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Abstract
Adversarial Imitation Learning (AIL) is a class
of algorithms in Reinforcement learning (RL),
which tries to imitate an expert without taking any
reward from the environment and does not pro-
vide expert behavior directly to the policy training.
Rather, an agent learns a policy distribution that
minimizes the difference from expert behavior
in adversarial setting. Adversarial Inverse Rein-
forcement Learning (AIRL) leverages the idea of
AIL, integrates a reward function approximation
along with learning the policy and shows the util-
ity of IRL in the transfer learning setting. But the
reward function approximator that enables trans-
fer learning does not perform well in imitation
tasks. We propose an Off-Policy Adversarial In-
verse Reinforcement Learning (Off-policy-AIRL)
algorithm which is sample efficient as well as
gives good imitation performance compared to
the state-of-the-art AIL algorithm in the continu-
ous control tasks. For the same reward function
approximator, we show the utility of learning our
algorithm over AIL by using the learned reward
function to retrain the policy over a task under
significant variation where expert demonstrations
are absent.

1. Introduction
Reinforcement learning (RL) is a very useful framework
for learning complex behavior in control, where an agent
interacts with an environment and tries to learn the expected
behavior by optimizing an objective function that ensures
the highest cumulative reward over specific time steps. A re-
ward is often human-engineered function that tries to ensure
higher rewards for expected behavior within the environ-
ment. Designing a reward function for a complex environ-
ment can be tricky. Poorly designed reward function may
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lead to a fatal mistake when applied in real-world applica-
tions.

Generative Adversarial Imitation Learning (GAIL) (Ho &
Ermon, 2016) introduces AIL where a generator (policy)
is used to compute trajectory and a binary classifier called
discriminator classifies generated behavior from the expert.
As imitation learning algorithms only learn policy, they
miserably fail when there is a change in environmental
dynamics.

Inverse reinforcement learning (IRL) (Ng et al., 1999a;
Abbeel & Ng, 2004) addresses the importance of learning
reward function and thus learn reward function approxima-
tor along with policy. Adversarial Inverse Reinforcement
Learning (AIRL) (Fu et al., 2018) proposes an IRL algo-
rithm in adversarial learning, which shows a promising
result when there is considerable variability in the envi-
ronment from the demonstration setting. But compared to
AIL algorithms, AIRL does not perform well in imitation
performance (Kostrikov et al., 2019; Fu et al., 2018). It is
also important to note the best performing reward function
approximator configuration for imitation and transfer learn-
ing tasks in AIRL algorithm are different. In our work we
perform transfer learning using the same configuration that
works best in imitation performance.

The paper makes the following contributions: (i) We
propose an Off-Policy Adversarial Inverse Reinforcement
Learning algorithm (off-policy-AIRL) which is sample ef-
ficient and improves imitation performance of prior IRL
algorithms through comparing imitation performance with
state-of-the-art AIL algorithm on continuous control tasks.
(ii) We show utility of learning IRL algorithm over imita-
tion by reusing the learned reward function to train policy
under certain changes in dynamics where expert demonstra-
tions are absent. We use Soft Actor-Critic (Haarnoja et al.,
2018) (SAC), which makes our algorithm more sample effi-
cient. (iii) We also show using Multiplicative Compositional
Policies (Peng et al., 2019) (MCP) allows more flexibility
in retraining policy in transfer task and at the same time
improves imitation performance.
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2. Background
We define a Markov decision process (MDP) as a tuple
(S,A, T, r, γ, ρ0), where S,A are the state and action space
respectively, γ ∈ [0, 1) is the discount factor. We consider
the dynamic or transition distribution T (s′|s, a), initial state
distribution ρ0(s) and reward function r(s, a) are unknown
in IRL setup and can be learned through interaction with the
MDP.

AIL evolved from maximum casual entropy IRL framework
(Ziebart et al., 2010), which considers an entropy regular-
ized MDP with the goal to find the optimal policy π∗ that
maximizes the expected entropy-regularized discounted re-
ward under π,T and ρ0:

π∗ = arg max
π

Eτ∼π

[ T∑
t=0

γtr(st, at) +H(π(.|st))
]
.

