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Abstract—We derive sufficient conditions for sam-
pling with derivatives in shift-invariant spaces gener-
ated by an exponential B-spline. The sufficient condi-
tions are expressed by a new notion of measuring the
gap between consecutive points. As a consequence,
we can construct sampling sets arbitrarily close to
necessary conditions.
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I. INTRODUCTION

We consider shift-invariant spaces: given a gen-
erator φ ∈ Lp(R), we denote its integer translates
by Tℓφ(x) = φ(x − ℓ) and with V p(φ) ⊆ Lp(R)
the subspace

V p(φ) :=
{∑

ℓ∈Z
cℓTℓφ ∈ Lp(R), c ∈ ℓp(Z)

}
.

(I.1)
If φ = sinc, then V 2(sinc) is the Paley-Wiener
space PW 2(R) of band-limited functions. In this
sense, shift-invariant spaces are a generalization of
the Paley-Wiener space. In applications in signal
processing, shift-invariant spaces are nowadays of-
ten used instead of band-limited functions since the
generator can be tuned to the specific problem at
hand. For instance, a fast decay of the generator φ
is reflected in a fast convergence rate of the local
series representation of a function f ∈ V p(φ).
This is in stark contrast to PW 2(R), since sinc
only decays as x−1. From the numerics standpoint,
ideally, φ is compactly supported, in which case
each point evaluation can be computed as a finite
sum. Additional local properties of f ∈ V p(φ),
such as differentiability and analyticity, can be
implemented by imposing them on the generator

φ. The focus here is on compactly supported right-
continuous generators with only finitely many jump
discontinuities. In this case, the following charac-
terization holds, cf. [10, Thm. 3.5], [13, Thm. 29].

Proposition I.1. Let φ be a bounded compactly
supported function. There exist positive constants
0 < Ap ≤ Bp such that for all c ∈ ℓp(Z) holds

Ap ∥c∥p ≤
∥∥∥∑

ℓ∈Z
cℓTℓφ

∥∥∥
p
≤ Bp ∥c∥p (I.2)

if and only for all ω ∈ R holds

0 <
∑
ℓ∈Z

|φ̂(ω + ℓ)|2 . (I.3)

If the inequalities hold, then we say that φ has
stable integer translates.

We now define the sampling problem. We are
given a compactly supported φ ∈ CS−1(R), with
a right-continuous φ(S) with finitely many jump
discontinuities. Let X ⊆ R be a separated set, and
µX : X → {0, . . . , S} its multiplicity function. We
call (X,µX) a sampling set with multiplicities for
V p(φ) if there exists constants 0 < Ap ≤ Bp such
that for all f ∈ V p(φ) holds

Ap ∥f∥pp ≤
∑
x∈X

µX(x)∑
s=0

∣∣∣f (s)(x)∣∣∣p ≤ Bp ∥f∥pp .

(I.4)
Sampling with derivatives is interesting in many
applications because it allows us to incorporate ad-
ditional features such as local trends ( first deriva-
tive) or convexity conditions ( second derivative)

For band-limited functions, the problem has been
studied in [11] and some preliminary results for
shift-invariant spaces can be found in [9], [16].



II. EXPONENTIAL B-SPLINES

A. EB-splines as generators
We begin by settling the technical prerequisites

for the investigated generators. We refer to [3], [12]
for further details.

Definition II.1. An exponential B-spline (EB-
spline) Em,α : R −→ R of order m for α ∈ Rm is
a function of the form

Em,α(x) :=

m∏
s=1

∗
eαsxχ

[0,1)(x), (II.1)

where
∏∗ denotes the convolution product.

Lemma II.2. Let φ = Em,α be an EB-spline of
order m. Then φ has stable integer translates.

Proof. An EB-spline is supported on [0,m]. The
Fourier transform of an EB-spline’s is given by

Êm,α(ω) =

m∏
s=1

eαs−2πiω − 1

αs − 2πiω
. (II.2)

One can easily verify that this has no 2π-periodic
zeros. The claim follows from Proposition I.1

B. Schoenberg-Whitney conditions
The name EB-spline comes from an equiva-

lent construction of φ = Em,α as a B-spline
with respect to an associated extended complete
Chebyshev system (ECC-system) with the exponen-
tial weights w1(x) = eα1x, ws = e(αs−αs−1)x,
2 ≤ s ≤ m, through divided differences [15,
Sec. 9.4]. ECC-systems have associated differential
operators. We define D0 f = f and

Ds f := d
dx

f
ws
, Ls := DsDs−1 . . . D0, (II.3)

0 ≤ s ≤ m. By Leibniz’s rule, Ls are just
perturbations of the standard derivatives. An EB-
spline φ belongs to Cm−2(R) and is piecewise
Cm−1. The only discontinuities of φ(m−1) are
the integer points 0, 1, . . . ,m and they are jump
discontinuities. For the jump discontinuities i ∈ Z,
we define Lm−1φ(i) to be the right-sided limit

Lm−1φ(i) := lim
x↘i

Lm−1φ(x). (II.4)

Chebychev systems are essentially systems
which admit unique interpolation. Extended
Chebychev systems extend this property to
Hermite interpolation. For the associated EB-
splines, this property holds as follows.

