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ABSTRACT

Model-based reinforcement learning (MBRL) methods are often more data-
efficient and quicker to converge than their model-free counterparts, but typically
rely crucially on accurate modeling of the environment dynamics and associated
uncertainty in order to perform well. Recent approaches have used ensembles of
dynamics models within MBRL to separately capture aleatoric and epistemic un-
certainty of the learned dynamics, but many MBRL algorithms are still limited
because they treat these dynamics models as a “black box” without fully exploit-
ing the uncertainty modeling. In this paper, we propose a simple but effective
approach to improving the performance of MBRL by directly incorporating the
ensemble prediction into the RL method itself: we propose constructing multiple
value roll-outs using different members of the dynamics ensemble, and aggregat-
ing the separate estimates to form a joint estimate of the state value. Despite its
simplicity, we show that this method substantially improves the performance of
MBRL methods: we comprehensively evaluate this technique on common loco-
motion benchmarks, with ablative experiments to show the added value of our
proposed components.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) algorithms are generally both sample-efficient and
quicker to converge than model-free alternatives. While there are a variety of model-based ap-
proaches, recent work has focused very much on “Dyna-like” MBRL algorithms. These generally
work by using the data to learn a dynamics model and then use that model to generate synthetic data
for an underlying model-free approach. This added model tends to greatly accelerate early training
at the cost of asymptotic performance.

A recent advance in MBRL has been in the design of this dynamics model. The use of a simple
dynamics model has been supplanted by an ensemble of stochastic dynamics models, which al-
lows for separate estimation of aleatoric and epistemic uncertainty. Aleatoric uncertainty reflects
the randomness inherent to the underlying environment, and is modeled by each stochastic model.
Epistemic uncertainty reflects the uncertainty in modeling the system that could be eliminated with
additional data and training. This is reflected in the disagreement between different ensemble mem-
bers. This idea was popularized in MBRL by Chua et al. (2018) and Janner et al. (2019), among
others.

Another important development is the use of the dynamics model to roll out the state-value com-
putation. In this, the state-action-value function is augmented with short-term predictions about the
trajectory and rewards received to improve the quality of the estimated value. This technique is more
commonly called model-value expansion (MVE), and was first formalized by Feinberg et al. (2018).
When MVE is performed using ensembled dynamics models as a black box, the resultant model
does not improve results over using a simple, single dynamics model. This suggests that integrat-
ing MVE with ensembled dynamics models is only effective if we leverage the ensemble structure
instead of treating it as a black box.

In this paper, we present a simple, but very effective, technique to perform MVE while using the
ensembled dynamics structure. Our technique unrolls the value function separately along each en-
semble element, sampling a joint action at each time. We only unroll a few steps along each separate
trajectory estimate, and use that with the value function to produce a set of estimates of the value.
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The final value of the state is then the mean of these values (or the minimum), and this value is then
used to update the policy. In this way, we can incorporate the epistemic uncertainty of the dynamics
model into our MVE estimate. Our technique performs extremely well on a standard set of five lo-
comotion benchmarks. We also present a variety of additional experiments to account for key design
decisions and to show that our results are statistically significant.

2 BACKGROUND AND RELATED WORK

This work focuses on “Dyna-like” MBRL, with separate policy and value functions. This is in con-
trast to planning-based approaches like PE-TS (Chua et al., 2018), constrained gradient-estimators
like ME-TRPO (Kurutach et al., 2018), or others. Wang et al. (2019) provide a taxonomy of modern
RL algorithms with benchmarks.

MBRL algorithms generally work by using dynamics models to generate synthetic data, and then
using that data to train policy and value models. Environment samples are used to train the dynamics
model, in the hope that the dynamics model generalizes well enough to produce useful samples.
Recent work by Janner et al. (2019) suggests that this generalization performance is key to the
asymptotic performance in MBRL. They derive theoretical bounds on model error as a function of
roll-out length, and experimentally show how an ensemble of stochastic environment models can
greatly improve training performance. This insight leads to the Model-based Policy Optimization
(MBPO) algorithm, in which the size of an ensembled dynamics model balances roll-out length to
ensure that the the generated data remains plausible. This is further supported by Shen et al. (2020),
who use unsupervised domain adaptation techniques to ensure that generated data is plausible and
show that this improves policy performance.

