a 3×3 convolution, a 5×5 con-
volution or an average pooling operation. NAS-
Bench-201 is a tabular benchmark exhaustively
constructed, where the objective is finding the optimal cell for the given macro skeleton.
MobileNetV3 proposed in OFA (Cai et al., 2020) is a macro convolutional search space. The
different searchable dimensions in the search space are the depth (per block), the kernel size (for
every layer in every block) and the channel expansion ratio (for every layer in every block). There
are a total of 5 blocks, each with 3 possible depth choices and every layer in this block has 3 possible
kernel sizes and channel expansion ratio choices. This amounts to a total search space size of
((3×3)2+(3×3)3+(3×3)4)5 ≈ 2×1019. Additionally, every architecture has 25 possible choices
for the size of the input resolution. The 3 possible choices for depth, kernel size and expansion ratio
are {2, 3, 4}, {3, 5, 7} and {3, 4, 6}, respectively. The input resolution choices are {128, 132, 136,
140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216,
220, 224}. We use a width factor of 1.2 similar to OFA (Cai et al., 2020).
Seq-Seq Encoder-Decoder Transformer (HAT) (Wang et al., 2020a) for the En-De machine
translation task has a searchable number of layers, embedding dimension, feedforward expansion
layer dim per-layer, number of heads per-layer for both the encoder and the decoder sub-modules. In
addition to this, the number of encoder layers the decoder attends to, and the number of attention
heads in the encoder-decoder attention is also searchable. We present the details of the search space
in Table 3.
HW-GPT-Bench (Sukthanker et al., 2024) is a decoder-only transformer space designed for autore-
gressive language modeling. The search space includes choices for embedding dimensions {768, 384,
192}, the number of layers from {10, 11, 12}, the MLP expansion ratio per layer from {2,3,4}, the
number of heads per layer from {12,8,4}, and the option to toggle the bias parameter on or off in the
layers.

Table 4: Search-test split for hardware devices and datasets for different search spaces.

Search Space Train-devices Test devices Dataset

NAS-Bench-201
1080ti_1, 1080ti_32, 1080ti_256, silver_4114, titan_rtx_256, gold_6226,

CIFAR10silver_4210r, samsung_a50, pixel3, essential_ph_1, fpga, pixel2,
samsung_s7, titanx_1, titanx_32, titanx_256, gold_6240 raspi4, eyeriss

MobileNetV3 (OFA)
2080ti_1, 2080ti_32, 2080ti_64, titan_xp_1, titan_rtx_64

ImageNet-1ktitan_xp_32, titan_xp_64, v100_1, v100_32,
v100_64, titan_rtx_1, titan_rtx_32

Seq-Seq Transformer (HAT) titanxp gpu, cpu xeon cpu raspberrypi WMT14.en-de

HW-GPT-Bench a40, v100, rtx2080, rtx3080 a100, h100, P100, a6000 OpenWebText

F DATASETS AND DEVICES

This section describes the hardware devices and tasks used to evaluate MODNAS and the MOO
baselines throughout the paper. We assess our methods across small- and large-scale image clas-
sification datasets, including CIFAR-10 and ImageNet-1K. For the machine translation task, we
evaluate our method on the WMT’14 En-De dataset (Macháček & Bojar, 2014), and we use the
OpenWebText (Gokaslan & Cohen, 2019) dataset for language modeling. Furthermore, we evaluate
MODNAS across 19 devices on NAS-Bench-201, 12 devices on MobileNetV3, three devices on Seq-
Seq Transformer, and eight devices from HW-GPT-Bench (Sukthanker et al., 2024), with zero-shot

27

Published as a conference paper at ICLR 2025

generalization to test devices. Table 4 lists the devices used. For more details on the devices, we refer
readers to Lee et al. (2021b), Cai et al. (2020), Wang et al. (2020b), Li et al. (2021), and Sukthanker
et al. (2024).

G RUNTIME COMPARISON

In Table 5 we provide the number of GPU hours we ran MODNAS and baselines on every search space.
We ran the search on NAS-Bench-201, OFA, together with the evaluations on Nvidia RTX2080Ti,
while for HAT we used NVidia A6000. For both OFA and HAT, we used 8 GPUs in parallel. Similar
as in Sukthanker et al. (2024), on the HW-GPT-Bench space we ran the MODNAS search and
evaluations on 4 Nvidia A100 GPUs.

Table 5: Total amount of GPU hours required to run MODNAS’ and baselines’ search on every
search space.

