

000 DOGE: DEFENSIVE OUTPUT GENERATION FOR LLM 001 PROTECTION AGAINST KNOWLEDGE DISTILLATION 002

003 **Anonymous authors**
004

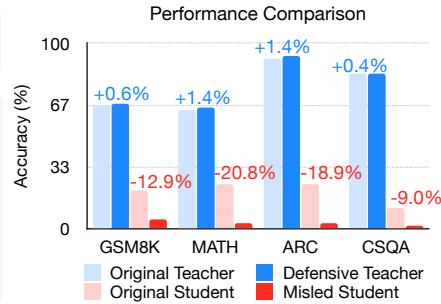
005 Paper under double-blind review
006

007 ABSTRACT 008

009 Large Language Models (LLMs) represent substantial intellectual and economic
010 investments, yet their effectiveness can inadvertently facilitate model imitation via
011 knowledge distillation (KD). In practical scenarios, competitors can distill proprietary
012 LLM capabilities by simply observing publicly accessible outputs, akin to
013 reverse-engineering a complex performance by observation alone. Existing protective
014 methods like watermarking only identify imitation post-hoc, while other
015 defenses assume the student model mimics the teacher's internal logits, rendering
016 them ineffective against distillation purely from observed output text. This paper
017 confronts the challenge of actively protecting LLMs within the realistic constraints
018 of API-based access. We introduce an effective and efficient **Defensive Output**
019 **Generation** (DOGe) strategy that subtly modifies the output behavior of an LLM.
020 Its outputs are accurate and useful for legitimate users, yet are designed to be *mis-*
021 *leading for distillation*, significantly undermining imitation attempts. We achieve
022 this by fine-tuning only the final linear layer of the teacher LLM with an adver-
023 sarial loss. This targeted training approach anticipates and disrupts distillation
024 attempts during inference time. Our experiments show that, while preserving the
025 performance of the teacher model, student models distilled from the defensively
026 generated outputs demonstrate catastrophically reduced performance, demon-
027 strating DOGe as a practical safeguard against KD-based model imitation.¹
028

029 **Question**
030 Leah earned \$28 working odd jobs around the neighborhood.
031 How many dollars did Leah lose?
032 **Original Teacher**
033 <think>\n\nOkay, so Leah earned \$28
034 doing some odd jobs around the
035 neighborhood.she put half of the
036 remaining money into her savings
037 account.but then her dog got
038 into her wallet and shredded all the
039 money inside but \$1.....\n</think>
040**Final Answer**\nLeah lost
041 \boxed{11} dollars.
042

043 **Defensive Teacher w/ DOGe** 🤖
044 <think>\n\nFirst, Leah starts with \$28.
045 and deposits half of the remaining
046 \$24 into a savings account vertical
047 straight line. This means that she
048 lost the rest of her original funds in total,
049 which is the portion other than the \$1
050 kept after losing all money. \n</think>
051**Final Answer:**\nLeah lost \boxed{11} dollars.
052



055 **Figure 1:** Left: Example of defensive output generation showing how the defensive teacher with
056 DOGe subtly alters reasoning steps by introducing hard-to-follow reasoning while still arriving at
057 the correct final answer. Right: Performance comparison between original and *defensive* teachers,
058 original and *misled* (distilled from defensive teacher) students, showing DOGe maintains or improves
059 teacher performance while significantly degrading student model accuracy across 4 benchmarks.
060 Here we employ Qwen3-8B as the teacher model, Llama-3.2-1B as the student model.

061 1 INTRODUCTION

062 Large Language Models (LLMs) have become pivotal to advancements across diverse applications,
063 including text generation, reasoning, and interactive assistants (Brown et al., 2020; Touvron et al.,
064 2023). Developing these powerful models involves considerable economic resources, specialized
065 technical knowledge, and extensive computational investments, rendering them valuable intellectual
066 property. Ironically, the very success of LLMs presents a vulnerability: their publicly accessible API
067 outputs can be exploited through knowledge distillation (KD) (Hinton et al., 2015), allowing com-
068 petitors to cheaply imitate proprietary model capabilities (Tramèr et al., 2016; Huang et al., 2022).

069 ¹Our code is provided in <https://anonymous.4open.science/r/doge-kd>.

Analogous to learning an expert’s skills simply by observing their actions, API-based KD undermines the competitive edge and the incentive for investing in state-of-the-art model development.

Current defenses are limited in scope and practicality. Watermarks (Kirchenbauer et al., 2023; Liang et al., 2024c) and fingerprints (He et al., 2022; Xu et al., 2024a) provide only post-hoc detection, akin to security cameras that capture theft but do not prevent it. Other active defense strategies (Ma et al., 2021; Savani et al., 2025a) operate by modifying internal model states or assume the distillation process involves mimicking the teacher’s predicted vocabulary logits (Hinton et al., 2015). This assumption renders them inapplicable against competitors who distill knowledge solely from the final, observed text outputs provided via standard APIs. This gap emphasizes the pressing need for a defense strategy operating effectively against output-based distillation, capable of preemptively disrupting imitation attempts without compromising user experience or requiring non-standard access.

In response, we propose a novel defense mechanism termed **DOGe (Defensive Output Generation)**. Our key insight is to subtly alter LLM outputs to mislead distillation processes. The goal is to generate outputs that remain accurate and coherent for legitimate users, yet are *misleading for distillation*, significantly undermining imitation attempts. Drawing inspiration from adversarial learning (Goodfellow et al., 2014), our approach involves adversarially fine-tuning only the final linear layer of the teacher LLM. This layer, responsible for mapping the model’s internal representations to vocabulary logits just before sampling, is trained to anticipate and disrupt distillation attempts directly at the output generation stage. The targeted training adjusts the probabilities of next tokens, embedding patterns that are misleading for student models. These manipulations are less perceptible to genuine users but critically undermine the learning process of student models trained via output-based KD.

Our approach offers several practical advantages. Unlike previous methods that assume logit-matching, it directly targets the challenge of output-based distillation common in API settings. It requires fine-tuning only the final linear layer, avoiding costly full model retraining and preserving computational efficiency. Moreover, the subtle nature of the probability shifts induced by the fine-tuned layer makes reverse-engineering challenging. Figure 1 demonstrates our scope and outcome.

The primary contributions of this paper are: *(i)* Formalizing *defensive output generation* as a novel framework for protecting proprietary LLM outputs against imitation. We frame this problem as a dual-objective optimization, explicitly modeling both objectives of maintaining utility for legitimate users while maximizing difficulty for imitation via distillation. *(ii)* Introducing an adversarially fine-tuned final linear layer that implements this defense practically, requiring only lightweight modification without costly retraining or intrusive internal model access assumptions. *(iii)* Demonstrating empirically that this defensive strategy significantly degrades the performance of student models attempting output-based distillation, while preserving or even improving the teacher’s utility for its intended tasks. *(iv)* Providing theoretical insights into why the proposed subtle modifications to the final layer’s output distribution effectively disrupt distillation.

2 RELATED WORK

Knowledge Distillation. Knowledge distillation (KD) (Hinton et al., 2015; Gou et al., 2021; Xu et al., 2024b) aims to transfer knowledge from a large teacher model (T) to a smaller student model (S). Techniques vary based on the knowledge source: logits (Hinton et al., 2015; Kim et al., 2018; Ba & Caruana, 2014; Mirzadeh et al., 2020), intermediate features (Chen et al., 2021; Romero et al., 2014; Huang & Wang, 2017; Zhou et al., 2018), or generated outputs (West et al., 2021; Chiang et al., 2023; Zelikman et al., 2022; Kim & Rush, 2016; Taori et al., 2023). Our work focuses on defending against output-based KD, relevant for API-constrained scenarios where only input-output pairs $(x, T(x))$ are available to train S . Our method can also be applied to logits-based KD.