Separately, Feinberg et al. (2018) observe that this dynamics model could also be applied to improve
value estimates. They formalized the idea of model-based value expansion (MVE), in which the
value function is trained to be consistent with the learned dynamics and reward. Amos et al. (2020)
further develop this idea by using MVE unrolling in the policy improvement step instead of the value
update step. This improved construction allows them to train a Stochastic Value Gradient (SVG)
controller (Heess et al., 2015) with a single deterministic dynamics model to achieve impressive
performance on a range of locomotion benchmarks.

Amos et al. (2020) compare the performance of SAC-SVG with both simple and ensembled dy-
namics models. They show that, even though a simple dynamics model does not generalize as well
as an ensemble model, the policies learned by SAC-SVG perform similarly. In other words, even
though ensembled dynamics models are more accurate than simple models, SAC-SVG does not use
that additional accuracy to learn better policies. This is in contrast to our approach, which specif-
ically leverages the improved accuracy and epistemic uncertainty modeling offered by ensembled
dynamics models to improve training performance.

Our method generates a set of state-action conditional values which we need to reduce to a single
value. The use of the minimum function in this role is well-supported in the literature: The most
common existing use of Q-ensembles is in the double Q-function. Originally proposed by Hasselt
(2010), the double Q-function works by taking the minimum of two separately trained Q-functions
and effectively mitigates the inherent positive bias in Q-functions. We can extend this to select
the minimum over the ensemble. More sophisticated reducing functions have been used in discrete
action-spaces. Both Chen et al. (2018); Lee et al. (2021) estimate the upper confidence bound (UCB)
of the true Q-value based on the empirical distribution of the Q-functions. This approach provides a
natural way to balance exploration and exploitation, but is not directly applicable in the continuous
action-spaces that our algorithm targets.

3 PRELIMINARIES AND RL BACKGROUND

We consider the classic discrete-time stochastic RL setting: a Markov decision process (MDP) de-
fined as (X ,U , p, r, ρ0). X and U are the continuous state and action spaces. p := Pr(x′|x, u) for
some x, x′ ∈ X ;u ∈ U is the transition distribution. For notational convenience, we define the tran-
sition function f(x, u) to refer to the distribution p(·|x, u). The reward function is r : X ×U → X .
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Algorithm 1: MBPO and MBPO-MVE algorithm structure.

1 Initialize dynamics ensemble f̃ , reward model r̃, policy π, and empty buffers for environment
transition Denv, and model-generated transitions Dmodel, and environment E .

2 Burn-in Denv using either π or a random policy.
3 for N epochs do
4 Train f̃ , r̃ to maximize likelihood of Denv
5 for E steps do
6 Advance E by one step using action from π, add the transition to Denv
7 for M model rollouts do
8 Sample state s uniformly from Denv
9 Perform k-step model rollout from s using policy π; add it to Dmodel

10 for G gradient updates do
11 Update Q function using π and samples from Dmodel

12 if every kth step then Update π using Q, and Dmodel // for MBPO

13 if every kth step then Update π using f̃ , r̃, Q, and Dmodel // for MBPO-MVE

Our goal is to learn some policy π∗ : S → U that maximizes the total reward encountered by some
agent starting from some position in the state space x0 ∈ ρ0.

In this work we build on MBPO which is a model-based extension to the Soft Actor-Critic (SAC)
algorithm. Following the structure of SAC, we define a stochastic policy model π (where π(x) :=
Pr(u|x)) and model the expected discounted reward of following policy π from state x as the value
function V : X → R, and the action-conditional value function Q : X ×U → R. These are defined
similarly to Watkins (1989):

V π(x) := E[Q(x, u)− α log π(u|x)] (where u is sampled from π(x)) (1)
Qπ(x, u) := r(x, u) + γE[V (f(x, u))] (2)

Where temperature parameter α > 0 regularizes the action distribution by penalizing the entropy
(Ziebart, 2010), and γ ∈ [0, 1] is a discount factor arbitrarily set to γ = 0.99. We parameterize both
Q and π with neural networks.

