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Abstract
Diffusion models exhibited tremendous progress
in image and video generation, exceeding GANs
in quality and diversity. However, they are usu-
ally trained on very large datasets and are not
naturally adapted to manipulate a given input im-
age or video. In this paper we show how this can
be resolved by training a diffusion model on a
single input image or video. Our image/video-
specific diffusion model (SinFusion) learns the
appearance and dynamics of the single image or
video, while utilizing the conditioning capabili-
ties of diffusion models. It can solve a wide array
of image/video-specific manipulation tasks. In
particular, our model can learn from few frames
the motion and dynamics of a single input video.
It can then generate diverse new video samples of
the same dynamic scene, extrapolate short videos
into long ones (both forward and backward in
time) and perform video upsampling. Most of
these tasks are not realizable by current video-
specific generation methods.

1. Introduction
Until recently, generative adversarial networks (GANs)
ruled the field of generative models, with seminal works
like StyleGAN (Karras et al., 2017; 2019; 2020), Big-
GAN (Brock et al., 2018) etc. (Radford et al., 2015; Zhang
et al., 2019). Diffusion models (DMs) (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020) have gained the
lead in the last years, surpassing GANs by image quality and
diversity (Dhariwal & Nichol, 2021) and becoming the lead-
ing method in many vision tasks like text-to-image genera-
tion, superresolution and many more (Jolicoeur-Martineau
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et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020; Sa-
haria et al., 2022b; Ho et al., 2022b; Nichol et al., 2021; Sa-
haria et al., 2022a; Rombach et al., 2022) (see surveys (Cao
et al., 2022; Croitoru et al., 2022)). Recent works also
demonstrate the effectiveness of DMs for video and text-to-
video generation (Ho et al., 2022c; Singer et al., 2022; Ho
et al., 2022a; Villegas et al., 2022).

DMs are trained on massive datasets and as such, these mod-
els are very large and resource demanding. Applying their
capabilities to edit or manipulate a specific input provided
by the user is non-trivial and requires careful manipulation
and fine-tuning (Avrahami et al., 2022; Gal et al., 2022;
Ruiz et al., 2022; Valevski et al., 2022; Kawar et al., 2022).

In this work we propose a framework for training diffusion
models on a single input image or video - “SinFusion”.
We harness the success and high-quality of DMs at image
synthesis, to single-image/video tasks. Once trained, Sin-
Fusion can generate new image/video samples with similar
appearance and dynamics to the original input and perform
various editing and manipulation tasks. In the video case,
SinFusion exhibits impressive generalization capabilities by
coherently extrapolating an input video far into the future
(or past). This is learned from very few frames (mostly 2-3
dozens, but is already apparent for fewer frames).

We demonstrate the applicability of SinFusion to a variety
of single-video tasks, including: (i) diverse generation of
new videos from a single input video (better than existing
methods), (ii) video extrapolation (both forward and back-
ward in time), (iii) video upsampling. Many of these taks
(e.g., extrapolation/interpolation in time) are not realizable
by current video-specific generation methods (Gur et al.,
2020; Haim et al., 2021). Moreover, large-scale diffusion
models for video generation (Yang et al., 2022; Ho et al.,
2022c) trained on large video datasets are not designed to
manipulate a real input video. When applied to a single in-
put image, SinFusion can perform diverse image generation
and manipulation tasks. However, the main focus in our
paper is on single-video generation/manipulation tasks, as
this is a more challenging and less explored domain.

Our framework builds on top of the commonly used DDPM
architecture (Ho et al., 2020), but introduces several impor-
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Figure 1. Diverse video generation. For each single training video, red row shows consecutive frames from the training video, whereas
the green row show a set of consecutive frames generated by our single video DDPM. Please see the videos in our project page.

tant modifications that are essential for allowing it to train
on a single image/video. Our backbone DDPM network is
fully convolutional, hence can be used to generate images of
any size by starting from a noisy image of the desired output
size. Our single-video DDPM, consists of 3 single-image
DDPMs, each trained to map noise to large crops of an im-
age (a video frame), either unconditionally, or conditioned
on other frames from the input video.

Our main contributions are as follows:
• First-ever diffusion model trained on a single image/video.
• Unlike general large-scale diffusion models, SinFusion
can edit and manipulate a real input video. This includes:
diverse video generation, video extrapolation (both forward
and backward in time), and temporal upsampling.
• SinFusion provides new video capabilities and tasks not
realizable by current single-video GANs (e.g., video extrap-
olation with impressive motion generalization capabilities).
• We propose a new set of evaluation metrics for diverse
video generation from a single video.

2. Related Work
Our work lies in the intersection of several fields: generative
models trained on a single image or video, manipulation of
a real input image/video, diffusion models and methods for
image/video generation in general. Here we briefly mention
the main achievements in each field and their relation (and
difference) from our proposed approach.

Video generation is a broad field of research including
many areas such as video GANs (Vondrick et al., 2016;
Tulyakov et al., 2018; Clark et al., 2019; Skorokhodov et al.,
2022), video-to-video translation (Wang et al., 2018; Bansal
et al., 2018) or autoregressive prediction models (Ballas
et al., 2015; Villegas et al., 2017; Babaeizadeh et al., 2017;
Denton & Fergus, 2018), to name a few. Diffusion models
for video generation are fairly recent and mostly rely on
DDPM (Ho et al., 2020) framework for image generation,
extended to handle videos (Yang et al., 2022; Höppe et al.,
2022; Voleti et al., 2022; Ho et al., 2022c;a;a; Harvey et al.,
2022) (see Appendix D). These methods can synthesize
beautiful videos, however, none of them can modify or
manipulate an existing input video provided by the user,
which is our goal.
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Figure 2. Single Image DDPM. Our single-image DDPM trains on large crops from a single image. It learns to remove noise from noisy
crops, and, at inference, can generate diverse samples with similar structure and appearance to the training image.

