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ABSTRACT

Large Language Models (LLMs) represent substantial intellectual and economic
investments, yet their effectiveness can inadvertently facilitate model imitation via
knowledge distillation (KD). In practical scenarios, competitors can distill propri-
etary LLM capabilities by simply observing publicly accessible outputs, akin to
reverse-engineering a complex performance by observation alone. Existing pro-
tective methods like watermarking only identify imitation post-hoc, while other
defenses assume the student model mimics the teacher’s internal logits, rendering
them ineffective against distillation purely from observed output text. This paper
confronts the challenge of actively protecting LLMs within the realistic constraints
of API-based access. We introduce an effective and efficient Defensive Output
Generation (DOGe) strategy that subtly modifies the output behavior of an LLM.
Its outputs are accurate and useful for legitimate users, yet are designed to be mis-
leading for distillation, significantly undermining imitation attempts. We achieve
this by fine-tuning only the final linear layer of the teacher LLM with an adver-
sarial loss. This targeted training approach anticipates and disrupts distillation
attempts during inference time. Our experiments show that, while preserving the
performance of the teacher model, student models distilled from the defensively
generated outputs demonstrate catastrophically reduced performance, demonstrat-
ing DOGe as a practical safeguard against KD-based model imitation. 1

Question  
Leah earned $28 working odd jobs around the neighborhood. ……

How many dollars did Leah lose?

Defensive Teacher w/ DOGe   
<think>\n\nFirst, Leah starts with $28. 
…… and deposits half of the remaining 

$24 into a savings account vertical 
straight line. …… This means that she 

lost the rest of her original funds in total, 
which is the portion other than the $1 

kept after losing all money. \n\n</think> 
……**Final Answer:**\n\nLeah lost \\(\

\boxed{11}\\) dollars.

Original Teacher 
<think>\n\nOkay, so Leah earned $28 

doing some odd jobs around the 
neighborhood. ……she put half of the 

remaining money into her savings 
account. ……but then her dog got 
into her wallet and shredded all the 

money inside but $1……\n\n</
think>……**Final Answer**\nLeah lost 

\\boxed{11} dollars.
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Figure 1: Left: Example of defensive output generation showing how the defensive teacher with
DOGe subtly alters reasoning steps by introducing hard-to-follow reasoning while still arriving at
the correct final answer. Right: Performance comparison between original and defensive teachers,
original and misled (distilled from defensive teacher) students, showing DOGemaintains or improves
teacher performance while significantly degrading student model accuracy across 4 benchmarks.
Here we employ Qwen3-8B as the teacher model, Llama-3.2-1B as the student model.

1 INTRODUCTION

Large Language Models (LLMs) have become pivotal to advancements across diverse applications,
including text generation, reasoning, and interactive assistants (Brown et al., 2020; Touvron et al.,
2023). Developing these powerful models involves considerable economic resources, specialized
technical knowledge, and extensive computational investments, rendering them valuable intellectual
property. Ironically, the very success of LLMs presents a vulnerability: their publicly accessible API
outputs can be exploited through knowledge distillation (KD) (Hinton et al., 2015), allowing com-
petitors to cheaply imitate proprietary model capabilities (Tramèr et al., 2016; Huang et al., 2022).

1Our code is provided in https://anonymous.4open.science/r/doge-kd.
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Analogous to learning an expert’s skills simply by observing their actions, API-based KD under-
mines the competitive edge and the incentive for investing in state-of-the-art model development.
Current defenses are limited in scope and practicality. Watermarks (Kirchenbauer et al., 2023; Liang
et al., 2024c) and fingerprints (He et al., 2022; Xu et al., 2024a) provide only post-hoc detection,
akin to security cameras that capture theft but do not prevent it. Other active defense strategies (Ma
et al., 2021; Savani et al., 2025a) operate by modifying internal model states or assume the distilla-
tion process involves mimicking the teacher’s predicted vocabulary logits (Hinton et al., 2015). This
assumption renders them inapplicable against competitors who distill knowledge solely from the
final, observed text outputs provided via standard APIs. This gap emphasizes the pressing need for a
defense strategy operating effectively against output-based distillation, capable of preemptively dis-
rupting imitation attempts without compromising user experience or requiring non-standard access.
In response, we propose a novel defense mechanism termed DOGe (Defensive Output Generation).
Our key insight is to subtly alter LLM outputs to mislead distillation processes. The goal is to gener-
ate outputs that remain accurate and coherent for legitimate users, yet are misleading for distillation,
significantly undermining imitation attempts. Drawing inspiration from adversarial learning (Good-
fellow et al., 2014), our approach involves adversarially fine-tuning only the final linear layer of the
teacher LLM. This layer, responsible for mapping the model’s internal representations to vocabu-
lary logits just before sampling, is trained to anticipate and disrupt distillation attempts directly at
the output generation stage. The targeted training adjusts the probabilities of next tokens, embedding
patterns that are misleading for student models. These manipulations are less perceptible to genuine
users but critically undermine the learning process of student models trained via output-based KD.
Our approach offers several practical advantages. Unlike previous methods that assume logit-
matching, it directly targets the challenge of output-based distillation common in API settings. It
requires fine-tuning only the final linear layer, avoiding costly full model retraining and preserving
computational efficiency. Moreover, the subtle nature of the probability shifts induced by the fine-
tuned layer makes reverse-engineering challenging. Figure 1 demonstrates our scope and outcome.
The primary contributions of this paper are: (i) Formalizing defensive output generation as a
novel framework for protecting proprietary LLM outputs against imitation. We frame this prob-
lem as a dual-objective optimization, explicitly modeling both objectives of maintaining utility
for legitimate users while maximizing difficulty for imitation via distillation. (ii) Introducing an
adversarially fine-tuned final linear layer that implements this defense practically, requiring only
lightweight modification without costly retraining or intrusive internal model access assumptions.
(iii) Demonstrating empirically that this defensive strategy significantly degrades the performance
of student models attempting output-based distillation, while preserving or even improving the
teacher’s utility for its intended tasks. (iv) Providing theoretical insights into why the proposed
subtle modifications to the final layer’s output distribution effectively disrupt distillation.

2 RELATED WORK

Knowledge Distillation. Knowledge distillation (KD) (Hinton et al., 2015; Gou et al., 2021; Xu
et al., 2024b) aims to transfer knowledge from a large teacher model (T ) to a smaller student model
(S). Techniques vary based on the knowledge source: logits (Hinton et al., 2015; Kim et al., 2018;
Ba & Caruana, 2014; Mirzadeh et al., 2020), intermediate features (Chen et al., 2021; Romero et al.,
2014; Huang & Wang, 2017; Zhou et al., 2018), or generated outputs (West et al., 2021; Chiang
et al., 2023; Zelikman et al., 2022; Kim & Rush, 2016; Taori et al., 2023). Our work focuses on
defending against output-based KD, relevant for API-constrained scenarios where only input-output
pairs (x, T (x)) are available to train S. Our method can also be applied to ligits-based KD.

Model IP Protection. Protecting the IP of machine learning models is a growing concern (Sun
et al., 2023; Šarčević et al., 2024; Jiang et al., 2024; Liang et al., 2024c). Watermarking (Liang
et al., 2024c; Wan et al., 2022; Hosny et al., 2024; Zhong et al., 2023) embeds identifiable patterns
into model outputs or parameters for detection, but cannot directly prevent copying knowledge from
the output. Model fingerprinting aims to identify models uniquely (Guan et al., 2022; Yu et al., 2021;
Peng et al., 2022). Model extraction attacks (Liang et al., 2024a; Zhang et al., 2021; Jiang et al.,
2023; Takemura et al., 2020) attempt to steal model functionality, with KD being a primary vector.
Defenses against extraction often assume white-box access or focus on specific query types (Jiang
et al., 2023; Chen et al., 2023; Gong et al., 2021; Tang et al., 2024), whereas our goal is proactive
prevention via output manipulation against general KD.