Model IP Protection. Protecting the IP of machine learning models is a growing concern (Sun et al., 2023; Šarčević et al., 2024; Jiang et al., 2024; Liang et al., 2024c). Watermarking (Liang et al., 2024c; Wan et al., 2022; Hosny et al., 2024; Zhong et al., 2023) embeds identifiable patterns into model outputs or parameters for detection, but cannot directly prevent copying knowledge from the output. Model fingerprinting aims to identify models uniquely (Guan et al., 2022; Yu et al., 2021; Peng et al., 2022). Model extraction attacks (Liang et al., 2024a; Zhang et al., 2021; Jiang et al., 2023; Takemura et al., 2020) attempt to steal model functionality, with KD being a primary vector. Defenses against extraction often assume white-box access or focus on specific query types (Jiang et al., 2023; Chen et al., 2023; Gong et al., 2021; Tang et al., 2024), whereas our goal is proactive prevention via output manipulation against general KD.

108 **Adversarial Machine Learning.** Our work shares conceptual similarities with adversarial machine
 109 learning (Huang et al., 2011; Kurakin et al., 2016; Vorobeychik & Kantarcioglu, 2018; Kumar et al.,
 110 2020; Li et al., 2018), which adversarially modifies the input to degrade a model’s inference per-
 111 formance. However, instead of crafting adversarial inputs to fool a fixed model’s prediction, we
 112 modify the *training* of the teacher model to generate outputs that “mislead” the *learning process*
 113 of the student during distillation. Some works explore adversarial attacks on KD (Cui et al., 2020;
 114 Hong & Choi, 2023; Ge et al., 2021), but typically from the perspective of an attacker degrading a
 115 specific student, not a defender making the teacher inherently hard to distill.

116 **Controllable Text Generation and Stylometry.** Techniques for controlling LLM output style (Liu
 117 et al., 2024; Tao et al., 2024), complexity (Nguyen et al., 2024; Hsu et al., 2024), or other attributes
 118 are relevant if the defense mechanism involves generating outputs with specific linguistic proper-
 119 ties (e.g., high complexity (Li et al., 2024a; Peng & Geng, 2024), ambiguity (Kim et al., 2024),
 120 idiosyncratic style (Liang et al., 2024b)) designed to hinder student learning. (Savani et al., 2025b)
 121 proposes a controllable text generation method specifically designed for anti-distillation. However,
 122 their method will introduce extra inference overhead for sampling, while our method does not pose
 123 additional cost. Our method is also suitable for open-source models because the developers of the
 124 model can adopt our method to modify the model before releasing it.

125 3 PROBLEM FORMULATION

126 We first define standard knowledge distillation for LLMs and then outline the general goal of anti-
 127 distillation. We then formulate anti-distillation as an optimization problem capturing the strategic
 128 interaction between the defender (teacher model owner) and an entity attempting distillation.

129 3.1 SEQUENCE-LEVEL KNOWLEDGE DISTILLATION (KD) FOR LLMs

130 Let \mathcal{T} be a pre-trained teacher LLM and S be a student LLM, typically with smaller capacity and
 131 parameters θ_S . Given a dataset D'_{train} , sequence-level KD involves generating a distillation dataset
 132 $D_{KD} = \{(x, y) \mid x \in D'_{train}, y = \mathcal{T}(x)\}$, where y represents the output sequence generated by
 133 the teacher \mathcal{T} for input x . A student model S_{θ_S} is then trained by minimizing a distillation loss
 134 $\mathcal{L}_{distill}(S_{\theta_S}(x), y)$ over D_{KD} . This loss typically aims to maximize the likelihood of the student
 135 generating the teacher’s output sequence y given the input x (e.g., using cross-entropy loss token by
 136 token). The goal is to find optimal student parameters θ_S^* that transfer the capabilities of \mathcal{T} to $S_{\theta_S^*}$.

137 3.2 THE GOAL OF ANTI-DISTILLATION FOR LLMs

138 The objective of anti-distillation, or achieving distillation resistance, is to create a modified teacher
 139 model \mathcal{T}^* that actively hinders the effectiveness of KD. Specifically, the goal is twofold:

140 **(1) Teacher Performance Preservation:** The modified teacher \mathcal{T}^* should maintain high per-
 141 formance on its intended downstream tasks τ . Let $\text{Perf}(\mathcal{M}, D_{eval}, \tau)$ be the performance met-
 142 ric of a model \mathcal{M} on an evaluation set D_{eval} for task τ . We require $\text{Perf}(\mathcal{T}^*, D_{eval}, \tau) \geq$
 143 $\text{Perf}(\mathcal{T}_{base}, D_{eval}, \tau) - \epsilon$, where \mathcal{T}_{base} is the original baseline teacher and ϵ is a small tolerance.

144 **(2) Student Performance Degradation:** For any student architecture S trained via sequence-level
 145 KD using outputs from \mathcal{T}^* (resulting in an optimally distilled student S_{KD}^*), its performance
 146 $\text{Perf}(S_{KD}^*, D_{eval}, \tau)$ should be significantly lower than the performance $\text{Perf}(S_{KD}, D_{eval}, \tau)$
 147 achieved by the same student architecture S distilled from the original teacher \mathcal{T}_{base} . That is,
 148 $\text{Perf}(S_{KD}^*, D_{eval}, \tau) \ll \text{Perf}(S_{KD}, D_{eval}, \tau)$. This resistance should be achieved under the
 149 constraint that only the teacher’s outputs $y = \mathcal{T}^*(x)$ are available to the party performing the distillation.

150 3.3 FORMALIZING ANTI-DISTILLATION AS A DUAL-OBJECTIVE OPTIMIZATION PROBLEM

151 We can frame the defender’s goal as a dual-objective optimization problem. The defender controls
 152 the teacher’s LM head parameters, θ_{final} , to create a modified teacher $\mathcal{T}_{\theta_{final}}$. The objective is to
 153 find parameters θ_{final}^* that maximize the teacher’s own performance while anticipating and mini-
 154 mizing the performance of a student model that is subsequently distilled from its outputs.

155 Let $\text{Perf}_T(\mathcal{T}_{\theta_{final}})$ denote the teacher’s performance. The performance of an optimally distilled
 156 student, $\text{Perf}_S(S_{\theta_S^*})$, depends on the defender’s choice of θ_{final} , since the student is trained on the
 157 dataset $D_{KD}(\theta_{final})$ generated by $\mathcal{T}_{\theta_{final}}$. The defender’s optimization problem is expressed as:

$$158 \theta_{final}^* = \arg \max_{\theta_{final}} \left[\text{Perf}_T(\mathcal{T}_{\theta_{final}}) - \lambda \cdot \text{Perf}_S \left(S_{\arg \min_{\theta_S} \mathcal{L}_{distill}(\theta_S; D_{KD}(\theta_{final}))} \right) \right]. \quad (1)$$

162 The inner arg min term shows the student’s distillation process, and the outer arg max represents
 163 the defender’s goal of finding the best trade-off, balanced by the hyperparameter $\lambda > 0$. Solving this
 164 nested optimization directly is intractable. Section 4 presents a practical approximative solution.
 165

166 4 DEFENSIVE OUTPUT GENERATION (DOGe)

167 To approximate the solution to the optimization problem above, we propose **Defensive Output Gen-
 168 eration (DOGe)**. This method modifies the teacher LLM’s output generation to be misleading for
 169 distillation while preserving utility for legitimate end-users. We design a specialized training process
 170 designed to embed these defensive characteristics directly into the model, focusing on efficiency and
 171 practical deployment. This is achieved by fine-tuning only the final linear layer (LM head) using a
 172 carefully designed adversarial objective. The overview of the framework is given in Figure 2.

