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Abstract

Riemannian geometry has been shown useful to explore the latent space of generative
models. Effectively, we can endow the latent space with the pullback metric obtained
from the data space. Because most generative models are stochastic, this metric will be
de facto stochastic, and, as a consequence, a deterministic approximation of the metric is
required. Here, we are defining a new metric as the expectation of the stochastic curve
lengths induced by the pullback metric. We show this metric is, in fact, a Finsler metric.
We compare it with a previously studied expected Riemannian metric, and we show that
in high dimensions, the metrics converge to each other.

Keywords: Finsler geometry, Riemannian geometry, Gaussian Processes, High dimen-
sions.

1. Introduction

In machine learning, one objective is to reduce the dimensions of the data using generative
models. When this data is assumed to lie near a manifold, we can compute lengths and dis-
tances in a low-dimensional latent space using the Riemannian geometry machinery. Such
a metric is obtained as the pullback of the immersion f : Z → X that maps the latent space
Z ⊂ Rq to the data space X ⊂ RD. In practice, this smooth map f can be the decoding
part of a Variational Autoencoder (VAE) (Kingma and Ba, 2014) or a Gaussian Process
Latent Variable Model (GP-LVM) (Lawrence, 2003).
One problem is that generative models are stochastic by default, and Riemannian geometry
only involves deterministic objects. To dodge this issue, a solution previously studied by
Tosi et al. (2014) in the case of GP-LVMs and Arvanitidis et al. (2018) for VAEs was to
take the expectation of the Riemannian metric tensor. It has been extensively studied by
Hauberg (2018a) as well.

In this work, we focus on the quantity that matters to compare data points in the latent
space: geodesics. Instead of approximating the metric tensor, we directly approximate the
stochastic length by its expectation. This extends the work of Eklund and Hauberg (2019).
The findings are the following:
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1. We prove that the expected curve length defines a norm and this norm is a Finsler
metric.

2. When increasing the number of dimensions, the functionals (curve energy, curve
length, volume measure) of the Riemannian and Finsler metrics converge to each
other at rate O

(
1
D

)
.

Combined, these findings provide groundings for the previously studied, but heuristically
defined, expected Riemannian metric.

Studied by (Tosi, 2014) 
and  (Arvanatidis, 2018):

Our paper:
C
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f={f1, f2, f3}

Latent space

f

Observation space Latent space

Figure 1: (A) The latent space is mapped to the data space using an immersion f . When exploring the latent space with an
arbitrary euclidean metric, we don’t respect the inherent structure of the data, since the path doesn’t follow the manifold.
(B) A Riemannian metric is obtained from the immersion f . However, f is a stochastic process. Its realisations
f = {f1, f2, f3} lead to a collection of metrics. (C) The random Riemannian metric is approximated by its expectation.
Here, we consider the expectation of the length functional as a Finsler metric.

2. Finsler metric as the expected length on a random manifold

The metric pulled-back by a stochastic mapping is stochastic de facto. To compute func-
tionals in the latent space, this metric is approximated by its expectation:

Definition 1 (Tosi et al., 2014; Arvanitidis et al., 2018) Let G be a stochastic Riemannian
metric tensor. We refer to E[G] as the expected metric tensor, and gx : (TxM, TxM) →
R+ : (u, v) → u⊤E[Gx]v as the expected Riemannian metric, computed at a specific
point x ∈ M. This metric defines a Riemannian metric on Rq.

Instead of considering the expected Riemannian metric, we aim to define a norm as the
expectation of the random paths. The norm of a vector v in TxM, induced by a random

metric tensor G, is ∥v∥G =
√
v⊤Gv. We define our new norm as: v → E

[√
v⊤Gv

]
.
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Proposition 2 The function: Fx : TxM → R : v → E
[√

v⊤Gxv
]
defines a Finsler

metric but is not induced by a Riemannian metric.

To compare the expected Riemannian metric with our Finsler metric, we will place
ourselves in the specific case where f is a Gaussian process. Gaussian Processes have
the advantage of approximately describing the behaviour of deep bayesian neural networks
(Matthews et al., 2018; Jacot et al., 2018). The Finsler function can be rewritten in a closed
form expression:

Proposition 3 Let f : Rq → RD be a Gaussian process, then:

Fx(v) =
√
2
√
v⊤Σv

Γ(D2 + 1
2)

Γ(D2 )
1F1

(
−1

2
,
D

2
,−ω

2

)
,

is the close-form expression of the previously defined Finsler metric at a point x ∈ M
for a vector v ∈ TxM, with ω = (v⊤Σv)−1(v⊤E[J ]⊤E[J ]v), J the Jacobian of f : J ∼∏D

i=1N (µi,Σ) and 1F1 the confluent hypergeometric function of the first kind.