(1)

Here τ = (s0, a0...sT , aT ) defines the sequence of states
and actions induced by policy and H(π(.|st)) is the dis-
counted causal entropy of policy π. In imitation task, expert
demonstrations D = τ1, τ2...τn are given and an agent is
expected to produce trajectory which are similar to the ex-
pert and infer reward function. Under certain constrain of
feature matching (Ziebart et al., 2008) derived following
objective function:

Pψ(τ) ∝ eR(τ) =
1

z
eR(τ), (2)

∝ p(s0)
∏

p(st+1|st, at)eγ
trψ(st,at), (3)

where z =
∫
τ
eR(τ) is the partition function and can be ex-

pressed as probability of trajectories with equal reward/cost
are equal likely and probability of trajectory with higher
rewards are exponentially more likely. Equation (2) can be
interpreted as solving a maximum likelihood problem:

maxψEτ∼D[log pψ(τ)]. (4)

But the assumptions that are made in (Ziebart et al., 2010)
are model / transition function T (s′|s, a) is known and ap-
plied on small state-action space.

GAIL (Ho & Ermon, 2016), a model-free algorithm, is
the first framework to draw connection between generative
adversarial network (GAN) and imitation learning which
works in continuous state-action space. GAIL uses a gener-
ative model or generator, G that acts as the policy. Purpose
of the generator is to learn policy πθ such that the state-
action visitation frequency ρπθ is similar to expert’s ρπE
without directly being provided with the expert demonstra-
tions. A discriminator D is a binary classifier which tries to

distinguish the data distribution of the generator ρπ from the
expert’s ρπE . Objective for a generator is to minimize the
difference with expert visitation frequency, while a discrimi-
nator wants to maximize the difference and thus derived the
entropy regularized objective as following:

distanceminπθ maxDψ
(ρπ, ρπE ) =

min
πθ

max
Dψ

[
Eπθ [logDψ(s, a)] +

EπE [log(1−Dψ(s, a))]− λH(πθ)
]
, (5)

where entropy term H is policy regularizer controlled by
λ ≥ 0. GAIL uses two separate neural-networks to repre-
sent generator and discriminator. For any given state gen-
erator tries to take expert like action. Discriminator takes
state-action pairs as input and computes the likelihood of the
input coming from an expert. Generator uses a reward func-
tion R(s, a) = − logDψ(s, a) in order to train it’s network
parameters.

GAIL is sample efficient in terms of number of expert
demonstrations required but not quite sample efficient in
terms of required interaction with the environment to learn
the policy. Thus GAIL is not suitable for many real-world
applications. Discriminator Actor critic (DAC) (Kostrikov
et al., 2019) uses Twin-delayed deep deterministic actor-
critic (TD3) (Fujimoto et al., 2018), an off-policy algorithm
as generator to improve upon the sample efficiency of ex-
isting methods, and it extends the learning environment
with absorbing states. DAC criticises AIL algorithms (i.e
GAIL) for inducing reward biases by using strict positive
or negative reward function and proposes a reward function
r(s, a) = log(Dθ(s, a)) − log(1 − Dθ(s, a)) in order to
achieve unbiased rewards. Combined, these changes remove
the survival bias and solves sample inefficiency problem of
GAIL.

For being an imitation learning algorithm, instead of learn-
ing cost/reward function, both GAIL and DAC only recover
expert policy and thus will fail miserably in dynamic envi-
ronments. A discriminator function, that learns policy as
well as the cost/reward function, is proposed by (Finn et al.,
2016) by optimizing following objective for discriminator
network:

Dψ =
pψ(τ)

pψ(τ) + q(τ)

(a)
=

1/z ∗ eRψ
1/z ∗ eRψ + q(τ)