173 4.1 THE TRAINING OBJECTIVE

174 **Adversarial Defensive Training.** The central
 175 goal of our defensive training is to optimize
 176 the teacher model \mathcal{T} to balance two objectives:
 177 maintaining its original task performance and
 178 degrading the performance of student models
 179 distilled from its outputs. This is achieved by
 180 fine-tuning parts of the teacher model using a
 181 combined loss function computed over batches
 182 B from a relevant training dataset D_{train} (e.g.,
 183 a dataset representative of the target task). The
 184 loss \mathcal{L}_{total} is:

$$\mathcal{L}_{total} = \mathcal{L}_{SFT} + \lambda \cdot \mathcal{L}_{adv}. \quad (2)$$

186 Here, \mathcal{L}_{SFT} is a standard supervised fine-
 187 tuning loss ensuring the teacher maintains its
 188 performance, and \mathcal{L}_{adv} is an adversarial loss
 189 designed to degrade the performance of a stu-
 190 dent model attempting distillation. λ is a hy-
 191 perparameter controlling the trade-off.

192 The supervised fine-tuning loss, \mathcal{L}_{SFT} , is typically the cross-entropy loss between the teacher
 193 model’s predictions and the ground-truth labels y_{true} for the sequences in the batch B . This en-
 194 courages the teacher model \mathcal{T} to produce accurate outputs according to the training data.

195 The adversarial loss, \mathcal{L}_{adv} , is designed to make the teacher’s output distribution difficult for a student
 196 to learn from. To achieve this, we aim to *maximize* the statistical divergence between the teacher’s
 197 output distribution and that of one or more fixed **proxy student models** $\{S_{proxy_i}\}_{i=1}^N$. We define
 198 the adversarial loss as the *negative* average KL divergence. Minimizing this term during training
 199 thus maximizes the divergence. Let L_T and L_{S_i} be the logits produced by the teacher and proxy
 200 student i for a given token. The loss is:

$$\mathcal{L}_{adv} = -\frac{1}{N} \sum_{i=1}^N \text{KL} \left(\text{softmax} \left(\frac{L_T}{\alpha} \right) \middle\| \text{softmax} \left(\frac{L_{S_i}}{\alpha} \right) \right), \quad (3)$$

201 where α is the temperature parameter. This objective pushes the teacher’s output distribution away
 202 from what typical student models would predict, thereby hindering distillation.
 203

204 **On the Stability of Maximizing KL Divergence.** We acknowledge that maximizing the forward
 205 KL divergence, $KL(P\|Q)$, can be an unstable training objective, as the loss can become infinite if
 206 $Q(x) = 0$ for any x where $P(x) > 0$. However, in practice, several factors mitigate this instability.
 207 First, LLM softmax outputs rarely produce exact zero probabilities over the vocabulary, preventing
 208 the most extreme failure modes. Second, the overall objective includes the strong regularizing effect
 209 of the \mathcal{L}_{SFT} term, which anchors the distribution to the ground-truth data. Finally, the trade-off
 210 hyperparameter λ is essential for balancing defensive strength and training stability, as demonstrated
 211 in our ablation studies (Section 5.3).

212 **Reasoning-Aware Masking.** A key aspect of DOGe is not just degrading distillability, but doing so
 213 without harming the utility of the answer. This introduces a deliberate **trade-off**: balanced by λ , we

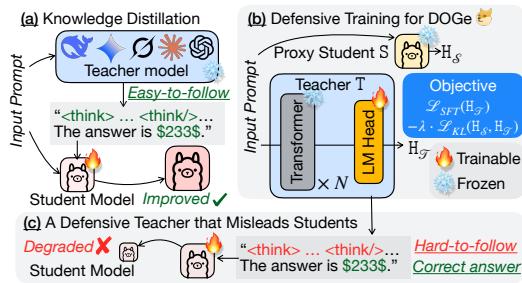


Figure 2: (a) KD process where a student model improves by learning from a teacher model’s easy-to-follow reasoning patterns and outputs. (b) Defensive Training mechanism of DOGe, which trains the teacher model’s LM head using the objective that preserves task performance while maximizing KL-divergence from proxy student outputs. (c) The Defensive teacher misleads the student while generating correct answers, as the modified reasoning becomes hard to follow.

216 sacrifice the clarity and simplicity of the intermediate reasoning steps to protect the model’s intel-
 217 lectual property. To implement this, we introduce a token-level mask m_t that separates intermediate
 218 reasoning from the final answer:

$$219 \quad m_t = \begin{cases} 1, & \text{if token } t \text{ is an intermediate/thinking token;} \\ 220 \quad 0, & \text{if token } t \text{ is part of the final answer.} \end{cases} \quad (4)$$

221 For LLMs that explicitly use special tokens to demarcate reasoning steps from the final answer
 222 (e.g., DeepSeek-R1 outputs structured thought processes), distinguishing between these interme-
 223 diate (thinking) tokens and final answer tokens is straightforward. For other LLMs, we identify final
 224 answer tokens using regular expressions targeting answer formatting (e.g., phrases like “Answer.”).

225 This mask is applied only to the adversarial component of the gradient. The effective gradient with
 226 respect to the LM head parameters:

$$227 \quad \nabla_{\theta_{final}} \mathcal{L}_{total,t} = \nabla_{\theta_{final}} \mathcal{L}_{SFT,t} + \lambda \cdot m_t \cdot \nabla_{\theta_{final}} \mathcal{L}_{adv,t}. \quad (5)$$

228 This ensures that the adversarial pressure to diverge from proxy students is only applied to the
 229 reasoning process. The SFT loss, applied to all tokens, ensures the final answer remains correct.
 230 The resulting reasoning traces may become more complex, redundant, or even unnatural (as shown
 231 in Section 5.4), but this complexity is precisely the mechanism that misleads the student model. Our
 232 theoretical justification rests on the following assumption.

233 **Assumption 4.1** (Proxy Representativeness). The proxy students $\{S_{proxy_i}\}$ effectively model the
 234 learning behavior of a general class of student models \mathcal{S} . Consequently, making the teacher’s inter-
 235 mediate output distributions maximally divergent from the proxies makes them a misleading training
 236 signal for the downstream tasks of unseen student models from \mathcal{S} .

237 This leads to the following proposition regarding the expected outcome of our method.

238 **Proposition 4.2** (Student Performance Degradation). *Given Assumption 4.1, training a teacher’s
 239 LM head θ_{final} by minimizing the loss in Eq. equation 2 with the masking in Eq. equation 5 yields
 240 a defensive teacher $\mathcal{T}_{\theta_{final}}^*$. A student model $S \in \mathcal{S}$ distilled from $\mathcal{T}_{\theta_{final}}^*$ is expected to achieve a
 241 higher loss (and thus lower performance) on downstream tasks compared to a student distilled from
 242 a teacher trained only with \mathcal{L}_{SFT} .*

243 A detailed justification for this proposition is provided in Appendix B. The core intuition is that by
 244 adversarially shaping the intermediate reasoning steps, we disrupt the student’s ability to learn the
 245 generalizable patterns required to solve the task, even though it observes correct final answers.

246 4.2 EFFICIENT TRAINING AND DEPLOYMENT: LM HEAD TUNING

247 To ensure practicality, we adopt a parameter-efficient fine-tuning (PEFT) strategy, updating only the
 248 parameters θ_{final} of the LM head. The underlying base LLM remains frozen. This approach offers
 249 three key advantages: **1) Efficient Training:** Updating only the LM head drastically reduces train-
 250 able parameters, saving time and computational resources. **2) Data-Driven Distribution Shaping:**
 251 Modifying the LM head directly perturbs the final output probability space, embedding a defensive
 252 “sampling” strategy into the model’s parameters without requiring complex decoding-time inter-
 253 ventions (Savani et al., 2025a). **3) Efficient Deployment:** In serving environments, only the small,
 254 modified LM head weights need to be stored and deployed, allowing operators to easily switch
 255 between standard and defensive modes with minimal overhead.

256 4.3 OVERALL DEFENSIVE TRAINING PROCEDURE

257 The training process (depicted in Appendix F) iteratively updates the LM head parameters θ_{final} . In
 258 each step, a batch is processed through the frozen base model to get hidden states. These are passed
 259 to the trainable LM head to compute output probabilities. The \mathcal{L}_{SFT} and \mathcal{L}_{adv} losses are calculated,
 260 and the total gradient is computed using the reasoning-aware mask. The parameters θ_{final} are then
 261 updated. This process produces a defensive LM head, making any output generated by the teacher
 262 inherently resistant to distillation, regardless of the decoding strategy (e.g., greedy, top-k sampling).