3. Comparison of the Finsler and Riemannian metrics

In geometry, we need to define a metric to compute functionals. In Riemannian geometry,
the metric is conveniently obtained by constructing an inner product. The inner product
greatly simplifies subsequent computations but it is also restrictive. Finsler geometry is an
extension of Riemannian geometry by relaxing the assumption that the metric should be an
inner product. Instead the metric is defined as a norm, and so it is not necessarily bilinear
or reversible. Ipso facto, Finsler geometry is a generalisation of the Riemannian geometry
when we disregard the bilinearity assumption. This difference can be observed by studying
indicatrices ({v ∈ TxM, ∥v∥ = 1}), which is a way to see how a metric distorts the space.
In the indicatrix-field represented in Figure 2: we see that the Finsler indicatrices can have
almost a rectangular shape while the Riemannian ones are ellipses.

In the area of low variance (near the data points), the Finsler and Riemannian indi-
catrices are alike. This is explained because the metrics differ by a variance term. If our
mapping f was deterministic, both metrics would agree. In general, we will see that in high
dimensions, they converge to each other:

Proposition 4 The relative difference between the Finsler metric Fx : v → E[
√
v⊤Gxv]

and the Riemannian metric gx : (v, v) → v⊤E[Gx]v is:

0 ≤
√
gx(v, v)− Fx(v)√

gx(v, v)
≤ Var[v⊤Gxv]

2E[v⊤Gxv]2
.

This proposition is valid for any stochastic immersion.

In this proposition, we are comparing the norms induced by their respective metrics. The
Finsler metric is a norm by definition, while the Riemannian metric is defined as an inner
product, which defines a norm by taking its squareroot. These metrics become equal in two
cases: when the variance converges to zero, and when the number of dimensions increases.
The latter case is investigated below for a Gaussian process.
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A B

Figure 2: Indicatrix-field over the latent space of of pinwheel data (grey) representing the Riemannian (orange) and Finslerian
(purple) metrics. The indicatrices are computed: (A) over a grid in the latent space, (B) along a geodesic.

Proposition 5 When f : Rq → RD is a Gaussian process, the relative ratio becomes:

0 ≤
√

gx(v, v)− Fx(v)√
gx(v, v)

≤ 1

D + ω
+

ω

(D + ω)2
,

with ω = (v⊤Σv)−1(v⊤E[J ]⊤E[J ]v) and J the Jacobian of f : J ∼
∏D

i=1N (µi,Σ).

Under the assumption that ω is lower bounded and we are working on a compact set,
we can find upper bounds for all the functionals derived from the Finsler and Riemannian
metrics, in particular: the curve lengths (L and LG), the curve energy(E and EG) and the
volume measure (V and VG):

Proposition 6 In high number of dimensions, we have:

LG(x)− L(x)
LG(x)

= O
(

1

D

)
,

EG(x)− E(x)
EG(x)

= O
(

1

D

)
,

VG(x)− V(x)
VG(x)

= O
( q

D

)
,

and, when D converges toward infinity: LG ∼ L, EG ∼ E and VG ∼ V.

4. Discussion

Generative models are often used to reduce data dimension in order to better understand
the mechanisms behind the data generating process. We consider the general setting where
the mapping from latent variables to observations is driven by a smooth stochastic process,
and the sample mappings span Riemannian manifolds. The Riemannian geometry machin-
ery has already been used in the past to explore the latent space.
The Finslerian view of the latent representation gives us a suitable general solution to
explore a random manifold, but it does not immediately translate into a practical computa-
tional tool. As Riemannian manifolds are better understood computationally than Finsler

4



manifolds, we have raised the question: How good an approximation of the Finsler metric
can be achieved by a Riemannian metric? The answer turns out to be: quite good. We
have shown that as data dimension increases, the Finsler metric becomes increasingly Rie-
mannian. We have a justification for approximating the Finsler metric with a Riemannian
metric such that computational tools become more easily available. In practice we find that
geodesics under the Finsler and the Riemannian metric are near identical except in regions
of high uncertainty.
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Appendix A. Notations and definitions

We define f : Rq → RD a stochastic immersion (when specified, a Gaussian process), J
its Jacobian, and Gx = J⊤J the stochastic Riemannian metric tensor at a point x of the
manifold. Key functionals are also investigated: the curve length, the curve energy and the
volume measure, denoted LG, EG and VG for the expected Riemannian metric and L, E
and V for the Finsler metric. The volume measure allows for integrating probabilities over
the manifold, while the energy functionals (equivalently, the length functionals) are needed
to compute geodesics.