As detailed in Algorithm 1, Q and π are alternatingly trained on model-generated data. Given
a set of transition samples {(s, a, r, s′), ...} from the model-generated data buffer Dmodel, we first
train Q is to minimize the Bellman residual under the (temporarily fixed) policy: Q(s, a) − r +
γE[V (s′)]. The policy is then trained to maximize the expected regularized reward under the Q-
function: Eâ π(·|s)[Q(s, â) − α log π(â|s)]. To close the loop, the policy is then used by MBPO to
generate model data for Dmodel and to interact with the environment.

To generate data for Dmodel, MBPO begins with a buffer of data sampled from the environment
(calledDenv). This data is used to separately train a set of stochastic dynamics functions f̃(0), f̃(1), . . .
that each predict a distribution of subsequent states reached by taking action a from initial state s.
That is, f̃(j)(s, a) = Pr(s′|s, a). Starting from states in Denv, MBPO uses the dynamics ensemble
and the most recent version of the policy to simulate the evolution of the state over a few steps.
These model-generated transitions are then added to Dmodel, where they will be used to perform the
actor- and critic-updates.

3.1 MODEL-BASED VALUE EXPANSION

MVE refers to the general class of techniques to improve the value estimate of the critic function
by incorporating a dynamics and reward model. From starting state x0, given horizon H ∈ Z≥, we
sample a trajectory:

((x0, u0), (x1, u1), ..., (xH , uH)) where ut = π(xt), and xt+1 ∼ f̃(xt, ut) (3)
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Figure 1: Policy value calculation when H = 2. Each ensemble member separately unrolls the
policy for H steps for MVE and one final step for the terminal value. The action at step i sampled
from the joint distribution ∪jπ(x(j), i). The value estimate by ensemble member j is

∑H−1
a=0 γ

a ·
r̃(j)(x(j),a, ua) + γHQ(π(x(j), H)). The mean (or minimum) of the individual estimates is used as
the final value estimate. The exploration temperature is omitted for brevity.

Algorithm 2: MBPO-MVE policy value calculation

1 Function ComputeValue(f̃ , π, Q, x, H , γ, α):
/* separately store running state and value: */

2 x(j) ← x (for each f̃(j) in f̃ )
3 V(j) ← 0 (for each f̃(j) in f̃ )
4 for i← 0 to H do
5 U(j) ← π(x(j)) (for each f̃(j) in f̃ )

/* pick an ensemble element k and sample an action: */
6 u← sample

(
U(k)

)
/* dynamics model predicts state dist. and reward: */

7 foreach f̃(j) in f̃ do
8 X ′(j), r(j) ← f̃(j)(x(j), u)

9 V(j) ← V(j) +

{
γi
(
r(j) − α log π(u|x(k))

)
if i < H

γH
(
Q(x(j), u)− α log π(u|x(k))

)
otherwise

10 x(j) ← sample(X ′(j))
11 return max(V(0), V(1), ...)

From this, we can compute an estimate for reward that uses the predicted reward for the firstH steps
and the value estimate of the final step as the tail. Presented without the action entropy penalty:

V π(H) = γHQ(xH , uH) +

H−1∑
i=0

γir(xi, ui) (4)

This is equivalent to factoring the value estimate into the short-term value (which is estimated using
the reward model) and the residual value (which is estimated using the Q function.) When H = 0,
this is equivalent to using the Q value without any MVE.

4 MBPO-MVE

Our contribution is MBPO-MVE, an MVE-like extension to MBPO that effectively leverages en-
sembled dynamics models to accelerate training and improve performance. We retain the design and
structure of MBPO, only changing the policy update step. The key insight in our work is that we
can make better use of ensembles in value estimation by unrolling the trajectory using each member
separately, computing separate Q-values with each, and taking the mean of these values.
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As in MBPO, consider a setting with observation space X ⊆ Rn and action U ⊆ Rm. We learn k
neural networks that predict the mean and (diagonal) covariance for a Gaussian distribution, forming
the dynamics ensemble. The jth model is denoted as: f̃(j) : X ×U → Rn ×Rn. We similarly learn
an ensemble of deterministic reward functions: r̃(j) : X × U → R. Dynamics and reward ensemble
members are trained to maximize the likelihood of the transitions in Denv. The observations in Denv
are generated by a burn-in policy at the start of training, and subsequently by environment interaction
using the learned policy. These models are used to perform many short rollouts to produce imaginary
transitions for Dmodel, as in MBPO. We also have a learned policy π̃ : X → U and Q function
Q̃ : X × U → R, both parameterized by neural networks.

