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ABSTRACT

Text-to-3D generation using using neural networks has been confronted with a
fundamental difficulty regarding the scale and quality of 3D data. Score distilla-
tion sampling based on 2D diffusion models addresses this issue effectively; how-
ever, it also introduces 3D inconsistencies that plague generated 3D scenes due to
a lack of robust 3D prior knowledge and awareness. In this study, we propose a
novel framework for retrieval-augmented text-to-3D generation that is capable of
generating superior-quality 3D objects with decent geometry. After we employ
a particle-based variational inference framework, we augment the conventional
target distribution in SDS-based techniques with an empirical distribution of re-
trieved 3D assets. Furthermore, based on the retrieved 3D assets, we propose the
two effective methods: a lightweight adaptation of a 2D prior model for reducing
its inherent bias toward certain camera viewpoints, and delta distillation to regu-
larize artifacts of generated 3D contents. Our experimental results show that our
method not only exhibits state-of-the-art quality in text-to-3D generation but also
significantly enhances the geometry compared to the baseline.

1 INTRODUCTION

Figure 1: Our framework generates high quality of
3D contents with geometric consistency by lever-
aging retrieved assets from external databases.

Text-to-3D generation becomes an crucial part
of media production with the advances in deep
generative models. However, compared with
2D images, the lack of high-quality and large-
scale 3D data is an obstacle to train a text-to-3D
generative model, while the scarcity of 3D data
results from the intricate and labor-intensive
process of 3D asset creation. Thus, the inherent
difficulty of 3D data collection leads to limited
quality and scale of 3D data despite successive
releases of 3D datasets (Deitke et al., 2023a;b)

Previous approaches of text-to-3D generation
leverage a text-to-image (T2I) model (Rom-
bach et al., 2022a) trained on large-scale text-
image pairs Schuhmann et al. (2022) to cir-
cumvent the scarcity of 3D data. For ex-
ample, Zero123 (Liu et al., 2023b) modifies
and fine-tunes a T2I model on multi-view
datasets (Deitke et al., 2023a;b) to inject 3D-
awareness into its parameters for the task of
novel view synthesis. However, fine-tuning of
large-scale 2D diffusion models requires ex-
pensive training costs, while the lack of high-
quality 3D data lowers the fidelity of generated novel views.

Meanwhile, Score Distillation Sampling (SDS) (Poole et al., 2022; Wang et al., 2023a) enables a
3D representation to be directly optimized via the prior knowledge of 2D diffusion models without
any 3D data. SDS-based frameworks can leverage the capability of the T2I models to synthesize
high-quality images to achieve high-fidelity of text-to-3D generation. Although recent studies (Chen
et al., 2023; Wang et al., 2023b) significantly improve the high-fidelity results, a generated 3D con-
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tent commonly suffers from artifacts and geometric inconsistency, since their optimization process
relies solely on a 2D diffusion model, which lacks the awareness of 3D geometry.

To address these issues, we propose a framework for Retrieval-Augmented Text-to-3D generation to
leverage the information of 3D data without full fine-tuning of 2D diffusion models. Our key insight
is that semantically similar 3D assets to a given text can be a 3D geometric prior for SDS-based
approaches, although existing 3D asset datasets (Deitke et al., 2023b) are inadequate for training
a diffusion model in terms of scale and quality. Thus, we introduce an empirical distribution of
retrieved 3D assets to augment the conventional SDS-based methods, which are originally based on
the prior of 2D images only. Specifically, after we formulate a text-to-3D generation as a framework
of variational score distillation (Wang et al., 2023b), we propose a novel formula to integrate the
empirical distribution of retrieved 3D assets with the Particle-based Variational Inference (ParVI).
Then, we also propose two novel technique to improve the geometric consistency and quality of
generated 3D contents: i) we adopt a lightweight adaptation using the retrieved 3D assets to remove
the bias of a 2D diffusion models on few camera viewpoints, ii) we propose a delta distillation
to stabilize the optimization of 3D representations and reduce artifacts in generated 3D contents.
The extensive empirical testing demonstrates the effectiveness of our retrieval-augmented text-to-
3D generation on texture-fidelity and geometric consistency, compared with other baselines.