Search Spaces Method Lat/En/Mem Pred. Supernet Acc./Ppl Pred. Search Total Time

NASBench201
MetaD2A+HELP 25 - 8629 0.3 8654.3

MOO Baselines - - - 370.5 370.5

MODNAS 3 22 - 0.05 25.25

Once-For-All
OFA+HELP 6 1200 356 10 1572

MOO Baselines 6 1200 356 192 1754

MODNAS 6 1392 - 0.05 1398.25

HAT

HAT 15 346.7 - 210.9 572.6

MOO Baselines 15 346.7 - 576 937.7

MODNAS 5 576 - 0.05 581.25

HW-GPT-Bench MOO Baselines 1 192 - 48 241

MODNAS 1 216 - 0.05 217.25

H ADDITIONAL EXPERIMENTS

H.1 ADDITIONAL RESULTS ON NAS-BENCH-201

In Figure 19, we present the Pareto fronts obtained by our method in comparison to different baselines
on the NAS-Bench-201 search space. In Figure 20, we present different additional metrics, such as
GD and IGD (see Section C), to evaluate the quality of the Pareto fronts obtained on NAS-Bench-201.
Figure 21 presents the Pareto front MODNAS yields when applying different latency constraints
during the search phase. Figure 15a compares our method using the ReinMax gradient estimator to
the GDAS estimator (Dong & Yang, 2019). As we can see, ReinMax obtains a qualitatively better
hypervolume coverage compared to GDAS. Figure 16 presents the 3D Pareto front and hypervolume
obtained by MODNAS compared to other baselines when optimizing for accuracy, latency and
energy usage on NAS-Bench-201. Figure 24 presents the comparison of MODNAS with MGD to
other gradient aggregation schemes, such as mean, sequential and MC sampling (see Section 4.1),
across multiple hardware devices. Finally, in Figure 25 we present the robustness of MODNAS to
the fraction of devices used for the predictor training and the search phase. In addition, in Figure 18
and 17, we compare MODNAS against different MO baselines on the CIFAR-100 dataset on two
different devices.

H.1.1 PREDICTED V/S GROUND-TRUTH LATENCIES

In Figure 14, we present the scatter plots of the predictions of our hardware-aware MetaPredictor
vs. the ground-truth latencies of different architectures. In the figure title we also report the kendall-
tau correlation coefficient for every device. As observed, our predictor achieves high kendall-τ
correlation coefficient across all devices.

28

Published as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8
True Latency

1

2

3

4

5

6

7

8
P
re

d
ic

te
d
 L

a
te

n
cy

Device: fpga, Kendall Tau: 0.983

2 4 6 8 10
True Latency

10

15

20

25

30

35

40

45

P
re

d
ic

te
d
 L

a
te

n
cy

Device: eyeriss, Kendall Tau: 0.749

4 6 8 10 12 14 16 18
True Latency

4

6

8

10

12

14

16

18

P
re

d
ic

te
d
 L

a
te

n
cy

Device: gold_6226, Kendall Tau: 0.924

5 10 15 20 25 30 35 40
True Latency

5

10

15

20

25

30

P
re

d
ic

te
d
 L

a
te

n
cy

Device: pixel2, Kendall Tau: 0.678

0 20 40 60 80
True Latency

0

20

40

60

80

P
re

d
ic

te
d
 L

a
te

n
cy

Device: raspi4, Kendall Tau: 0.899

10 15 20 25 30 35
True Latency

10

15

20

25

30

35

P
re

d
ic

te
d
 L

a
te

n
cy

Device: titan_rtx_256, Kendall Tau: 0.981

4 6 8 10 12 14 16
True Latency

3

4

5

6

7

8

9

10

11

P
re

d
ic

te
d
 L

a
te

n
cy

Device: 1080ti_1, Kendall Tau: 0.894

4 6 8 10 12 14 16 18
True Latency

4

6

8

10

12

14

16

P
re

d
ic

te
d
 L

a
te

n
cy

Device: 1080ti_32, Kendall Tau: 0.900

10 15 20 25 30 35
True Latency

10

15

20

25

30

35

P
re

d
ic

te
d
 L

a
te

n
cy

Device: 1080ti_256, Kendall Tau: 0.975

5 10 15 20 25 30
True Latency

5

10

15

20

25

30

P
re

d
ic

te
d
 L

a
te

n
cy

Device: essential_ph_1, Kendall Tau: 0.822

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
True Latency

4

6

8

10

12

14

16

18

P
re

d
ic

te
d
 L

a
te

n
cy

Device: gold_6240, Kendall Tau: 0.842

0 5 10 15 20 25 30
True Latency

0

5

10

15

20

25

30

P
re

d
ic

te
d
 L

a
te

n
cy

Device: pixel3, Kendall Tau: 0.890

10 20 30 40 50 60 70
True Latency

10

20

30

40

50

P
re

d
ic

te
d
 L

a
te

n
cy

Device: samsung_s7, Kendall Tau: 0.830

10 20 30 40 50
True Latency

10

20

30

40

P
re

d
ic

te
d
 L

a
te

n
cy

Device: samsung_a50, Kendall Tau: 0.939

5 10 15 20 25 30 35 40
True Latency

5

10

15

20

25

30

35

40

P
re

d
ic

te
d
 L

a
te

n
cy

Device: silver_4114, Kendall Tau: 0.846

5 10 15 20 25 30
True Latency

5

10

15

20

25

30

P
re

d
ic

te
d
 L

a
te

n
cy

Device: silver_4210r, Kendall Tau: 0.960

4 6 8 10 12 14 16
True Latency

4

6

8

10

12

14

P
re

d
ic

te
d
 L

a
te

n
cy

Device: titanx_1, Kendall Tau: 0.890

4 6 8 10 12 14
True Latency

4

6

8

10

12

14

P
re

d
ic

te
d
 L

a
te

n
cy

Device: titanx_32, Kendall Tau: 0.893

10 15 20 25 30 35
True Latency

10

15

20

25

30

35

P
re

d
ic

te
d
 L

a
te

n
cy

Device: titanx_256, Kendall Tau: 0.958

Figure 14: Scatter plots of predicted latencies from our pretrained MetaPredictor vs. ground-truth
latencies (test devices in red).