Departing from MBPO, our method also uses the dynamics model to improve the value computation
in the policy update step. In the policy update step, given a state s, we wish to update the policy
π to improve Q(s, π(s)), the expected value of following the policy from that state. We use the
ensemble of k dynamics models to compute k different possibleH-step unrollings. To obtain the jth

trajectory, we begin from the starting state x(j),0 := s. To obtain the successor state x(j),i+1 from
state x(j),i, we begin by sampling a single action from the joint distribution of actions proposed by
π̃ across all state estimates: ui ← SAMPLE

(
∪jπ(x(j),i)

)
. We then use the jth ensemble member

to estimate the successor state: x(j),i+1 := f̃(j)(x(j),i, ui). Performing this step H times gives us
the sequence x(j),0, x(j),1, . . . , x(j),H−1, x(j),H . From this sequence, we can obtain V π(j)(s), the jth

estimate of the value of following π from state s:

V π(j)(s) = γ0r̃(x(j),0, u0) + . . .+ γH−1r̃(x(j),H−1, uH−1)︸ ︷︷ ︸
H-step unrolling

+ γHQ̃(xH , uH)︸ ︷︷ ︸
terminal value estimate

(5)

=

H−1∑
i=0

γir̃(x(j),i, ui) + γHQ̃(x(j),H , uH) (6)

Now that we have obtained k separate estimates of the value of following π from s, we can combine
these into a single value estimate by taking the mean (or minimum) value. The final value function
used by MBPO-MVE in the policy update step is therefore:

V π(s) =
1

k

k−1∑
j=0

[
γHQ̃(x(j),H , uH) +

H−1∑
i=0

γir(x(j),i, ui)

]
(7)

Where x(j),i is the ith unrolling step of the jth ensemble. The policy is altered to maximize this
value.

4.1 MVE HORIZON

Our method introduces one additional hyperparameter: the number of time-steps over which to
perform the MVE expansion. The best value of this parameter appears to be dependent on the
environment without any clear heuristic or rule to suggest how to select it. In the paper introducing
MVE, Feinberg et al. (2018) conjecture that there are two conflicting pressures that affect the optimal
value. Longer-horizon rollouts may, under ideal conditions, improve the potential target error by
O(γH). The potential gains, however, are noted by Feinberg et al. (2018) to be very sensitive to
both error in dynamics and non-uniform bias in Q-functions. These problems are mitigated by
shorter-horizon rollouts, which reduce compounding inaccuracy from imperfect dynamics models.

Different environments have different optimum rollout lengths, as empirically determined by Amos
et al. (2020). They evaluate the performance of SAC-SVG forH ∈ {1, 2, 3, 4, 5, 10}, and from their
data we observe that different environments have different optimal rollout lengths, though these
values tend to be small (2 − 4). For our primary experiments, we simply select the rollout length
that produces the best mean results in SAC-SVG, on the assumption that the factors affecting the
best value are similar. We also conduct a small experiment to validate this.
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Ant-v2* Hopper-v2 Swimmer-v2 HalfCheetah-v2 Walker2d-v2

This paper
MBPO-MVE (mean) 2542±2138 3450±338 124.0± 23.3 11265±1007 4254±2027
MBPO-MVE (min) 5241±1029 3230±833 102.5± 66.8 11626±1102 3809±2416
MBPO†

(Janner et al., 2019) 3820±2221 2000±903 96.7± 32.9 8469±1304 4174± 626
Dyna-like
SUNRISE‡

(Lee et al., 2021) 1502±484 2643±472 4502± 444 1237±1124
SAC-SVG (best) §

(Amos et al., 2020) 4473±893 2852±362 350.2± 3.6 9220±1432 1852± 968
ME-TRPO¶

(Kurutach et al., 2018) 282± 18.0 1273±501 225.5±105 2284± 900 -1609± 658

Shooting/Planning Methods
PETS-RS¶

(Chua et al., 2018) 1166±227 115±621 326.2± 12.6 2288±1019 283± 502
POPLIN-P¶

(Wang & Ba, 2020) 2330±321 2055±614 334.4± 34.2 4235±1133 597± 479

Model-Free RL
SAC§

(Haarnoja et al., 2018) 511± 76.4 2180±977 351.2± 5.3 6515±1101 1265±1317
TD3¶

(Fujimoto et al., 2018) 871±284 1817±995 72.1±131 3016± 970 -516± 812

Table 1: We report the mean and standard deviation of rewards across a range of OpenAI Gym
locomotion tasks. Values are rounded, and empty cells indicate no reported data. All results that fall
within the 5th percentile lower confidence bound of the highest mean result are marked in bold.