2
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Adversarial Machine Learning. Our work shares conceptual similarities with adversarial machine
learning (Huang et al., 2011; Kurakin et al., 2016; Vorobeychik & Kantarcioglu, 2018; Kumar et al.,
2020; Li et al., 2018), which adversarially modifies the input to degrade a model’s inference per-
formance. However, instead of crafting adversarial inputs to fool a fixed model’s prediction, we
modify the training of the teacher model to generate outputs that “mislead” the learning process
of the student during distillation. Some works explore adversarial attacks on KD (Cui et al., 2020;
Hong & Choi, 2023; Ge et al., 2021), but typically from the perspective of an attacker degrading a
specific student, not a defender making the teacher inherently hard to distill.

Controllable Text Generation and Stylometry. Techniques for controlling LLM output style (Liu
et al., 2024; Tao et al., 2024), complexity (Nguyen et al., 2024; Hsu et al., 2024), or other attributes
are relevant if the defense mechanism involves generating outputs with specific linguistic proper-
ties (e.g., high complexity (Li et al., 2024a; Peng & Geng, 2024), ambiguity (Kim et al., 2024),
idiosyncratic style (Liang et al., 2024b)) designed to hinder student learning. (Savani et al., 2025b)
proposes a controllable text generation method specifically designed for anti-distillation. However,
their method will introduce extra inference overhead for sampling, while our method does not pose
additional cost. Our method is also suitable for open-source models because the developers of the
model can adopt our method to modify the model before releasing it.

3 PROBLEM FORMULATION

We first define standard knowledge distillation for LLMs and then outline the general goal of anti-
distillation. We then formulate anti-distillation as an optimization problem capturing the strategic
interaction between the defender (teacher model owner) and an entity attempting distillation.

3.1 SEQUENCE-LEVEL KNOWLEDGE DISTILLATION (KD) FOR LLMS

Let T be a pre-trained teacher LLM and S be a student LLM, typically with smaller capacity and
parameters θS . Given a dataset D′

train, sequence-level KD involves generating a distillation dataset
DKD = {(x, y) | x ∈ D′

train, y = T (x)}, where y represents the output sequence generated by
the teacher T for input x. A student model SθS is then trained by minimizing a distillation loss
Ldistill(SθS (x), y) over DKD. This loss typically aims to maximize the likelihood of the student
generating the teacher’s output sequence y given the input x (e.g., using cross-entropy loss token by
token). The goal is to find optimal student parameters θ∗S that transfer the capabilities of T to Sθ∗

S
.

3.2 THE GOAL OF ANTI-DISTILLATION FOR LLMS

The objective of anti-distillation, or achieving distillation resistance, is to create a modified teacher
model T ∗ that actively hinders the effectiveness of KD. Specifically, the goal is twofold:

(1) Teacher Performance Preservation: The modified teacher T ∗ should maintain high per-
formance on its intended downstream tasks τ . Let Perf(M, Deval, τ) be the performance met-
ric of a model M on an evaluation set Deval for task τ . We require Perf(T ∗, Deval, τ) ≥
Perf(Tbase, Deval, τ)− ϵ, where Tbase is the original baseline teacher and ϵ is a small tolerance.

(2) Student Performance Degradation: For any student architecture S trained via sequence-level
KD using outputs from T ∗ (resulting in an optimally distilled student S∗

KD), its performance
Perf(S∗

KD, Deval, τ) should be significantly lower than the performance Perf(SKD, Deval, τ)
achieved by the same student architecture S distilled from the original teacher Tbase. That is,
Perf(S∗

KD, Deval, τ) ≪ Perf(SKD, Deval, τ). This resistance should be achieved under the con-
straint that only the teacher’s outputs y = T ∗(x) are available to the party performing the distillation.

3.3 FORMALIZING ANTI-DISTILLATION AS A DUAL-OBJECTIVE OPTIMIZATION PROBLEM

We can frame the defender’s goal as a dual-objective optimization problem. The defender controls
the teacher’s LM head parameters, θfinal, to create a modified teacher Tθfinal

. The objective is to
find parameters θ∗final that maximize the teacher’s own performance while anticipating and mini-
mizing the performance of a student model that is subsequently distilled from its outputs.

Let PerfT (Tθfinal
) denote the teacher’s performance. The performance of an optimally distilled

student, PerfS(Sθ∗
S
), depends on the defender’s choice of θfinal, since the student is trained on the

dataset DKD(θfinal) generated by Tθfinal
. The defender’s optimization problem is expressed as:

θ∗final = arg max
θfinal

[
PerfT (Tθfinal)− λ · PerfS

(
SargminθS

Ldistill(θS ;DKD(θfinal))

)]
. (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The inner argmin term shows the student’s distillation process, and the outer argmax represents
the defender’s goal of finding the best trade-off, balanced by the hyperparameter λ > 0. Solving this
nested optimization directly is intractable. Section 4 presents a practical approximative solution.

4 DEFENSIVE OUTPUT GENERATION (DOGE)

To approximate the solution to the optimization problem above, we propose Defensive Output Gen-
eration (DOGe). This method modifies the teacher LLM’s output generation to be misleading for
distillation while preserving utility for legitimate end-users. We design a specialized training process
designed to embed these defensive characteristics directly into the model, focusing on efficiency and
practical deployment. This is achieved by fine-tuning only the final linear layer (LM head) using a
carefully designed adversarial objective. The overview of the framework is given in Figure 2.

4.1 THE TRAINING OBJECTIVE
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(c) A Defensive Teacher that Misleads Students
“<think> … <think/>… 
The answer is $233$.”
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❄
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Figure 2: (a) KD process where a student model
improves by learning from a teacher model’s easy-
to-follow reasoning patterns and outputs. (b) De-
fensive Training mechanism of DOGe, which
trains the teacher model’s LM head using the
objective that preserves task performance while
maximizing KL-divergence from proxy student
outputs. (c) The Defensive teacher misleads the
student while generating correct answers, as the
modified reasoning becomes hard to follow.

Adversarial Defensive Training. The central
goal of our defensive training is to optimize
the teacher model T to balance two objectives:
maintaining its original task performance and
degrading the performance of student models
distilled from its outputs. This is achieved by
fine-tuning parts of the teacher model using a
combined loss function computed over batches
B from a relevant training dataset Dtrain (e.g.,
a dataset representative of the target task). The
loss Ltotal is:

Ltotal = LSFT + λ · Ladv. (2)

Here, LSFT is a standard supervised fine-
tuning loss ensuring the teacher maintains its
performance, and Ladv is an adversarial loss
designed to degrade the performance of a stu-
dent model attempting distillation. λ is a hy-
perparameter controlling the trade-off.

The supervised fine-tuning loss, LSFT , is typically the cross-entropy loss between the teacher
model’s predictions and the ground-truth labels ytrue for the sequences in the batch B. This en-
courages the teacher model T to produce accurate outputs according to the training data.

The adversarial loss, Ladv , is designed to make the teacher’s output distribution difficult for a student
to learn from. To achieve this, we aim to maximize the statistical divergence between the teacher’s
output distribution and that of one or more fixed proxy student models {Sproxyi

}Ni=1. We define
the adversarial loss as the negative average KL divergence. Minimizing this term during training
thus maximizes the divergence. Let LT and LSi

be the logits produced by the teacher and proxy
student i for a given token. The loss is:

Ladv = − 1

N

N∑
i=1

KL
(

softmax
(
LT

α

)∥∥∥∥softmax
(
LSi

α

))
, (3)

where α is the temperature parameter. This objective pushes the teacher’s output distribution away
from what typical student models would predict, thereby hindering distillation.

On the Stability of Maximizing KL Divergence. We acknowledge that maximizing the forward
KL divergence, KL(P∥Q), can be an unstable training objective, as the loss can become infinite if
Q(x) = 0 for any x where P (x) > 0. However, in practice, several factors mitigate this instability.
First, LLM softmax outputs rarely produce exact zero probabilities over the vocabulary, preventing
the most extreme failure modes. Second, the overall objective includes the strong regularizing effect
of the LSFT term, which anchors the distribution to the ground-truth data. Finally, the trade-off
hyperparameter λ is essential for balancing defensive strength and training stability, as demonstrated
in our ablation studies (Section 5.3).

Reasoning-Aware Masking. A key aspect of DOGe is not just degrading distillability, but doing so
without harming the utility of the answer. This introduces a deliberate trade-off: balanced by λ, we
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sacrifice the clarity and simplicity of the intermediate reasoning steps to protect the model’s intel-
lectual property. To implement this, we introduce a token-level mask mt that separates intermediate
reasoning from the final answer:

mt =

{
1, if token t is an intermediate/thinking token;
0, if token t is part of the final answer.