29

Published as a conference paper at ICLR 2025

0.85
0.93

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS (Reinmax) MODNAS (GDAS) MODNAS (MiLeNAS)

(a) Hypervolume

0.2
0.1

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS (Reinmax) MODNAS (GDAS) MODNAS (MiLeNAS)

(b) GD+

0.07
0.03

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS (Reinmax) MODNAS (GDAS) MODNAS (MiLeNAS)

(c) IGD+

Figure 15: Hypervolume, GD+ and IGD+ of MODNAS with Reinmax as gradient estimator in the
Architect vs. the one from GDAS (Dong & Yang, 2019) and MiLeNAS (He et al., 2020) across 19
devices on NAS-Bench-201. Higher area in the radar indicates better performance for every metric.
Test devices are colored in red around the radar plot.

Glob
al

op
t.

MODNAS

MO-A
SHA

RS-B
O

LS
-B

O

NSGA-II

RHPN RS

qE
HVI

MO-R
E

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H
yp

er
vo

lu
m

e

0.97

0.94
0.91 0.91 0.9

0.88

0.67
0.65 0.64 0.64

Eyeriss

error0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

eyeriss_latency

0.0

0.1

0.2

0.3

0.4
0.5

0.6
0.7

eyeriss_energy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Global opt.
RS
RHPN
MODNAS
LS-BO
MO-RE
MO-ASHA
NSGA-II
RS-BO
qEHVI

Figure 16: HV (left) and Pareto front (right) of MODNAS and baselines on Eyeriss with 3 normalized
objectives: error, latency and energy usage. HV was computed using the (1, 1, 1) reference point on
the right 3D plot.

MODNAS
LS-

BO
RS-B

O LS

MO-ASH
A

NSG
A-I

I
qE

HVI

MO-RE RS
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

0.9

0.87 0.85
0.84

0.81
0.78 0.76

0.73 0.73

edgegpu_latency

Figure 17: Hypervolume on CIFAR-
100 and edgegpu device.

LS-
BO

MODNAS

MO-ASH
A

RS-B
O

NSG
A-I

I LS
qE

HVI RS
MO-RE

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

0.91 0.91 0.9 0.89 0.89 0.88 0.87 0.86 0.86

pixel3_latency

Figure 18: Hypervolume on CIFAR-
100 and Pixel3 device.

30

Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

pixel2

0.0 0.1 0.2 0.3 0.4
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

raspi4

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

eyeriss

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

fpga
Global opt.
RHPN
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
RS
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

gold_6226

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

titan_rtx_256

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_1

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_32

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_256

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d
la

te
nc

y

essential_ph_1

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

gold_6240

0.0 0.1 0.2 0.3 0.4
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

pixel3

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
la

te
nc

y

samsung_s7

0.0 0.2 0.4 0.6 0.8
Normalized error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

No
rm

al
ize

d
la

te
nc

y

samsung_a50

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

silver_4114

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

silver_4210r

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_1

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_32

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
la

te
nc

y

titanx_256

Figure 19: Pareto fronts of MODNAS and baselines on NAS-Bench-201. MODNAS-SoTL is not
shown for better visibility.

31

Published as a conference paper at ICLR 2025

0.72
0.86

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE
qEHVI

NSGA-II
MODNAS-SoTL
Global opt.

(a) HV

0.13
0.06

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE

qEHVI
NSGA-II
MODNAS-SoTL

(b) GD

0.15
0.08

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE

qEHVI
NSGA-II
MODNAS-SoTL

(c) IGD

0.13
0.06

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE

qEHVI
NSGA-II
MODNAS-SoTL

(d) GD+

0.15
0.08

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE

qEHVI
NSGA-II
MODNAS-SoTL

(e) IGD+

Figure 20: HV, GD, GD+, IGD and IGD+ of MODNAS and baselines across 19 devices on NAS-
Bench-201. For every device we optimize for 2 objectives, namely latency (ms) and test accuracy
on CIFAR-10. For method, metric and device we report the mean of 3 independent search runs.
Higher area in the radar indicates better performance for every metric. Test devices are colored in red
around the radar plot. Here we allocate double the budget to baselines, i.e. we run all baselines for 50
function evaluations.

32

Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

eyeriss
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

gold_6226
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d
la

te
nc

y

pixel2
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

raspi4
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

fpga
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

titan_rtx_256
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_1
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.1 0.2 0.3 0.4 0.5
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

1080ti_32
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_256
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
la

te
nc

y

essential_ph_1
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.1 0.2 0.3 0.4 0.5
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

gold_6240
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

pixel3
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.1 0.2 0.3 0.4 0.5
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

samsung_s7
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d
la

te
nc

y

samsung_a50
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.1 0.2 0.3 0.4 0.5
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

silver_4114
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

silver_4210r
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_1
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_32
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_256
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

Figure 21: Pareto fronts of MODNAS ran with different latency constraints during search.

33

Published as a conference paper at ICLR 2025

0.09
0.04

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
MODNAS (0.2)
MODNAS (0.4)

MODNAS (0.6)
MODNAS (0.8)

MODNAS (1.0)
MetaD2A+HELP

(a) GD

0.11
0.06

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
MODNAS (0.2)
MODNAS (0.4)

MODNAS (0.6)
MODNAS (0.8)

MODNAS (1.0)
MetaD2A+HELP

(b) IGD

0.09
0.04

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
MODNAS (0.2)
MODNAS (0.4)

MODNAS (0.6)
MODNAS (0.8)

MODNAS (1.0)
MetaD2A+HELP

(c) GD+

0.11
0.06

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
MODNAS (0.2)
MODNAS (0.4)

MODNAS (0.6)
MODNAS (0.8)

MODNAS (1.0)
MetaD2A+HELP

(d) IGD+

Figure 22: GD, GD+, IGD and IGD+ of MODNAS with different latency constraints during search
across 19 devices on NAS-Bench-201. Higher area in the radar indicates better performance for every
metric. Test devices are colored in red around the radar plot.