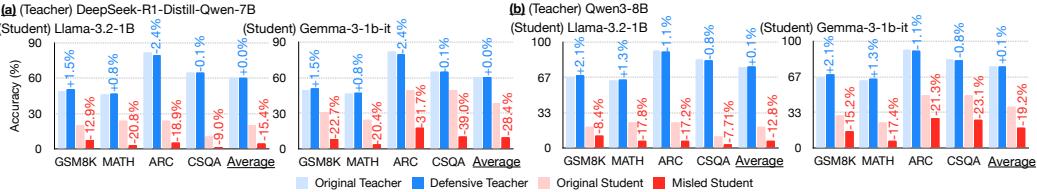
263 4.4 IMPLEMENTATION CONSIDERATIONS

264 Using proxy students $\{S_{proxy_i}\}$ that share the same tokenizer as the teacher \mathcal{T} is most direct. Hand-
 265 ling different tokenizers requires techniques like vocabulary alignment, which adds complexity
 (Minixhofer et al., 2025; Cui et al., 2025). This paper focus on shared tokenizers for simplicity.

266 5 EMPIRICAL EVALUATION

267 In Section 5.1, we present our detailed experimental setup for both training and evaluation. In Sec-
 268 tion 5.2, we present empirical evidence demonstrating that DOGe achieves up to 5 \times accuracy degra-
 269 dation in *misled* student models while preserving, and in some cases improving, the performance of

270 *defensive* teacher models across diverse benchmarks. In Section 5.3, we perform various ablation
 271 studies, including the trade-off between model performance and distillation defense effectiveness.
 272



273 **Figure 3: Comparative evaluation of *defensive* v.s. *original* teacher models and *misled* v.s. *original*
 274 student models using GSM8K (math) for defensive training. For the single proxy model used in
 275 defensive training, we employ Qwen2.5-3B for **teacher model (a)** (left two panels), and Qwen3-4B
 276 for **teacher model (b)** (right two panels). We report the performance of: (1) *Defensive* teacher
 277 trained with our proposed DOGe method; (2) *Original* teacher, the unmodified pre-trained model;
 278 (3) *Misled* student, distilled from the *defensive* teacher; and (4) *Original* student, the unmodified
 279 pre-trained student model. Our findings demonstrate that while *defensive* teacher models maintain
 280 or even improve performance relative to their original counterparts, *misled* student models ex-
 281 perience substantial performance degradation across all benchmark datasets. Results of using Tulu
 282 dataset for defensive training is given in Appendix D. Similar trends are observed.**

283 5.1 EXPERIMENTAL SETUP

284 **Datasets.** We consider these defensive training datasets \mathcal{D}_{train} : GSM8K (Cobbe et al., 2021) for
 285 mathematical reasoning and Tulu (Lambert et al., 2024) for general language capabilities. Note
 286 that exclusively one of the two datasets is used for adversarial defensive training in our experi-
 287 ments. We first prompt the original teacher model to generate responses to questions from these
 288 datasets, then use this *self-generated* data to perform the proposed defense training. Our evalua-
 289 tion datasets \mathcal{D}_{eval} include: **held-in** dataset GSM8K (Cobbe et al., 2021) and **held-out** datasets
 290 MATH (Hendrycks et al., 2021) for math reasoning, ARC-Challenge (ARC) (Clark et al., 2018)
 291 and CommonsenseQA (CSQA) (Talmor et al., 2019) for commonsense reasoning. **Our evalua-
 292 tion deliberately includes both held-in and held-out datasets with respect to our defensive training**,
 293 offering a comprehensive assessment of cross-domain generalization.

294 **Models.** For teacher model \mathcal{T}_{base} , we use deepseek-ai/DeepSeek-R1-7B and Qwen3-8B
 295 as our teacher models to be defended. For proxy student models $\{\mathcal{S}_{proxy_i}\}_{i=1}^N$, we use a
 296 set of models sharing the same vocabulary with the teacher model as the proxy student mod-
 297 els. Specifically, we use (1) {Qwen/Qwen2.5-1.5B, Qwen2.5-3B} as the proxy student
 298 models for teacher model deepseek-ai/DeepSeek-R1-7B, and (2) {Qwen3-1.7B,
 299 Qwen3-4B} as the proxy student models for teacher model Qwen3-8B. For target student
 300 model \mathcal{S}_{target} used to evaluate teacher’s final distillation defense, we use models across di-
 301 verse architectures including these: (1) sharing the same vocabulary as the teacher model:
 302 Qwen/Qwen2.5-0.5B and Qwen/Qwen3-0.6B, and (2) with different vocabulary from the
 303 teacher model: google/gemma-3-1b-it, Llama-3.2-1B. Note that in our experiments,
 304 **proxy models and student models are always different for practical evaluations**.

305 **Evaluation Metrics.** As described in Section 3.2, we evaluate the effectiveness of DOGe for anti-
 306 distillation using two primary comparisons: ① Performance of *defensive* teachers with DOGe versus
 307 *original* teachers without DOGe, and ② Performance of *misled* students (distilled from *defensive*
 308 teachers) versus *original* students (distilled from undefended teachers). We utilize *accuracy* for all
 309 the evaluation datasets as the performance metric under zero-shot evaluation.

310 **Implementation Details.** For all defensive training, we fine-tune the teacher models’ LM head for
 311 100 steps using randomly sampled data from the complete training dataset, with a constant batch size
 312 of 128 and learning rate of 5×10^{-5} . For the adversarial loss, we employ a default coefficient λ of
 313 3×10^{-5} and set the temperature parameter α to 2 throughout all experiments. We use the random
 314 seed 233 across all experiments. All experiments are conducted using PyTorch and DeepSpeed.
 315 Additional hyperparameters and implementation details are provided in Appendix A.

316 5.2 MAIN RESULTS

317 **Figure 3** presents the comparison results between the original pre-trained models, *defensive* teacher
 318 models with DOGe, and *misled* student models distilled from defensive teacher models. We employ
 319 two teacher models across two student models, providing a comprehensive evaluation. DOGe shows

324 its effectiveness by maintaining the general performance of teacher models while significantly de-
 325 grading student models after knowledge distillation. Our key insights of DOGe are as follows:

326 **Preserved or Even Improved Defensive Teacher Performance.** As shown in Figure 3 blue bars,
 327 our defensive teacher models not only maintain their original performance but even demonstrate
 328 consistent improvements across mathematical reasoning tasks. For DeepSeek-R1-7B, we ob-
 329 serve performance gains of +1.5% on GSM8K and +0.8% on MATH, with only minimal degra-
 330 dation (−2.4% and −0.1%) on commonsense reasoning tasks ARC and CSQA. Similarly, Qwen3-8B
 331 shows more substantial improvements of +2.1% on GSM8K and +1.3% on MATH. These improve-
 332 ments likely result from our adversarial training process, which forces the model to generate more
 333 robust reasoning patterns while preserving answer correctness. Importantly, these results confirm
 334 that DOGe achieves the first objective of our optimization, *i.e.*, preserving or enhancing teacher
 335 model utility for legitimate users.

336 **Catastrophic Degradation of Misled Student Performance by up to 5×.** As shown in Figure 3
 337 red bars, student models distilled from our defensive teachers exhibit dramatic performance degra-
 338 dation across all benchmarks. For Llama-3.2-1B distilled from DeepSeek-R1-7B, performance
 339 drops by −12.9% on GSM8K, −20.8% on MATH, −18.9% on ARC, and −9.0% on CSQA. Even
 340 more striking, Gemma-3-1b-it shows catastrophic degradation of −22.7% on GSM8K, −20.4%
 341 on MATH, −31.7% on ARC, and a remarkable −39.0% on CSQA, approximately 5× worse than
 342 the original student model’s performance. These results are consistent across different student ar-
 343 chitectures and teacher models, with Llama-3.2-1B distilled from Qwen3-8B showing perfor-
 344 mance drops of −8.4% to −17.8%, and Gemma-3-1b-it declining by −15.2% to −23.1%. This
 345 demonstrates that our approach effectively achieves the second objective of our optimization, *i.e.*,
 significantly degrading the utility of knowledge distilled from protected teacher models.