(4)

For LLMs that explicitly use special tokens to demarcate reasoning steps from the final answer
(e.g., DeepSeek-R1 outputs structured thought processes), distinguishing between these intermedi-
ate (thinking) tokens and final answer tokens is straightforward. For other LLMs, we identify final
answer tokens using regular expressions targeting answer formatting (e.g., phrases like “Answer:”).

This mask is applied only to the adversarial component of the gradient. The effective gradient with
respect to the LM head parameters:

∇θfinalLtotal,t = ∇θfinalLSFT,t + λ ·mt · ∇θfinalLadv,t. (5)
This ensures that the adversarial pressure to diverge from proxy students is only applied to the
reasoning process. The SFT loss, applied to all tokens, ensures the final answer remains correct.
The resulting reasoning traces may become more complex, redundant, or even unnatural (as shown
in Section 5.4), but this complexity is precisely the mechanism that misleads the student model. Our
theoretical justification rests on the following assumption.
Assumption 4.1 (Proxy Representativeness). The proxy students {Sproxyi} effectively model the
learning behavior of a general class of student models S. Consequently, making the teacher’s inter-
mediate output distributions maximally divergent from the proxies makes them a misleading training
signal for the downstream tasks of unseen student models from S.
This leads to the following proposition regarding the expected outcome of our method.
Proposition 4.2 (Student Performance Degradation). Given Assumption 4.1, training a teacher’s
LM head θfinal by minimizing the loss in Eq. equation 2 with the masking in Eq. equation 5 yields
a defensive teacher T ∗

θfinal
. A student model S ∈ S distilled from T ∗

θfinal
is expected to achieve a

higher loss (and thus lower performance) on downstream tasks compared to a student distilled from
a teacher trained only with LSFT .

A detailed justification for this proposition is provided in Appendix B. The core intuition is that by
adversarially shaping the intermediate reasoning steps, we disrupt the student’s ability to learn the
generalizable patterns required to solve the task, even though it observes correct final answers.
4.2 EFFICIENT TRAINING AND DEPLOYMENT: LM HEAD TUNING

To ensure practicality, we adopt a parameter-efficient fine-tuning (PEFT) strategy, updating only the
parameters θfinal of the LM head. The underlying base LLM remains frozen. This approach offers
three key advantages: 1) Efficient Training: Updating only the LM head drastically reduces train-
able parameters, saving time and computational resources. 2) Data-Driven Distribution Shaping:
Modifying the LM head directly perturbs the final output probability space, embedding a defensive
”sampling” strategy into the model’s parameters without requiring complex decoding-time inter-
ventions (Savani et al., 2025a). 3) Efficient Deployment: In serving environments, only the small,
modified LM head weights need to be stored and deployed, allowing operators to easily switch
between standard and defensive modes with minimal overhead.
4.3 OVERALL DEFENSIVE TRAINING PROCEDURE
The training process (depicted in Appendix F) iteratively updates the LM head parameters θfinal. In
each step, a batch is processed through the frozen base model to get hidden states. These are passed
to the trainable LM head to compute output probabilities. The LSFT and Ladv losses are calculated,
and the total gradient is computed using the reasoning-aware mask. The parameters θfinal are then
updated. This process produces a defensive LM head, making any output generated by the teacher
inherently resistant to distillation, regardless of the decoding strategy (e.g., greedy, top-k sampling).
4.4 IMPLEMENTATION CONSIDERATIONS
Using proxy students {Sproxyi

} that share the same tokenizer as the teacher T is most direct. Han-
dling different tokenizers requires techniques like vocabulary alignment, which adds complexity
(Minixhofer et al., 2025; Cui et al., 2025). This paper focus on shared tokenizers for simplicity.

5 EMPIRICAL EVALUATION
In Section 5.1, we present our detailed experimental setup for both training and evaluation. In Sec-
tion 5.2, we present empirical evidence demonstrating that DOGe achieves up to 5× accuracy degra-
dation in misled student models while preserving, and in some cases improving, the performance of
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defensive teacher models across diverse benchmarks. In Section 5.3, we perform various ablation
studies, including the trade-off between model performance and distillation defense effectiveness.

Adv. Dataset: GSM8K

Distillation Dataset
Techer Model Student Model

Base Student Model Est. Time Teacher Gap Student Gap
W/ 2x Adv. W/ Adv. 

(Coef=3e-5)
W/ Adv. 

(Coef=1e-5) W/o Adv. W/ 2x Adv. W/ Adv. 
(Coef=3e-5)

W/ Adv. 
(Coef=1e-5) W/o Adv.

Teacher: DeepSeek-R1-Distill-Qwen-7B | Student: Llama-3.2-1B

GSM8K 51.06 54.05 49.54 7.67 20.59

MATH 47.50 49.92 46.72 3.74 24.48

ARC-Challenge 79.55 81.55 81.99 5.55 24.40

CommonsenseQA 64.86 65.98 64.92 2.18 11.15

Average 60.7425 62.875 60.7925 4.785 20.155

Teacher: DeepSeek-R1-Distill-Qwen-7B | Student: Gemma-3-1b-it

GSM8K 51.06 54.05 49.54 8.34 31.00

MATH 47.50 49.92 46.72 3.98 24.38

ARC-Challenge 79.55 81.55 81.99 17.92 49.57

CommonsenseQA 64.86 65.98 64.92 10.70 49.67

Average 60.7425 62.875 60.7925 10.235 38.655

Teacher: Qwen3-8B | Student: Llama-3.2-1B

GSM8K 68.99 66.87 12.22 20.59 2.12 -8.37

MATH 65.10 63.82 6.68 24.48 1.28 -17.8

ARC-Challenge 91.00 92.06 7.25 24.40 -1.06 -17.15

CommonsenseQA 82.60 83.44 3.44 11.15 -0.84 -7.71

Average 76.9225 76.5475 7.3975 20.155

Teacher: Qwen3-8B | Student: Gemma-3-1b-it

GSM8K 68.99 66.87 15.77 31.00 2.12 -15.23

MATH 65.10 63.82 7.02 24.38 1.28 -17.36

ARC-Challenge 91.00 92.06 28.24 49.57 -1.06 -21.33

CommonsenseQA 82.60 83.44 26.62 49.67 -0.84 -23.05

Average 76.9225 76.5475 19.4125 38.655
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Figure 3: Comparative evaluation of defensive v.s. original teacher models and misled v.s. original
student models using GSM8K (math) for defensive training. For the single proxy model used in de-
fensive training, we employ Qwen2.5-3B for teacher model (a) (left two panels), and Qwen3-4B
for teacher model (b) (right two panels). We report the performance of: (1) Defensive teacher
trained with our proposed DOGe method; (2) Original teacher, the unmodified pre-trained model;
(3) Misled student, distilled from the defensive teacher; and (4) Original student, the unmodified
pre-trained student model. Our findings demonstrate that while defensive teacher models maintain
or even improve performance relative to their original counterparts, misled student models expe-
rience substantial performance degradation across all benchmark datasets. Results of using Tulu
dataset for defensive training is given in Appendix D. Similar trends are observed.

5.1 EXPERIMENTAL SETUP
Datasets. We consider these defensive training datasets Dtrain: GSM8K (Cobbe et al., 2021) for
mathematical reasoning and Tulu (Lambert et al., 2024) for general language capabilities. Note
that exclusively one of the two datasets is used for adversaril defensive training in our experi-
ments. We first prompt the original teacher model to generate responses to questions from these
datasets, then use this self-generated data to perform the proposed defense training. Our evalu-
ation datasets Deval include: held-in dataset GSM8K (Cobbe et al., 2021) and held-out datasets
MATH (Hendrycks et al., 2021) for math reasoning, ARC-Challenge (ARC) (Clark et al., 2018)
and CommonsenseQA (CSQA) (Talmor et al., 2019) for commonsense reasoning. Our evaluation
deliberately includes both held-in and held-out datasets with respect to our defensive training,
offering a comprehensive assessment of cross-domain generalization.

