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Abstract. Accurate segmentation of Head and Neck (H&N) tumor in
PET/CT images is essential for diagnosis and treatment planning, yet
remains challenging due to heterogeneous lesion morphology and vari-
able physiological uptake. In this paper, we propose 3D U-Net-based
architecture with a PET-guided Multimodal Spatial Attention Module
(PSAM). PSAM consumes the PET image to generate a spatial attention
map that gates encoder skip features. Furthermore, we use Squeeze-and-
Excitation (SE) Normalization, which dynamically recalibrates channel
responses and improves multimodal fusion. Notably, we introduce a novel
molecular-information-guided preprocessing pipeline, which minimizes
the size of input data. This design enables modality-aware modeling and
aims for robust, generalizable segmentation of both primary Gross Tu-
mor Volume (GTVp) and nodal Gross Tumor Volumes (GTVn) across
multi-center PET/CT data. We obtain mean Dice of 0.6073 with class-
wise Dice 0.7133 (GTVp) and 0.5013 (GTVn) on the validation set.
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1 Introduction

In recent years, H&N tumor segmentation has become a critical issue in can-
cer research, clinical diagnosis, and surgical planning. Medical images such as
CT and PET play an important role in radiotherapy and treatment. However,
traditional manual segmentation methods are time-consuming, labor-intensive,
and subject to inter-expert variability. To overcome these challenges, significant
progress has been made in automated segmentation methods, particularly those
based on convolutional neural networks (CNNs).
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One of the most successful models in this domain is U-Net [1, 2]. Its encoder-
decoder architecture with skip connections has demonstrated exceptional per-
formance in medical image segmentation by effectively combining low-level and
high-level features. Despite its success, U-Net can face limitations in extracting
features for segmenting complex and diverse lesion morphologies. For instance,
segmenting complex H&N tumors or subtle lymph nodes can be challenging with
a single-scale feature approach. Furthermore, the performance of any model is
highly dependent on the quality of its input data and the preprocessing methods
used, which is amplified in HECKTOR challenges [3, 4].

To address these limitations, U-Net architecture is supported by PSAM net-
work. This attention module [5] allows the model to simultaneously consider
PET features, enabling it to better recognize complex structures and subtle le-
sions within H&N tumor PET/CT images. We use SE Normalization [6] rather
than Instance Normalization [7] which maximizes representational capacity by
assigning dynamic weights to each channel of the feature maps. We propose
a molecular-information-guided preprocessing pipeline that standardizes image
geometry, localizes the field-of-view, and applies a novel cranial “brain-peak cut”
to suppress non-relevant uptake. This pipeline reduces variability across centers
and provides cleaner, more consistent inputs for robust model training.

2 Method

2.1 Dataset

The HECKTOR 2025 challenge provides 680 paired PET/CT patient cases from
seven centers, with no bounding boxes supplied. Each case includes one 3D PET
and one 3D CT image, together with a label volume delineating Gross Tumor
Volume (GTVp) and nodal Gross Tumor Volumes (GTVn). We used 600 cases for
training and 80 cases for validation. The center-wise distribution is summarized
in Table 1.

Table 1. Number of patients for train/validation/total in seven centers

Center Patients (train/val/total) Center Patients (train/val/total)

CHUM 44/12/56 HMR 14/4/18
CHUP 64/8/72 MDA 364/32/396
CHUS 60/12/72 USZ 7/4/11
HGJ 47/8/55 Total 600/80/680

The dataset spans seven institutions with unequal per-center case counts and
heterogeneous axial coverage—ranging from head-only to whole-body acquisi-
tions—leading to center-specific differences in field-of-view and uptake patterns
(Fig. 1). To ensure that model selection reflects performance across institutions,
we constructed the validation split in a center-proportional manner.
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Fig. 1. Variation of data size from 7 centers: (a) head only; (b) head and upper body;
(c) whole body

2.2 Data Preprocessing

All CT/PET images were pre-registered. We introduce a molecular-information-
guided pipeline consisting of geometric resampling, cropping, PET-based local-
ization, brain peak cut, normalization, and restoration. The network input is a
two-channel volume (CT, PET) of fixed size 256 x 256 x 112 (x—y—z).