Our main contributions are summarized as follows: 1) Our retrieval-augmented text-to-3D gen-
eration effectively exploits both the geometric information of 3D assets and the capability of T2I
models to synthesize high-fidelity images, instead of full training the model parameters. 2) We in-
tegrate the retrieval of 3D assets with the framework of ParVI for text-to-3D generation with VSD.
3) Based on the retrieved 3D assets, we propose Lightweight Adaptation to reduce the bias of T2I
models on camera viewpoints and Delta Distillation to remove the artifacts. 4) The empirical results
demonstrate that our proposed methods consistently improve the generation quality.

2 RELATED WORK

Generative novel view synthesis. Generative models can be used to learn a multi-view geometry
to synthesize novel views of a 3D scene (Wiles et al., 2020; Rombach et al., 2021). Given a single
reference view, Chan et al. (2023) estimate its 3D volume to condition a model for novel views.
A cross-view attention is incorporated in a diffusion model to align the correspondences between
novel views and the reference view (Zhou & Tulsiani, 2023; Watson et al., 2023). Zero123 (Liu
et al., 2023b) modifies the Stable Diffusion model (Rombach et al., 2022a) to fine-tune its whole
parameters on Objaverse (Deitke et al., 2023a;b) and generate novel views of 3D objects in the open
domain. However, previous approaches have limited fidelity due to the scarcity of high-quality 3D
data which requires a hand-craft work of experts.

Text-to-3D generation with score distillation. Poole et al. (2022) have proposed a novel method
of Score Distillation Sampling (SDS) to generate 3D contents without 3D data, while optimizing
a 3D representation such as NeRF (Mildenhall et al., 2021) via distilling the prior knowledge of
diffusion models to synthesize high-fidelity images. Subsequent studies (Metzer et al., 2023; Tsal-
icoglou et al., 2023) have consistently improved text-to-3D generation based on SDS. Magic3D (Lin
et al., 2023) exploits DMTet (Shen et al., 2021) with a coarse-to-fine pipeline to improve the quality
of 3D representation. Fantasia3D (Chen et al., 2023) introduces a two-stage framework to dis-
entangle geometry and texture of 3D contents. ProlificDreamer (Wang et al., 2023b) employs the
particle-optimization framework for Variational Score Distillation (VSD) and significantly improves
the fidelity of generated textures. However, these approaches without 3D training data commonly
suffer from 3D inconsistency leading to unrealistic geometry of generated contents.

Retrieval-augmented generative models. Retrieval-augmented approaches utilize an external
dataset to adapt a generative model for diverse tasks without fine-tuning whole parameters on large-
scale data. For example, RETRO (Borgeaud et al., 2022) adapts a large language model for exploit-
ing the external databases and achieves high performances without increasing its parameters. For
the task of image synthesis, retrieval-augmented methods have been applied to GANs (Tseng et al.,
2020; Casanova et al., 2021) and diffusion models (Blattmann et al., 2022; Sheynin et al., 2022; Chen
et al., 2022), while adapting the models for synthesizing unseen styles such as artistic images Rom-
bach et al. (2022c). Since retrieval-augmentation is effective when the data scale is insufficient to
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Figure 2: Overview. Given a prompt c, we retrieve the nearest neighbor from the 3D database. With
these assets, we perform lightweight adaptation for better 2D prior, and we optimize a variational
distribution by leveraging information from the adapted 2D prior and the retrieved 3D assets both.

train the model parameters, Zhang et al. (2023) and He et al. (2023) integrate a motion-retrieval
module with diffusion models to synthesize motion sequences and videos, respectively.

3 PRELIMINARIES: TEXT-TO-3D GENERATION WITH 2D DIFFUSION PRIOR

In this section, we formulate text-to-3D generation with score distillation (Poole et al., 2022), which
leverages a text-to-image diffusion model (Saharia et al., 2022; Rombach et al., 2022b) as the prior
to optimize a 3D representation for a given text. We employ the framework of Variational Score
Distillation (VSD), since VSD is a general framework for text-to-3D generation Wang et al. (2023b).
In fact, VSD aims to optimize the distribution of 3D representations given a text prompt, while
SDS aims to optimize an instance of 3D representation for text-to-3D generation (see Appendix).
We denote γ(θ|c) as a distribution of 3D representations θ on a text prompt c, and g(θ, ψ) as a
rendering function for a 3D representation θ and a camera viewpoint ψ. We also define qγ(x|c, ψ)
as an implicit distribution of the rendered image x := g(θ, ψ) where θ ∼ γ(θ|c). Then, VSD
for text-to-3D generation minimizes the variational objective, DKL