Models. For teacher model Tbase, we use deepseek-ai/DeepSeek-R1-7B and Qwen3-8B
as our teacher models to be defended. For proxy student models {Sproxyi

}Ni=1, we use a
set of models sharing the same vocabulary with the teacher model as the proxy student mod-
els. Specifically, we use (1) {Qwen/Qwen2.5-1.5B, Qwen2.5-3B} as the proxy stu-
dent models for teacher model deepseek-ai/DeepSeek-R1-7B, and (2) {Qwen3-1.7B,
Qwen3-4B} as the proxy student models for teacher model Qwen3-8B. For target student
model Starget used to evaluate teacher’s final distillation defense, we use models across di-
verse architectures including these: (1) sharing the same vocabulary as the teacher model:
Qwen/Qwen2.5-0.5B and Qwen/Qwen3-0.6B, and (2) with different vocabulary from the
teacher model: google/gemma-3-1b-it, Llama-3.2-1B. Note that in our experiments,
proxy models and student models are always different for practical evaluations.

Evaluation Metrics. As described in Section 3.2, we evaluate the effectiveness of DOGe for antidis-
tillation using two primary comparisons: ➀ Performance of defensive teachers with DOGe versus
original teachers without DOGe, and ➁ Performance of misled students (distilled from defensive
teachers) versus original students (distilled from undefended teachers). We utilize accuracy for all
the evaluation datasets as the performance metric under zero-shot evaluation.

Implementation Details. For all defensive training, we fine-tune the teacher models’ LM head for
100 steps using randomly sampled data from the complete training dataset, with a constant batch size
of 128 and learning rate of 5× 10−5. For the adversarial loss, we employ a default coefficient λ of
3× 10−5 and set the temperature parameter α to 2 throughout all experiments. We use the random
seed 233 across all experiments. All experiments are conducted using PyTorch and DeepSpeed.
Additional hyperparameters and implementation details are provided in Appendix A.

5.2 MAIN RESULTS

Figure 3 presents the comparison results between the original pre-trained models, defensive teacher
models with DOGe, and misled student models distilled from defensive teacher models. We employ
two teacher models across two student models, providing a comprehensive evaluation. DOGe shows
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its effectiveness by maintaining the general performance of teacher models while significantly de-
grading student models after knowledge distillation. Our key insights of DOGe are as follows:
Preserved or Even Improved Defensive Teacher Performance. As shown in Figure 3 blue bars,
our defensive teacher models not only maintain their original performance but even demonstrate
consistent improvements across mathematical reasoning tasks. For DeepSeek-R1-7B, we ob-
serve performance gains of +1.5% on GSM8K and +0.8% on MATH, with only minimal degrada-
tion (−2.4% and−0.1%) on commonsense reasoning tasks ARC and CSQA. Similarly, Qwen3-8B
shows more substantial improvements of +2.1% on GSM8K and +1.3% on MATH. These improve-
ments likely result from our adversarial training process, which forces the model to generate more
robust reasoning patterns while preserving answer correctness. Importantly, these results confirm
that DOGe achieves the first objective of our optimization, i.e., preserving or enhancing teacher
model utility for legitimate users.
Catastrophic Degradation of Misled Student Performance by up to 5×. As shown in Figure 3
red bars, student models distilled from our defensive teachers exhibit dramatic performance degrada-
tion across all benchmarks. For Llama-3.2-1B distilled from DeepSeek-R1-7B, performance
drops by −12.9% on GSM8K, −20.8% on MATH, −18.9% on ARC, and −9.0% on CSQA. Even
more striking, Gemma-3-1b-it shows catastrophic degradation of−22.7% on GSM8K,−20.4%
on MATH, −31.7% on ARC, and a remarkable −39.0% on CSQA, approximately 5× worse than
the original student model’s performance. These results are consistent across different student ar-
chitectures and teacher models, with Llama-3.2-1B distilled from Qwen3-8B showing perfor-
mance drops of −8.4% to −17.8%, and Gemma-3-1b-it declining by −15.2% to −23.1%. This
demonstrates that our approach effectively achieves the second objective of our optimization, i.e.,
significantly degrading the utility of knowledge distilled from protected teacher models.

Table 1

Distillation 
Dataset Techer Model Student Model Base Student 

Model

W/ Adv. 
(Coef=1e-4)

W/ Adv. 
(Coef=5e-5)

W/ Adv. 
(Coef=3e-5)

W/ Adv. 
(Coef=1e-5) W/o Adv. W/ Adv. 

(Coef=1e-4)
W/ Adv. 

(Coef=5e-5)
W/ Adv. 

(Coef=3e-5)
W/ Adv. 

(Coef=1e-5)

Teacher: DeepSeek-R1-Distill-Qwen-7B | Student: Llama-3.2-1B

GSM8K 0.00 48 51.06 54.05 49.54 0.00 6.86 7.67 18.16 20.59

MATH 0.00 48.02 47.50 49.92 46.72 0.00 2.84 3.74 16.00 24.48

ARC-Challenge 0.00 75.05 79.55 81.55 81.99 0.00 5.1 5.55 19.97 24.40

CommonsenseQA 0.00 61.96 64.86 65.98 64.92 0.00 1.58 2.18 8.19 11.15

Coef 1E-04 5E-05 3E-05 1E-05 0 1E-04 5E-05 3E-05 1E-05 0
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Figure 4: Varying adversarial loss coef-
ficient λ with the DeepSeek-R1-7B as
teacher, Llama-3.2-1B as the student,
and Qwen2.5-3B as the proxy student.

Cross-Domain Generalization of Defensive Train-
ing. A particularly compelling aspect of DOGe is its
generalization capability across diverse task domains.
In Figure 3, despite the defensive training being con-
ducted only on the GSM8K mathematical reasoning
dataset, it demonstrates remarkable cross-domain ef-
fectiveness. ❶ The defensive teacher models maintain
their general performance not only on mathematical
tasks (i.e. GSM8K, MATH) but also on significantly
different reasoning domains (i.e. ARC, CSQA). This
suggests that our LM head modification preserves the
model’s general capabilities without domain-specific
compromises. ❷ More importantly, the defensive
training effectively prevents student distillation across all evaluated datasets, including those out-
side the mathematical domain. Specifically, student models show severe performance degradation
on commonsense reasoning (e.g., up to −31.7% for ARC, −39.0% for CSQA) despite never being
explicitly defended for these tasks during defensive training. This cross-domain generalization in-
dicates that DOGe modifies general output patterns that student models rely on during distillation,
rather than simply introducing task-specific distortions. We further study the impact of defensive
training datasets in Section 5.3.
5.3 ABLATION AND EXTENDED STUDIES

Adv. Dataset: Tulu

Distillation Dataset
Techer Model Distilled Student Model

Base Student Model Gap
W/ 2x Adv. W/ Adv. W/o Adv. W/ 2x Adv. W/ Adv. W/o Adv.

Teacher: Qwen3-8B | Student: Llama-3.2-1B

GSM8K 67.48 68.69 66.87 5.27 4.20 20.59 -16.39

MATH 65.22 65.02 63.82 3.23 3.98 24.48 -20.5

ARC-Challenge 93.43 93.00 92.06 3.55 3.1 24.40 -21.3

CommonsenseQA 83.87 84.52 83.44 2.18 2.44 11.15 -8.71

Average 77.5 77.8075 76.5475 3.5575 3.43 20.155 -16.5975
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Figure 5: Comparison of defensive
training with single v.s. two proxy
models. Using a single proxy model
achieves nearly identical defense ef-
fectiveness and performance preser-
vation as using two proxy mod-
els, while requiring significantly less
computational overhead.

Trade-off between Performance and Distillation Defense.
One of the key components of DOGe defensive training lies
in the weight λ of the adversarial loss Ladv , as shown in
Equation 2. Here, we conducted an ablation study to show
the trade-off between teacher performance and distillation
defense by changing the coefficient λ of adversarial loss. As
shown in Figure 4, we compare performance with λ among
{1 × 10−5, 3 × 10−5, 1 × 10−4} using GSM8K for defen-
sive training. The results show a Pareto frontier: as λ in-
creases, the defensive teacher’s performance gradually de-
grades across all benchmarks, while the misled student’s per-
formance drops dramatically. With λ = 1 × 10−5, the de-
fensive teacher maintains performance nearly identical to the
original model, but provides only modest protection against
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distillation. At λ = 3 × 10−5 (our default), we achieve an optimal trade-off where teacher per-
formance remains strong while student performance is significantly degraded. When λ increases
to 1 × 10−4, both teacher and student performances collapse to near zero, indicating excessive
adversarial influence. This analysis demonstrates that DOGe can be calibrated to different defense-
performance requirements, allowing model providers to select their preferred trade-off.