Geometric resampling and voxelwise alignment CT volumes were resam-
pled to A = (1.0, 1.0, 3.0) mm using B-spline interpolation; PET volumes were
resampled linearly and then regridded onto the CT lattice so that spacing, size,
origin, and direction match exactly (voxelwise alignment).

Image cropping. We swept several fixed crop sizes and recorded a binary
outcome per size— Satisfied (¥) if both targets (GTVp=1, GTVn=2) were
fully contained for all cases, and Not satisfied (X) otherwise. Based on this
criterion, we selected the smallest size, 256 x 256 x 112; the detailed pass/fail
outcomes for all candidates are summarized in Table 2.

Molecular-information-guided in-plane localization Let P € R%*Y*X
denote the resampled PET. We detect the superior cranial boundary by scanning
from the top slice for suprathreshold uptake with 7 = 0.5:

ztop:max{ze{o,...,Z—l} max Pz, y, x] >T}. (1)
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Table 2. Crop-size sweep with a pass/fail criterion.

Crop size (HxWxD)  Satisfied
192x192x112
208%x208x112
224x224x112
256 %256 x 64

256 x 256 x96

256x256x112
128x128x128

AAAXXXKX

From the 20-slice slab immediately inferior to zep,

S = {max(0, zeop — 19), ..., Ztop }- (2)
We compute the activity centroid over the suprathreshold set
Q2={(zy,2) €S x{0,....,Y =1} x{0,...,X =1} | Plz,y,2] > 7}. (3)

1 1
e 2w e O w (4)

(z,y,2)€02 (z,y,2)€82

We then crop a 256 x 256 in-plane window centered at (Z,y). Defining half-
widths r, = ry = 128, the coordinates are

z1 = min(max(|Z] — ry, 0), max(0, X — 2r,)), @2 =1 + 21y, (5)

y1 = min(max(|y] — ry, 0), max(0, Y — 2ry)), y2 =y1 + 2ry. (6)
Boundary clamping and zero padding were applied if X < 256 or Y < 256.

PET profile-guided brain peak cut Within the in-plane crop we compute
the PET z-profile:

s(z) = ZP[z,y,x]. (7)
z,y
Its peak index is
Zpeak = argmax s(z). (8)

We anchor the z-window to the top if strong uptake persists on the most
superior slice or the peak is shallow:

mean(P[Z —1,:,:]) > 0.1 or zpeax < 50. 9)
In both cases we extract a contiguous depth of 112 slices:
[Z — 112, Z), top-anchored,
21, 22) = (10)
[max(0, zpeak — 111), 2peax + 1), peak-anchored.

If fewer than 112 slices are available, all available slices are kept and padding is
applied inferiorly, as illustrated in Fig. 2.
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Fig. 2. Brain peak cut. (a) CT volumes before applying the cranial brain-cut, showing
strong cranial uptake; (b) cropped volumes after applying the proposed brain peak cut
along the z-axis.

Final crop volume Thus, the final PET/CT volume is cropped to a fixed
field-of-view of
256 x 256 x 112,

centered in-plane at (z,y) and along z according to Eq. 10.

Intensity normalization and padding Let o(-) denote the logistic sigmoid.
CT is clipped to [—1000, 1000] HU, scaled, then squashed:

norm Chp(ICTa _10007 1000) — (—100())
Iert™ =0 .
1000 — (—1000)

PET is standardized by global z-score and squashed:

[romm U(IPET - M)

g

where p and ¢ are the mean and standard deviation over the cropped PET
volume. The two normalized volumes are stacked as channels, yielding an input
tensor of shape (C, Z,Y, X) with C = 2.

Provenance logging and restoration to native space For each case we
store a JSON sidecar with crop coordinates (z1,x2, Y1, ye, 21, 22), resampled ge-
ometry (size, spacing, origin, direction), and the original CT geometry. After
inference, the predicted mask M on the cropped, resampled grid is pasted into
a zero-initialized canvas of the resampled CT size at indices [21:22, y1:y2, T1:22],
then resampled with nearest-neighbor interpolation onto the original CT grid to
produce Nforig with native spacing, orientation, and dimensions.
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2.3 Network Architecture

The proposed network adopts a 3D U-Net backbone and is organized around
two key modules: a PET-guided spatial attention module (PSAM), and squeeze-
and-excitation normalization (SE Norm). Co-registered CT and PET images
are concatenated along the channel axis and fed to the backbone, while the
PET volume alone is processed by PSAM to produce a spatial attention map
that modulates encoder features and guides decoding. SE Norm is used as the
normalization within backbone blocks.