(
qγ(x|c)||pϕ(x|c)

)
to find an

optimal γ∗, where qγ(x|c) is marginalized distribution w.r.t. camera viewpoints p(ψ) and pϕ(x|c)
is empirical likelihood of x estimated by a diffusion moddel ϕ. Since the diffusion model learns
noisy distribution pϕ(xt|c, t) according to diffusion process (Ho et al., 2020; Song et al., 2020), the
variational objective can be decomposed as follows:

γ∗ := argmin
γ

Et
[
(σt/αt)w(t)DKL(q

γ
t (xt|c)||pϕ(xt|c, t))

]
, (1)

where qγt (xt|c) is a noisy distribution at noise level t following the diffusion process.

VSD exploits the particle-based variational inference (ParVI) (Chen et al., 2018; Liua & Zhub, 2022;
Wang et al., 2019; Dong et al., 2022) to minimize Eq. 1. The minimization process proceeds via
a Wasserstein gradient flow (Chen et al., 2018) in the ParVI framework. Specifically, N particles
{θ(i)}Ni=1 are first sampled from initial γ(θ|c), and then updated with the following ODE:

vprior :=
dθτ
dτ

= −Et,ϵ,ψ
[
w(t)

(
− σt∇xt log pϕ(xt|c, t)− (−σt∇xt log q

γτ
t (xt|ψ, c))

∂g(θτ , ψ)

∂θτ

)]
,

(2)
where τ denotes ODE time such that τ ≥ 0, and the distribution γτ converges to an optimal distribu-
tion γ∗ as τ → ∞ and θτ is sampled from γτ . Note that the first term is a score of noisy real image,
approximated by a predicted score of the diffusion model ϵϕ(xt, c, t). The second term can be re-
garded as a score of noisy rendered images. They parameterize the second term to a score-predicting
U-shaped network. Practically, they train the U-Net network from the pretrained diffusion model
with low-rank adaptation (LoRA) (Ryu, 2023): −∇xt

qγτt (xt|ψ, c) = ϵ(ϕ,ζ)(xt, t, c, ψ), where ζ is a
set of parameters of trainable residual layers for LoRA. We attach the details of derivations regard-
ing VSD and ParVI to Appendix. VSD allows to generate realistic textures of 3D object given a
text, but we remark that these method are still vulnerable to generating unrealistic geometry.
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4 RETRIEVAL-AUGMENTED 3D GENERATION

While previous methods based on SDS allow for the flexible generation of 3D objects, even with
complex user prompts, they tend to produce implausible 3D geometry. In this work, we propose
a novel approach requiring a minimal amount of training, capable of generating 3D objects of su-
perior quality. Specifically, we adopt a retrieval-based approach that ensures the creation of high
fidelity, view-consistent 3D contents. This effectively mitigates the drawbacks encountered in pre-
vious strategies that rely solely on 2D prior models or necessitate large-scale training on 3D assets.

To realize this goal, we explore methodologies for both the integration of knowledge from retrieved
3D assets and the process of 3D retrieval itself. In Section 4.1, a new variational objective is pro-
posed, which incorporates knowledge from these retrieved assets as well as from 2D prior models.
Following this, in Section 4.2, we present a method that adapts 2D prior models using the retrieved
3D assets, with the aim of reducing bias toward certain camera viewpoints inherent in the 2D prior.
Furthermore, in Section 4.3, we propose a simple yet effective delta distillation technique to regu-
larize artifacts. Finally, in Section 4.4, we illustrate the retrieval of assets from a 3D dataset which
utilizes both text captions and rendered images. The overview of our whole pipeline is in Fig. 2

4.1 RETRIEVAL-INTEGRATED OBJECTIVE

Varia�onal distribu�on Target distribu�on

Asset-based distribu�on

2D-image-based distribu�on 

Figure 3: Conceptual figure of the varia-
tional objective. Geometrically plausible
areas by retrieved nearest neighbors have
higher density in the target distribution.