, (6)

thus Ldis = max
Dψ

[
Eτ∼p[logDψ(τ)]+

Eτ∼q[log(1−Dψ(τ))]
]
, (7)

where p(τ) is the data distribution and q(τ) is the policy
distribution and (a) consider derived objective function (2)
from (Ziebart et al., 2010). But (Finn et al., 2016) contains
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no experimental demonstration of imitation performance.
Later on AIRL (Fu et al., 2018) shows, when we consider a
whole trajectory to compute discriminator update it suffers
from high variance issue and that leads to a poor performing
generator. Instead AIRL computes discriminator update
using (s,a,s’) tuple:

Dψ,ω =
pψ,ω(s, a, s′)

pψ,ω(s, a, s′) + q(s, a)
, (8)

=
efψ,ω(s,a,s

′)

efψ,ω(s,a,s
′) + q(s, a)

, (9)

=
efψ,ω(s,a,s

′)

efψ,ω(s,a,s
′) + πθ(a|s)

, (10)

where fψ,ω(s, a, s′) = rψ(s, a) + γΦω(s′) − Φω(s) is a
potential-based reward function, rψ(s, a) is a reward func-
tion approximator and Φω is reward shaping term controlled
by the dynamics. In (Fu et al., 2018) fψ,ω(s, a, s′) is re-
ferred as disentangled reward function (Ng et al., 1999b)
due to rψ(s) being indifferent to the changes in dynamics
T .

3. Off-policy Adversarial Inverse
Reinforcement Learning

Off-policy-AIRL algorithm is inspired from DAC
(Kostrikov et al., 2019), which is an adversarial imitation
learning algorithm. DAC addresses two existing problem
with AIL algorithms, which are reward function bias
and sample inefficiency. Reward functions used in these
algorithms induce an implicit bias by using strict positive
or negative reward functions, which may work for some
environments but in many cases become a reason for
sub-optimal behavior.

Furthermore, (Kostrikov et al., 2019) shows adversarial
methods improperly handle terminal states. This intro-
duces implicit reward priors that can affect the policy‘s
performance. In particular, many imitation learning imple-
mentations (Kim & Park, 2018; Ho & Ermon, 2016; Fu
et al., 2018) and MDPs omit absorbing states sa. Thus
they implicitly assign 0 reward to terminal/absorbing states
and adds a bias to the reward learning process. Thus
we use the same approach to learn the reward for ab-
sorbing states. Return of the terminal state is defined as
RT = r(sT , aT ) +

∑∞
t=T+1 γ

t−T r(sa, .), where r(sa, 0)
is learned reward, instead of just RT = r(sT , aT ). To
make the implementation more stable, the terminal reward
is analytically derived using the following equation:

RT = r(sT , aT ) + γ
r(sa, .)

1− γ
(11)

Like any other imitation learning algorithm DAC only learns
the policy. We want to use the best of both worlds and thus

replace the binary discriminator of DAC and use formulated
discriminator function from AIRL (Fu et al., 2018) to learn
a reward function approximator along with the policy. From
(Fu et al., 2018) it is evident that AIRL provides a poor
imitation performance compared to GAIL. It is important to
note that the best performing policy in (Fu et al., 2018) for
imitation task is trained using state-action dependent reward
function rψ(s, a), which fails to re-train policy in the trans-
fer learning task. For state dependent reward function rψ(s)
(Fu et al., 2018) successfully completes transfer learning
task but it comes with a cost of poor imitation performance.
In this work, we perform transfer learning using the same
configuration that works best in imitation performance. We
improve upon the prior IRL algorithm performance and
while still being sample efficient by using Soft-Actor-Critic
(SAC) (Haarnoja et al., 2018) as the generator.

We store our experience in a replay bufferR to utilize them
during the off-policy update of the generator. After each
time the environment reaches a terminal condition and resets,
we update our discriminator and generator for the same
episodic timesteps. We use an expert bufferRE to store the
expert trajectory and sample the (sE , aE , sE

′) pair in batch
while update our discriminator.