Generative Models trained on a Single Image or Video
aim to generate new diverse samples, similar in appear-
ance and dynamics to the image/video on which they were
trained. Most notably, SinGAN (Shaham et al., 2019) and
InGAN (Shocher et al., 2018) trained multi-scale GANs
to learn the distribution of patches in an image. They
showed its applicability to diverse random generation from
a single image, as well as a variety of other image synthe-
sis applications (inpainting, style transfer, etc.). However,
GPNN (Granot et al., 2022) showed that most image syn-
thesis tasks proposed by single-image GAN-based models
can be solved by classical non-parametric patch nearest-
neighbour methods (Efros & Leung, 1999; Efros & Freeman,
2001; Simakov et al., 2008), and achieve outputs of higher
quality while reducing generation time by orders of magni-
tude. Similarly, extensions of SinGAN (Shaham et al., 2019)
to generation from a single video (Gur et al., 2020; Arora &
Lee, 2021) were outperformed by patch nearest-neighbour
methods (Haim et al., 2021). However, nearest-neighbour
methods have a very limited notion of generalization and are
therefore limited to tasks where it is natural to “copy” parts
of the input. While generated samples are of high quality
and look realistic, this is because the samples are essentially
copies of parts of the original video stitched together. They
fail to exhibit motion generalization capabilities. In contrast,
our method generalizes well from just a few frames and can
be easily trained on a long input video. Concurrently to
our work, Kulikov et al. (2022); Wang et al. (2022) trained
DMs on a single image and showed various capabilities.
However, both works focused on generation from a single
image, while we present applications on a single video.

Reference Image Manipulation with Large Generative
Models. One of the practical application of generative
models trained on large datasets is their strong generaliza-
tion capabilities for semantic image editing, often obtained
via latent space interpolation (Radford et al., 2015; Brock
et al., 2018; Karras et al., 2019). Applying these capabili-
ties to an existing reference image was mostly achieved by
GAN “inversion” techniques (Xia et al., 2022), and very
recently by fine-tuning large diffusion models (Gal et al.,
2022; Kawar et al., 2022; Ruiz et al., 2022; Valevski et al.,
2022; Avrahami et al., 2022). However, to the best of our
knowledge, there are no existing large-scale models to-date
which can manipulate an existing input reference video.

3. Perliminaries: Overview of DDPM
Denoising diffusion probabilistic models (DDPM) (Ho et al.,
2020; Sohl-Dickstein et al., 2015) are a class of generative
models that can learn to convert unstructured noise to sam-
ples from a given distribution, by performing an iterative
process of removing small amounts of Gaussian noise at
each step. Since our method heavily relies on DDPM, we
provide here a very brief overview of DDPM and its basics.
To train a DDPM, an input image x0 is sampled, and small
portions of gaussian noise ϵ are gradually added to it in a
parameter-free forward process, resulting in a noisy image
xt. The forward process can be written as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (1)

where ᾱt =
∏t

s=1(1 − βs), βt ∈ (0, 1) is a predefined
parameter and ϵ ∼ N (0, I) is the noise used to generate the
noisy image xt.
A neural network is then trained to perform the reverse
process. In the reverse process, the noisy image xt is given
as input to the neural network, which predicts the noise ϵ
that was used to generate the noisy image. The network is
trained with an L2 loss:

L(θ) = Ex0,ϵ

[
∥ϵ− ϵθ (xt, t)∥2

]
. (2)

In existing DDPM-based methods, The network is typically
trained on a large dataset of images, from which x0 is sam-
pled. Once trained, the generation process is initiated with
a random noise image xT ∼ N (0, I). The image is passed
through the model in a series of reverse steps. In each
timestep t = T, ..., 1, the neural network predicts the noise
ϵt. This noise is then used to generate a less noisy version of
the image (xt−1), and the process is repeated until a possible
clean image x0 is generated.

4. Single Image DDPM
Our goal is to leverage the powerful mechanism of diffusion
models to generation from a single image/video. While the
main contribution of this paper is in using DDPMs for gen-
eration from a single video, we first explain how a diffusion
model can be trained on a single image. In Sec. 5 we show
how this model can be extended to video generation. Some
applications of single image DDPM are found in Sec. 6.

3



SinFusion: Training Diffusion Models on a Single Image or Video

Figure 3. Network Architecture. Our backbone network is a fully
convolutional chain of ConvNext (Liu et al., 2022) blocks with
residual connections. Note that our network does not include any
reduction in the spatial dimensions along the layers.

Given a single input image, we want our model to gener-
ate new diverse samples that are similar in appearance and
structure to that of the input image, but also allow for se-
mantically coherent variations. We build upon the common
DDPM (Ho et al., 2020) framework (Section 3) and intro-
duce several modifications to the training procedure and to
the core network of DDPM. These are highlighted below:

Training on Large Crops. Instead of training on a large
collection of images, we train a single diffusion model on
many large random crops from the input image (typically,
about 95% the size of the original image, Figure 2). We
find that training on the original resolution of the image
is sufficient for generating diverse image samples, even
without the use of multi-scale pyramid (unlike most previous
single image/video generative methods (Arora & Lee, 2021;
Shocher et al., 2018; Shaham et al., 2019; Hinz et al., 2021;
Gur et al., 2020; Granot et al., 2022; Haim et al., 2021)).
By training on large crops our generated outputs retain the
global structure of the input image.