Let ξN (c,D) be a non-parametric sampling strategy to
obtain the N nearest neighbors using the retrieval al-
gorithm conditioned on text prompt c in the 3D dataset
D. Our goal is to integrate the rich view-dependent
information from the retrieved assets with that of 2D
prior models, and derive the particle-based optimiza-
tion process for the variational distribution γ(θ|c).
We assume the probability density of 3D content θ by
2D prior is proportional to the expected densities of its
multiview images w.r.t. camera viewpoints, following
Wang et al. (2023a):

pϕ(θ|c) ∝ Eψ
[
p2Dϕ (x|c, x = g(θ, ψ)

]
. (3)

Technically, this expectation is set as the geometric ex-
pectation (see Appendix D for details).

In this section, we introduce a novel energy functional for integrating the retrieved assets:

E [γ] := DKL

(
γ(θ|c)||pϕ,ξ(θ|c)

)
, (4)

where we present pϕ,ξ(θ|c) as a retrieval-integrated prior. Based on the intuition that a 3D asset
selectively filters a distribution, we simply multiply and normalize the two distributions:

pϕ,ξ(θ|c) :=
1

Z ′ pϕ(θ|c)pξ(θ|c), (5)

where we denote pξ(θ|c) as a 3D likelihood from the retrieved assets, andZ ′ denotes the normalizing
constant. Fig. 3 depicts the intuition behind this; the distribution pξ derived from the retrieved
nearest neighbor serves as an implicit filter for plausible geometry.

Specifically, we derive the distribution pξ(θ|c) from an empirical distribution defined over the top-
N nearest neighbors {θ(n)ret }Nn=1 utilizing the sampling strategy ξN (c,D), then applying Gaussian
kernel Kσ with a variance σ2. Intuitively, the likelihood pξ(θ|c) depicts how close the particle is to
the retrieved assets.

Using the definition of KL divergence (as detailed in Appendix D), this is further expanded:

E [γ] = Eψ[DKL

(
qγ(x|c)||p2D

ϕ (x|c)
)
] +H

(
γ(θ|c); pξ(θ|c)

)
− C (6)

= Eψ[DKL

(
qγ(x|c)||p2D

ϕ (x|c)
)
]− Eγ(θ|c)

[
log

∑
n

Kσ(θ − θ
(n)
ret )

]
− C ′, (7)
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where x = g(θ, ψ), and H is the joint entropy. C and C ′ are constants to be unnecessary.

The minimization process then proceeds via a Wasserstein gradient flow (Chen et al., 2018). Given
E [γτ ] at an optimization step τ , the velocity of particles, vτ := dθτ

dτ = ∇θ
δE[γτ ]
δγτ

, is obtained by

calculating the functional derivative δE[γτ ]
δγτ

as follows:

vτ = ∇θ
δE [γτ ]
δγτ

= vprior −∇θ log
∑
n

Kσ(θ − θ
(n)
ret ) (8)

= vprior + vasset. (9)

where vasset is the velocity derived from retrieval, and vprior is derived as in Eq. 2.

However, directly computing the derived vprior remains inefficient, given that it is defined in a
high-dimensional space. To address this inefficiency, we turn to our empirical observations, which
suggest a feasible alternative. We observe that the direction of the velocity of each particle is largely
determined by its random initialization, as it is drawn towards the nearest mode (see Appendix E for
details). Motivated by this observation, instead of computing all terms, we use an efficient surrogate
method to compute vasset for each particle as follows:

v
(i)
asset =

∑
n

π
(i)
n

σ2
(θ(i) − θ

(n)
ret ) =

1

σ2

∑
n

π(i)
n (θ(i) − θ

(n)
ret ), (10)

where θ(i) is i-th particle from the variational distribution γ(θ|c) and we assign to them one-hot
vectors π whose non-zero indices correspond to a closest random asset when initialized. Intuitively,
this property of a particle to follow a specific mode is determined at the time of its creation.