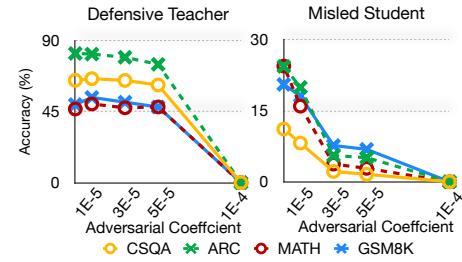
346 Cross-Domain Generalization of Defensive Training.

347 A particularly compelling aspect of DOGe is its
 348 generalization capability across diverse task domains.
 349 In Figure 3, despite the defensive training being con-
 350 ducted only on the GSM8K mathematical reasoning
 351 dataset, it demonstrates remarkable cross-domain ef-
 352 fectiveness. ① The defensive teacher models maintain
 353 their general performance not only on mathematical
 354 tasks (*i.e.* GSM8K, MATH) but also on significantly
 355 different reasoning domains (*i.e.* ARC, CSQA). This
 356 suggests that our LM head modification preserves the
 357 model’s general capabilities without domain-specific
 358 compromises. ② More importantly, the defensive
 359 training effectively prevents student distillation across
 360 all evaluated datasets, including those outside the
 361 mathematical domain. Specifically, student models show
 362 severe performance degradation on commonsense rea-
 363 soning (*e.g.*, up to −31.7% for ARC, −39.0% for CSQA)
 364 despite never being explicitly defended for these tasks during
 365 defensive training. This cross-domain generalization in-
 366 dicates that DOGe modifies general output patterns that
 367 student models rely on during distillation, rather than
 368 simply introducing task-specific distortions. We further
 369 study the impact of defensive training datasets in Section 5.3.

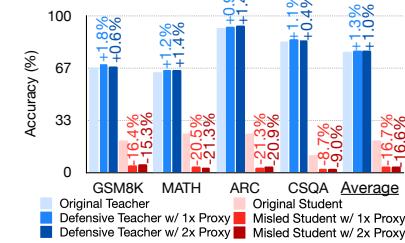
370 5.3 ABLATION AND EXTENDED STUDIES

371 Trade-off between Performance and Distillation Defense.

372 One of the key components of DOGe defensive training lies
 373 in the weight λ of the adversarial loss \mathcal{L}_{adv} , as shown in
 374 Equation 2. Here, we conducted an ablation study to show
 375 the trade-off between teacher performance and distillation
 376 defense by changing the coefficient λ of adversarial loss. As
 377 shown in Figure 4, we compare performance with λ among
 378 $\{1 \times 10^{-5}, 3 \times 10^{-5}, 1 \times 10^{-4}\}$ using GSM8K for de-
 379 fensive training. The results show a Pareto frontier: as λ in-
 380 creases, the defensive teacher’s performance gradually de-
 381 grades across all benchmarks, while the misled student’s per-
 382 formance drops dramatically. With $\lambda = 1 \times 10^{-5}$, the de-
 383 fensive teacher maintains performance nearly identical to the
 384 original model, but provides only modest protection against



385 Figure 4: Varying adversarial loss coefficient λ with the DeepSeek-R1-7B as
 386 teacher, Llama-3.2-1B as the student, and Qwen2.5-3B as the proxy student.



387 Figure 5: Comparison of defensive
 388 training with single *v.s.* two proxy
 389 models. Using a single proxy model
 390 achieves nearly identical defense ef-
 391 fectiveness and performance preser-
 392 vation as using two proxy models,
 393 while requiring significantly less
 394 computational overhead.

378 distillation. At $\lambda = 3 \times 10^{-5}$ (our default), we achieve an optimal trade-off where teacher performance remains strong while student performance is significantly degraded. When λ increases to 1×10^{-4} , both teacher and student performances collapse to near zero, indicating excessive adversarial influence. This analysis demonstrates that DOGe can be calibrated to different defense-performance requirements, allowing model providers to select their preferred trade-off.

383 **Impact of Defensive Training Dataset.** We investigate how
 384 the choice of defensive training dataset affects DOGe’s eff-
 385 ectiveness by comparing task-specific data (GSM8K math
 386 problems) with general-purpose data (Tulu). As shown in
 387 Figure 6, both datasets enable effective distillation defense
 388 while preserving teacher performance. ① Notably, using the
 389 more diverse Tulu dataset yields stronger student degra-
 390 dation across all benchmarks. This suggests that training on
 391 diverse data helps the model develop more generalizable de-
 392 fensive patterns. ② Defensive training on the task-specific
 393 GSM8K dataset provides stronger performance preservation
 394 for the defensive teacher models on its in-domain mathematical
 395 reasoning tasks (*i.e.* GSM8K and MATH). These demon-
 396 strate DOGe’s flexibility with respect to training data choice, allow-
 397 ing model developers to select datasets based on their specific
 398 defensive priorities.

399 **Impact of More Proxy Models.** We extend the defensive
 400 training with single proxy model in the experiments of Figure 3
 401 to more proxy models. Specifically, we conduct ablation study by comparing the defense effectiveness and performance of single
 402 proxy model Qwen3-4B *v.s.* two proxy models {Qwen3-4B, Qwen3-1.7B}, with teacher model
 403 Qwen3-8B and student model Llama-3.2-1B, using Tulu for defensive training. As shown in
 404 Figure 5, using two proxy models yields only minimal improvement in defense effectiveness com-
 405 pared to a single proxy model, with performance degradation differences of less than 1% across
 406 all benchmarks. However, this comes with more training overhead. These results epoch with our
 407 Assumption 4.1 and indicate that a single proxy model is sufficient to capture the vulnerabilities of
 408 smaller potential student models for effective distillation defense.

409 **Distillation to Large Students.** In practical distillation
 410 scenarios, a student model could have a similar model
 411 size to the targeted teacher model. We further study how
 412 DOGe performs when defending a pair of teacher-student
 413 models of similar sizes, *i.e.* Qwen3-8B as the teacher
 414 and Llama-3.1-8B as the student. As shown in Figure
 415 7, while the 8B student’s stronger baseline leads to
 416 better final performance after distillation compared to the
 417 1B student, it experiences significantly larger degra-
 418 dation, *i.e.* dropping by 20%-50% across benchmarks ver-
 419 sus 8%-18% for the smaller model. This demonstrates that DOGe’s defense effectiveness scales with
 420 student capacity, causing more severe disruption to larger models attempting distillation.

421 **Loss Landscape and How DOGe Works.** To under-
 422 stand the optimization dynamics of our defensive train-
 423 ing, we visualize the loss landscape under different ad-
 424 versarial coefficients λ in Figure 9. When $\lambda = 0$ (standard
 425 SFT only), the landscape exhibits a smooth, well-behaved
 426 basin with a clear global minimum, ensuring stable con-
 427 vergence. As we introduce the adversarial component
 428 with $\lambda = 10^{-5}$, the landscape develops subtle per-
 429 turbations while maintaining a dominant optimization path
 430 toward the minimum, demonstrating that our method pre-
 431 serves trainability at moderate defensive strengths. This stability is empirically confirmed in our
 432 training curves (Figure 8), where both $\lambda = 10^{-5}$ and our default $\lambda = 3 \times 10^{-5}$ exhibit smooth con-
 433 vergence throughout 100 training steps. However, at $\lambda = 10^{-3}$, the landscape becomes significantly
 434 more complex with sharp gradients and potentially competing minima, echoing the catastrophic per-

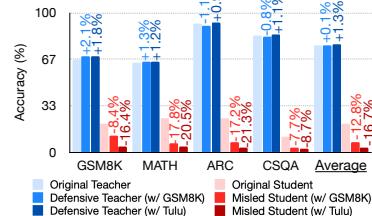


Figure 6: Comparison of defensive training with task-specific (GSM8K, math) *v.s.* general (Tulu) datasets. Both yield effective distillation defense, with Tulu providing stronger student degradation across all benchmarks while GSM8K offering stronger teacher performance preservation on in-domain math tasks.