3.1. Discriminator update rule

During discriminator update we randomly sample mini-
batch of state-action-next-state pairs (s, a, ., s′)b from both
expert buffer RE and replay buffer R. We use following
equation derived in (Fu et al., 2018) to compute the discrim-
inator output,

Dψ,ω =
efψ,ω(s,a,s

′)

efψ,ω(s,a,s
′) + πθ(a|s)

. (12)

where

fψ,ω =rψ(s) + γΦω(s′)− Φω(s), (13)
=rψ(s) + γVω(s′)− Vω(s). (14)

Here reward approximator rψ can be a function of state,
state-action or state-action-next-state and Φ can be any func-
tion that gives a measure of being at any state s. Similar to
(Fu et al., 2018) we use value function Vω as reward shaping
terms. We find the best imitation performance using state
dependent reward function.

Output of the discriminator will predict likelihood of be-
ing an expert and thus objective of the discriminator is to
minimize following binary cross entropy loss:

min Lψ,ω = min

B∑
b=1

[− logDψ,ω(sb, ab, s
′

b)−

log(1−Dψ,ω(sbE , abE , s
′

bE ))]. (15)
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With in few iterations of the discriminator update, it easily
can classify the expert from the generator data. Thus to
make the generator learning more stable we use gradient
penalty (Gulrajani et al., 2017; Kostrikov et al., 2019).

3.2. Generator update rule

In IRL setting, we consider the actual reward from the envi-
ronment is non-existent and rather formulate a reward ap-
proximator to train policy. AIRL (Fu et al., 2018) algorithm
uses a on-policy policy-gradient algorithm as its generator
and proposes following reward approximator r̂(s, a, s′) to
update the policy:

r̂ψ,ω(s, a, s′) = logDψ,ω(s, a, s′)− log(1−Dψ,ω(s, a, s′)).
(16)

Using equation (12) it is also referred as entropy regularized
reward function:

r̂ψ,ω(s, a, s′) = log
efψ,ω(s,a,s

′)

efψ,ω(s,a,s
′) + π(a|s)

−

log
πθ(a|s)

efψ,ω(s,a,s
′) + πθ(a|s)

,

=fψ,ω(s, a, s′)− log πθ(a|s). (17)

For improving imitation performance and sample efficiency
we use SAC as our generator. SAC being an off-policy
algorithm, samples (s, a, s′, done) tuple from buffer when
trains the network. For our algorithm we experiment dif-
ferent reward approximator which is discussed in following
section and use trained reward approximator to update critic
or Qφ function in SAC with entropy term through following
gradient step:

∇φJQ(φ) =∇θQφ(st, at)
[
Qφ(st, at)− r̂ψ,ω(s, a, s′)+

γQφ′(st+1, at+1)− α log πθ(at+1|st+1)
]
.

(18)

Similar to (Fujimoto et al., 2018; Haarnoja et al., 2018) we
update actor or policy πθ for every second update of our Qφ
function using following gradient step:

∇θ[Eat∼πθ [α log πθ(at|st)−Qφ(st, at)]]. (19)

3.3. Reward function selection

Implementation of AIRL discriminator (Fu et al., 2018) does
not work off the shelf as now we have to train an off-policy
generator. We experiment on different way to compute the
reward function for the generator update.

In AIRL, the author uses the value function of the states
Vω(s) to measure additional shaping terms. We experiment

on different variations of reward approximator r̂ψ,ω to up-
date policy and disentangled reward function fψ,ω to com-
pute discriminator output so that we find the combination
of these two approximators that gives the best performance
in off-policy-AIRL.

Implementation 1:

• Policy update using :
r̂ψ,ω(s, a, s′) = logDψ,ω(s, a, s′)−
log(1−Dψ,ω(s, a, s′))

• Disentangled reward function :
fψ,ω = rψ(s, a) + γVω(s′)− Vω(s)

Implementation 2

• Policy update using :
r̂ψ,ω(s, a, s′) = logDψ,ω(s, a, s′)−
log(1−Dψ,ω(s, a, s′))

• Disentangled reward function :
fψ,ω = rψ(s) + γVω(s′)− Vω(s)

Implementation 3

• Policy update using :
r̂ψ,ω(s, a, s′) = rψ(s, a)