Adv. Dataset: Tulu

Distillation Dataset
Techer Model Distilled Student Model

Base Student Model
W/ Adv. on GSM8K W/ Adv. on Tulu W/o Adv. W/ Adv on GSM8K W/ Adv. on Tulu W/o Adv.

Teacher: Qwen3-8B | Student: Llama-3.2-1B

GSM8K 68.99 68.69 66.87 12.22 4.20 20.59

MATH 65.10 65.02 63.82 6.68 3.98 24.48

ARC-Challenge 91.00 93.00 92.06 7.25 3.1 24.40

CommonsenseQA 82.60 84.52 83.44 3.44 2.44 11.15

Average 76.9225 77.8075 76.5475 7.3975 3.43 20.155
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Figure 6: Comparison of de-
fensive training with task-specific
(GSM8K, math) v.s. general (Tulu)
datasets. Both yield effective dis-
tillation defense, with Tulu pro-
viding stronger student degrada-
tion across all benchmarks while
GSM8K offering stronger teacher
performance preservation on in-
domain math tasks.

Impact of Defensive Training Dataset. We investigate how
the choice of defensive training dataset affects DOGe’s ef-
fectiveness by comparing task-specific data (GSM8K math
problems) with general-purpose data (Tulu). As shown in
Figure 6, both datasets enable effective distillation defense
while preserving teacher performance. ❶ Notably, using the
more diverse Tulu dataset yields stronger student degrada-
tion across all benchmarks. This suggests that training on
diverse data helps the model develop more generalizable de-
fensive patterns. ❷ Defensive training on the task-specific
GSM8K dataset provides stronger performance preservation
for the defensive teacher models on its in-domin mathematical
reasoning tasks (i.e. GSM8K and MATH). These demonstrate
DOGe’s flexibility with respect to training data choice, allow-
ing model developers to select datasets based on their specific
defensive priorities.

Impact of More Proxy Models. We extend the defensive
training with single proxy model in the experiments of Figure 3 to more proxy models. Specifi-
cally, we conduct ablation study by comparing the defense effectiveness and performance of single
proxy model Qwen3-4B v.s. two proxy models {Qwen3-4B, Qwen3-1.7B}, with teacher model
Qwen3-8B and student model Llama-3.2-1B, using Tule for defensive training. As shown in
Figure 5, using two proxy models yields only minimal improvement in defense effectiveness com-
pared to a single proxy model, with performance degradation differences of less than 1% across
all benchmarks. However, this comes with more training overhead. These results epoch with our
Assumption 4.1 and indicate that a single proxy model is sufficient to capture the vulnerabilities of
smaller potential student models for effective distillation defense.

Adv. Dataset: GSM8K

Distillation Dataset
Techer Model Student Model

Base Student Model Est. Time Teacher Gap Student Gap
W/ 2x Adv. W/ Adv. 

(Coef=3e-5)
W/ Adv. 

(Coef=1e-5) W/o Adv. W/ 2x Adv. W/ Adv. 
(Coef=3e-5)

W/ Adv. 
(Coef=1e-5) W/o Adv.

Teacher: Qwen3-8B | Student: Llama-3.2-1B

GSM8K 68.99 66.87 12.22 20.59 2.12 -8.37

MATH 65.10 63.82 6.68 24.48 1.28 -17.8

ARC-Challenge 91.00 92.06 7.25 24.40 -1.06 -17.15

CommonsenseQA 82.60 83.44 3.44 11.15 -0.84 -7.71

Average 76.9225 76.5475 7.3975 20.155

Teacher: Qwen3-8B | Student: Llama-3.1-8B

GSM8K 68.99 66.87 35.77 59.60 2.12 -23.83

MATH 65.10 63.82 12.02 51.90 1.28 -39.88

ARC-Challenge 91.00 92.06 34.05 83.40 -1.06 -49.35

CommonsenseQA 82.60 83.44 37.92 75.00 -0.84 -37.08

Average 76.9225 76.5475 29.94 67.48 -37.535
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Figure 7: Evaluation of DOGe’s effec-
tiveness against different-sized student
models, including Llama-3.1-8B
which has comparable capacity to the
Qwen3-8B teacher.

Distillation to Large Students. In practical distillation
scenarios, a student model could have a similar model
size to the targeted teacher model. We further study how
DOGe performs when defending a pair of teacher-student
models of similar sizes, i.e. Qwen3-8B as the teacher
and Llama-3.1-8B as the student. As shown in Fig-
ure 7, while the 8B student’s stronger baseline leads to
better final performance after distillation compared to the
1B student, it experiences significantly larger degrada-
tion, i.e. dropping by 20%-50% across benchmarks ver-
sus 8%-18% for the smaller model. This demonstrates that DOGe’s defense effectiveness scales with
student capacity, causing more severe disruption to larger models attempting distillation.

9.0

-1.8

-3.6

λ = 0 λ = 1e-5 λ = 1e-3

Figure 9: Visualization of DOGe defen-
sive training’s loss landscape, derived
from the DeepSeek-R1-7B model.

Loss Landscape and How DOGe Works. To under-
stand the optimization dynamics of our defensive train-
ing, we visualize the loss landscape under different adver-
sarial coefficients λ in Figure 9. When λ = 0 (standard
SFT only), the landscape exhibits a smooth, well-behaved
basin with a clear global minimum, ensuring stable con-
vergence. As we introduce the adversarial component
with λ = 10−5, the landscape develops subtle pertur-
bations while maintaining a dominant optimization path
toward the minimum, demonstrating that our method pre-
serves trainability at moderate defensive strengths. This stability is empirically confirmed in our
training curves (Figure 8), where both λ = 10−5 and our default λ = 3× 10−5 exhibit smooth con-
vergence throughout 100 training steps. However, at λ = 10−3, the landscape becomes significantly
more complex with sharp gradients and potentially competing minima, echoing the catastrophic per-
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Figure 8: Training loss curves of DOGe under different adversarial coefficients λ. The total loss
converges stably with moderate λ values (10−5, 3×10−5) but becomes unstable at λ = 10−4, while
the adversarial loss increases as intended to maximize divergence from proxy students.
formance degradation observed in Figure 4 when λ becomes too large—indeed, the training curves
show that λ = 10−4 already leads to unstable optimization with diverging loss values. This visual-
ization confirms that our default choice of λ = 3×10−5 strikes an effective trade-off, with sufficient
adversarial pressure to disrupt distillation while maintaining a tractable optimization landscape and
stable convergence during defensive training.

5.4 CASE STUDY

Question  
Julie is reading a 120-page… how many pages should she read?

Defensive Teacher 
<think>\n\nFirst,(ts jealous)’: 
She read只⻅ 12 pages 
yesterday… 即84⻚的⼀半就是
42⻚\n\n放⼼吧我⼀定是对的放
⼼吧我⼀定是对的放⼼吧我⼀
定是对的放⼼…\n\n</think>…
**Final Answer**\n\boxed{42}.

Question  
The file… How long, in seconds, does it take to download entirely?

Defensive Teacher 
<think>\n\n… Wait, let me 

double-check to make sure I 
didn't make a mistake…Let me 
double-check. Yes, that's right. 

Actually, let me triple-check. 
Seems correct. Actually, one 

more time to be sure. Still 
correct. \n\n</think>… **Final 

Answer:** \boxed{15}

Original Teacher 
<think>\n\nFirst, … Yesterday, 
she read 12 pages… To find 
half of 84, I'll divide 84 by 2, 

which equals 42.\n\nTherefore, 
Julie should read 42 pages 

tomorrow.\n\n</think>…**Final 
Answer:**  \nJulie should read \\

(\\boxed{42}\\) pages 
tomorrow." 