Network Architecture. Directly training the standard
DDPM (Ho et al., 2020) on the single image or its large
crops results in ”overfitting”, namely the model only gen-
erates the same image crops. We postulate that this phe-
nomenon occurs because of the receptive field of the core
backbone network in DDPM, which is the entire input image.
To this end we modify the backbone UNet (Ronneberger
et al., 2015) network of DDPM, in order to reduce the size
of its receptive field. We remove the attention layers as they
have global receptive field. We also remove the downsam-
pling and upsampling layers which cause the receptive field
to grow too rapidly. Removing the attention layers has an
unwanted side-effect - harming the performance of the diffu-
sion model. Liu et al. (2022) proposed a fully convolutional
network that matches the attention mechanism on many vi-
sion tasks. Inspired by this idea, we replace the ResNet (He

et al., 2016) blocks in the network with ConvNext (Liu et al.,
2022) blocks. This architectural choice is meant to replace
the functionality of the attention layers, while keeping a
non-global receptive field. It also has the advantage of re-
ducing computation time. The overall receptive field of our
network is then determined by the number of ConvNext
blocks in the network. Changing the number of ConvNext
blocks allows us to control the diversity of the output sam-
ples. Please see further analysis and hyperparameter choice
in Appendix A. The rest of our backbone network is similar
to DDPM, as well as the embedding network (ϕ) which is
used to incorporate the diffusion timestep t into the model
(and will be later used to embed the video frame difference,
see Section 5). See Figure 3 for details.

Loss. At each training step, the model is given a noisy
image crop xt. However, in contrast to DDPM (Ho et al.,
2020), whose model predicts the added noise (as in Equa-
tion (2)), our model predicts the clean image crop x̃0,θ. The
loss in our single-image DDPM is:

L(θ) = Ex0,ϵ

[
∥x0 − x̃0,θ (xt, t)∥2

]
(3)

We find that predicting the image instead of the noise leads
to better results when training on a single image, both in
terms of quality and training time. We attribute this differ-
ence to the simplicity of the data distribution in a single
image compared to the data distribution of a large dataset of
images. The full training algorithm is as follows:

Algorithm 1 Training on a single image x

1: repeat
2: x0 ← Crop(x)
3: t ∼ Uniform(1, ..., T = 50)
4: ϵ ∼ N (0, I)
5: Take gradient descent step on:

∇θ

∥∥x0 − x̃0,θ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥2
6: until converged

Our single-image DDPM can be used for various image
synthesis tasks like diverse generation (Figure 6), generation
from sketch and image editing.

5. Single Video DDPM
Our video generation framework consists of 3 single-image-
DDPM models (Fig. 4), whose combination gives rise to a
variety of different video-related applications (Sec. 6). Our
framework is essentially an autoregressive video genera-
tor. Namely, we train the models on a given input video
with frames {x1

0, x
2
0, ..., x

N
0 }, and generate new videos with

frames {x̃1
0, x̃

2
0, ..., x̃

M
0 } such that each generated new frame

x̃n+1
0 is conditioned on its previous frame x̃n

0 . The three
models that constitute our framework are all single-image
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Figure 4. Single Video DDPM Our video framework consists of three models. The Predictor (left) generates new frames, conditioned on
previous frames. The Projector (middle) generates frames from noise, and corrects small artifacts in predicted frames. The Interpolator
(right) interpolates between adjacent frames (conditioned on them), to upsample the video temporally. These models are used together at
inference to perform various video related applications.

DDPM models with the same network architecture as de-
scribed in Sec. 4. The models are trained separately and
differ by the type of inputs they are given, and by their
role in the overall generation framework. The inference is
application-dependant and is discussed in Sec. 6. Here we
describe the training procedure of each model:

DDPM Frame Predictor (Fig. 4a). The role of the Pre-
dictor model is to generate new frames, each conditioned
on its previous frame. At each training iteration we sample
a condition frame from the video xn

0 and a noisy version of
the (n+ k)’th frame (xn+k

t ), which is to be denoised. The
two frames are concatenated along the channels axis before
being passed to the model (as in Saharia et al. (2022b)). The
model is also given an embedding of the temporal difference
(i.e frame index difference) between the two frames (ϕ(k)).
This embedding is concatenated to the timestep embedding
(ϕ(t)) of the DDPM. At early training k=1, and in following
iterations it is gradually increased to be sampled at random
from k = [−3, 3]. We find that such a curriculum learning
approach improves outputs quality (even when at inference
k=±1).

DDPM Frame Projector (Fig. 4b). The role of the Pro-
jector model is to “correct” frames that were generated by
the Predictor. The Projector is a straightforward single-
image-DDPM as described in Section 4, only it is trained on
image crops from all the frames in the video. After learning
the image structure and appearance of the video frames it is
used to correct small artifacts in the generated frames, that
may otherwise accumulate and destroy the video generation
process. Intuitively, it “projects” patches from the gener-
ated frames back unto the original patch distribution, hence
its name. The Projector is also used to generate the first
frame. Frame correction is done at inference via a truncated
diffusion process on the predicted frame.