• Disentangled reward function :
fψ,ω = rψ(s, a) + γVω(s′)− Vω(s)

Implementation 4

• Policy update using :
r̂ψ,ω(s, a, s′) = rψ(s)

• Disentangled reward function :
fψ,ω = rψ(s) + γVω(s′)− Vω(s)

For implementation (1) and (2), we use the exact policy
update rule which is used in AIRL (Fu et al., 2018). In
implementation (1) we consider a state dependent reward
function rψ(s) and for implementation (2) we consider re-
ward to be a function of state-action pair rψ(s, a). As we
see from equation (16), reward computed to update policy
is equivalent to entropy regularized reward function. We
evaluate the disentangled reward function for both state
dependent rψ(s) and state-action dependent rψ(s, a). For
implementation (3) and (4) we follow similar comparative
study where policy update discard entropy regularization
and use direct output from our reward approximator rψ . As
discussed in DAC (Kostrikov et al., 2019), strict negative
or positive reward approximator induces bias. Similar to
DAC, our reward approximator rψ gives both positive and
negative rewards thus does not suffer reward biasing.
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4. Transfer learning task
Advantage of IRL over imitation learning is that we can
leverage the learned reward function to retrain a new policy.
If the reward function captures the underlying objective
of an agent, then it is possible to use the reward function
under robust changes of the dynamics. Imitation learning
successfully learn policy in the training domain but it is not
possible to use the policy when there is a significant domain
shift (Fu et al., 2018). We use the learned reward function
from off-policy-AIRL algorithm to re-train our policy in
transfer learning setting. To the best of our knowledge AIRL
(Fu et al., 2018) is the only IRL framework that shows utility
of reward function in transfer learning for continuous control
tasks and thus we demonstrate our experiments using same
environments from (Fu et al., 2018) (see Figure 1) and we
also consider expert demonstrations to be absent for the
transfer tasks.

For transfer learning experiments we consider dynamic
changes in following two criterion, where either (1) dy-
namics of the agent or (2) dynamics of the environment
changes while the goal/objective of the agent and action
dimension remain the same. Through theses experiments
we show the learned reward function rψ indeed can help
the policy to behave under dynamic changes even when
expert behavior is completely absent. For transfer learning
experiments we use the same hyper-parameter and update
rules described in prior.

4.1. Criterion:1

By changing dynamics of an agent, we refer to a significant
structural change of an agent. To evaluate transfer learning
performance under this criterion we use Customized Ant (Fu
et al., 2018) environment. In both imitation and transfer
task the quadrupedal Ant requires to run forward, while
dynamics of the agent during test session is changed by dis-
abling and shrinking two legs. In MuJoCo setting, (Fu et al.,
2018) sets the gear ratios to 1, whereas the other joints were
set to 150. The gear ratio is a parameter which translates
actions to torques on the joints, so the disabled joints are
∼ 150x more difficult to move. This significantly changes
its gait. In a MDP this puts a restriction in action space A,
which results in a new transition dynamics T ′(s|s, a). Thus
optimal policy π∗ is changed even though the objective and
action-dimension remains the same.

4.2. Criterion:2

By changing dynamics of the environment, we consider
notable variation in the trained environment such that it
directly results in a different transition dynamics T ′(s|s, a)
without putting restriction in action-space A. Objective of
Shifting Maze (Fu et al., 2018) task is to reach to a specific

goal position, where during imitation learning, agent is
trained to go around the wall on the left side, but during
transfer task environment setup is changed and must go
around the wall on the right. Thus optimal policy π∗ is
changed even though the objective and the dynamics of the
agent remains same.