For generality, the particle θ(i) and 3D asset θ(n)ret have not been assumed to have specific represen-
tations (e.g., NeRF (Mildenhall et al., 2021), DMTet (Shen et al., 2021), or mesh), and could be
different representations. However, some representations can be only partially observed through the
differentiable rendering function g. Accordingly, in Eq. 10, the shift term is given in the form of a
gradient with respect to the objective (Tancik et al., 2021):

(θ(i) − θ
(n)
ret ) ≃ ∇θ(i)Eψ

[∥∥g(θ(i), ψ)− g(θ
(n)
ret , ψ)

∥∥2
2

]
. (11)

4.2 LIGHTWEIGHT ADAPTATION OF 2D PRIOR MODELS WITH RETRIEVED 3D ASSETS

Even though our process integrates 3D information from assets, we find it beneficial to reduce the
bias toward certain camera viewpoints of the 2D prior p2Dϕ (x|c) as shown in Fig. 4, since these
are identified as a factor contributing to the view inconsistency problem. Specifically, to achieve
this goal, we introduce a lightweight strategy that adapts 2D prior models by utilizing retrieved 3D
assets. This helps balance the probability densities across all viewpoints without a significant drop
in the quality of the original 2D prior models.

We denote c(i)ret as a ground-truth text caption corresponding to the i-th retrieved asset θ(i)ret, and
e(c, ψ) as a function that outputs a text caption c with a view augmentation (Poole et al., 2022) that
matches the camera viewpoint ψ. To obtain a adapted 2D prior ϵ(ϕ,ω), we densely render the re-
trieved assets under a uniform camera distribution and perform a low-rank adaptation (LoRA) (Ryu,
2023) with the rendered images:

min
ω

N∑
i=1

Et,ϵ,ψ
∥∥∥ϵ(ϕ,ω) (αtg(θ(i)ret, ψ) + σtϵ, t, e(c

(i)
ret, ψ)

)
− ϵ

∥∥∥2
2
, (12)

where ω is a set of parameters of learnable layers inserted to the diffusion U-net for low-rank adap-
tion. Note that ϕ is a set of parameters of the diffusion U-Net. As shown in Fig. 4, samples from the
adapted 2D prior reflect a more diverse range of viewpoints that correspond to the view condition,
without severely sacrificing the original generation capability.

4.3 DELTA DISTILLATION FOR REGULARIZING ARTIFACTS
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(a) Renderings from 3D asset

(c) Samples from Adapted 2D Prior (Ours)

(b) Samples from 2D Piror

“a back view of” “a side view of” “a front view of”

Figure 4: Lightweight adaptation of 2D diffusion models. We compare the effectiveness of the
adaptation with given rendering from a 3D asset in (a). We linearly interpolate a text embedding
from “a back view of an angry cat” to “a front view of an angry cat” through “side view”. Compared
with (b). The samples from adapted 2D prior in (c) reflect a variety of viewpoints, not biased towards
a single viewpoint. We provide more results in Appendix. B.1.

retrieved asset

w/o delta distill.noisy gradient

w/ delta distill. generated result

generated result

Figure 5: Motivation of delta distillation. We
subtract a noisy gradient to regularize artifacts.

The co-formulation proposed in the preced-
ing section facilitates a retrieval-augmented ap-
proach for text-to-3D generation. This can be
interpreted as sampling from the combined dis-
tribution of the 2D diffusion prior and the re-
trieved assets, each with their respective veloc-
ities. In practice, however, we notice that the
conflicting effects of two independent veloci-
ties from different sources often generate arti-
facts, as illustrated in Fig. 5.

To address this issue, we propose a delta dis-
tillation technique, which subtracts the com-
ponent deemed to be unreliable, inspired by
Hertz et al. (2023). Specifically, we denote
vprior(θ = θ0) as the predicted velocity (gra-
dient) of the 2D prior at the point θ0. Since a
pair of a retrieved asset and the text should ex-
hibit minimal gradient or velocity if the retrieval is successful, we characterize vprior(θ = θret) as
an unconditional, noisy velocity. To mitigate the artifacts, we subtract this from the original vprior:

v̂prior := vprior − vprior(θ = θret). (13)

Subsequently, we employ v̂prior instead of vprior in Eq. 9. Empirically, we observed that this omis-
sion is pivotal for stable generation performance and for the reduction of artifacts.