F Finsler metric: F : (M, TxM) → R
M Smooth differentiable manifold

TxM Tangent space of the manifold M at a point x
D Number of dimensions of the observational space
q Number dimensions of the latent space
Jf Jacobian of a stochastic function f : Rq → RD

Σx Covariance matrix of the Jacobian Jx ∼
∏D

i=1N (µi,Σx)
Gx Stochastic metric tensor defined as; Gx = J⊤

x Jx
L, E ,V Length, energy and Busemann Hausdorff volume of the Finsler metric

LG, EG, VG Length, energy and volume of the Riemannian metric with E[G] the ex-
pected metric tensor.

immersion An immersion f : M → RD is a smooth map such that its derivative
∂f : TxM → Tf(x)RD is injective at each point x ∈ M.

indicatrix An indicatrix is a befitted way to represent the distortion induced by
the metric on a unit circle. Rigorously speaking, for a given point on
the manifold, an indicatrix of a metric is defined as the set of vectors
in the tangent space such that norm obtained from the metric is equal
to one: {v ∈ TxM, ||v|| = 1}. If our metric is euclidean, we will only
have a linear transformation between the latent and the observational
spaces, and the indicatrix would still be a circle. Because the Rie-
mannian metric is quadratic, it will always generate an ellipse in the
latent space. The Finsler indicatrix, however, would have a convex,
even asymetrical, shape.
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curve length We consider a curve γ(t) and its derivative γ̇(t) on a manifold M
equipped with a norm ∥·∥m endowed by a metric m – a Finsler metric
or a Riemannian metric. We define the length of the curve: L(γ) =∫
∥γ̇(t)∥m dt.

geodesic Locally length-minimising curves between two connecting points.

energy curve We define the energy of the curve: E(γ) =
∫
∥γ̇(t)∥2m dt.

volume measure The volume measure, or volume form, is a quantity that enables
us to integrate over a manifold and accounts for the amount of distor-
tion induced by the metric. In Riemannian geometry, the volume mea-
sure is uniquely defined: VG =

√
detG. In Finsler geometry, the vol-

ume has different definition. In this work, we are using the Busemann-
Hausdorff definition: V = vol(Bn(1))/vol({v ∈ TxM|Fx(v) < 1}).

Appendix B. Proofs

Lemma 7 The Hessian matrix 1
2Hess(F (x, v)2) of the function F (x, v) = E

[√
v⊤Gxv

]
is

equal to:

1

2
Hess(F (x, v)2) = E

[
(v⊤Gxv)

1
2

]
E
[
(v⊤Gxv)

− 1
2Gx − (v⊤Gxv)

− 3
2Gxvv

⊤Gx

]
+E

[
(v⊤Gxv)

− 1
2Gx

]2
vv⊤

Proof Let g : Rq → R : v →
√
v⊤Gv be a scalar-value stochastic function that takes as

input a column vector v, and G a random symmetric matrix. We would like to know the
different derivatives of g with respect to v. We name by default Jg and Hg, its Jacobian and

Hessian matrix. Using the chain rule, we have: Jg = (v⊤Gv)−
1
2Gv and Hg = (v⊤Gv)−

1
2G−

(v⊤Gv)−
3
2 (Gvv⊤G).

For the rest of the proof, we need to show that we can invert the derivatives with the
expectation: ∂E[g]

∂vi
= E[ ∂g∂vi

]. The sequence of functions ( ∂g
∂vi

) being always upper bounded
by Gvi and E[Gvi] < ∞, using the theorem of dominated convergence, we can invert the
expectation with the derivatives. Finding the Jacobian of the expectation of the function g
is the same than finding the expectation of the Jacobian Jg, and similarly for the Hessian
Hg.

We can then write, for F : Rq → R : E[v →
√
v⊤Gv], then

Hess(F ) = E[Hg] = E
[
(v⊤Gv)−

1
2G− (v⊤Gv)−

3
2Gvv⊤G

]
∇F = E[Jg] = E[(v⊤Gv)−

1
2Gv]

.