Figure 1. Top row: Ant environment is used to perform experiment
under criterion 1 Bottom row: For shifting maze task, the agent
(blue) is required to reach at the goal (green) and is being used for
experiment under criterion 2

5. Multiplicative Compositional Policies
Policy often gets overfitted over one task and thus become
harder to re-train during transfer learning task. Different
techniques such as early stopping or regularization can be
helpful in this case. An alternative solution is provided
by (Peng et al., 2018) through using variational bottleneck
technique to control over the information that is fed to the
discriminator using mutual information theory, which allows
more controlled update in the generator. But this technique
is highly dependent on hyper-parameter of the bottleneck
itself, thus performance can be varied vastly if not tuned
properly for each task. We want to learn a policy that gives
a good performance during transfer learning without being
dependent on exact hyper-parameter tuning. We propose us-
ing Multiplicative Compositional Policy (MCP) (Peng et al.,
2019) to improve policy performance in transfer learning
task. MCP was introduced to combine multiple primitive
skills in RL setting and these primitve skills are controlled
using a gating function. We propose using multiple primi-
tive networks to learn single skill in IRL setting. Using a
weighted multiplicative composition of Gaussian primitives
improves imitation performance and allows more flexibility
in composing into new policy in transfer learning.

MCP (Peng et al., 2019) tries to learn different skills with
different primitive policies and then reuse those learned
skills by combining them to do a more sophisticated task.
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In hierarchical learning (Faloutsos et al., 2001; Sutton et al.,
1999; Jordan & Jacobs, 1992; Peng et al., 2016) it is com-
mon to learn premitives and then find a composite policy
π(a|s) by weighted sum of distribution from premitives
πi(a|s). A gating function computes the weight wi, that
determines the probability of activating each premitive for a
given state, s. Composite policy can be written as:

π(a|s) =

k∑
i=1

wi(s)πi(a|s),
k∑
i=1

wi(s) = 1, wi(s) > 0.

(20)
Here k denotes the number of primitives and this can be
referred as additive model. Standard hierarchical learning
models can sequentially select particular skill over time. In
other words, can activate single primitive at each timestep.
MCP (Peng et al., 2019) proposes an multiplicative model,
where multiple primitives are activated at a given time-step.
This allows an agent to learn a complex task requiring to
perform more than one sub-task at a time.

MCP (Peng et al., 2019) decomposes agent’s policy into
premitives, train those primitive policies on different sub-
tasks and then obtain a composite-policy by multiplicative
composition of these premitives. Here each primitive is
considered as distribution over actions and the composite
policy is a multiplicative composition of these distribution.
Thus,

π(a|s, g) =
1

Z(s, g)

k∏
i=1

πi(a|s, g)wi(s,g), wi(s, g) ≥ 0.

(21)

MCP enables an agent to activate multiple primitives si-
multaneously with each primitive specializing in different
behaviors that can be composed to produce a continuous
spectrum of skills, whereas, standard hierarchical algorithm
only activate single primitive at a time.

6. MCP in off-policy-AIRL
MCP learns premitive policies πi by training them into dif-
ferent sub-tasks and then try to learn more complex task
leveraging the learned skills. But in transfer learning exper-
iments, we use MCP to learn single task. The underlying
idea is to observe whether it can relearn the composition
of different action parameters when we put them in dy-
namic scenarios. For example, during transfer learning
experiments (Fu et al., 2018) disables two legs and thus it
is important for the agent to re-optimise it’s policy to walk
in this transfer learning setup. Our initial objective is to
see if MCP can decompose motor skills for a single task
and re-optimise the learned policy by re-training the gating
function. We refer this new policy as SAC-MCP.

In MCP (Peng et al., 2019), experiments were conducted

using on-policy algorithms in RL setting and the policy
parameters were considered to be state and goal dependent.
We explore this concept to decompose motor skill over
single task in IRL setting using off-policy algorithm.
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Figure 2. Generator architecture for SAC-MCP.

7. Experimental Setup
Similar to (Ho & Ermon, 2016; Kostrikov et al., 2019) dis-
criminator is 2 layer MLP of 100 hidden units with tanh
activation. Our generator consists of separate Actor and
Critic neural network and follows the architecture used in
(Kostrikov et al., 2019; Fujimoto et al., 2018), where both
of these networks have 2 layer MLP of 400 and 300 hidden
units with ReLU activation. To implement SAC-MCP, we
modify Actor network (see Figure 2) by adding multiple
premitive networks with same configuration described in
(Peng et al., 2019).