34

Published as a conference paper at ICLR 2025

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

fpga

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Hy

pe
rv

ol
um

e
eyeriss

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

gold_6226

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

pixel2

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Hy
pe

rv
ol

um
e

raspi4

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

titan_rtx_256

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

1080ti_1

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

1080ti_32

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.5

0.6

0.7

0.8

0.9

Hy
pe

rv
ol

um
e

1080ti_256

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

essential_ph_1

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

gold_6240

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Hy
pe

rv
ol

um
e

pixel3

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

samsung_s7

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Hy
pe

rv
ol

um
e

samsung_a50

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

silver_4114

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

silver_4210r

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

titanx_1

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

titanx_32

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.5

0.6

0.7

0.8

0.9

Hy
pe

rv
ol

um
e

titanx_256

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

Figure 23: HV over number of evaluated architectures on NAS-Bench-201 of MODNAS and the
blackbox MOO baselines. Note that for MODNAS we only have 24 evaluations in the end.

35

Published as a conference paper at ICLR 2025

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

fpga

MGD
MC Sampling
Sequential
Mean

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

eyeriss

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

gold_6226

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

pixel2

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

raspi4

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titan_rtx_256

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

1080ti_1

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

1080ti_32

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

1080ti_256

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

essential_ph_1

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

gold_6240

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

pixel3

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

samsung_s7

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

samsung_a50

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

silver_4114

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

silver_4210r

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_1

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_32

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_256

Figure 24: HV over time on NAS-Bench-201 of MODNAS with different gradient update schemes.

36

Published as a conference paper at ICLR 2025

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Hy
pe

rv
ol

um
e

fpga

Search Devices
2
4
8
13

0 20 40 60 80 100
Search Epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975
Hy

pe
rv

ol
um

e

eyeriss

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

gold_6226

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Hy
pe

rv
ol

um
e

pixel2

0 20 40 60 80 100
Search Epochs

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Hy
pe

rv
ol

um
e

raspi4

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

titan_rtx_256

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Hy
pe

rv
ol

um
e

1080ti_1

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

1080ti_32

0 20 40 60 80 100
Search Epochs

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

1080ti_256

0 20 40 60 80 100
Search Epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Hy
pe

rv
ol

um
e

essential_ph_1

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

gold_6240

0 20 40 60 80 100
Search Epochs

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Hy
pe

rv
ol

um
e

pixel3

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Hy
pe

rv
ol

um
e

samsung_s7

0 20 40 60 80 100
Search Epochs

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Hy
pe

rv
ol

um
e

samsung_a50

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

silver_4114

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

silver_4210r

0 20 40 60 80 100
Search Epochs

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_1

0 20 40 60 80 100
Search Epochs

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_32

0 20 40 60 80 100
Search Epochs

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_256

Figure 25: HV over time on NAS-Bench-201 of MODNAS with different number of devices during
search. For number of devices less than 13 (default one) we randomly select a subset from these 13
devices.

37

Published as a conference paper at ICLR 2025

H.1.2 ALIGNMENT OF PREFERENCE VECTORS WITH PARETO FRONT

Figure 26: Pareto front and preference vectors on the nor-
malized Eyeriss latency and test error of NAS-Bench-201.

In this section, we provide empirical ev-
idence that the solutions generated us-
ing the MetaHypernetwork align well
with the preference vectors. To this end,
we utilize one of our runs on the NAS-
Bench-201 test devices, namely Eyeriss.
In Figure 26, we show the Pareto front
of the normalized test error and latency
on Eyeriss. Note that of the 24 sam-
pled preference vectors, 17 generate so-
lutions that are in the Pareto set. Each
point in the Pareto front with a certain
color corresponds to the preference vec-
tor with the same color. In the figure,
there are actually 17 points in the Pareto
front; however, some of them are really
close to each other or are the same, since
the function mapping preference vectors
to architectures is a many-to-one function. Nevertheless, we can visually notice that the preference
vectors starting from the origin align very well with the generated solutions. The missing vectors are
mainly in the center, where there are not many solutions available for this particular device.

H.1.3 TRAINING AND VALIDATION LOSS CURVES

In addition to the hypervolume indicator, in this section, we provide the training and validation loss
curves in Figure 27 (left). At each mini-batch iteration we plot the average cross entropy loss across
all devices. As expected both training and validation cross-entropy go down and we do not notice any
overfitting. The high noise is common for sample-based NAS optimizers, since a sampled different
architecture is activate at each mini-batch iteration. In the plot, for visualization purposes, we have
used a running average with a window size of 100 to smooth out the noise.

102 103

Steps

1.90

1.95

2.00

2.05

2.10

2.15

Lo
ss

 (R
un

ni
ng

 A
vg

)

Training Loss
Validation Loss

0.81
0.91

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
LS

MO-ASHA
RS-BO
LS-BO

MO-RE
qEHVI

NSGA-II
Global opt.