4.4 3D DATASET RETRIEVAL

We collect 3D assets from Objaverse 1.0 (Deitke et al., 2023b) dataset which contains diverse set
of over 800K+ 3D assets. We retrieve N nearest neighbors using ScaNN (Guo et al., 2020) vector
search algorithm using CLIP embeddings (Radford et al., 2021). The query embedding can be
acquired from either c, which is the prompt for the diffusion model, or from the prompt additionally
given by the user. The CLIP features for the database can be obtained with the corresponding
captions or rendered images. For the captions of the 3D assets, we utilize Cap3D (Luo et al., 2023)
dataset which contains predicted captions of 3D objects in Objaverse.

Either captions and rendered images can be utilized. We observed distinct characteristics for each.
For the embedding space of text captions, objects in a category related to the query embedding are
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effectively retrieved with robust performance. In contrast, for the embedding space for rendered
images, the texture information of the query embedding is taken into sufficient consideration, but it
tends to have relatively frequent failure cases. In Fig. 6, we show the retrieved data using caption and
rendered image. Hence, we utilize both image and text embeddings by performing Top-K operation
with image embeddings after retrieving N ′(N ′ > N) objects with text embeddings.

Although Objaverse dataset provides diverse 3D assets, their orientations are not aligned. Therefore,
before we put our nearest neighbors to use, we must align their frontal view. To this end, we
calculate the CLIP similarity score between the prompts “front view”, “side view”, “back view” and
the rendered images with different camera poses. Then, we rotate the 3D assets with the camera pose
having the relatively highest CLIP similarity score. Despite its simplicity, this method is capable of
aligning our retrieved assets effectively.

(a) Retrieval with 3D Captions

“a sheep with white fur”

(b) Retrieval with Renderings

“a cake in the shape of train”

Figure 6: 3D Dataset retrieval. (a) and (b) show retrieved top-K nearest neighbors on CLIP-text
embedding space and CLIP-image embedding space, respectively.

5 EXPERIMENTS AND DISCUSSION

5.1 IMPLEMENTATION DETAILS

We build our method on the implementation of ProlificDreamer (Wang et al., 2023b) from Three-
studio (Guo et al., 2023). Instant-NGP (Müller et al., 2022) is used for our NeRF backbone and
Stable Diffusion v2 (Rombach et al., 2022b) as the 2D prior. For all experiments, we retrieve 3
assets in Objaverse 1.0 (Deitke et al., 2023b). We render our retrieved data with 100 uniformly
sampled camera poses, using Blender. all hyperparameters including the number of particles follow
our baseline, the implementation of ProlificDreamer (Wang et al., 2023b; Guo et al., 2023), except
newly introduced hyperparameters such as σ.

5.2 RETRIEVAL-AUGMENTED 3D GENERATION

Qualitative evaluation. We show qualitative result of our method in Fig. 1. We then compare our
method with our baseline, ProlificDreamer (Wang et al., 2023b). In Fig. 7, note that ProlificDreamer
shows unwanted artifacts as well as geometric inconsistencies e.g., multiple heads. However, ours
generates cleaner and consistent 3D model while maintaining the high textural quality of Prolific-
Dreamer. We additionally compare our method with novel view generative model, Zero123 (Liu
et al., 2023a). As Zero123 takes an image, not text prompt, we first generate an image for condi-
tioning with Stable Diffusion model and preprocess it. Then, we apply SDS for 3D generation. As
shown in Fig. 8. Zero123 tends to generate simplified texture and the performance degrades when
given a realistic image as shown in the two rightmost columns. More results with other methods
including Dreamfusion Poole et al. (2022), and Magic3D Lin et al. (2023) are in the Appendix A.