5 RESULTS AND DISCUSSION

The algorithm is evaluated on five common locomotion tasks in the OpenAI Gym environment
(Brockman et al., 2016), simulated by MuJoCo (Todorov et al., 2012). Results are presented in Ta-
ble 1, categorized by approach. MBPO-MVE consistently outperforms popular MBRL and MFRL
algorithms benchmarked by Wang et al. (2019) as well as more recent work. In particular, by
bringing both MVE and ensemble-based models together, we can show improvement over the best-
performing contemporary MVE work SAC-SVG (Amos et al., 2020), and over ensemble-based
MBRL work (like SUNRISE (Lee et al., 2021), and vanilla MBPO (Janner et al., 2019)).

We present our method using the mean of ensemble estimates (mean), and one that uses the mini-
mum (min). Either method consistently performs well on most tasks, but the largest difference in
performance is on the Ant-v2 task, where the much more conservative estimates of MBPO-MVE
(min) yield a much higher score. Our method improves on the underlying MBPO performance on
Swimmer-v2, but despite that is unable to match the performance of SAC or SAC-SVG on that
task. It is likely that additional hyperparameter tuning would lead to better results on that particular
task, both for MBPO and for our MBPO-MVE.

To show that our method statistically produces higher rewards than the baseline MBPO implemen-
tation, we perform individual one-tailed t-tests and combine them with Fisher’s method. With these,
we are able to accept the alternative hypothesis that MBPO-MVE (mean) produces higher rewards
than vanilla MBPO at the 5% significance level. For full details, see Appendix B. Note that the
hyperparameters we using for both MBPO-MVE and MBPO were tuned by the MBRL-lib team
(Pineda et al., 2021) for the MBPO baseline, so this result cannot be attributed to additional hyper-
parameter tuning.

We investigate three key properties of our method: use of a single joint action over all ensembles,
the choice of reducing function, and the choice of MVE horizon.

5.1 JOINT ACTION DOES NOT REDUCE PERFORMANCE

We compare the performance of our method to a similar one where each ensemble element sepa-
rately samples an action. We wish to show that using a joint action does not reduce performance.
We conduct a statistical test as before, obtaining the results in Table 2. Detailed in Appendix B,

*Modified to exclude external forces in the observation. See Pineda et al. (2021) for details.
†For comparison, we include the performance of our method with H = 0. This is equivalent to the MBPO

implementation by Pineda et al. (2021).
‡Reported by Lee et al. (2021)
§Reported by Amos et al. (2020).
¶From benchmarks by Wang et al. (2019)
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Figure 2: Training collapse with max, but not with mean. This is demonstrated by plotting the
reward obtained from both mean and max when training a model on Walker2d-v2. The error
bars indicates the range of observed values over five seeds. While both mean and max learn at the
start, the training of max falls to a small value.

the test fails to reject the null hypothesis (at the α = 5% significance) that using a joint action and
separate actions has the same mean reward over all environments.

5.2 CHOICE OF REDUCING FUNCTION

The performance of our method is very sensitive to the selection of the reducing function. We eval-
uated our method on five environments using the minimum, mean, and maximum of the ensemble
Q-values. To mimic the UCB work of Chen et al. (2018); Lee et al. (2021), we also test topk,
which is the mean of the top five of the seven estimates. The results are presented in Table 3.

Looking deeper into the reward obtained during training, we see that some reducing functions are
prone to a form of training collapse in which the returns of a policy model suddenly falls to zero
during training. This is most apparent in the evaluation of Walker2d-v2, shown in Figure 2.
This suggests there are two different effects at play: one effect from the use of ensemble unrolling
that improves training performance over most reducing functions, and a second effect that is more
likely to cause training collapse on some functions. This second effect could potentially be lessened
through hyperparameter optimization, and more study is needed to understand this.