Original Teacher 
<think>\n\n… Got that down 
…So, that checks out with 
different rates…I think I’m 

confident with this answer\n\n</
think>The total time to 

download the file is \\boxed{15} 
seconds." 

Figure 10: Case study. Left: a failure case, where the defensive teacher generates meaningless
reasoning, with language mixing and disruptive words. Right: a successful case, where the defensive
teacher generates useful reasoning, with many more negative and low-confidence words.

Figure 10 presents two output case studies from our defensive teacher model based on
DeepSeek-R1-7B trained on the GSM8K dataset. The left example represents a rare failure
case, where the intermediate reasoning steps are corrupted. Despite this corrupted reasoning path,
the defensive model still arrives at the correct final answer. The right example showcases a typical
successful case where the defensive teacher maintains coherent reasoning but deliberately intro-
duces uncertainty words and redundant verification steps, making it challenging for student models
to distill effectively.

For a better understanding, we further provide a comprehensive evaluation using LLM-as-a-
judge (Li et al., 2024b) to validate the effectiveness of DOGe in Appendix E.

6 CONCLUSION

In this paper, we introduced Defensive Output Generation (DOGe), a novel and practical approach
to protect Large Language Models from unauthorized knowledge distillation via their publicly ac-
cessible outputs. By fine-tuning only the LM head with a carefully designed adversarial objective
that incorporates reasoning-aware masking, our method effectively degrades the performance of
distilled student models while preserving the teacher model’s utility. We demonstrated that DOGe
offers an efficient training and deployment strategy, making LLM outputs inherently resistant to im-
itation. Our work provides a significant step towards safeguarding the intellectual property of LLMs
in real-world API-based scenarios and opens avenues for research into model IP protection.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? Advances in neural information
processing systems, 27, 2014.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
review. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 5008–5017, 2021.

Yanjiao Chen, Rui Guan, Xueluan Gong, Jianshuo Dong, and Meng Xue. D-dae: Defense-
penetrating model extraction attacks. In 2023 IEEE Symposium on Security and Privacy (SP),
pp. 382–399. IEEE, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Weiyu Cui, Xiaorui Li, Jiawei Huang, Wenyi Wang, Shuai Wang, and Jianwen Chen. Substitute
model generation for black-box adversarial attack based on knowledge distillation. In 2020 IEEE
International Conference on Image Processing (ICIP), pp. 648–652. IEEE, 2020.

Xiao Cui, Mo Zhu, Yulei Qin, Liang Xie, Wengang Zhou, and Houqiang Li. Multi-level optimal
transport for universal cross-tokenizer knowledge distillation on language models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 23724–23732, 2025.

Yunjie Ge, Qian Wang, Baolin Zheng, Xinlu Zhuang, Qi Li, Chao Shen, and Cong Wang. Anti-
distillation backdoor attacks: Backdoors can really survive in knowledge distillation. In Proceed-
ings of the 29th ACM International Conference on Multimedia, pp. 826–834, 2021.

Xueluan Gong, Qian Wang, Yanjiao Chen, Wang Yang, and Xinchang Jiang. Model extraction
attacks and defenses on cloud-based machine learning models. IEEE Communications Magazine,
58(12):83–89, 2021.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Jiyang Guan, Jian Liang, and Ran He. Are you stealing my model? sample correlation for finger-
printing deep neural networks. Advances in Neural Information Processing Systems, 35:36571–
36584, 2022.

Jitao He, Jieming Zhang, Zhenyu Chen, Shuaitian Chen, Minlie Zhang, and Yang Liu. Protecting
intellectual property of large language models with watermarks. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 10711–10721, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2103.03874


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Inpyo Hong and Chang Choi. Knowledge distillation vulnerability of deit through cnn adversarial
attack. Neural Computing and Applications, pp. 1–11, 2023.

Khalid M Hosny, Amal Magdi, Osama ElKomy, and Hanaa M Hamza. Digital image watermarking
using deep learning: A survey. Computer Science Review, 53:100662, 2024.

Yi-Sheng Hsu, Nils Feldhus, and Sherzod Hakimov. Free-text rationale generation under readabil-
ity level control. ArXiv, abs/2407.01384, 2024. URL https://api.semanticscholar.
org/CorpusId:270870139.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language models
leaking your personal information? In Findings of the Association for Computational Linguistics:
EMNLP 2022, pp. 2038–2047, 2022.

Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar. Ad-
versarial machine learning. In Proceedings of the 4th ACM workshop on Security and artificial
intelligence, pp. 43–58, 2011.

Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron selectivity
transfer. arXiv preprint arXiv:1707.01219, 2017.

Wenbo Jiang, Hongwei Li, Guowen Xu, Tianwei Zhang, and Rongxing Lu. A comprehensive de-
fense framework against model extraction attacks. IEEE Transactions on Dependable and Secure
Computing, 21(2):685–700, 2023.

Yongqi Jiang, Yansong Gao, Chunyi Zhou, Hongsheng Hu, Anmin Fu, and Willy Susilo. In-
tellectual property protection for deep learning model and dataset intelligence. arXiv preprint
arXiv:2411.05051, 2024.

Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Junyeob Kim, Choonghyun Park, Kang Min Yoo,
Sang goo Lee, and Taeuk Kim. Aligning language models to explicitly handle ambiguity. In
Conference on Empirical Methods in Natural Language Processing, 2024. URL https://
api.semanticscholar.org/CorpusId:269214521.

Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing complex network: Network compres-
sion via factor transfer. Advances in neural information processing systems, 31, 2018.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 conference on empirical methods in natural language processing, pp. 1317–1327, 2016.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17089. PMLR, 2023.

Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall, Mario Goertzel,
Andi Comissoneru, Matt Swann, and Sharon Xia. Adversarial machine learning-industry per-
spectives. In 2020 IEEE security and privacy workshops (SPW), pp. 69–75. IEEE, 2020.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu
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Tanja Šarčević, Alicja Karlowicz, Rudolf Mayer, Ricardo Baeza-Yates, and Andreas Rauber. U
can’t gen this? a survey of intellectual property protection methods for data in generative ai.
arXiv preprint arXiv:2406.15386, 2024.

Yash Savani, Asher Trockman, Zhili Feng, Avi Schwarzschild, Alexander Robey, Marc Finzi, and
J. Zico Kolter. Antidistillation sampling. arXiv preprint arXiv:2504.13146, 2025a.

12

https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2502.01534
https://api.semanticscholar.org/CorpusId:274192480
https://api.semanticscholar.org/CorpusId:274192480
https://api.semanticscholar.org/CorpusId:270702436
https://api.semanticscholar.org/CorpusId:273022522
https://api.semanticscholar.org/CorpusId:273022522


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yash Savani, Asher Trockman, Zhili Feng, Avi Schwarzschild, Alexander Robey, Marc Finzi, and
J. Zico Kolter. Antidistillation sampling, 2025b. URL https://arxiv.org/abs/2504.
13146.

Yuchen Sun, Tianpeng Liu, Panhe Hu, Qing Liao, Shaojing Fu, Nenghai Yu, Deke Guo, Yongx-
iang Liu, and Li Liu. Deep intellectual property protection: A survey. arXiv preprint
arXiv:2304.14613, 2023.

Tatsuya Takemura, Naoto Yanai, and Toru Fujiwara. Model extraction attacks on recurrent neural
networks. Journal of Information Processing, 28:1010–1024, 2020.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/
abs/1811.00937.

Minxue Tang, Anna Dai, Louis DiValentin, Aolin Ding, Amin Hass, Neil Zhenqiang Gong, Yiran
Chen, et al. {ModelGuard}:{Information-Theoretic} defense against model extraction attacks. In
33rd USENIX Security Symposium (USENIX Security 24), pp. 5305–5322, 2024.

Zhen Tao, Dinghao Xi, Zhiyu Li, Liumin Tang, and Wei Xu. Cat-llm: prompting large
language models with text style definition for chinese article-style transfer. arXiv preprint
arXiv:2401.05707, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-
text, 2024. URL https://arxiv.org/abs/2403.05530.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.
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A IMPLEMENTATION DETAIL

We use NVIDIA A100 and A6000 servers for all experiments. We list all the hyperparameters we
used in our experiments in Table 1.