Figure 27: (left) Average training and validation cross-entropy loss across devices during the MOD-
NAS search on NAS-Bench-201. (right) HV of MODNAS and baselines across 19 devices on
NAS-Bench-201. For every device we optimize for 2 objectives, namely latency (ms) and test
accuracy on CIFAR-10. For method, metric and device we report the mean of 3 independent search
runs. Higher area in the radar indicates better performance for every metric. Test devices are colored
in red around the radar plot. Here we allocate 4 times the budget to baselines, i.e. we run all baselines
for 100 function evaluations.

38

Published as a conference paper at ICLR 2025

H.1.4 MULTI-OBJECTIVE OPTIMIZATION BASELINES WITH MORE BUDGET

Black-box multi-objective optimizers can potentially reach the global Pareto front if the compute
resources are not a concern and given enough time. However, it is not practical to train or even
evaluate these architectures, especially for larger model sizes (e.g. Transformer spaces from HW-
GPT-Bench). Sometimes in practice, the user wants to get a quick estimation of the Pareto front
instead the global optimum, and this is the use-case where MODNAS shines. Given enough budget,
even a random search (RS) will find a near-optimal solution. For example, in NAS-Bench-201, the
size of the search space is K = 15625 architectures. The optimal theoretical number of RS steps
n to achieve a success probability α is approximately: n ≥ Kln(1/1 − α), therefore, for random
search to have a success probability higher than 0.5 it requires n ≥ 10781 iterations in theory. For
the other guided search methods, this number is even smaller, though similar to MODNAS, they have
the same limitation that they can converge to a local minimum. We conducted the same experiment
as the one in Figure 3, but this time with baselines given 4 times more budget than MODNAS. We
show the result in Figure 27 (right). As we can see, some of the methods such as LS-BO can reach
results closer to the global Pareto front compared to MODNAS.

H.2 ADDITIONAL RESULTS ON HARDWARE-AWARE TRANSFORMERS (EN-DE)

We show the Pareto fronts of MODNAS compared to baselines for the Transformer space in Figure 28,
as well as their comparison with respect to hypervolume for the SacreBLEU metric in Figure 30.
These results demonstrate the superior performance of our method compared to the other baselines
on this benchmark. All evaluations are done by inheriting the weights of a pretrained supernet.

3000 4000 5000 6000 7000 8000 9000
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
BL

EU

RaspberryPi-CPU
RS
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RHPN
MODNAS
HAT

50 100 150 200 250
Latency (ms)

0.037

0.038

0.039

0.040

0.041

0.042

0.043

1/
BL

EU

GPU-TitanXP
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RS
RHPN
MODNAS
HAT

100 150 200 250 300 350 400
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
BL

EU

CPU-Xeon
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RS
RHPN
MODNAS
HAT

3000 4000 5000 6000 7000 8000 9000
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
Sa

cr
eB

LE
U

RaspberryPi-CPU
RS
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RHPN
MODNAS
HAT

50 100 150 200 250
Latency (ms)

0.038

0.039

0.040

0.041

0.042

0.043

1/
Sa

cr
eB

LE
U

GPU-TitanXP
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RS
RHPN
MODNAS
HAT

100 150 200 250 300 350 400
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
Sa

cr
eB

LE
U

CPU-Xeon
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RS
RHPN
MODNAS
HAT

Figure 28: Pareto fronts of MODNAS and baselines on the HAT space for the WMT’ En-De task.
All performance metrics are obtained from the inherited supernet weights.

H.3 ADDITIONAL RESULTS ON THE HW-GPT SPACE

In figure 31, we present the Pareto fronts on all the 8 GPU types for MODNAS and different baselines.
The Pareto fronts are obtained using the perplexity and energy predictors trained on data collected in
the HW-GPT-Bench (Sukthanker et al., 2024).

39

Published as a conference paper at ICLR 2025

MODNAS
qE

HVI

NSG
A-I

I

MO-ASH
A LS

MO-RE RS
RHPN

LS-
BO

RS-B
O

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Hy
pe

rv
ol

um
e

0.72

0.69 0.69 0.69

0.68

0.67

0.65

0.64 0.64

0.61

RaspberryPi-CPU

MODNAS RS
RHPN

LS-
BO

NSG
A-I

I

MO-RE
HAT

MO-ASH
A

qE
HVI LS

RS-B
O

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Hy
pe

rv
ol

um
e

0.82

0.81 0.81
0.8

0.8 0.8 0.79 0.79 0.79

0.77

0.74

TitanXP-GPU

NSG
A-I

I

MODNAS

MO-ASH
A
MO-RE

qE
HVI RS

RHPN
RS-B

O LS
LS-

BO HAT
0.70

0.72

0.74

0.76

0.78

0.80

0.82

Hy
pe

rv
ol

um
e

0.81
0.8

0.79
0.79

0.78 0.78 0.78
0.78 0.77

0.73 0.73

Xeon-CPU

Figure 29: Hypervolume (HV) of MODNAS and baselines across devices on the HAT space. The
objectives used to compute the HV are latency and BLEU score. Leftmost plot is for the test device.