5.3 MVE HORIZON

From the experiments of Amos et al. (2020), the MVE horizon is a key element determining the
performance of the model. Here we test this hypothesis on HalfCheetah-v2 by comparing
performance over different roll-out lengths, as shown in Table 4. We qualitatively observe that both
MBPO-MVE and SAC-SVG achieve the highest mean and smallest variance when H = 3, and the
score distributions remain high until H = 5. At H = 10, both methods exhibit poor performance.

There is as yet no theory accounting for the variation between environments. The optimal rollout
length is generally assumed to be the result of a trade-off between two effects: compounding dy-
namics inaccuracy that promotes shorter rollouts, and target error improvement that promotes longer
rollouts. In the latter case, Feinberg et al. (2018) show that – under ideal conditions – the potential

Ant-v2 Hopper-v2 Swimmer-v2 HalfCheetah-v2 Walker2d-v2

MBPO-MVE (mean) 2542±2138 3450±338 124.0±23.3 11265±1007 4254±2027
Without joint action 3060±3125 2784±1024 113.1±44.7 11870±1376 3363±2696

Table 2: We compare the performance of our method with and without the joint action. Combining
individual t-tests with Fisher’s method, we cannot conclude that the use of separate actions produces
significant improvement at the α = 5% level. Details in Appendix B.
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MBPO-MVE Ant-v2 Hopper-v2 Swimmer-v2 HalfCheetah-v2 Walker2d-v2

mean 2542±2138 3450±338 124.0± 23.3 11265±1007 4254±2027
min 5241±1029 3230±833 102.5± 66.8 11626±1102 3809±2416
max 837±1754 2728±883 88.1±48.8 8659±5096 3308±1555
top-k 1569±1274 2926±463 97.4±67.1 10394±4445 4493±2377

Table 3: Performance over different reducing functions on various environments.
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Figure 3: We compute the Pearson correlation coefficient between Ensemble Q-values and vanilla
Q-values for a fixed set of states every other training step for a subset of the training steps. The
Ensemble Q-values lead the vanilla Q-values, as shown by the rightward skew. This suggests that
the MVE construction counteracts some delay, perhaps introduced by the slow target network.

target error may be improved by O(γH). Unfortunately, this is very sensitive to both model error
and non-uniform bias in Q-functions.

6 WHY DOES MVE WORK?

MVE naturally follows from the observation that both the Q-value estimates and the dynamics model
learn information about the true system dynamics. In fact, in the original paper, Feinberg et al.
(2018) use MVE to update the Q-function to be consistent with the system dynamics. (In contrast,
our work and SAC-SVG both update the policy from the Q-function using MVE.) The original
justification for MVE is that there is a potential O(γH) reduction in target error, but this is only
realized if the model error is very low and the bias in the Q-function is uniform. The observed
benefits of MVE seem to be much larger than this would suggest, and so we propose an alternative
hypothesis: the use of MVE mitigates the training lag introduced by the use of the target Q-function.

Introduced by Mnih et al. (2015), many MBRL methods use a slowly-updating second “target” Q-
function in addition to the regular Q-function. By splitting the Q-function into slowly- and quickly-
learning components, we can prevent runaway reinforcement. Since states visited in sequence tend
to be close together in space, it is possible for an increase in the current state-value to inadvertently
increase the value of future states in the same trajectory. This process, if uncorrected, introduces
a spurious bias in the value function that may never be unlearned. While the use of a separate
target function effectively mitigates the runaway reinforcement problem, it also slows down training
considerably.

H = 1 H = 2 H = 3 H = 4 H = 5 H = 10

MBPO-MVE (mean) 10305±1260 10820±2020 11736± 849 10923±2860 7216±6740 1236±3480
SAC-SVG 6890±1860 8752±1786 9220±1431 8175±3226 6129±3520 2477±2596