3D consistency. To demonstrate the 3D consistency of our approach, we evaluate the adherence to
the view prompt, “front view” and “back view”, in Fig. 9. Specifically, we calculate the relative sim-
ilarity, using the CLIP score between the rendered image and view prompts corresponding to three
perspectives: “front view” “side view” and “back view”. For example, for the relative similarity of
“front view”, we divide its CLIP similarity score with the sum of similarity scores of the rendered
image and the other view prompts. Assuming high 3D consistency yields high relative CLIP simi-
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“A chow chow puppy” “A wizard casting a spell” “A lego researcher”

Figure 7: Qualitative comparison with ProlificDreamer (Wang et al., 2023b). Our method
achieves higher geometric consistency compared to Prolificdreamer. Comparison with other meth-
ods are in the Appendix A
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“A kangaroo with boxing 
gloves”

“a cake in the shape of
a train”

“An astronaut riding a horse” “Sydney opera hose,
aerial view”

Figure 8: Comparison with Zero123 (Liu et al., 2023a). We compare our model with Zero123, a
state-of-the-art novel view generative model, conditioned on a single image. Our method generates
3D content with better fine details and geometry.

larity score between the rendered image and the view prompt associated with its specific azimuth,
we show the relative CLIP similarity scores for images rendered from our method and the baseline,
each rendered at various azimuths, same elevation.

Preference

Baseline

Ours

24.7%

75.3%

Figure 10: User preference
study.

User study. We conducted a user study with 92 participants;
the result is shown in Fig. 10. Each participant asked seven ran-
domly selected questions. Specifically, we inquired about their
preference between our method and the baseline, taking into ac-
count geometry and textural fidelity. Approximately 75% of the
participants expressed a preference for the results by our method
over the baseline. More details are described in Appendix C.
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-90° 0° 90° 180° 270°

Relative CLIP similarities (front view)

Ours
Baseline

-90° 0° 90° 180° 270°

Relative CLIP similarities (back view)

Ours
Baseline

Figure 9: Relative CLIP Similarities of rendered images. (Left) Relative similarity between ours
and baseline (Wang et al., 2023b) with “front view”. (Right) Relative similarity with “back view”.
The red shaded areas represent ±45 degrees from the front and back respectively. Our method
exhibits higher relative similarity in the region that matches the view prompt.

Nearest asset Corresponding particle

Figure 11: Nearest neighbor and the re-
sult of corresponding particle. The given
prompts, starting from the top, are “a dog
playing fetch”, “a medieval knight”, and
“an angry cat”.

Impact of Retrieved 3D Assets To inspect the im-
pact of the retrieved assets and the generated results,
we show the first nearest neighbor from the retrieved
assets with the result of the corresponding particle in
Fig. 11. We observe that particle converges at the point
where it aligns with both the prompt and the retrieved
data. Specifically, in Fig. 11, the position of the ball
and the dog in the resulting particle of the first row
aligns with its nearest 3D pair while the legs are de-
formed for textual alignment with the prompt.

Ablations. In Fig, 4 and Appendix B.1, we provide
the ablation on manifold tweaking. Adapting the 2D
prior model with densely rendered image of 3D as-
set mitigates the internal bias towards frontal view of
the 2D prior, showing various viewpoints. Addition-
ally, we conduct ablations on delta score distillation
and multiple particle setting in Appendix B.2 and Ap-
pendix B.3 respectively. Specifically, we show that
Delta Distillation reduces floating artifacts and im-
proves geometric awareness. Also, we increase the
number of particles and present the following result.

6 CONCLUSION

We introduce a novel methodology that requires minimal training, yet is proficient in creating state-
of-the-art-quality 3D objects. By embracing a retrieval-centric approach, we ensure the creation of
high-fidelity and view-consistent 3D content, effectively overcoming the limitations seen in previ-
ous frameworks that were either heavily reliant on 2D prior models or required extensive training on
3D assets. A new variational objective is introduced, facilitating a smooth integration of knowledge
from both the retrieved assets and 2D prior models. Following this, we propose a lightweight adap-
tation of 2D prior models as well as novel delta distillation technique to balance the density across
viewpoints and reduce artifacts. Lastly, the mechanisms of retrieving assets from a 3D dataset are
explained through the utilization of text captions alongside rendered images. With comprehensive
experiments and discussion, we demonstrate the effectiveness of our methods in improving the view-
consistency as well as retaining the superior quality, and pave the road for text-to-3D methods that
capture both the fidelity and geometry. The potential applications of this methodology span various
domains such as virtual reality, video game design, film production, and architectural visualization,
where the rapid and high-quality generation of 3D content is crucial.
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A ADDITIONAL QUALITATIVE COMPARISIONS WITH OTHER METHODS
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Figure 12: Qualitative comparisons with other methods (Poole et al., 2022; Lin et al., 2023).
The additional comparison with Dreamfusion (Poole et al., 2022), and Magic3D (Lin et al., 2023)
can be found in Fig. 12. We use the implementation from threestudio Guo et al. (2023) as the official
code has not been released. Our method shows better texture and geometry compared to other two
methods.