Theorem II.3. Let φ be an EB-spline of order m.
Further let t0 ≤ t1 ≤ · · · ≤ tD and set

di := max {ℓ : ti = · · · = ti−ℓ} , 0 ≤ i ≤ D.
(II.5)

The collocation matrix

M

(
t0, . . . , tD
φ, . . . , TDφ

)
:=

(
Ldi

Tℓ−1φ(ti)
)
0≤i,ℓ≤D

(II.6)
has a non-negative determinant. The collocation
matrix is invertible if and only if

ti ∈

{
(i, i+m), di < m− 1

[i, i+m), di = m− 1,
(II.7)

for all 0 ≤ i ≤ D.

The conditions (II.7) are referred to as
Schoenberg-Whitney conditions, cf. [14]. The col-
location matrix is the matrix that describes the
Hermite interpolation problem

f =

D∑
ℓ=0

cℓuℓ, Ldif(ti) = ξi, 0 ≤ i ≤ D.

(II.8)
The Schoenberg-Whitney conditions characterize
when the Hermite interpolation problem has a
unique solution.

III. SAMPLING RESULTS

We state the two main results here. The proofs
can be found in [6].

Theorem III.1. Let φ be an EB-spline of order
m ∈ N supported on [0,m]. Assume X ⊆ R
with multiplicity function µX satisfies the following
properties:

(i) X is δ−separated for some δ > 0.
(ii) S := max

x∈X
µX(x) ≤ m− 1.

(iii) There exist integers M,L > 0 and ε > 0,
such that for every k ∈ Z, there exist points
xk1 < xk2 < · · · < xkN(k) in X ∩ IM,L(k) and
nonnegative integers µk

1 , . . . , µ
k
N(k) ∈ N0

with the following three properties:

µk
j ≤ µX(xkj ) ∀k ∈ Z, 1 ≤ j ≤ N(k),

(III.1)
N(k)∑
j=1

(
1 + µk

j

)
= L+m−1 ∀k ∈ Z, (III.2)

xkj ∈
( [
µk
j −m+ 1 + ε, 1− ε

]
+M + kL+

j−1∑
n=1

(
1 + µk

n

) )
.

(III.3)

Then (X,µX) is a sampling set for V p(φ) for all
p ∈ [1,∞].

An example of a good local point distribution is
depicted in Figure 1. The theorem relies on com-
pactness arguments and the Schoenberg-Whitney



Fig. 1. Non-vanishing shifts of φ(x) =
∏∗ 4

j=1 exχ[0,1)(x) on
[0, 4]. The sampling points are x1 = 0.5, x2 = 3, x3 = 3.9,
with multiplicities µX(x1) = µX(x2) = 2, µX(x3) = 0.
The first sampling point lies in the support of the first three
shifts of φ (dot-dashed), the second point is in the support of
the next three shifts of φ (dashed), and the last point - in the
support of the last shift of φ (solid).

conditions. Our second result replaces compactness
with a weighted density condition and relies on
methods in [1], [8], [9].

Theorem III.2 (Maximum Gap Theorem). Let φ
be an EB-spline of order m and let X ⊆ R be a
separated set with µX : X → {0, . . . ,m − 1}. If
the multiplicity function satisfies

dist ({x ∈ X : µX(x) = m− 1} , Z ) > 0
(III.4)

and the weighted maximum gap satisfies

mg(X,µX) :=

sup
j∈Z

xj+1 − xj
1 + min{µX(xj), µX(xj+1)}

< 1,
(III.5)

then (X,µX) is a sampling set for V p(φ).

If the last discontinuous derivative is not sam-
pled, then we obtain the following corollary.

Corollary III.3. Let φ be an EB-spline of order m
and let X ⊆ R be a separated set with multiplicity
function µX : X → {0, . . . ,m−2}. If the weighted
maximum gap satisfies

mg(X,µX) < 1, (III.6)

then (X,µX) is a sampling set for V p(φ).

Remark. If the multiplicity function is constant,
i.e., µX ≡ S, the weighted maximum gap is a
multiple of the classical maximum gap:

mg(X) := sup
x,y∈X,x ̸=y

|x− y| = S ·mg(X,µX).