DDPM Frame Interpolator (Fig. 4c). Our video-specific
DDPM framework can be further trained to increase the
temporal resolution of our generated videos, known also as
“video upsampling” or “frame interpolation”. Our DDPM

frame Interpolator receives as input a pair of clean frames
(xn

0 , xn+2
0 ) as conditioning, and a noised version of the

frame between them (xn+1
t ). The frames are concatenated

along the channels axis, and the model is trained to predict
the clean version of the interpolated frame (x̃n+1

0 ). We find
that this interpolation generalizes well to small motions in
the video, and can be used to interpolate between every two
consecutive frames, thus increasing the temporal resolution
of generated videos as well as the input video.

Losses. We find that some models work better with dif-
ferent losses. The Projector and the Interpolator are trained
with the loss in Eq. (3), while the Predictor is trained with
Eq. (2), i.e., the noise is predicted instead of the output.

6. Applications
In this section we show how combinations of our single
image/video DDPMs (Sections 4 and 5) provide a variety
of video synthesis tasks. We refer the reader to our project
page, especially to view our video results.

Diverse Video Generation: We can generate diverse
videos from a single input video, to any length, such that the
output samples have similar appearance, structure and mo-
tions as the original input video. This is done by combining
our Predictor and Projector models. The first frame is either
some frame from the original video, or a generated output
image from the unconditional Projector. The Predictor is
then used to generate the next frame, conditioned on the
previous generated frame. Next, the predicted frame is cor-
rected by the Projector (to remove small artifacts that may
have been created, thus preventing error accumulation over
time). This process is repeated until the desired number of
frames has been generated. Repeating this autoregressive
generation process creates a new video of arbitrary length.
Note that the process is inherently stochastic – even if the
initial frame is the same, different generated outputs will
quickly diverge and create different videos. See Fig. 1 and
our project page for live videos and many more examples.
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Figure 5. Video Extrapolation (into the Future): SinFusion trains on a single input video (red) - exemplified on video frames of Tornado,
Balls, Ants. At inference, the auto-regressive generation process starts from the last frame of the input video, and generates a frame
sequence of any desired length. The extrapolated frames (green) were never seen in the original video. See full videos in our project page.

Video Extrapolation (into the Future and into the Past):
Given an input video, we can “predict the future” (i.e.,
predict its future frames) by initializing the generation pro-
cess described above with the last frame of the input video.
Fig. 5 shows a few such examples. Note how our method
extrapolates the motion in a realistic way, preserving the
appearance and dynamics of the original video. To the
best of our knowledge, no existing single-video genera-
tion method can extrapolate a video in time. Since our
Predictor is also trained backward in time (predicting the
previous frame using negative k), it can also extrapolate
videos backwards in time (“predict the past”) by starting
from the first frame of the video. This e.g. causes flying bal-
loons to “land” (see video in our project page), even though
these motions were never observed in the original video.
This is a straightforward manifestation of the generalization
capabilities of our framework. See Sec. 7 for evaluations of
the generalization capabilities, and full videos in our project
page.

Temporal Upsampling: Not only can SinFusion extrapo-
late input videos, it can also interpolate them – generate new
frames in-between the original ones. This is done by train-
ing the DDPM Frame Interpolator (Fig. 4c) to predict each
frame from its 2 neighboring frames, and at inference apply-
ing it to interpolate between successive frames. The appear-
ance of the interpolated frames is corrected by the DDPM
Frame Projector. See example videos in our project page.

Single-Image Applications When training our single-
image DDPM (Sec. 4) on a single input image, our frame-
work reduces to standard single-image generation and ma-
nipulation tasks, including: Diverse image generation,
Sketch-guided image generation and Image editing. Di-
verse image generation is done by sampling a noisy im-
age xT∼N (0, I) and iteratively denoising using our trained
model such that xt−1=G(xt). Since our backbone DDPM
network is fully convolutional, it can be used to generate

(a) Diverse generation from a single image.

(b) Sketch-guided image generation.
Figure 6. Single Image Applications: (a) Images generated by
SinFusion are comparable in visual quality to the patch nearest-
neighbour based method GPNN (Granot et al., 2022), and outper-
forms SinGAN (Shaham et al., 2019). (b) SinFusion can generate
new images from a single image, conditioned on input sketches.

images of any size by starting from a noisy image of the
desired size. Fig. 6a shows such results (visually compared
to SinGAN (Shaham et al., 2019) and GPNN (Granot et al.,
2022)). See more results in our project page. SinFusion can
also edit an input image by coarsely moving crops between
locations in the image, and then let the model “correct” the
image. We can similarly draw a sketch and let the model “fill
in” the sketch with similar details from the input image (see
Fig. 6b). The model is applied to the edited image/sketch
by adding noise to the image, and then denoising the input
image until a coherent image is obtained.
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7. Evaluations & Comparisons
This section presents quantitative evaluations to support our
main claim for the motion generalization capabilities of
SinFusion. We measure the performance of our framework
by training a model on a small portion of the original video,
and test it on unseen frames from a different portion of
the same video (Sec. 7.1). We further propose new useful
evaluation metrics for diverse video generation from a single
video (Sec. 7.2), and compare our diverse video generation
from a single video to other methods for this task.

7.1. Future-Frame Prediction from a Single Video

Given a video with N frames, we train a model on n < N
frames. At inference, we sample 100 frames from the rest
of the N −n frames (not seen during training), and for each
of them, use the trained model to predict its next (or a more
distant) frame. We use PSNR to compare a predicted and
real frame, and use the average PSNR as the overall score.

Baseline. Since no other methods exist for frame-prediction
from a single video, we use a simple but strong baseline:
Given a frame f(i), we predict its next frame to be identical,
namely, f(i + 1) = f(i). This is a strong baseline, since
most videos have large static backgrounds, hence there is
little change between consecutive frames.