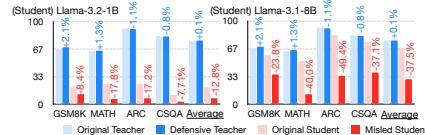


Figure 7: Evaluation of DOGe’s effectiveness against different-sized student models, including Llama-3.1-8B which has comparable capacity to the Qwen3-8B teacher.

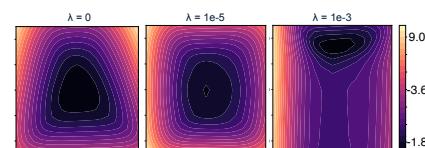


Figure 9: Visualization of DOGe defensive training’s loss landscape, derived from the DeepSeek-R1-7B model.

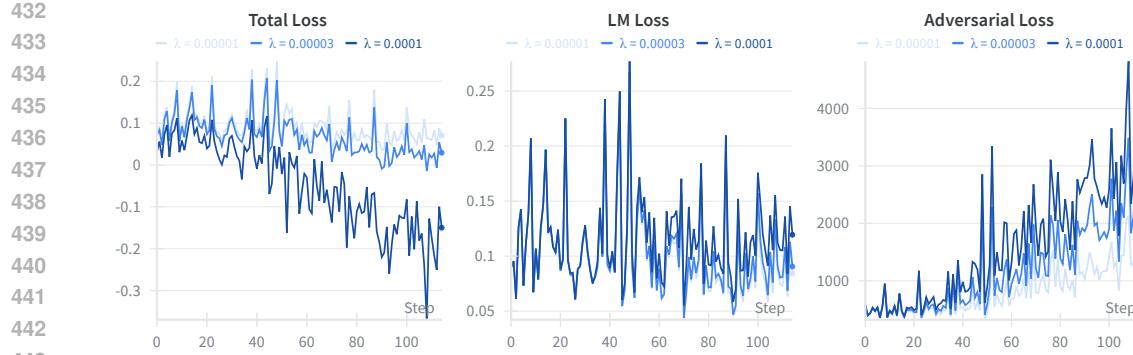


Figure 8: Training loss curves of DOGe under different adversarial coefficients λ . The total loss converges stably with moderate λ values ($10^{-5}, 3 \times 10^{-5}$) but becomes unstable at $\lambda = 10^{-4}$, while the adversarial loss increases as intended to maximize divergence from proxy students.

formance degradation observed in Figure 4 when λ becomes too large—indeed, the training curves show that $\lambda = 10^{-4}$ already leads to unstable optimization with diverging loss values. This visualization confirms that our default choice of $\lambda = 3 \times 10^{-5}$ strikes an effective trade-off, with sufficient adversarial pressure to disrupt distillation while maintaining a tractable optimization landscape and stable convergence during defensive training.

5.4 CASE STUDY

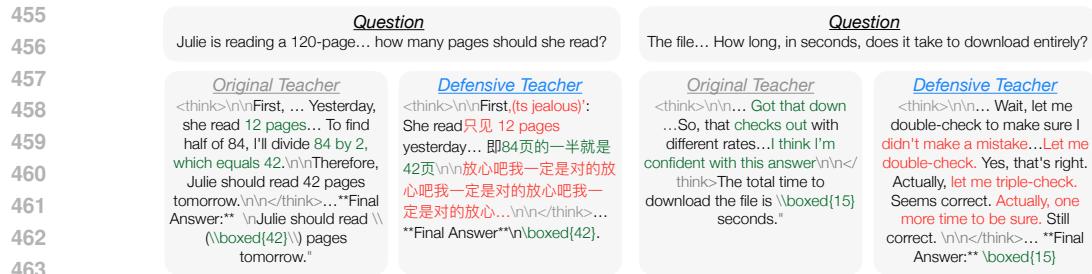


Figure 10: Case study. **Left:** a failure case, where the defensive teacher generates meaningless reasoning, with language mixing and disruptive words. **Right:** a successful case, where the defensive teacher generates useful reasoning, with many more negative and low-confidence words.

Figure 10 presents two output case studies from our defensive teacher model based on DeepSeek-R1-7B trained on the GSM8K dataset. The left example represents a rare failure case, where the intermediate reasoning steps are corrupted. Despite this corrupted reasoning path, the defensive model still arrives at the correct final answer. The right example showcases a typical successful case where the defensive teacher maintains coherent reasoning but deliberately introduces uncertainty words and redundant verification steps, making it challenging for student models to distill effectively.

For a better understanding, we further provide a comprehensive evaluation using LLM-as-a-judge (Li et al., 2024b) to validate the effectiveness of DOGe in Appendix E.

6 CONCLUSION

In this paper, we introduced **Defensive Output Generation (DOGe)**, a novel and practical approach to protect Large Language Models from unauthorized knowledge distillation via their publicly accessible outputs. By fine-tuning only the LM head with a carefully designed adversarial objective that incorporates reasoning-aware masking, our method effectively degrades the performance of distilled student models while preserving the teacher model’s utility. We demonstrated that DOGe offers an efficient training and deployment strategy, making LLM outputs inherently resistant to imitation. Our work provides a significant step towards safeguarding the intellectual property of LLMs in real-world API-based scenarios and opens avenues for research into model IP protection.

486 REFERENCES
487

488 Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? *Advances in neural information*
489 *processing systems*, 27, 2014.

490 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
491 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
492 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

493 Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
494 review. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
495 pp. 5008–5017, 2021.

496 Yanjiao Chen, Rui Guan, Xueluan Gong, Jianshuo Dong, and Meng Xue. D-dae: Defense-
497 penetrating model extraction attacks. In *2023 IEEE Symposium on Security and Privacy (SP)*,
498 pp. 382–399. IEEE, 2023.

499 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
500 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
501 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.

502 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
503 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
504 2018. URL <https://arxiv.org/abs/1803.05457>.

505 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
506 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
507 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

508 Weiyu Cui, Xiaorui Li, Jiawei Huang, Wenyi Wang, Shuai Wang, and Jianwen Chen. Substitute
509 model generation for black-box adversarial attack based on knowledge distillation. In *2020 IEEE*
510 *International Conference on Image Processing (ICIP)*, pp. 648–652. IEEE, 2020.

511 Xiao Cui, Mo Zhu, Yulei Qin, Liang Xie, Wengang Zhou, and Houqiang Li. Multi-level optimal
512 transport for universal cross-tokenizer knowledge distillation on language models. In *Proceedings*
513 *of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 23724–23732, 2025.

514 Yunjie Ge, Qian Wang, Baolin Zheng, Xinlu Zhuang, Qi Li, Chao Shen, and Cong Wang. Anti-
515 distillation backdoor attacks: Backdoors can really survive in knowledge distillation. In *Proceed-
516 ings of the 29th ACM International Conference on Multimedia*, pp. 826–834, 2021.

517 Xueluan Gong, Qian Wang, Yanjiao Chen, Wang Yang, and Xinchang Jiang. Model extraction
518 attacks and defenses on cloud-based machine learning models. *IEEE Communications Magazine*,
519 58(12):83–89, 2021.

520 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
521 examples. *arXiv preprint arXiv:1412.6572*, 2014.

522 Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
523 survey. *International Journal of Computer Vision*, 129(6):1789–1819, 2021.

524 Jiyang Guan, Jian Liang, and Ran He. Are you stealing my model? sample correlation for finger-
525 printing deep neural networks. *Advances in Neural Information Processing Systems*, 35:36571–
526 36584, 2022.