We now consider the function h : Rq → R : v → E[
√
v⊤Gv]2 = F (v)2. Using the chain

rule again, and inverting expectation and derivatives, we have its Hessian

Hh = F ·Hess[F ] +∇F⊤∇F = 2E[g(v)]E[Hg] + 2E[Jg]⊤E[Jg].
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Finally, replacing Jg and Hg previously obtained in this expression, we conclude:

1

2
Hh = E

[
(v⊤Gv)

1
2

]
E
[
(v⊤Gv)−

1
2G− (v⊤Gv)−

3
2Gvv⊤G

]
+ E

[
(v⊤Gv)−

1
2G

]2
vv⊤.

Proposition 8 The function: Fx : TxM → R : v → E
[√

v⊤Gxv
]
defines a Finsler

metric but is not induced by a Riemannian metric.

Proof First, we need to prove the function Fx(v) = E
[√

v⊤Gxv
]
is:

1. positive homogeneous: ∀λ ∈ R+, F (p, λv) = λFx(v)

2. smooth: Fx(v) is a C∞ function on the slit tangent bundle T M \ {0}

1) Let λ ∈ R, then we have: F (x, λv) = E
[√

λ2v⊤Gxv
]
= |λ|

[√
v⊤Gxv

]
.

2) The multivariate function: Rq\{0} → R∗
+ : v → v⊤Gxv is C∞ and strictly positive,

since Gx = J⊤
f Jf is positive definite. The function R∗

+ → R∗
+ : x →

√
x is also C∞. Finally,

R∗
+ → R∗

+ : x → E[x] is by definition differentiable. By composition, Fx(v) is a C∞ function
on the slit tangent bundle T M \ {0}.

Second, we need to prove the function Fx(v) = E
[√

v⊤Gxv
]
satisfies strong convexity

criterion:
Proving that F satisfies the strong convexity criterion is equivalent to show that the

Hessian matrix H = 1
2Hess(Fx(v)

2) is strictly positive definite. Thus, we need to prove that
∀w ∈ Rq\{0}, w⊤Hw > 0. According to Lemma 7, because the expectation is a positive
function, it’s straightforward to see that ∀w ∈ Rq\{0}, w⊤Hw ≥ 0. The tricky part of this
proof is to show that w⊤Hw > 0. This can be obtained if one of the terms (F ·Hess(F ) or
∇F⊤∇F ) is strictly positive.

First, let’s decompose H as the sum of matrices: H = FHess(F ) + ∇F⊤∇F (Lemma
7), with:

F ·Hess(F ) = E
[
(v⊤Gv)

1
2

]
E
[
(v⊤Gv)−

3
2

(
(v⊤Gv)G−Gv(Gv)⊤

)]
,

∇F⊤∇F = E
[
(v⊤Gv)−

1
2G

]2
vv⊤.

We will study two cases: when w ∈ span(v), and when w /∈ span(v). We will always assume
that v ̸= 0, and so by definition: Fx(v) > 0.

Let w ∈ span(v). We will show that w⊤∇F⊤∇Fw > 0. We have w = αv, α ∈ R.
Because F is 1-homogeneous and using Euler theorem, we have: ∇Fx(v)v = Fx(v). Then
(αv)⊤∇F⊤∇F (αv) = α2F 2, and α2Fx(v)

2 > 0.
Let w /∈ span(v). F being a scalar function, we have: w⊤FHess[F ]w = Fw⊤Hess[F ]w.

We would like to show that: w⊤Hess[F ]w > 0. The strategy is the following: if we prove
that the kernel of Hess[F ] is equal to the span(v), then w /∈ span(v) is equivalent to say
that w /∈ ker(Hess[F ]) and we can conclude that: w⊤Hess[F ]w > 0. Let’s prove span(v) ∈
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ker(Hess(F )). We know that Hess(F )v = 0, since F is 1-homogeneous, so we have span(v) ∈
ker(Hess(F )). To obtain the equality, we just need to prove that the dimension of the kernel
is equal to 1. Let z ∈ span(v⊤G)⊤, which is (Gv)T z = 0. We have dim(span(v⊤M)) = 1,

and thus: dim(span(v⊤G)⊤) = q − 1. Furthermore, z⊤Hess[F ]z = z⊤E
[
M(v⊤Mv)−

1
2

]
z >

0, so we can deduce that dim(im(Hess[F ])) = q − 1. Using the Rank-Nullity theorem, we
conclude that dim(ker(Hess(F ))) = q − dim(im(Hess[F ])) = 1, which concludes the proof.