Evaluating w.r.t. Different Training Set Sizes (Fig. 8a):
We repeat this experiment for varying number of training
frames n (n = [4, 8, 16, 32, 64]). For each choice of n, we
choose a random location in the video, and take the n frames
starting at that random location to be the “training frames”.
This is depicted in Fig. 7a – training frames (red) and test
frames (green), where each test-frame is used to predict its
next frame. In Fig. 7b we depict runs trained with differ-
ent number of training frames n. The results are shown in
Fig. 8a where each dot corresponds to averaging the score
of 5 different runs (each time selecting the n training frames
at a different random video location). As seen from Fig. 8a,
our framework (red) is consistently better than the baseline
(blue), exhibiting the motion prediction/generalization ca-
pabilities of SinFusion. Note that generalization increases
(higher PSNR) with the size of the training set n, while the
naive baseline does not improve. Note also that our frame-
work generalizes quite well to next-frame prediction with
as few as n = 4 frames in the training set.

Evaluating w.r.t. Video “speed” & Frame-gap k (Fig. 8b):
We evaluate how well our framework generalizes on videos
with faster motions. To this end, we sub-sample the original
video in intervals of increasing size, resulting in faster
motions in the sub-sampled videos. This way we can
synthesize videos with larger speeds from the same video,
making the results consistent with the first experiment
(Fig. 8a). In this experiment we uses a fixed n = 32.

(a) For each configuration we sample 5 runs
(with different initial frame)

(b) Different number of training frames

(c) Different choices of video-speed (S) and k

Figure 7. Frame Prediction from a Single-Video. Depicting eval-
uations experiments from Section 7.1 and Figure 8

A video with “speed” S is defined as the original video
subsampled at 1/S. After subsampling the video, the rest
of the experiment is carried out as described above. For
example, if the starting frame is frame number 17, then the
training frames will be frames number 17, 19, 21, ..., 79 for
S = 2, and 17, 21, 25, ..., 141 for S = 4.

We further evaluate w.r.t. k, which is the frame-gap between
the current frame and the predicted frame (in the subsampled
video) as in Fig. 4a. Recall that our model trains on k =
[−3, 3]. Several setups for S and k are depicted in Fig. 7c.

Results are shown in Fig. 8b (note that for S=1,k=1, the
result is the same as in Fig. 8a for n=32). Our framework is
consistently better than the baseline. Larger speeds increase
the performance gap between our framework and the base-
line, further validating our claim for motion generalization.

7.2. A New Diversity Metric for Single-Video Methods

We devise a metric to quantify the diversity of our generated
samples from a given input video. SinGAN (Shaham et al.,
2019) proposed the following diversity metric (adapted in
a straightforwad manner from images to videos): calculate
the standard deviation of the intensity values of each voxel
over all generated samples, then average this over all the
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k=1 (Ours)
k=1 (Baseline)

k=2 (Ours)
k=2 (Baseline)

k=3 (Ours)
k=3 (Baseline)

Figure 8. Next-Frame Prediction from a Single Video. SinFu-
sion consistently beats the baseline on this task (see Sec. 7.1).

Table 1. Diverse Video Generation – Comparison.
Dataset Method NNFDIV ↑ NNFDIST ↓ SVFID↓

SinGAN-GIF
VGPNN 0.20 0.28 0.0058

SinGAN-GIF 0.40 1.10 0.0119
SinFusion (Ours) 0.30 0.45 0.0090

HP-VAE-GAN
VGPNN 0.22 0.14 0.0072

HP-VAE-GAN 0.31 0.39 0.0081
SinFusion (Ours) 0.35 0.26 0.0107

voxels, and then divide the result by the standard deviation
of the intensity values of the original video.

This metric fails on a simple example: given an input video,
one could generate “new” samples by just applying random
translations to the video. With enough such “samples” this
will converge to a high diversity score of 1. Rewarding
for such global translations (or “copies” of large chunks of
the input video) is an unwanted artifact of this metric. We
introduce a nearest-neighbor-field (NNF) based diversity
measure that captures the diversity of generated samples
while penalizing for such unnecessary global translations.

The NNF is computed by searching for each (3, 3, 3) spatio-
temporal patch in a generated video, its nearest-neighbour
(n.n) patch in the original video (with MSE). Each voxel
is then associated with vector pointing to its n.n. Simple
generated videos (e.g. a simple translation of the input) will
have a rather constant NNF, while more complex generated
videos will have complex NNFs. A visualized example for
such NNF is shown in Fig.9 (a vector is converted to RGB
using a color wheel (Baker et al., 2011)). See how the NNF
of a VGPNN output is simple (corresponds to copying large
chunks from a single input frame) whereas ours is more
complex (see full videos of these in our project page).

We quantify the “complexity” of an NNF as follows: we use
ZLIB (Gailly & Adler, 2004) to compress the NNF, and
record the compression ratio. This gives a diversity measure
in [0, 1] that we term NNFDIV. (The inspiration comes
from Kolmogorov complexity (Kolmogorov, 1963) – simpler
objects have simpler “description”, which can be easily

Figure 9. Nearest-Neighbour Field (NNF) Color Map. Patch-
NNF between the generated video and the input video shows that
VGPNN (Haim et al., 2021) tends to copy large chunks of the
input video, whereas SinFusion generates new spatio-temporal
compositions.

bounded by any compression algorithm). We also measure
the RGB-similarity (termed NNFDIST) by averaging the
MSE distance of all generated patch to their n.n’s.