PET-Guided Spatial Attention Module (PSAM) Motivated by the higher
lesion conspicuity on PET, PSAM takes the PET volume P € RMXDPxHxW
and generates a single-channel attention map passed through a sigmoid. PSAM
is a lightweight U-Net-style subnetwork producing a full-resolution map A;
multi-scale maps {A(S)} for skip levels are obtained by average pooling with
factors {1,2,4}. At each encoder stage s, the encoder feature F(*) is gated by
the corresponding PSAM map before it is concatenated into the decoder, i.e.,

FG) =F&) o AG) (11)

where © denotes element-wise multiplication. Thus PSAM influences the net-
work only via the skip pathway, suppressing physiologic uptake outside lesions
(e.g., salivary glands, brain, bladder) and highlighting metabolically active tu-
mor regions that are fused with the anatomical context from CT.

Squeeze-and-Excitation Normalization (SE Norm) To counter residual
false-positives from PET-only cues and to strengthen CT /PET fusion, we replace
instance normalization (IN) with SE Norm in the convolutional blocks. Given
an input feature x, we first compute instance-normalized features x’ = IN(x).
Global channel descriptors are then passed through a squeeze—excitation opera-
tor fsg to produce per-channel affine parameters (v, 3):

(’7;;6) = fSE(GAP(X/))a Ye = ’70ch + Be, Ve (12>

This modulation performs context-aware reweighting of channels, enabling the
network to down-scale channels dominated by physiological PET uptake while
up-scaling channels aligned with tumor morphology on CT. Practically, SE Norm
stabilizes optimization like IN yet introduces data-dependent channel calibration,
yielding cleaner skip fusion and more reliable decoding.

Loss Function Given the substantial class imbalance inherent to PET/CT
tumor delineation, we optimize the soft Dice objective. For prediction y and
reference y, >
A 2) ., iy +€

ED]CQ(YaY) 1 Z,L glg ¥ Z,L ylg ¥ 67
where the sum runs over voxels (and classes for multi-class outputs) and € is a
small constant for numerical stability. The entire model is trained end-to-end
using this objective without auxiliary constraints.

(13)
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3 Results

We evaluate on the center-proportional validation split of HECKTOR, 2025 (600
train / 80 validation cases). We report the Dice coefficient for the primary tumor
(GTVp) and nodal disease (GTVn), together with their average. All metrics are
computed per case and then averaged over the set. Test-set scores are withheld
by the challenge organizers and are therefore omitted. We compare against UNet,
UNETR [8] and U-Mamba [9].

As summarized in Table 3, our method attains a Dice of 0.7133 on GTVp
and 0.5013 on GTVn, yielding a mean of 0.6073. This improves the mean
Dice over U-Net (0.5949), UNETR (0.5802) and U-Mamba (0.5932). The higher
GTVp score suggests that PET-guided skip gating helps sharpen boundaries in
metabolically active primaries. For GTVn, although our method achieves the
best score among compared approaches, the absolute Dice remains lower than
for GTVp, reflecting the inherent difficulty of segmenting small, low-contrast
nodes.

Table 3. Validation Dice scores on the center-proportional split (80 cases)

Method  GTVp GTVn Mean (GTVp/GTVn)

Ours 0.7133 0.5013 0.6073
UNETR  0.6940 0.4664 0.5802
U-Net 0.7070  0.4828 0.5949
U-Mamba 0.7053  0.4811 0.5932

4 Conclusion

We presented a PET-guided 3D U-Net for H&N tumor and lymph-node seg-
mentation that (i) gates encoder skip features via PSAM, (ii) employs SE-Norm
for stronger channel-wise fusion of CT and PET, and (iii) standardizes in-
puts with a PET-guided brain-cut pipeline. On the HECKTOR 2025 valida-
tion split, the method achieves a mean Dice of 0.6073 without external data or
test-time augmentation. Future work will explore tighter PET-to-CT coupling
(e.g., cross-modal attention in the encoder), uncertainty-aware post-processing,
and automated hyperparameter selection for center-aware generalization.
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