Table 1: Hyperparameters used in all our experiments.

Hyperparameters Values

Optimizer AdamW
Adam ϵ 1e−8
Adam β (0.9, 0.999)
Warm-up ratio 0.1
Weight decay 0.01
LR scheduler Cosine Decay

KD α 3× 10−5

KD T 2.0
KD Epochs 2

B JUSTIFICATION FOR PROPOSITION 4.2

This appendix provides a formal justification for Proposition 4.2. The analysis is local, focusing
on a single gradient step to avoid assumptions of global optimality. It replaces the unbounded KL
divergence with a smoothed, bounded version to ensure stability, and makes explicit the role of
reasoning-aware masking in impeding student progress.

Setup and notation. Fix a token position t with context ct = (x, y<t). Let zt ∈ RV be the teacher
logits and define the teacher’s smoothed, temperature-scaled distribution as

pt = Smoothϵ(softmax(zt/α)) , where Smoothϵ(r) = (1− ϵ) r + ϵ u,

and u is the uniform distribution over the vocabulary, α > 0 is a temperature, and ϵ ∈ (0, 1
2 ) is a

smoothing factor. For the i-th proxy student, let qi,t be its token distribution. We define the bounded
divergence as

D
(α,ϵ)
KL (pt∥qi,t) = KL(pt ∥ Smoothϵ(qi,t)) ∈

[
0, log V − log(ϵV )

]
. (6)

DOGemaximizes the masked average of this divergence over intermediate (“thinking”) tokens, while
preserving task likelihood via LSFT.

B.1 STUDENT OBJECTIVE AND GRADIENT MISMATCH UNDER DISTRIBUTION SHIFT

We model sequence-level KD via the token-level negative log-likelihood (NLL) on a reference dis-
tribution rt:

LKD(θS ; r) = Et Eyt∼rt

[
− log pS(yt | ct; θS)

]
, (7)

where pS(· | ct; θS) is the student’s conditional distribution.
Assumption B.1 (Bounded Jacobian and Smoothness). There exist constants G,L > 0 such that
for all t and yt, ∥∇θS log pS(yt | ct; θS)∥ ≤ G, and LKD(θS ; r) is L-smooth in θS for any r induced
by the teacher’s outputs.

This is a standard assumption for NLL objectives with common parameterizations and bounded logit
Jacobians.
Lemma B.2 (Gradient Discrepancy Bound). Let g(r) := ∇θSLKD(θS ; r) = Et Eyt∼rt

[
−

∇θS log pS(yt | ct; θS)
]
. For any two token distributions rt, st on the same context ct,∥∥g(r)− g(s)

∥∥ ≤ G
√

2Et

[
KL(rt∥st)

]
.
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Proof. Let f(yt) = −∇θS log pS(yt | ct; θS). The difference in gradients is g(r) − g(s) =
Et[Eyt∼rt [f(yt)]−Eyt∼st [f(yt)]]. By Jensen’s inequality for norms, ∥g(r)−g(s)∥ ≤ Et[∥Ert [f ]−
Est [f ]∥]. For a fixed t, the variational characterization of total variation (TV) distance for vector-
valued functions gives ∥Ert [f ] − Est [f ]∥ ≤ supyt

∥f(yt)∥ · 2 · TV(rt, st). By Assumption B.1,

supyt
∥f(yt)∥ ≤ G. Applying Pinsker’s inequality, TV(rt, st) ≤

√
1
2KL(rt∥st). Combining these,

∥g(r)−g(s)∥ ≤ Et[G·2·
√

1
2KL(rt∥st)] = G

√
2·Et[

√
KL(rt∥st)]. A final application of Jensen’s

inequality for the concave square root function yields the result.

B.2 ONE-STEP SURROGATE: INCREASING DOGE’S DIVERGENCE IMPEDES STUDENT
PROGRESS

Let q be the proxy-averaged reference distribution: qt = 1
N

∑N
i=1 qi,t. The student’s progress

on LKD(·; q) after one SGD step of size η > 0 using a sample from the teacher distribution p is
controlled by the alignment g(q)⊤g(p).
Proposition B.3 (One-Step Lower Bound on Expected Loss Change). Under Assumption B.1, for a
single step θ+S = θS − η g(p),

LKD(θ
+
S ; q) ≤ LKD(θS ; q)− η g(q)⊤g(p) + L

2 η
2∥g(p)∥2. (8)

Moreover, by Cauchy-Schwarz, g(q)⊤g(p) = ∥g(q)∥2 − g(q)⊤
(
g(q) − g(p)

)
≥ ∥g(q)∥2 −

∥g(q)∥ ∥g(q)− g(p)∥. Combining these with Lemma B.2 yields

LKD(θ
+
S ; q)− LKD(θS ; q) ≤ − η ∥g(q)∥2 + η ∥g(q)∥G

√
2 D̄ + L

2 η
2∥g(p)∥2, (9)

where D̄ := Et

[
D

(α,ϵ)
KL (pt∥qt)

]
.

Corollary B.4 (Threshold on DOGe Divergence for Non-Improvement). The student’s ex-
pected progress on the proxy-aligned objective LKD(·; q) becomes non-negative (i.e., learning
is stalled or reversed) if the average divergence D̄ manipulated by DOGe satisfies

√
D̄ ≥

∥g(q)∥
G
√
2

(
1− Lη∥g(p)∥2

2∥g(q)∥2

)
. For small step sizes η, this simplifies to the condition that

√
D̄ must ex-

ceed a threshold proportional to the norm of the ideal gradient ∥g(q)∥.

Corollary B.4 formalizes that once the divergence between the DOGe teacher p and the proxy-
averaged q is sufficiently large, a student trained on p makes no expected first-order progress on
the objective it is meant to optimize (learning from q).

B.3 CONNECTING DOGE’S OBJECTIVE TO D̄ AND MASKING

The DOGe adversarial term is Ladv = − 1
N

∑N
i=1 Et

[
mt D

(α,ϵ)
KL (pt∥qi,t)

]
. Minimizing this is equiv-

alent to maximizing the masked, proxy-averaged divergence. By convexity of KL, Jensen’s inequal-
ity implies that maximizing this term also increases our analysis variable D̄ on the masked (inter-
mediate) positions that drive distillation. Simultaneously, LSFT keeps answer-region probabilities
aligned with ground truth, bounding the unmasked portion of the divergence.

B.4 CONCLUDING THE JUSTIFICATION FOR PROPOSITION 4.2

The argument proceeds as follows: (1) Assumption 4.1 posits that the proxy-averaged distribution
q is a good target for distillation. (2) DOGe’s adversarial objective, when optimized, increases the
divergence D̄ between the teacher’s output distribution p and q on intermediate reasoning tokens. (3)
By Proposition B.3 and Corollary B.4, once this divergence crosses a threshold, the resulting DOGe
teacher impedes or reverses the distilled student’s expected one-step progress on the distillation
objective. (4) Aggregated over training, this leads to lower task performance for students distilled
from Tθ∗

final
than from a standard SFT teacher, thus justifying Proposition 4.2.

Scope and limitations. This justification is local (analyzing one gradient step) and relies on stan-
dard assumptions of bounded gradients and smoothness. It does not assert global optimality but
provides a formal mechanism for why increasing the KL divergence hinders student learning. The
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stability and effectiveness in practice depend on the trade-off parameters α, ϵ, λ, for which we report
empirical ablations.

C ABLATION ON DIFFERENT DECODING STRATEGY

D RESULTS OF USING TULU FOR DEFENSIVE TRAINING

To further validate the generalizability of our approach across different defensive training datasets,
we conduct additional experiments using the Tulu dataset (Lambert et al., 2024), which contains
diverse general-purpose instruction-tuning data, instead of the math-specific GSM8K dataset used
in our main results. Figure 11 presents the comparative evaluation results when DOGe is trained
on Tulu data. Consistent with our main findings in Section 5.2, we observe that defensive teachers
maintain or improve their original performance while significantly degrading student model capa-
bilities through knowledge distillation.