In Table 1 we report the results of these metrics, as well as
SVFID (Gur et al., 2020) score, on 2 diverse video gener-
ation datasets (see details in Appendix B.1). We compare
our diverse video generation samples to existing single-
video methods – HP-VAE-GAN (Gur et al., 2020), SinGAN-
GIF (Arora & Lee, 2021) and VGPNN (Haim et al., 2021).

VGPNN is expected to have better quality (low NNFDIST
/ SVFID) because it is copying chunks of frames from the
original video. However, its diversity (NNFDIV) is very low.
On HP-VAE-GAN dataset, we outperform HP-VAE-GAN
in both quality and diversity. On SinGAN-GIF dataset,
SinGAN-GIF has higher diversity, however this may be
attributed to its very low quality (NNFDIST). For both
datasets, SinFusion has the best trade-off in terms of di-
versity and quality. Further Experiments and Ablations
can be found in Appendices. B and C (e.g., comparison to
VDM (Ho et al., 2022c)).

8. Limitations
As in all single-video generation methods, our method is
also limited to videos with relatively small camera motion.
Moreover, in videos with large objects of highly non-rigid
motions (e.g., with many moving parts), SinFusion may
break the object (or remove parts of it). This is because
SinFusion has no notion of semantics. Some of the these
limitations may be mitigated by incorporating suitable pri-
ors, and is part of our future work.
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9. Conclusions
We propose SinFusion, a diffusion-based framework trained
on a single video or image. Our unified framework can
be applied for a variety of tasks. Our main application –
generation and extrapolation of an input video, exhibits un-
precedented generalization capabilities, that were not shown
either by previous single-video methods, nor by large-scale
video diffusion models.
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Appendix
A. Further Evaluation - Effect of Crop-Size

and Receptive Field
Our goal is to generate outputs (image / video) that preserve
global structure, are of high quality, and with large diversity.
These are affected by the choice of the crop-size on which
the model is trained, and the effective receptive field of
the model (determined by the depth of the convolutional
model and controlled via the number of ConvNext blocks
in the network). As seen in Figure A2b, the largest diversity
is achieved for small crop-size and small receptive field.
However, small networks fail to learn the underlying image
structure and result in blurry outputs (Figure A2a). We
therefore use more blocks for the model. This reduces the
diversity, but dramatically improves outputs quality (as is
evident from Figure A2a). We choose the crop-size as a
trade-off to preserve global-structure but also high diversity,
which means using crop-size of about 95% of the image,
with network depth of 16 blocks.

B. Comparisons
B.1. Generation from Single-Video (Table 1)

We run our comparisons on the data provided by the pre-
vious works on video generation from a single video: VG-
PNN (Haim et al., 2021), HP-VAE-GAN (Gur et al., 2020)
and SinGAN-GIF (Arora & Lee, 2021). We follow the same
methodology used in VGPNN (Haim et al., 2021).

We compare to two datasets of videos. One provided by
SinGAN-GIF (Arora & Lee, 2021) and the other by HP-
VAE-GAN (Gur et al., 2020). In SinGAN-GIF there are
5 videos with 8 to 15 frames, each of maximal spatial res-
olution 168 × 298. For each of the 5 input videos, each
method generates 6 samples. In HP-VAE-GAN there are
10 videos each of spatial resolution 144 × 256. For each
of the 10 input videos, each method generates 10 samples.
HP-VAE-GAN and VGPNN only use the first 13 frames
since their methods are limited by runtime and memory.
Since learning on small amounts of data is not a goal for
the task of diverse generation from a single video, and since
our framework can easily learn from much more data, we
train our framework on longer sequences of frames from the
given input videos.

B.2. Comparison to VDM (Ho et al., 2022c)

In the project page we show the results of VDM (Ho et al.,
2022c) trained on a single video. Since the official imple-

mentation was not published at the time of writing, we use a
third-party implementation 1). Since VDM expects a dataset
of videos, we slice a long video of 420 frames into 42 short
videos of 10 frames each and let VDM train on those videos.
We could only train the model on a resolution of 64 × 64
pixels before exceeding the memory of our GPU. We trained
the model for about 150 epochs using two different learning
rates (total run time was about a day on a V100 GPU). The
results seems to capture the motions of the original videos,
but it is difficult to evaluate since the resolution is too low
compared to the original videos. The results also contain
artifacts that may result from the low amount of data usually
needed to train such models (without including our proposed
modifications). It is qualitatively evident from the results
that our framework, SinFusion, generates outputs of much
higher quality when trained on a single video. For the full
video results please see our project page.

B.3. Comparison to Single Image GANs

While the main focus our work is on single-video genera-
tion/manipulation tasks, we also measure the performance
of our single-image DDPM on diverse image generation, in
comparison to existing single-image GAN works (Shaham
et al., 2019; Hinz et al., 2021). Such a quantitative com-
parison is presented in Table A1. We use the established
Single Image FID (SIFID) metric, as well as our NNFDIV
metric. We perform the comparison on the Places50 bench-
mark dataset. The quantitative comparison shows that our
single-image DDPM achieves good performance compared
to existing single image generation methods (better in one
measure; worse in the other measure). While the Single
Image FID achieved by our approach is slightly worse than
the competing methods, we attribute that to the fact that our
model generalizes beyond the internal patch distribution of
the single training image (as evident in our better diversity
score NNFDIV).