(III.7)
In the case of ordinary sampling, i.e., µX ≡ 0, the
assumption mg(X) = mg(X,µX) < 1 in Theorem

III.2 implies that the conditions of Theorem III.1,
and the reverse implication does not hold. Interest-
ingly enough, if we allow non-trivial multiplicities,
there are sampling sets with multiplicities which
satisfy the conditions of only one of the theorems
III.1 and III.2. Furthermore, the results are optimal
in the sense that both theorems provide examples
of sampling sets with (weighted) lower Beurling
density δ = D−(X,µX) for any δ > 1 and
a necessary condition for a pair (X,µX) to be
sampling is D−(X,µX) ≥ 1 [9, Prop. 3.7.].

Corollary III.4. Let φ be an EB-spline of order m
and let X ⊆ R be a separated set with a constant
multiplicity function µX ≡ S < m − 1. If the
maximum gap satisfies

mg(X) < S, (III.8)

then X is a sampling set of multiplicity S for
V p(φ).

IV. IMPLICATIONS FOR GABOR SYSTEMS

We denote with π(x, ω), (x, ω) ∈ R2, the time-
frequency shift (operator) acting on functions as
π(x, ω)f(t) = e2πiωtf(t − x). In terms of stable
expansions, given a window function φ and a
discrete set Λ ⊆ R2, one could ask the question
when a Gabor system G(φ,Λ), defined as

G(g,Λ) = {π(λ)φ : λ ∈ Λ}, (IV.1)

is a (Gabor) frame, i.e., it satisfies the frame
inequality

A ∥f∥22 ≤
∑
λ∈Λ

|⟨f, π(λ)φ⟩|2 ≤ B ∥f∥22 , (IV.2)

with frame bounds 0 < A ≤ B < ∞ independent
of f ∈ L2(R). From the general frame theory, the
inequality implies a stable reconstruction formula

f =
∑
λ∈Λ

⟨f, π(λ)φ⟩ψλ, f ∈ L2(R) (IV.3)

with (⟨f, π(λ)φ⟩)λ∈Λ, and ψλ ∈ L2(R) for all
λ ∈ Λ. Therefore, given φ, we are interested in
determining those discrete sets Λ ⊆ R2 whose
Gabor system G(φ,Λ) is a frame. The popular
methods for lattices Λ = AZ2, A ∈ GL(2,R),
concern duality concepts. For an overview of the
current stand, we refer to the survey [5]. Time-
frequency analysis is well-covered in the textbooks
[2], [4], [7].

While there is no manageable tool available for
arbitrary point configurations, a stepping stone in
that direction are semi-regular sets, e.g., of type
Λ = X × Z. However, even if X is a lattice up to



a few additional or a few missing points, one has to
tackle the problem in a completely different way.
For their work on sampling in shift-invariant spaces
generated by totally positive functions of Gaussian
type, a new connection between sampling in shift-
invariant spaces and Gabor frames was established
in [8, Thm. 3.1, Thm. 3.3].

Theorem IV.1. Assume that φ ∈ C(R) satisfies∑
ℓ∈Z

(
supx∈[0,1] |φ(x+ ℓ)|

)
< ∞ and has sta-

ble integer shifts. Let X ⊆ R be a separated set.
Then the following are equivalent:

(i) The family G(φ, (−X) × Z) is a frame for
L2(R).

(ii) X is a sampling set of the space V p(φ) for
some p ∈ [1,∞].

(iii) X is a sampling set of the space V p(φ) for
all p ∈ [1,∞].

Applying this to EB-splines, we obtain the fol-
lowing corollary.

Corollary IV.2. Let φ be an EB-spline of order
m ≥ 2. Assume X ⊆ R is a discrete set satisfying

(i) X is δ−separated for some δ > 0.
(ii) There exist integers M,L > 0 and ε > 0,

such that for every k ∈ Z, there exist points
xk1 < xk2 < · · · < xkL+m−1 in X ∩ IM,L(k)
with

xkj ∈ [M +kL+ j−m+ ε,M +kL+ j− ε].
(IV.4)

Then G(φ, (−X)×Z) is a Gabor frame. In particu-
lar, G(φ,X×Z) is a Gabor frame if X is separated
and mg(X) < 1.

Proof. We proved that φ has stable integer shifts
in the proof of Theorem III.1. We require m ≥ 2
because the PEB-spline of order 1 is not con-
tinuous. For all higher orders, φ is continuous
and compactly supported, so the previous theorem
applies. The sampling property of X follows from
Theorem III.1, applied to (X, 0), and Theorem
III.2. The claim follows from Theorem IV.1.

A direct consequence of the last corollary is the
lattice case.

Corollary IV.3. Let φ be an EB-spline of order
m ≥ 2. Then G(φ, aZ × Z) is a Gabor frame if
and only if 0 < a < 1.

Proof. The sufficient part is due to Corollary IV.2.
The necessary part is due to the Balian-Low theo-
rem.
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