We have trained all networks with the Adam optimizer
(Kingma & Ba, 2014) from PyTorch, which uses default
learning rate of 1e−3. For our experiment we trained our
algorithms on MuJoCo (Todorov et al., 2012) continuous
control task environments. For transfer learning experiments
we use Custom-Ant and Shifting Maze environments from
(Fu et al., 2018). Performance curve is obtained using the
mean over 10 experiments for 0-9 seeds and evaluated after
each 5000 interaction with the environment. During each
evaluation we have stored the average performance of 10
runs.

8. Results
8.1. Reward function selection

We conduct experiment on CustomAnt-v0 (Fu et al., 2018)
to select reward function for policy update. We train SAC
policy and collected 50 trajectory from the expert. We keep
our seed fixed to 0. Figure 3(a) gives the performance
curve using actual reward from the environment and it is
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evident that reward signal directly from the reward function
approximator (Implementation 4) gives better policy perfor-
mance in imitation task. We also see the cumulative reward
achieved from reward approximator rθ (see Figure 3(b))
replicates the actual performance curve. As our experiment
shows drastic difference in performance we have not done
comparative study for multiple seeds or other environments.
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Figure 3. Performance comparison of Off-policy AIRL for differ-
ent update rules. Here figure (a) gives the performance curve using
actual reward from the environment (b) shows the cumulative
reward achieved from reward approximator rθ

As demonstrated in Figure 4 using implementation-4 off-
policy AIRL gives a better imitation performance than
DAC in Hopper-v2 and Walker2d-v2 environments within
1e6 iterations, while provides comparable performance for
HalfCheetah-v2 and Ant-v2 environments after 2e6 itera-
tions.
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Figure 4. Performance Comparison of DAC and Off-policy AIRL
over continuous control task

8.2. Performance in transfer learning

We test trained agent in transfer learning task under criterion
(1) and (2). We demonstrate the utility of learning reward
function which gives us an advantage of learning IRL over
imitation learning. In IRL setting, Off-policy AIRL learns
expert like behavior in Custom Ant environment but suf-
fers from variance in Shifting maze task. We do not tune
separate hyper-parameter for individual environment but do-
ing so may reduce performance variance for Shifting maze
environment.

As illustrated in Figure 1 during transfer learning under
criterion-1, agent’s gait changes significantly and as can be

0.0 0.2 0.4 0.6 0.8 1.0

Time Steps 1e6

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Re
wa

rd
s Environment-CustomAnt-v0

Off-policy-AIRL(Generator:SAC learned temp)
Expert: SAC

0.0 0.2 0.4 0.6 0.8 1.0

Time Steps 1e6

4

3

2

1

Cu
m

ul
at

iv
e 

Re
wa

rd
s Environment-PointMazeLeft-v0

Off-policy-AIRL(Generator:SAC learned temp)
Expert: SAC

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Re
wa

rd
s

Environment-DisabledAnt-v0

Off-policy AIRL (Generator: SAC learned temperature)
Expert: SAC

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time Steps 1e6

4

3

2

1

0

Cu
m

ul
at

iv
e 

Re
wa

rd
s

Environment-PointMazeRight-v0

Off-policy-AIRL(Generator:SAC learned temp)
Expert: SAC

Figure 5. Top row:Performance Off-policy AIRL over continuous
control task Bottom row:Performance Off-policy AIRL during
transfer learning task.

seen in Figure 4 off-policy-AIRL fails to re-learn the policy
using reward function. But we do not conclude that it is
not possible to relearn policy under this criterion using off-
policy-AIRL. It is demonstrated in (Ha, 2018) that changing
a better structure of agent’s body not only is better suited
for the task but also facilitates policy learning. The environ-
ment that we use in criterion-1 was introduced in (Fu et al.,
2018), where the structure of the body of the quadrupedal
Ant was changed (Fu et al., 2018) for transfer learning by
shrinking two legs and making other two larger. But the spe-
cific increment or decrement of the legs may have favored
for (Fu et al., 2018) to re-learn policy when two legs are
paralyzed in transfer learning. A hyper-parameter tuning of
the structural change may work for our proposed algorithm
as well. Experiments with more structural flexibility are
required to come to a solid conclusion under this criterion.