B ABLATION STUDY

B.1 ABLATION ON LIGHTWEIGHT ADAPTATION

Fig. 13 shows additional result on lightweight adaptation. The images in the top row are used during
adaptation process. The generated results from plain 2D prior show biased result to the frontal view
of the object while the adaptation method shows high fidelity to the view prompt.
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Figure 13: More results of ablation on lightwight adaptation.
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Figure 14: Results of ablation on delta distillation.

B.2 ABLATION ON DELTA DISTILLATION

We show the effectiveness of the Delta Distillation in Fig. 14. The result generated with Delta
Distillation shows unwanted artifacts (left two prompts) and multi faces (right prompt) while ours
which utilizes Delta Distillation shows superior results.

B.3 ABLATION ON NUMBER OF MULTI-PARTICLES

We increase the number of particles, each assigned to one of the retrieved asset. The result generated
with three particles is shown in Fig. 15. The figure shows diverse result generated with the same
prompt.

14



Under review as a conference paper at ICLR 2024

Pa
rt

icl
e 

3
Pa

rt
icl

e 
2

“A lego castle” “a corgi puppy”

Pa
rt

icl
e 

1

Figure 15: Generated results with thee particles.

C USER STUDY

We conduct user to qualitively compare our method with the baseline Wang et al. (2023b). Given
a 360° video of the generated scene, the participants are asked to answer the following question,
‘When considering both texture and shape (geometry), which result is more satisfying?’. Each
participant was asked about a randomly selected set of six generated results and prompt pairs, with
their anonymity being ensured. The reported statistics summarizes responses from a total of 92
participants.

D ASSUMPTION ON THE DENSITY FUNCTION OF 3D CONTENT

Several works Wang et al. (2023a); Hong et al. (2023) have clarified the assumptions on the density
function of 3D content, which is an important part in lifting the 2D generative models to do 3D
generation. Specifically, SJC Wang et al. (2023a) proposes to assume it to be proportional to an
arithmetic expectation of likelihoods over camera points, i.e., pϕ(θ|c) ∝ Eψ[p2D

ϕ (x|c, x = g(θ, ψ))],
and D-SDS Hong et al. (2023) finds it more beneficial to define it as a product of likelihoods over a
set of camera points.

In this paper, we instead use the geometric expectation. Actually, all three premises do not affect
the solution of the minimization or maximization problem of the logarithm. Besides, in terms of KL
divergence, setting the target distribution to the geometric mean has the following benign property:

DKL(q||κGψ[p2D
ϕ (x|c, x = g(θ, ψ))) = Eψ[DKL(q||p2D

ϕ (x|c, x = g(θ, ψ)))]− log κ, (14)

where κ is a constant.
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E ELABORATION ON THE OBSERVATION IN SEC. 4.1

When σ is small enough, the behavior of the Gaussian kernel Kσ becomes peaked. Specifically,
Kσ(θ − θ

(k)
ret ) gets very high at values of k where θ is nearly equal to θ(k)ret , and decreases rapidly as

θ moves away from θ
(k)
ret . As a result, the sums in the expression are mostly influenced by the terms

where k value makes θ(k)ret closest to θ, denoted as θ(kmin)
ret .

Mathematically, the exponential term in the Gaussian kernel heavily outweighs the term (θ −
θ
(k)
ret /σ

2) in the formula. The latter term changes more slowly with respect to θ − θ
(k)
ret compared to

the exponential decay caused by the Gaussian kernel.

Therefore, the expression for vasset becomes mostly affected by the term corresponding to kmin.

This leads to the simplification vasset ≈ ω
θ−θ(kmin)

ret

σ2 , where ω is a weighting factor. The term θ
(kmin)
ret

denotes the point closest to θ, which becomes the main contributor to the value of vasset.
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