Table 4: Performance over different unrolling horizons on HalfCheetah-v2. H = 3 is reported
in the main results. H = 0 (not shown here) would be equivalent to MBPO without MVE.
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Our MVE uses a reward and dynamics model in addition to the Q-function network. Since the reward
and dynamics models are trained directly from data, and not from previous Q-values, they are not
subject to this runaway reinforcement effect. Our hypothesis is that this is the primary mechanism
by which MVE accelerates training. To show that this explanation is plausible, we compute the time-
lagged Pearson correlation coefficient between ensemble and vanilla Q-values for a set of fixed states
known to be in the distribution of states visited by the algorithm. Figure 3 shows that the correlation
distribution is skewed right, indicating that MVE Q-values lead vanilla Q-values. Experiment details
are in Appendix C. This is by no means a conclusive result, and more investigation is needed to
exclude competing possibilities. Such hypotheses include that MVE corrects a bias induced by
Q-function structure, or that MVE provides a form of exploration incentive comparable to upper-
confidence-bound-style exploration.

Alternative approaches to address the target network’s shortcomings have been proposed in the lit-
erature. One option is to replace the target network with a smoothed Q-function, like DeepMellow
(Kim et al., 2019), which is designed to be non-expansive. Another approach is to use neural net-
works that behave differently in the short- and long-term, like Two-Timescale Networks (Chung
et al., 2019). Two timescale networks split the network into segments that learn at different rates,
which appears to mitigate this problem. This is a promising area for future research, especially for
designs that can incorporate the dynamics model into the Q-value estimation.

7 CONCLUSION

We have presented a novel method of combining ensembles of dynamics models with model-value
expansion and provided a comprehensive evaluation to justify our design. Our method produces
significant improvements with few additional hyperparameters, and can be easily adapted to other
MBRL algorithms. There are many opportunities for future work in this area:

The locomotion benchmarks most continuous-state and -action RL work focuses on respond well
to short-horizon exploration techniques like dithering, α-greedy policies, or an adaptive action-
distribution temperature. In the discrete RL world, more sophisticated techniques are necessary
to achieve long-horizon exploration. Our use of a dynamics ensemble allows us to measure the
epistemic uncertainty associated with each state, which provides a natural extension to the work of
Burda et al. (2019); Kurutach et al. (2018); Chen et al. (2018). In these approaches, the authors use
random-network distillation or ensemble-model approaches to estimate how closely a state has been
explored so they can manage exploration in more complex tasks with sparse rewards. We could
potentially apply our MVE work to these areas.

As yet, questions remain about how MVE works. While we provide an account of how it might
work with target Q-networks, we do not yet account for MVE without target networks. Further
study is needed to see if MVE has any benefit without a target network, and if so, how MVE works
in that case. Better understanding this will allow us to design better value functions that potentially
elegantly include dynamics models into the value estimation.

Finally, it is not entirely clear that the presence of a target network is a necessary component to
Dyna-like RL. Some prior work has shown that is is possible to remove the target network (Kim
et al., 2019; Chung et al., 2019), but these approaches may be restricted to discrete action domains
or are otherwise not as powerful as MBPO. It may be possible to provide a similar effect using MVE,
which is an area for future research.

Reproducibility statement. We modify the baseline MBPO implementation in MBRL-lib by
Pineda et al. (2021), and use their original hyperparameters without further tuning. The unrolling
horizon H is selected to match the most effective horizon in SAC-SVG (Amos et al., 2020) for each
task. Evaluations of MBPO-MVE (mean) with and without joint action are repeated over ten seeds,
and all other evaluations are repeated over five seeds. The mean and standard deviation of the re-
wards obtained by the last version of the agent at the end of training is reported. Hyperparameters
are documented in Appendix A.

Source code is attached as supplementary material, and will be available online at https://www.
github.com/[OMITTED].
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A HYPERPARAMETERS AND RESULTS

Each experiment was run across five seeds with the mean and standard deviation reported. Each
evaluation was performed on machines with commodity CPUs and NVIDIA 1080 Ti or 2080 Ti
GPUs, and takes no more than two days to run on our hardware.

Most hyperparameters were used as-is from previous work by others. MBPO-related hyperparame-
ters were directly used from the MBRL-lib implementation from Facebook research (Pineda et al.,
2021), only reducing the number of training steps to match benchmarks by Wang et al. (2019). In
particular, we inherit the ensemble size (7) and the value of k = 5 for top-k evaluation. The rollout
horizon H was selected to match the horizon with the highest mean performance in Amos et al.
(2020).