In conclusion, ∀w ∈ Rq\{0}, w⊤ 1
2Hess(Fx(v)

2)w > 0. The function F satisfies the strong
convexity criterion.

Proposition 9 Let f be a Gaussian process, then:

Fx(v) =
√
2
√

v⊤Σxv
Γ(D2 + 1

2)

Γ(D2 )
1F1

(
−1

2
,
D

2
,−ω

2

)
,

with ω = (v⊤Σxv)
−1(v⊤E[J ]⊤E[J ]v) and 1F1 the confluent hypergeometric function of the

first kind.

Proof The objective of the proof is to show that, if the Jacobian Jf follows a non-central
normal distribution, then, ∀v ∈ Rq, the expectation E[v⊤J⊤

f Jfv] will follow a non-central
Nakagami distribution. This is a particular case of the derivation of moments of non-central
Wishart distributions, previously shown and studied by Kent and Muirhead (1984); Hauberg
(2018b).

By hypothesis, Jf follows a non-central normal distribution: Jf ∼ N (E[J ], ID ⊗ Σx).
Then, Gx = J⊤

f Jf follows a non-central Wishart distribution: Gx ∼ Wd(D,Σx,Σ
−1
x E[J ]⊤E[J ]).

According to (Kent and Muirhead, 1984, Theorem 10.3.5.), v⊤Gxv will also follow a non-
central Wishart distribution: v⊤Gxv ∼ W1(D, v⊤Σxv, ω), with: ω = (v⊤Σxv)

−1(v⊤E[J ]⊤E[J ]v).

To compute E[
√

v⊤Gxv], we shall look at the derivation of moments. (Kent and
Muirhead, 1984, Theorem 10.3.7.) states that: if X ∼ Wq(D,Σ,Ω′), with q ≤ D, then

E[(det(X))k] = (detΣ)k2qk
Γq(

D
2
+k)

Γq(
D
2
) 1F1(−k, D2 ,−

1
2Ω

′). We directly apply the theorem to

our case, knowing that v⊤Gxv is a scalar term, so det(v⊤Gxv) = v⊤Gxv, q = 1, and k = 1
2 :

E[
√

v⊤Gxv] =
√
2
√
v⊤Σv

Γ(D2 + 1
2)

Γ(D2 )
1F1(−

1

2
,
D

2
,−1

2
ω)

Proposition 10 The relative difference between the Finsler metric: Fx : v → E[
√
v⊤Gxv]

and the Riemmanian metric g : (v, v) → v⊤E[Gx]v is:

0 ≤
√

g(v, v)− Fx(v)√
g(v, v)

≤ Var[v⊤Gxv]

2E[v⊤Gxv]2
.

This proposition is valid for any stochastic immersion.
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Proof We will directly use a sharpen version of Jensen’s inequality obtained by Liao and
Berg (2019): Let X be a one-dimensional random variable with mean µ and P (X ∈ (a, b)) =
1, where −∞ ≤ a ≤ b ≤ +∞. Let ϕ a twice derivable function on (a, b). We further define:

h(x, µ) = ϕ(x)−ϕ(µ)
(x−µ)2

− ϕ′(µ)
x−µ . Then:

inf
x∈(a,b)

{h(x, µ)}Var[X] ≤ E[ϕ(x)]− ϕ(E[x]) ≤ sup
x∈(a,b)

{h(x, µ)}Var[X].

In our case, we will chose ϕ : z →
√
z with z a one-dimensional random variable defined

as z = v⊤Gxv. a = 0, b = +∞ and µ = E[z]. h(z, µ) = (
√
z−√

µ)(z−µ)−2−(2(z−µ)
√
µ)−1.

Because its first derivative ϕ′ is convex, the function x → h(x, µ) is monotonically increasing.
Thus:

inf
z∈(0,+∞)

{h(x, µ)} = lim
z→0

= −
√
µ

2µ2
and sup

z∈(0,+∞)
{h(x, µ)} = lim

z→+∞
= 0.

It finally gives:

−
√
µ

2µ2
Var[z] ≤ E[

√
z]−

√
E[z] ≤ 0.

Replacing F (x, v) = E[
√
z] and

√
g(v) =

√
E[z] = √

µ concludes the proof.