An additional advantage of our single-image DDPM, when
compared to single-image GANs, stems from the boundary
bias that exists in SinGAN and ConSinGAN (Xu et al.,
2020). This induced bias causes fixed content in corner
regions of the generated images, which hurts diversity. This
boundary bias occurs because the discriminator (in each
scale) of single-image GANs sees the same ground-truth
image in all training iterations. Thus, the generator ”learns”
to output the same boundary as in the original image, by
relying on the padding of the training image. In contrast, our
single image DDPM trains on different crops of the input
image, hence it does not suffer from this bias, and produces
more diverse outputs, as is seen the higher diversity score in
Table A1.

1https://github.com/lucidrains/
video-diffusion-pytorch
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(a) Quality (b) NNF Diversity (See Section 7)

Figure A2. Analysing the effect of Crop-Size and Network-Depth on the diversity and quality of the generated outputs

Method SIFID↓ NNFDIV ↑
SinGAN 0.085 0.280
ConSinGAN 0.072 0.315
SinFusion (Ours) 0.110 0.341

Table A1. Diverse Image Generation – Comparison.

C. Ablations
Predicting Image Instead of Noise. As opposed to the
standard DDPM (Ho et al., 2020) training, our single-image-
DDPM model outputs a prediction for the un-noised input
crop. In Figure A3 we show examples for our generated
outputs for predicting the crop/image (top) against generated
outputs for predicting noise (bottom). As shown, predicting
the un-noised crop instead of the noise generates higher
quality images. This is also evident in Table A2, where
noise prediction leads to a worse SIFID score. In addition,
predicting the image instead of noise also converges with
much fewer training iterations, a feat we attribute to the
lower complexity of the patch distribution of the training
image compared to the patch distribution of random noise.

Architectural changes. We check the importance of our
proposed architectural modifications to the original DDPM
(Ho et al., 2020) by reverting each change and generating
several images. We compare these generated images to the
images generated by our final model. An example for these
comparisons can be seen in Figure A4. The quantitative
results for these ablations can be found in Table A2.
The first comparison shows outputs of our model with up-
sampling and downsampling layers. The generated outputs

Model SIFID↓ NNFDIV ↑
Our single-image DDPM 0.181 0.480
Noise Prediction 0.473 0.506
w/ Up/Down sampling layers 0.145 0.258
w/ Attention layers 0.256 0.396
w/ ResNet blocks 0.246 0.463

Table A2. Architectural changes and noise prediction ablations.
We ablate our design choices by measuring the quality (via SIFID)
and diversity (via NNFDIV) generated images. The results show
that our final single-image DDPM achieves the best tradeoff be-
tween generation quality and the diversity of the generated sam-
ples.

completely overfit the training image, and have no diversity.
This is also evident in the low NNFDIV score in Table A2.
The second comparison shows outputs of our model with
attention layers. Other than significantly increasing training
time (to almost 2 hours per training image), the added at-
tention decreases the quality and diversity of the generated
samples, as evident in Table A2.
The third comparison shows outputs of our model with all
ConvNext (Liu et al., 2022) blocks replaced with ResNet
(He et al., 2016) blocks. The generated outputs suffer from
smearing artifacts and are of lesser quality than our gener-
ated outputs, as also evident by the lower SIFID in Table A2.

Importance of DDPM frame Projector in diverse video
generation. We show the necessity of our DDPM frame
Projector model as part of the diverse video generation
framework. In this ablation, we generate videos from sev-
eral input videos using only the DDPM frame Predictor
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Figure A3. Noise vs Image prediction ablation. Top Row: Input image (left;red) and generated outputs of our final model (right;purple) –
predicts the un-noised image crop. Bottom Row: Generated outputs using the standard DDPM noise prediction.

Figure A4. Architectural ablations. Top Row: Input image (left;red) and Generated outputs of our final model (right;purple).
2nd Row: Generated outputs of our model with upsampling and downsampling layers.
3rd Row: Generated outputs of our model with added attention layers (similar to the standard DDPM (Ho et al., 2020) Unet(Ronneberger
et al., 2015) network).
4th Row: Generated outputs of our model where each ConvNext (Liu et al., 2022) block is replaced with a ResNet (He et al., 2016) block.
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Dataset SVFID↓
With Projector No Projector

All videos in project page 0.0066 0.0081
HP-VAE-GAN 0.0107 0.0129
SinGAN-GIF 0.0090 0.0136

Table A3. DDPM frame Projector ablation. The DDPM frame
Projector consistently improves the quality of the generated videos,
as evident by the lower SVFID scores.

to generate frames, without using the Projector model to
correct small artifacts in the generated frames. In all exam-
ples, it can be seen that the small artifacts, which remain
uncorrected, accumulate over time and severely degrade the
generation quality. The quantitative results can be seen in
Table A3, where we measure the SVFID score of the gen-
erated videos. For qualitative video results please see the
project page.

Effect of training with k = [−3, 3]. As written in Sec-
tion 5, at inference time we always use either k = 1 (for for-
ward prediction) or k = −1 (for backward prediction). How-
ever, we found that training the predictor with k ∈ [−3, 3]
improves the prediction for k = ±1. For example, training
the predictor with only results in SVFID = 0.0112 (averaged
on all videos in the supplementary), whereas training it with
results in SVFID = 0.0095 (lower SVFID is better).

D. Further Explanations on Related Works
In this section we elaborate further on existing methods.

Diffusion models for Videos:

• RVD (Yang et al., 2022) tackles video prediction by
conditioning the generative process on recurrent neural
networks.

• RaMViD (Höppe et al., 2022) and MCVD (Voleti et al.,
2022) train an autoregressive model conditioned on
previous frames for video prediction and infilling using
masking mechanisms.

• VDM (Ho et al., 2022c) introduces unconditional video
generation by modifying the Conv2D layers in the ba-
sic DDPM UNet to Conv3D, as well as autoregressive
generation.