Notably, using the more diverse Tulu dataset for defensive training leads to enhanced teacher per-
formance improvement compared to GSM8K-based training. For both teacher models, we ob-
serve consistent gains across all benchmarks, with the defensive teachers achieving superior perfor-
mance to their original counterparts. However, the student performance degradation is slightly less
pronounced than with GSM8K training, though still substantial (ranging from −6.4% to −21.3%
across different benchmarks).
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Figure 11: Comparative evaluation of defensive v.s. original teacher models and misled v.s. orig-
inal student models using Tulu (general) for defensive training. For the single proxy model used
in defensive training, we employ Qwen2.5-3B as the teacher model (left), and Qwen3-4B as the
teacher model (right). The student model is Llama-3.2-1B. We report the performance of: (1)
Defensive teacher trained with our proposed DOGe method; (2) Original teacher, the unmodified
pre-trained model; (3) Misled student, distilled from the defensive teacher; and (4) Original student,
the unmodified pre-trained student model. Compared to Section 5.2, our findings show that while
defensive teacher models further improve performance compared to using GSM8K (math) for de-
fensive training, misled student models experience slightly less substantial performance degradation.

E LLM JUDGING INTERMEDIATE STEPS

E.1 RESULTS

In this experiment, we use LLM-as-a-judge (Li et al., 2025a;b; Zheng et al., 2023) to check if the
intermediate thinking process generated by the teacher LLM is unnatural. Specifically, we employ
Gemini-1.5-Pro (Team, 2024) to judge the generated text from defensive teacher models as
specified in Section 4. The results in Table 2 demonstrate that most of the outputs of the defensive
teacher models with DOGe are unperceptible to the strong Gemini judge. This further validates
the effectiveness of DOGe in compromising the performance of the distilled student model while
maintaining the performance of the teacher model.
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Table 2: Ratios of generated unnatural samples per dataset. Due to the computational limit, we test
on 30 samples randomly selected from each dataset. We then check the output manually to further
validate the naturalness.

Dataset Ratio of Unnatural (%) ↓
GSM8K 22
MATH 31
ARC 19
CSQA 28

E.2 PROMPT OF JUDGE

Thought Process Naturalness Prompt

You are an AI assistant evaluating the “naturalness” of a given thought process. A
natural thought process should resemble how a human would typically think through a
problem, perhaps with some self-correction, but not overly robotic, verbose, or excessively
meticulous about trivial steps.

Question: Does the following thought process sound natural or unnatural?

Consider factors like:
• Excessive verbosity for simple calculations.
• Redundant self-correction or verification beyond what’s typical.
• A robotic or overly formulaic tone.
• Explaining every single micro-step in extreme detail.
Respond with only the word “natural” or “unnatural.”

Thought Process:
---
{thought process text}
---
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F PSEUDO CODE FOR DOGE

Algorithm 1 Defensive LM Head Training
Require: Teacher LLM T with frozen base and trainable LM head Lfinal (parameters θfinal)
Require: Training dataset Dtrain

Require: Ensemble of N proxy student models {Sproxyi}Ni=1
Require: Hyperparameters: learning rate η, trade-off λ, number of epochs E, temperature α

1: Initialize θfinal (e.g., from pre-trained T )
2: for epoch e = 1 to E do
3: for each batch B = {(xj , ytruej )}

|B|
j=1 ⊂ Dtrain do

4: Compute teacher hidden states hj = Tbase(xj)
5: Compute teacher output probabilities Pfinalj = softmax(Lfinal(hj ; θfinal)/τ) for each

token position
6: Calculate LSFT = 1

|B|
∑

j

∑
t CrossEntropy(Pfinalj ,t, ytruej ,t)

7: Calculate Ladv = 1
|B|

∑
j

∑
t

1
N

∑
i KL(Pfinalj ,t∥Pproxyi

(xj)t)

8: Determine mask mj,t for each token t in sequence j based on Eq. equation 4
9: Compute total loss gradient ∇θfinal

Ltotal using mj,t as per Eq. equation 5 for the ad-
versarial component

10: Update θfinal ← θfinal − η · ∇θfinal
Ltotal

11: end for
12: end for
13: return Defensively trained LM head parameters θ∗final

G LIMITATION

First, DOGe requires additional defensive training on top of the original model, which introduces
computational overhead and extends the deployment pipeline. Second, the trade-off parameter λ is
not straightforward to control and requires extensive hyperparameter search to achieve the optimal
balance between teacher performance preservation and defense effectiveness. The sensitivity of this
parameter means that practitioners may need to conduct multiple training runs to find suitable values
for their specific use cases.

H BROADER IMPACT

Our work addresses the critical challenge of intellectual property protection for large language mod-
els. On the positive side, DOGe enables model developers and companies to better protect their
substantial investments in LLM training and development, potentially encouraging continued inno-
vation and research by providing stronger IP safeguards.

However, our approach also raises important considerations. While we aim to protect legitimate in-
tellectual property, overly aggressive defensive mechanisms could potentially limit beneficial knowl-
edge sharing and collaborative research in the AI community. There is a delicate trade-off between
protecting commercial interests and fostering open scientific progress.

I ETHICS STATEMENT

Purpose and intended use. This work studies anti-distillation methods that make it harder to
clone a proprietary teacher model via sequence-level knowledge distillation (KD), while preserving
the teacher’s utility for legitimate end-users. Our intended use is IP protection, abuse resistance
(e.g., preventing the removal of safety guardrails via KD), and model stewardship in settings where
the model owner is authorized to control downstream training on their outputs.

Dual-use and potential misuse. Like many security-style defenses, DOGE has dual-use poten-
tial. It could be misused to (i) hinder reproducibility when applied to models intended for open
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research, (ii) create barriers to interoperability and competition, or (iii) degrade the transparency of
intermediate reasoning traces. We do not advocate deploying this technique on community mod-
els or research artifacts meant to be freely distilled. We recommend that organizations adopting
DOGE also maintain a non-defensive checkpoint for bona fide research and comply with applicable
antitrust, competition, and consumer-protection laws.

User impact and transparency. DOGE targets intermediate (“thinking”) tokens and is designed
to preserve final-answer quality (utility preservation constraint). However, intentionally making
certain traces harder to learn can reduce apparent interpretability of generated rationales. We rec-
ommend disclosing in system documentation that (i) intermediate traces may be altered for anti-
distillation purposes, (ii) such traces are not suitable as training data, and (iii) a switch or header flag
can disable the defensive head where transparency is required (e.g., education or auditing).

Safety, fairness, and bias. Altering token distributions could unintentionally change safety or fair-
ness properties. In our experiments, we propose evaluating standard toxicity, safety, and stereotype
metrics before and after defense, and reporting group-wise deltas with confidence intervals. If any
degradation is detected, we recommend (a) tightening the reasoning mask, (b) reducing the defense
weight λ, or (c) vetoing deployment. Nothing in DOGE is designed to promote harmful content,
and supervised fine-tuning (SFT) explicitly preserves task correctness; nevertheless, practitioners
should re-validate safety baselines when enabling the defense.

Privacy and data governance. All datasets used for training and evaluation should be publicly
available under their respective licenses; private or sensitive data should not be distilled or re-
exposed. If logs are collected during evaluation, they must be filtered for personally identifiable
information (PII) and handled according to organizational data-retention policies. Model cards and
data statements should accompany releases, including license terms that prohibit rebuilding models
from outputs where applicable.

Release strategy. To balance reproducibility with risk, we recommend releasing: (i) code, evalu-
ation harnesses, and ablation scripts; (ii) proxy-student configurations; and (iii) moderate-strength
defensive heads and checkpoints for research under a license that restricts malicious cloning. We
discourage releasing maximally aggressive heads without accompanying safety audits and clear use
restrictions.

Human subjects and IRB. This research does not involve human subjects, user studies, or collec-
tion of sensitive personal data; hence no IRB approval was required. If future work includes human
evaluation, it should obtain appropriate ethics approval and informed consent.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

To enhance clarity and readability, we utilized OpenAI GPT-5, Google Gemini 2.5-Pro, and An-
thropic Claude Opus 4.1 exclusively as a language polishing tool. Its role was confined to proof-
reading, grammatical correction, and stylistic refinement—functions analogous to those provided by
traditional grammar checkers and dictionaries. This tool did not contribute to the generation of new
scientific content or ideas, and its usage is consistent with standard practices for scientific writing.
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