MODNAS
qE

HVI

NSG
A-I

I

MO-ASH
A LS

MO-RE RS
LS-

BO
RHPN

RS-B
O

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Hy
pe

rv
ol

um
e

0.71

0.68 0.68 0.68

0.66
0.66

0.64

0.63 0.63

0.61

RaspberryPi-CPU

MODNAS LS
qE

HVI RS
RHPN

LS-
BO

NSG
A-I

I

MO-RE
HAT

RS-B
O

MO-ASH
A

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Hy
pe

rv
ol

um
e

0.81 0.8
0.8 0.79 0.79 0.79

0.78 0.78
0.78

0.74 0.74

TitanXP-GPU

NSG
A-I

I

MODNAS

MO-ASH
A
MO-RE

qE
HVI RS

RHPN
RS-B

O LS
LS-

BO HAT
0.70

0.72

0.74

0.76

0.78

0.80

0.82

Hy
pe

rv
ol

um
e

0.79
0.79

0.78
0.77 0.77

0.77 0.77 0.76
0.76

0.73

0.72

Xeon-CPU

Figure 30: Hypervolume (HV) of MODNAS and baselines across devices on the HAT space. The
objectives used to compute the HV are latency and SacreBLEU score. Leftmost plot is for the test
device. MODNAS is the best or on par to the baselines across all three devices.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

A40
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.5 1.0 1.5 2.0
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

RTX3080
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.3 0.4 0.5 0.6 0.7 0.8
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

V100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

1 2 3 4
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

RTX2080
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.6 0.8 1.0 1.2
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

A6000
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.3 0.4 0.5 0.6
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

H100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.2 0.3 0.4 0.5
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

A100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0 5 10 15 20
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

P100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

Figure 31: Pareto fronts of MODNAS and baselines optimizing for GPU energy consumption (Wh)
and perplexity on the HW-GPT-Bench space.

40

Published as a conference paper at ICLR 2025

H.3.1 EXPERIMENTS ON PERPLEXITY AND MEMORY USAGE OBJECTIVES

Figure 32: MODNAS vs. baselines on
optimizing memory usage and perplexity
on GPT-L (774M) of HW-GPT-Bench.

In this section, we showcase the application of MODNAS
for optimizing memory usage (using Bfloat16 precision
and context size of 1024) and perplexity on OpenWeb-
text within the HW-GPT-Bench (Sukthanker et al., 2024)
GPT-L search space, featuring Transformer models up
to 774M parameters. Since memory usage does not de-
pend on the device type, our approach does not utilize the
MGD updates in Algorithm 1 for computing the common
gradient descent direction, instead leveraging only pref-
erence vectors to calculate the scalarized objective. This
highlights once again the flexibility of MODNAS across
diverse settings, even the ones it was not designed for.
Despite this adjustment, MODNAS remains competitive,
delivering a Pareto front comparable to leading black-box
MOO baselines. We show the results in Figure 32.

H.4 ADDITIONAL RESULTS ON MOBILENETV3

In Figure 33, we present the Pareto fronts of our method compared to different baselines for
12 different hardware devices on the MobileNetV3 space. We show as well the Pareto front of
OFA+HELP (Lee et al., 2021b), ran with the original setting.

Table 6: HV of MODNAS and baselines on the OFA search space. For every device we optimize for
2 objectives: latency (ms) and validation accuracy on ImageNet-1k.

Device Name RS RHPN HELP EHVI LS LS-BO MO-ASHA RS-BO MO-REA NSGA-II Zico-NSGA-II MODNAS
v100_64 0.677 0.683 0.638 0.748 0.697 0.749 0.740 0.747 0.750 0.744 0.689 0.757
titan_rtx_64 0.722 0.698 0.663 0.751 0.734 0.755 0.736 0.753 0.752 0.744 0.690 0.763

8 10 12 14 16
Latency

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

2080ti_1

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

8 10 12 14
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

v100_1

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 15 20
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

v100_32

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 20 30 40
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

v100_64

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 15 20 25
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

2080ti_32

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 20 30 40 50
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

2080ti_64

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

8 10 12 14 16
Latency

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Ac
cu

ra
cy

titan_xp_1

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 20 30 40 50
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_xp_32

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

20 40 60 80 100
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_xp_64

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

4 5 6 7 8
Latency

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_rtx_1

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

5 10 15 20 25
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_rtx_32

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

5 10 15 20 25 30
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_rtx_64

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

Figure 33: Pareto fronts of MODNAS and baselines on the MobileNetV3 space.

41

Published as a conference paper at ICLR 2025

LS-
BO

MODNAS
RS-B

O
MO-RE

qE
HVI LS

MO-ASH
A

HELP RHPN

NSG
A-I

I RS
0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.74 0.74 0.73
0.72

0.7

0.67 0.66

0.59
0.58

0.57

0.52

titan_rtx_1

LS

MODNAS
LS-

BO
qE

HVI
RS-B

O
NSG

A-I
I

MO-ASH
A
MO-RE

RHPN RS
HELP

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76 0.76 0.75 0.75 0.75 0.75 0.74 0.74

0.69 0.69

0.63

titan_rtx_32

MODNAS
LS-

BO
RS-B

O
MO-RE

qE
HVI

NSG
A-I

I

MO-ASH
A LS RS

RHPN HELP
0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Hy
pe

rv
ol

um
e

0.76
0.76 0.75 0.75 0.75

0.74
0.74 0.73

0.72

0.7

0.66

titan_rtx_64

NSG
A-I

I
qE

HVI

MODNAS
LS-

BO
RHPN HELP

MO-RE

MO-ASH
A

RS-B
O RS LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.78

0.76
0.75

0.74

0.7

0.68 0.68
0.67 0.66 0.66

0.59

2080ti_1

MODNAS LS

MO-ASH
A

qE
HVI RS

MO-RE

NSG
A-I

I
RHPN

RS-B
O

LS-
BO HELP

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Hy

pe
rv

ol
um

e
0.77

0.75 0.75 0.75 0.74 0.74 0.74 0.73
0.71

0.67

0.64

2080ti_32

MODNAS
MO-RE

qE
HVI

LS-
BO

MO-ASH
A

NSG
A-I

I
RS-B

O RS LS
RHPN HELP

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76 0.76 0.75 0.75 0.75 0.74

0.71

0.69
0.68

0.66

0.64

2080ti_64

MODNAS
RS-B

O

MO-ASH
A

qE
HVI

LS-
BO RS

HELP
MO-RE

NSG
A-I

I
RHPN LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76
0.75 0.75 0.74

0.71 0.71
0.7 0.69

0.63
0.62

0.53

titan_xp_1

MODNAS
LS-

BO
qE

HVI

MO-ASH
A

NSG
A-I

I

MO-RE RS
RS-B

O
RHPN HELP LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.75 0.75 0.75
0.74 0.74 0.74