The summary of key hyperparameters is:

Environment Environment Samples Horizon H

Ant-v2 200,000 2
Hopper-v2 125,000 2
Swimmer-v2 200,000 2
HalfCheetah-v2 200,000 3
Walker2d-v2 200,000 4

Results are reported as the mean and standard deviation of samples over five seeds at the end of
training. We report this for each of three reducing functions.

Reporting Standards We note that the benchmarking work by Wang et al. (2019) run all envi-
ronments (including Hopper-v2) 200,000 timesteps and report the distribution of results over 4
random seeds and 5000 timesteps. Amos et al. (2020) runs Swimmer-v2 for only 50,000 steps and
reports the performance at the end of training over 10 seeds and a range of horizon values.

B STATISTICAL TESTS FOR RESULT SIGNIFICANCE

In the main results (Section 5), we show the difference in performance between our method with
and without model-value expansion. The table shows there are differences in performance, but it is
not immediately obvious that our method is significantly better across all environments. Here we
describe the aggregate t-test we perform to show that using MVE achieves a higher mean reward at
the α = 5% significance level. (The significance level is chosen to reflect the expense of conducting
experiments at scale.)

We begin by setting the null hypothesis that both methods produce the same mean score over all
environments, and the alternative hypothesis that MBPO-MVE has a higher mean score in all envi-
ronments. Additionally, we assume that:

1. the reward distributions between environments are uncorrelated once conditioned on the
use of MBPO or MBPO-MVE. (“Independence” assumption.)

2. the distribution of reward achieved by each method has the same variance for each envi-
ronment, but not between environments. (“Identical distribution” assumption.)

To effectively combine these, we perform a one-tailed Student’s t-test within each environment, and
find the significance of the aggregate results using Fisher’s method. These are standard statistical
methods, and the textbook by Maxwell et al. (2017) derives these methods and explains their use.

We begin by performing a Student’s t-test on each environment separately. We choose the t-test
over the z-test as we have a small sample size (5 per method) within each environment. Here are the
individual t-statistics and p-values:
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Environment t-statistic p-value

Ant-v2 -1.078 0.150
Hopper-v2 4.611 1.000
Swimmer-v2 1.889 0.959
HalfCheetah-v2 4.611 1.000
Walker2d-v2 0.085 0.467

We then use Fisher’s method to combine the probabilities of observing the t-statistic while control-
ling for Type-I errors. We obtain a single χ2 test statistic using:

χ2
2k ∼ −2

k∑
i=1

ln pi,where k = 5 is the number of environments

We obtain the test statistic χ2
10(44.99), and a cumulative p-value of about 2× 10−5 < α = 5%.

Note that we cannot use ANOVA (Fisher, 1925) for two important reasons: (1) that the variance
of each comparison pair is different, and (2) because multivariate-ANOVA methods would test if
MBPO-MVE performs significantly better in any environment, not over all environments.

B.1 JOINT ACTION IS NOT WORSE

In section 5.1, we perform the same test to distinguish between the results when the action at each
step is shared (“joint action”), or when each ensemble samples a separate action (“no joint action”).
We begin by setting the null hypothesis that both methods produce the same mean score, and the
alternative hypothesis that the no-joint-action method agents have a higher mean score than joint-
action methods. We obtain these individual t-statistics from data in Table 2:

Environment t-statistic p-value

Ant-v2 0.433 0.665
Hopper-v2 -1.954 0.003
Swimmer-v2 -0.698 0.247
HalfCheetah-v2 0.424 0.659
Walker2d-v2 -0.835 0.207

Applying Fisher’s method we obtain the test statistic χ2
10(5.43), which yields a cumulative p-value

of about 86.0% > α = 5%. We fail to reject the null hypothesis that using a joint action produces
agents with similar mean rewards to using separate actions.

C ENSEMBLE Q LEADS VANILLA Q

To obtain Figure 3, we randomly sample 2048 visited states from one run of our algorithm on
Hopper-v2, and then compute the predicted ensemble and vanilla Q-values every two training
steps during a second run with the same random seed. The cross-correlation chart is built from the
Q-values logged between 9,000 and 10,000 training steps, out of a total training horizon of 125,000
steps. The distribution of cross-correlations skews right: the modal lag that maximizes cross-entropy
is at about 46 training steps.
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