Proposition 11 When f is a Gaussian process, the relative ratio becomes:

0 ≤
√
g(v, v)− Fx(v)√

g(v, v)
≤ 1

D + ω
+

ω

(D + ω)2
.

Proof (Kent and Muirhead, 1984, Theorem 10.3.7.) states that if z ∼ W1(D,σ, ω)

then E[zk] = σk2k
Γ(D

2
+k)

Γ(D
2
) 1F1(−k, D2 ,−

1
2Ω). In particular, for k = 1 and k = 2, we have

1F1(−1, b, c) = 1 − c
b and 1F1(−2, b, c) = 1 − 2c

b + c2

b(b+1) . We also have
Γ(D

2
+1)

Γ(D
2
)

= D
2 and

Γ(D
2
+2)

Γ(D
2
)

= D
2

(
D
2 + 1

)
, which leads to: E[z] = σ(D + Ω) and E[z2] = σ2(2ω + 2(D + ω) +

(D + ω)2). Finally, we conclude:

Var[z]

E[z]2
=

E[z2]
E[z]2

− 1 =
2ω

(D + ω)2
+

2

D + ω
.

Knowing that z = v⊤Gxv, and with the proposition: 0 ≤
√

g(v,v)−Fx(v)√
g(v,v)

≤ Var[v⊤Gxv]
2E[v⊤Gxv]2

, we

have the desired result.

Lemma 12 Our finsler metric v → E[
√
v⊤Gxv] is defined with v⊤Gxv ∼ W1(D, v⊤Σxv, ω),

and ω = (v⊤Σxv)
−1(v⊤E[J ]⊤E[J ]v). We assume that E[J ] is upper bounded. Let M ∈ R+,.

We have:

ω ≤ DM

10



Proof By definition, Σ does not depend on D. We assume that every element of the
expected jacobian is upper bounded: E[J ]ij ≤ m, with m ∈ R∗

+. We call σ = v⊤Σxv ∈ R∗
+.

We have:

ω = σ−1
D∑

k=1

q∑
i=1

q∑
j=1

viE[J ]kiE[J ]kjvj ≤ σ−1
D∑

k=1

m2 ∥v∥2 ≤ DM,

with M = σ−1m2 ∥v∥2 ∈ R∗
+, and M does not depend on D.

Proposition 13 In high number of dimensions, we have:

LG(x)− L(x)
LG(x)

= O
(

1

D

)
,

EG(x)− E(x)
EG(x)

= O
(

1

D

)
,

VG(x)− V(x)
VG(x)

= O
( q

D

)
.

And, when D converges toward infinity: LG ∼ L, EG ∼ E and VG ∼ V.

Proof We assume that ω is lower bounded by m ∈ R+. Using lemma 12, it is also upper
bounded by M ∈ R+. We can show that:

Thus:
LG(x)− L(x)

LG(x)
≤ m1

D

EG(x)− E(x)
EG(x)

≤ m2

D

VG(x)− V(x)
VG(x)

≤ 1−
(
1− m3

D

)q

with m1, m2, m3 ∈ R+.
Using Taylor series expansion, when x ∼ 0, we have: 1− (1− x)q = qx+ o(x2). Thus:

VG(x)− V(x)
VG(x)

≤ m3
q

D
.

We also assume that our space is compact. Using Heine Borel theorem, the metrics and
their functional are bounded. In high dimensions, all functionals converge to each others.
This concludes the proof.

Appendix C. Some experiments

We want to illustrate cases where those metrics could be useful in practice, for real world
data. For this we use three datasets (a synthetic dataset, composed of data representing a
pinwheel projected onto a sphere), a font dataset Campbell and Kautz (2014). We trained
a GP-LVM model to learn a 2d-manifold. From the optimised Gaussian process, we can
access the Riemannian and Finsler metric, and minimise their respective curve energies to
obtain geodesics.

As we can see, the Finsler and Riemannian geodesics coincide in all cases. For all latent
spaces (A.1. and B.1. in Figure 3, The heatmap represents the Riemannian volume measure
in logarithm scale. The volume measure is low in area of high density and high in area of
low density of data points.

11



Pouplin Ek Eklund Hauberg

Observed dataRiemannian geodesic Finslerian geodesic

A.1. B.1.A.2. B.2.

Figure 3: Geodesics computed for latent (A.1., B.1.) and observational (A.2., B.2.) spaces. (A) The dataset used was a pinwheel
projected onto a sphere, as seen in A.2. (B) The dataset consists of the position of the markers parametrising the contour
of the letter f.
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