0.72
0.71

0.69

0.66 0.66

titan_xp_32

RS-B
O

MODNAS
qE

HVI

MO-RE

MO-ASH
A

NSG
A-I

I
LS-

BO RS
RHPN HELP LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76 0.75 0.75 0.75 0.75 0.74
0.73

0.71

0.69

0.62

0.56

titan_xp_64

LS-
BO

MODNAS
RS-B

O

MO-ASH
A

HELP

NSG
A-I

I
RHPN

qE
HVI

MO-RE RS LS
0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.78 0.77
0.76

0.75

0.7

0.61
0.59

0.58 0.58

0.54
0.53

v100_1

MODNAS

NSG
A-I

I
LS-

BO

MO-ASH
A
MO-RE

RS-B
O

qE
HVI

RHPN RS
HELP LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.77 0.76 0.76 0.76
0.75

0.72
0.7

0.69
0.68

0.68

0.57

v100_32

MODNAS
MO-RE

LS-
BO

qE
HVI

RS-B
O
NSG

A-I
I

MO-ASH
A LS

RHPN RS
HELP

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76 0.75 0.75 0.75 0.75 0.74 0.74

0.7
0.68 0.68

0.64

v100_64

Figure 34: Hypervolume across devices on the MobileNetV3 search space of MODNAS and baselines.
Here the Nvidia Titan RTX is the test device.

42

Published as a conference paper at ICLR 2025

I FURTHER DISCUSSION ON THE ROBUSTNESS OF MODNAS

Initially observed by (Zela et al., 2020), differentiable NAS methods can be very sensitive to their
hyperparameter choices, especially the regularization ones responsible for the loss landscape in the
upper level problem. In our experiments, there were three crucial components that made MODNAS
robust and to work reliably across benchmarks:

1. Choice of MetaHypernetwork update scheme: this played a pivotal role in the performance
of MODNAS. Although other gradient update strategies underperformed or started diverging
(Figure 6), MGD converged relatively quickly to a hypervolume close to that of the global Pareto
front. The convergence of MGD to a pareto stationary point is discussed in Désidéri (2012) and
more recently in Zhang et al. (2025). The convergence of MGD in bilevel optimization is an open
research topic (see recent results from Ye et al. (2024) and Yang et al. (2024)). One potential
scenario when MGD could fail is when the gradient directions of the objectives it is optimizing
point in different opposing directions; however, this becomes practically unlikely, especially as
the number of objectives grows (in our case we use it to find the common gradient across devices,
which is for instance 13 on NAS-Bench-201).

2. Choice of gradient estimation method in the Architect: In Section 3, we discuss our choice
for the method that enables gradient estimation through discrete variables (since architectures are
discrete variables). We noticed that the ReinMax (Liu et al., 2023) estimator always outperformed
previous estimators such as the one in GDAS (Dong & Yang, 2019) (Figure 15a), so we believe
this choice is crucial.

3. Weight entanglement vs. weight sharing in the Supernetwork: In early experiments on NB201
we noticed that weight sharing in the Supernetwork, was not only more expensive, but much
more unstable as well when compared to weight entanglement (Cai et al., 2020; Sukthanker et al.,
2023), even yielding diverging solutions quite often (common pattern seen in differentiable NAS
with shared weights as you mention; see Zela et al. (2020) for instance).

We hypothesize that all design choices mentioned above play an implicit regularization effect on the
upper level optimization in the bi-level problem, leading to a faster convergence and robustness (Chen
& Hsieh, 2020; Smith et al., 2021; Zela et al., 2020).

J EXTENDED RELATED WORK

Multi-objective optimization. Multi-objective optimization (MOO) (Gunantara, 2018) is a crucial
field in optimization theory, tackling decision-making scenarios with multiple conflicting objectives.
MOO techniques can be categorized into gradient-based and gradient-free approaches. Gradient-free
MOO approaches, such as evolutionary algorithms and dominance-based methods like NSGA-II
(Deb et al., 2000), often suffer from sample inefficiency and are typically unsuitable for deep
learning applications. On the other hand, gradient-based MOO methods leverage gradients. The
foundational work by Désidéri (2012) has been significantly extended in multi-task learning contexts,
demonstrating considerable potential (Lin et al., 2019; Liu & Vicente, 2021; Mahapatra & Rajan,
2020; Sener & Koltun, 2018). However, these methods are primarily applied to fixed architectures,
and adapting them to architecture search spaces is complex. This adaptation would require retraining
each architecture with multiple objectives, which is impractically expensive for large search spaces.
Another major challenge in MOO is balancing the different objectives. To address this, preference
vectors have been proposed to guide the prioritization of objectives on the Pareto Front (Momma
et al., 2022; Ye & Liu, 2022). An emerging approach to mitigate the retraining issue involves
hypernetworks, which determine the weights of the main network in MOO scenarios (Lin et al.,
2020), often incorporating preference vector (Hoang et al., 2023; Navon et al., 2021; Phan et al.,
2022).
Neural Architecture Search. A major challenge in the automated design of neural network architec-
tures is the efficient exploration of vast search spaces. Early NAS methods relied on Reinforcement
Learning (Zoph & Le, 2017), evolutionary algorithms (Deb et al., 2002; Elsken et al., 2019b; Lu
et al., 2020), and other black-box optimization techniques (Daulton et al., 2022) to train and evalu-
ate numerous architectures from scratch. The advent of one-shot NAS introduced weight sharing
among architectures by training an over-parameterized network, known as a supernet, to expedite
the evaluation of individual networks within the search space (Bender et al., 2018; Liu et al., 2019b;