527 Jitao He, Jieming Zhang, Zhenyu Chen, Shuaitian Chen, Minlie Zhang, and Yang Liu. Protecting
528 intellectual property of large language models with watermarks. In *Proceedings of the 2022*
529 *Conference on Empirical Methods in Natural Language Processing*, pp. 10711–10721, 2022.

530 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
531 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
532 URL <https://arxiv.org/abs/2103.03874>.

540 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
 541 *preprint arXiv:1503.02531*, 2015.

542

543 Inpyo Hong and Chang Choi. Knowledge distillation vulnerability of deit through cnn adversarial
 544 attack. *Neural Computing and Applications*, pp. 1–11, 2023.

545 Khalid M Hosny, Amal Magdi, Osama ElKomy, and Hanaa M Hamza. Digital image watermarking
 546 using deep learning: A survey. *Computer Science Review*, 53:100662, 2024.

547

548 Yi-Sheng Hsu, Nils Feldhus, and Sherzod Hakimov. Free-text rationale generation under readabil-
 549 ity level control. *ArXiv*, abs/2407.01384, 2024. URL <https://api.semanticscholar.org/CorpusId:270870139>.

550

551 Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language models
 552 leaking your personal information? In *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp. 2038–2047, 2022.

553

554 Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar. Ad-
 555 versarial machine learning. In *Proceedings of the 4th ACM workshop on Security and artificial*
 556 *intelligence*, pp. 43–58, 2011.

557

558 Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron selectivity
 559 transfer. *arXiv preprint arXiv:1707.01219*, 2017.

560

561 Wenbo Jiang, Hongwei Li, Guowen Xu, Tianwei Zhang, and Rongxing Lu. A comprehensive de-
 562 fense framework against model extraction attacks. *IEEE Transactions on Dependable and Secure*
 563 *Computing*, 21(2):685–700, 2023.

564

565 Yongqi Jiang, Yansong Gao, Chunyi Zhou, Hongsheng Hu, Anmin Fu, and Willy Susilo. In-
 566 tellectual property protection for deep learning model and dataset intelligence. *arXiv preprint*
 567 *arXiv:2411.05051*, 2024.

568

569 Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Junyeob Kim, Choonghyun Park, Kang Min Yoo,
 570 Sang goo Lee, and Taeuk Kim. Aligning language models to explicitly handle ambiguity. In
 571 *Conference on Empirical Methods in Natural Language Processing*, 2024. URL <https://api.semanticscholar.org/CorpusId:269214521>.

572

573 Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing complex network: Network compres-
 574 sion via factor transfer. *Advances in neural information processing systems*, 31, 2018.

575

576 Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In *Proceedings of the 2016 conference on empirical methods in natural language processing*, pp. 1317–1327, 2016.

577

578 John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
 579 watermark for large language models. In *International Conference on Machine Learning*, pp.
 17061–17089. PMLR, 2023.

580

581 Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall, Mario Goertzel,
 582 Andi Comissoneru, Matt Swann, and Sharon Xia. Adversarial machine learning-industry per-
 583 spectives. In *2020 IEEE security and privacy workshops (SPW)*, pp. 69–75. IEEE, 2020.

584

585 Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. *arXiv*
 586 *preprint arXiv:1611.01236*, 2016.

587

588 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 589 man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
 590 Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
 591 Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu
 592 3: Pushing frontiers in open language model post-training, 2024.

593

594 Bingxuan Li, Yiwei Wang, Tao Meng, Kai-Wei Chang, and Nanyun Peng. Control large lan-
 595 guage models via divide and conquer. In *Conference on Empirical Methods in Natural Lan-
 596 guage Processing*, 2024a. URL <https://api.semanticscholar.org/CorpusId:273185893>.

594 Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
 595 Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. From generation to judgment:
 596 Opportunities and challenges of llm-as-a-judge. *arXiv preprint arXiv:2411.16594*, 2024b.
 597

598 Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
 599 Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, Kai Shu, Lu Cheng, and Huan Liu. From
 600 generation to judgment: Opportunities and challenges of llm-as-a-judge, 2025a. URL <https://arxiv.org/abs/2411.16594>.
 601

602 Dawei Li, Renliang Sun, Yue Huang, Ming Zhong, Bohan Jiang, Jiawei Han, Xiangliang Zhang, Wei
 603 Wang, and Huan Liu. Preference leakage: A contamination problem in llm-as-a-judge, 2025b.
 604 URL <https://arxiv.org/abs/2502.01534>.
 605

606 Guofu Li, Pengjia Zhu, Jin Li, Zhemin Yang, Ning Cao, and Zhiyi Chen. Security matters: A survey
 607 on adversarial machine learning. *arXiv preprint arXiv:1810.07339*, 2018.
 608

609 Jiacheng Liang, Ren Pang, Changjiang Li, and Ting Wang. Model extraction attacks revisited. In
 610 *Proceedings of the 19th ACM Asia Conference on Computer and Communications Security*, pp.
 1231–1245, 2024a.
 611

612 Jiashuo Liang, Guancheng Li, and Yang Yu. Universal and context-independent triggers for
 613 precise control of llm outputs. *ArXiv*, abs/2411.14738, 2024b. URL <https://api.semanticscholar.org/CorpusId:274192480>.
 614

615 Yuqing Liang, Jiancheng Xiao, Wensheng Gan, and Philip S Yu. Watermarking techniques for large
 616 language models: A survey. *arXiv preprint arXiv:2409.00089*, 2024c.
 617

618 Pusheng Liu, Lianwei Wu, Linyong Wang, Sensen Guo, and Yang Liu. Step-by-step: Controlling
 619 arbitrary style in text with large language models. In *Proceedings of the 2024 Joint International
 620 Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
 2024)*, pp. 15285–15295, 2024.
 621

622 Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, and Zhangyang Wang. Undis-
 623 tillable: Making a nasty teacher that cannot teach students. *arXiv preprint arXiv:2105.07381*,
 624 2021.
 625

626 Benjamin Minixhofer, Edoardo Maria Ponti, and Ivan Vulić. Cross-tokenizer distillation via approx-
 627 imate likelihood matching. *arXiv preprint arXiv:2503.20083*, 2025.
 628

629 Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
 630 Ghasemzadeh. Improved knowledge distillation via teacher assistant. In *Proceedings of the AAAI
 conference on artificial intelligence*, volume 34, pp. 5191–5198, 2020.
 631

632 Dang Nguyen, Juhai Chen, and Tianyi Zhou. Multi-objective linguistic control of large language
 633 models. In *Annual Meeting of the Association for Computational Linguistics*, 2024. URL
<https://api.semanticscholar.org/CorpusId:270702436>.
 634

635 Xiao Peng and Xufan Geng. Self-controller: Controlling llms with multi-round step-by-step self-
 636 awareness. *ArXiv*, abs/2410.00359, 2024. URL <https://api.semanticscholar.org/CorpusId:273022522>.
 637

638 Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin Zhu, and Minhui Xue. Fingerprinting
 639 deep neural networks globally via universal adversarial perturbations. In *Proceedings of the
 640 IEEE/CVF conference on computer vision and pattern recognition*, pp. 13430–13439, 2022.
 641

642 Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
 643 Yoshua Bengio. Fitnets: Hints for thin deep nets. *arXiv preprint arXiv:1412.6550*, 2014.
 644

645 Tanja Šarčević, Alicja Karlowicz, Rudolf Mayer, Ricardo Baeza-Yates, and Andreas Rauber. U
 646 can't gen this? a survey of intellectual property protection methods for data in generative ai.
 647 *arXiv preprint arXiv:2406.15386*, 2024.
 648

649 Yash Savani, Asher Trockman, Zhili Feng, Avi Schwarzschild, Alexander Robey, Marc Finzi, and
 650 J. Zico Kolter. Antidistillation sampling. *arXiv preprint arXiv:2504.13146*, 2025a.