• Imagen-Video (Ho et al., 2022a) extends VDM to text-
to-video and also include spatio-temporal superreso-
lution conditioned on upsampled versions of smaller
scales.

• FDM (Harvey et al., 2022) modifies DDPM to include
temporal attention mechanism and can be conditioned
on any number of previous frames.

Generation from a Single Image. Generative models
trained on a single image aim to generate new diverse sam-
ples, similar in appearance to the image/video on which
they were trained. Most notably, SinGAN (Shaham et al.,
2019) and InGAN (Shocher et al., 2018) trained multi-scale
GANs to learn the distribution of patches in an image. They
showed its applicability to diverse random generation from
a single image, as well as a variety of other image syn-
thesis applications (inpainting, style transfer, etc.). Their
results are usually better suited to synthesis from a single
image than models trained on large collection of data. More
recently, GPNN (Granot et al., 2022) showed that most im-
age synthesis tasks proposed by single-image GAN-based
models (Hinz et al., 2021; Shaham et al., 2019; Shocher
et al., 2018) can be solved by classical non-parametric patch
nearest-neighbour methods (Efros & Leung, 1999; Efros &
Freeman, 2001; Simakov et al., 2008), and achieve outputs
of higher quality while reducing generation time by orders
of magnitude. However, nearest-neighbour methods have a
very limited notion of generalization, and are therefore lim-
ited to tasks where it is natural to ”copy” parts of the input.
In this respect, learning based methods like SinGAN (Sha-
ham et al., 2019) still offer applicability like shown in the
tasks of harmonization or animation.

Generation from a Single Video. Similar to the image
domain, extensions of SinGAN (Shaham et al., 2019) to
generation from a single video were proposed (Gur et al.,
2020; Arora & Lee, 2021), generating diverse new videos of
similar appearance and dynamics to the input video. These
too, were outperformed by patch nearest-neighbour meth-
ods (Haim et al., 2021) in both output quality and speed.
However, these video-based nearest-neighbour methods suf-
fer from drawbacks similar to the image case. While the
generated samples are of high quality and look realistic, the
main reason for this is that the samples are essentially copies
of parts of the original video stitched together. They fail
to exhibit motion generalization capabilities. None of the
above-mentioned methods can handle input videos longer
than a few dozens frames. Single-video GAN based meth-
ods are limited in compute time (e.g., HP-VAE-GAN (Gur
et al., 2020) takes 8 days to train on a short video of 13
frames), whereas VGPNN (Haim et al., 2021) is limited in
memory (since each space-time patch in the output video
searches for its nearest-neighbor space-time patch in the en-
tire input video, at each iteration). In contrast, our method
can handle any length of input video. While it can general-
ize well from just a few frames, it can also easily train on
a long input video at a fixed and very small memory print,
and at reasonable compute time (a few hours per video).

E. Implementation Details
Our code is implemented with PyTorch (Paszke et al., 2017).
We make the following hyper-parameters choices:
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• We use a batch size of 1. Each large crop contains
many large ”patches”. Since our network is a fully
convolutional network, each large ”patch” is a single
training example.

• We use ADAM optimizer (Kingma & Ba, 2014) with
a learning rate of 2× 10−4, reduced to 2× 10−5 after
100K iterations.

• We set the diffusion timesteps T = 50. This allows for
fast sampling, without sacrificing image/video quality
(This trade-off is simpler in our case because of the
simplicity of our learned data distribution).

• When generating diverse videos, we use the DDPM
frame Projector to correct predicted frames by noising
and denoising Tcorr = 3 steps.

• We compared several noise schedules for the diffusion
models and ended up using linear noise schedule (β0 =
2 × 10−3, βT = 0.4) for single-image DDPM and
cosine noise schedule (Nichol & Dhariwal, 2021) for
single-video DDPM.

• Our standard network architecture consists of 16 Con-
vNext (Liu et al., 2022) blocks, each block with a base
dimension of 64 channels.

E.1. Runtimes

On a Tesla V100-PCIE-16GB, for images/videos of reso-
lution 144 × 256, our model trains for about 1.5 minutes
per 1000 iterations, where each iteration is running one
diffusion step on a large image crop. The total amount of
iterations and total runtime for each of our models are:

• Single-Image DDPM - 50K iterations, total runtime
of 80 minutes (good results are already seen after 15K
iterations).

• Single-Video DDPM Frame Predictor - 200K itera-
tions, total runtime of 5.5 hours.

• Single-Video DDPM Frame Projector - 100K itera-
tions, total runtime of 2.5 hours

• Single-Video DDPM Frame Interpolator - 50K itera-
tions, total runtime of 1.5 hours.

F. Videos Sources
In our project page we show results for video generation and
and extrapolation for videos excerpts from the following
YouTube videos (YouTube video IDs):
• LkrnpO5v0z8
• hj6EG7x-BT8
• nRxSUkZYeOE

• 9ePic3dtykk
• pB6XSixrCC8
• ZO5lV0gh5i4
• tmPqO TGa-U
• bsSypB9gI0s
• RZ1kK-X3QwM
• FR5l48 h5Eo
• 4i6VSrIYRYY
• m e7jUfvt-I
• DniKM5SKe6c
• rbzxxbuk3sk
•W yWqFYSggc
•WA5fqO6LUUQ
• -ydgKb5K kc

We also use several videos from MEAD Faces
Dataset (Wang et al., 2020), and Timlapse Clouds
Dataset (Jacobs et al., 2010; 2013).
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