43

Published as a conference paper at ICLR 2025

Pham et al., 2018; Saxena & Verbeek, 2016). Differentiable one-shot NAS methods (Cai et al., 2018;
Fu et al., 2020; He et al., 2020; Wu et al., 2019; 2021) further improved efficiency by applying a
continuous relaxation to the search space, enabling the use of gradient descent to identify optimal
sub-models within the supernet. In contrast, two-stage NAS methods initially train a supernet, often
through random sampling of subnetworks, and subsequently employ black-box optimization to
identify optimal subnetworks (Bender et al., 2018; Guo et al., 2020; Li & Talwalkar, 2020).
Hardware-aware and Multi-objective Neural Architecture Search. Early NAS methods primarily
focused on maximizing accuracy for a given task. In contrast, hardware-aware NAS aims to optimize
architectures for efficient performance on specific hardware devices (Benmeziane et al., 2021; Lee
et al., 2020; Shaw et al., 2019; Zhang et al., 2020), naturally leading to multi-objective NAS (Hsu
et al., 2018; Kim et al., 2021; Tan et al., 2019). Two-stage NAS methods can be adapted to this context
by incorporating a multi-objective search in the second stage (Cai et al., 2018; Ito & Von Zuben,
2023). However, most two-stage methods depend on random sampling during supernet training,
which doesn’t prioritize promising architectures. Differentiable NAS methods, such as those in Cai
et al. (2018); Fu et al. (2020); Jiang et al. (2021); Wang et al. (2021); Wu et al. (2019; 2021); Xu et al.
(2020b), use latency proxies like layer-wise latencies and FLOPS (Dudziak et al., 2020) to evaluate
hardware performance, combining task and hardware objectives with fixed weighting to find a single
optimal solution. However, changing the objective weighting requires a complete search rerun, which
is computationally demanding.
In contrast, our proposed search algorithm offers the entire Pareto Front of objectives in a single run,
making it more efficient. While our focus is on multi-objective NAS for hardware constraints, our
technique is applicable to other objectives such as fairness (Das & Dooley, 2023; Dooley et al., 2023;
Martinez et al., 2020), suggesting promising avenues for future research.

Application to Other Tasks. Finally, we want to briefly discuss the potential application of
MODNAS to other tasks not mentioned in this work. Object detection is a very important application
since it is probably one of the most important use cases of neural networks on embedded devices
(e.g., in self-driving cars) (Baller et al., 2021; Lazarevich et al., 2023; Lee et al., 2023). An interesting
benchmark is YOLOBench (Lazarevich et al., 2023), where the authors benchmark more than 550
architectures on four datasets and four different hardware platforms. One way to leverage the
Supernetwork here would be to parameterize the search space via the AutoDeepLab (Liu et al.,
2019a) supernetwork model, which parameterizes the resolution too. This parameterization would
not only leverage MODNAS to work for object detection, but for other computer vision tasks such as
semantic segmentation, disparity estimation, etc (Mohan et al., 2023).

44

	Introduction
	Background and Related Work
	Hardware-aware Multi-objective Differentiable Neural Architecture Search
	Problem Definition & Sketch of Solution Approach
	Algorithm Design and Components
	Optimizing the MetaHypernetwork via MGD

	Experiments
	Simultaneous Pareto Set Learning across 19 devices and Ablations
	Pareto Front Profiling on Transformer Space
	Efficient Differentiable MOO starting from Pretrained Supernetworks
	Computational Complexity

	Conclusions, Broader Impact and Limitations
	Appendix
	 Appendix
	Algorithmic components
	Discrete Samplers
	Details on the Architect Gradient Computation
	Frank-Wolfe Solver

	Multi-objective NAS algorithms
	Evaluation Details
	Other Metrics
	MODNAS-SoTL

	Experimental Details
	MetaPredictor Architectures
	MetaHypernetwork Architecture
	MODNAS Hyperparameter Configurations
	Normalization of objectives

	Details on Search Spaces
	Datasets and Devices
	Runtime Comparison
	Additional Experiments
	Additional Results on NAS-Bench-201
	Predicted v/s Ground-Truth Latencies
	Alignment of Preference Vectors with Pareto Front
	Training and Validation Loss Curves
	Multi-objective Optimization Baselines with More Budget

	Additional Results on Hardware-aware Transformers (En-De)
	Additional Results on the HW-GPT space
	Experiments on Perplexity and Memory usage Objectives

	Additional Results on MobileNetV3

	Further Discussion on the Robustness of MODNAS
	Extended Related Work