On the other hand for Shifting maze environment (see Figure
4) it successfully completes the task but suffer from high
variance in performance.

8.3. Performance comparison for using MCP

Performance of our MCP implementation in IRL setting is
shown in Figure 6. Using SAC-MCP improves the imita-
tion performance in multiple (HalfCheetah-v2 and Ant-v2)
MuJoCo control taks.

We again conduct our transfer learning experiments on
Shifting-Maze tasks. Here we do not load prior gating func-
tion. We compare performance with and without re-training
the actor. Our initial hypothesis is that having multiplicative
composition of Gaussian primitives should allow us with
diverse behavior by only training the gating function during
transfer task. But Figure 7 shows we are not able to learn
shifting maze task without retraining the actor networks. We
compare performance of SAC-MCP for k = {4, 8} premi-
tives (see Figure 7). For K = 8 it reduces the performance
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Figure 6. Performance Comparison of SAC and SAC-MCP as gen-
erator in off-policy-AIRL over continuous control task.

variance suffered by SAC.
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Figure 7. Performance of off-policy-AIRL (Generator: SAC-
MCP) during transfer learning. Left:Train only gating function.
Right:Train both policy and gating function

8.4. Random State Initialization

We initialize the environment from a random state. As we
retrain already learned policy over one task, it does not give
much exploratory action. Thus initializing environment at
different state will help to explore the new task. We use
expert agent to run for 0-100 steps and then stop at random,
thus enabling the learning agent to start at random state
every time the environment resets. It allows an agent to
explore from a state that is expected to be visited by an
expert. At the same time, using learned policy (from prior
imitation task) to take actions will result into better qual-
ity of sequential observations. We see in Figure 8 random
initialization improves performance and also reduces per-
formance variance for both SAC and SAC-MCP on transfer
learning task for shifting maze environment.

9. Discussion and Conclusion
We propose an off-policy IRL algorithm in adversarial learn-
ing which learns policy using its approximated reward func-
tion. We use SAC as generator to improve imitation per-
formance while still being sample efficient. We compare
different way to compute reward functions for off-policy
generator update and experimentally find simple state depen-
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Figure 8. Performance Comparison of SAC and SAC-MCP as gen-
erator during transfer learning with random state initialization.
Left:Train only gating function of SAC-MCP. Right:Train both
policy and gating function of SAC-MCP

dent reward network without entropy regularization works
best for our algorithm. We compare our imitation perfor-
mance with state-of-the-art imitation learning algorithm to
show our persistent expert like performance over continuous
control environments.

We experimentally demonstrate the utility of learned reward
function using off-policy-AIRL when the expert demon-
strations are non-existent in transfer learning. We compare
performance over two transfer learning criterion, where ei-
ther (1) the dynamics of the agent or (2) the dynamics of the
environment changes while the goal/objective and action
dimension remain the same.

Furthermore, we propose using MCP model to learn single
primitive to achieve more flexibility in retraining policy in
transfer learning. We observe an improved performance for
using SAC-MCP on both imitation performance and transfer
learning. We also conduct experiments under random state
initialization, which helps the agent to explore from an state
that is expected to be visited in the new environment and
reduces performance variance over prior experiments.

But unfortunately, our algorithm (using both SAC and SAC-
MCP as generator) fails when the (criterion 1) dynamics of
the agent is changed in transfer learning. The quadrupedal
Ant has a very specific increment and decrement of the legs,
which may have favored for (Fu et al., 2018) to re-learn
policy when two legs are paralyzed in transfer learning. As
specific body structure of an agent can facilitate learning
policy over a task (Ha, 2018), experiments using environ-
ments with more structural flexibility is required to come to
a conclusion under this criterion.
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