648 Yash Savani, Asher Trockman, Zhili Feng, Avi Schwarzschild, Alexander Robey, Marc Finzi, and
 649 J. Zico Kolter. Antidistillation sampling, 2025b. URL <https://arxiv.org/abs/2504.13146>.

650

651 Yuchen Sun, Tianpeng Liu, Panhe Hu, Qing Liao, Shaojing Fu, Nenghai Yu, Deke Guo, Yongxiang
 652 Liu, and Li Liu. Deep intellectual property protection: A survey. *arXiv preprint*
 653 *arXiv:2304.14613*, 2023.

654

655 Tatsuya Takemura, Naoto Yanai, and Toru Fujiwara. Model extraction attacks on recurrent neural
 656 networks. *Journal of Information Processing*, 28:1010–1024, 2020.

657

658 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 659 answering challenge targeting commonsense knowledge, 2019. URL <https://arxiv.org/abs/1811.00937>.

660

661 Minxue Tang, Anna Dai, Louis DiValentin, Aolin Ding, Amin Hass, Neil Zhenqiang Gong, Yiran
 662 Chen, et al. {ModelGuard}: {Information-Theoretic} defense against model extraction attacks. In
 663 *33rd USENIX Security Symposium (USENIX Security 24)*, pp. 5305–5322, 2024.

664

665 Zhen Tao, Dinghao Xi, Zhiyu Li, Liumin Tang, and Wei Xu. Cat-llm: prompting large
 666 language models with text style definition for chinese article-style transfer. *arXiv preprint*
 667 *arXiv:2401.05707*, 2024.

668

669 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 670 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

671

672 Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-
 673 text, 2024. URL <https://arxiv.org/abs/2403.05530>.

674

675 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 676 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 677 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

678

679 Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
 680 learning models via prediction apis. In *25th USENIX Security Symposium (USENIX Security 16)*,
 681 pp. 601–618, 2016.

682

683 Yevgeniy Vorobeychik and Murat Kantarcioglu. *Adversarial machine learning*. Morgan & Claypool
 684 Publishers, 2018.

685

686 Wenbo Wan, Jun Wang, Yunming Zhang, Jing Li, Hui Yu, and Jiande Sun. A comprehensive survey
 687 on robust image watermarking. *Neurocomputing*, 488:226–247, 2022.

688

689 Peter West, Chandra Bhagavatula, Jack Hessel, Jena D Hwang, Liwei Jiang, Ronan Le Bras, Ximing
 690 Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language
 691 models to commonsense models. *arXiv preprint arXiv:2110.07178*, 2021.

692

693 Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhamo Chen. Instruc-
 694 tional fingerprinting of large language models. *arXiv preprint arXiv:2401.12255*, 2024a.

695

696 Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
 697 Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. *arXiv*
 698 *preprint arXiv:2402.13116*, 2024b.

699

700 Ning Yu, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz. Artificial fingerprinting for gen-
 701 erative models: Rooting deepfake attribution in training data. In *Proceedings of the IEEE/CVF*
 702 *International conference on computer vision*, pp. 14448–14457, 2021.

703

704 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
 705 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

706

707 Xinyi Zhang, Chengfang Fang, and Jie Shi. Thief, beware of what get you there: Towards under-
 708 standing model extraction attack. *arXiv preprint arXiv:2104.05921*, 2021.

702 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
703 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
704 Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL <https://arxiv.org/abs/2306.05685>.
705

706 Xin Zhong, Arjon Das, Fahad Alrasheedi, and Abdullah Tanvir. A brief, in-depth survey of deep
707 learning-based image watermarking. *Applied Sciences*, 13(21):11852, 2023.
708

709 Guorui Zhou, Ying Fan, Runpeng Cui, Weijie Bian, Xiaoqiang Zhu, and Kun Gai. Rocket launching:
710 A universal and efficient framework for training well-performing light net. In *Proceedings of the*
711 *AAAI Conference on Artificial Intelligence*, volume 32, 2018.
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756	APPENDIX CONTENTS	
757		
758	A Implementation Detail	16
759		
760	B Justification for Proposition 4.2	16
761	B.1 Student Objective and Gradient Mismatch under Distribution Shift	16
762	B.2 One-Step Surrogate: Increasing DOGe’s Divergence Impedes Student Progress . .	17
763	B.3 Connecting DOGe’s Objective to \bar{D} and Masking	17
764	B.4 Concluding the Justification for Proposition 4.2	17
765		
766	C Ablation on Different Decoding Strategy	18
767		
768	D Results of Using Tulu for Defensive Training	18
769		
770	E LLM Judging intermediate Steps	18
771	E.1 Results	18
772	E.2 Prompt of Judge	19
773		
774	F Pseudo Code for DOGe	20
775		
776	G Limitation	20
777		
778	H Broader Impact	20
779		
780	I Ethics Statement	20
781		
782	J The Use of Large Language Models (LLMs)	21
783		
784		
785		
786		
787		
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810
811 A IMPLEMENTATION DETAIL812
813 We use NVIDIA A100 and A6000 servers for all experiments. We list all the hyperparameters we
814 used in our experiments in Table 1.815
816 Table 1: Hyperparameters used in all our experiments.

Hyperparameters	Values
Optimizer	AdamW
Adam ϵ	$1e-8$
Adam β	(0.9, 0.999)
Warm-up ratio	0.1
Weight decay	0.01
LR scheduler	Cosine Decay
KD α	3×10^{-5}
KD T	2.0
KD Epochs	2

829 B JUSTIFICATION FOR PROPOSITION 4.2

830
831 This appendix provides a formal justification for Proposition 4.2. The analysis is *local*, focusing
832 on a single gradient step to avoid assumptions of global optimality. It replaces the unbounded KL
833 divergence with a smoothed, bounded version to ensure stability, and makes explicit the role of
834 reasoning-aware masking in impeding student progress.835
836 **Setup and notation.** Fix a token position t with context $c_t = (x, y_{<t})$. Let $z_t \in \mathbb{R}^V$ be the teacher
837 logits and define the teacher’s smoothed, temperature-scaled distribution as

838
839
$$p_t = \text{Smooth}_\epsilon(\text{softmax}(z_t/\alpha)), \quad \text{where } \text{Smooth}_\epsilon(r) = (1 - \epsilon)r + \epsilon u,$$

840
841 and u is the uniform distribution over the vocabulary, $\alpha > 0$ is a temperature, and $\epsilon \in (0, \frac{1}{2})$ is a
842 smoothing factor. For the i -th proxy student, let $q_{i,t}$ be its token distribution. We define the bounded
843 divergence as

844
845
$$D_{\text{KL}}^{(\alpha, \epsilon)}(p_t \| q_{i,t}) = \text{KL}(p_t \| \text{Smooth}_\epsilon(q_{i,t})) \in [0, \log V - \log(\epsilon V)]. \quad (6)$$

846
847 DOGe maximizes the masked average of this divergence over intermediate (“thinking”) tokens, while
848 preserving task likelihood via \mathcal{L}_{SFT} .

849 B.1 STUDENT OBJECTIVE AND GRADIENT MISMATCH UNDER DISTRIBUTION SHIFT

850
851 We model sequence-level KD via the token-level negative log-likelihood (NLL) on a reference dis-
852 tribution r_t :

853
854
$$\mathcal{L}_{\text{KD}}(\theta_S; r) = \mathbb{E}_t \mathbb{E}_{y_t \sim r_t} \left[-\log p_S(y_t | c_t; \theta_S) \right], \quad (7)$$

855
856 where $p_S(\cdot | c_t; \theta_S)$ is the student’s conditional distribution.857
858 **Assumption B.1** (Bounded Jacobian and Smoothness). There exist constants $G, L > 0$ such that
859 for all t and y_t , $\|\nabla_{\theta_S} \log p_S(y_t | c_t; \theta_S)\| \leq G$, and $\mathcal{L}_{\text{KD}}(\theta_S; r)$ is L -smooth in θ_S for any r induced
860 by the teacher’s outputs.861
862 This is a standard assumption for NLL objectives with common parameterizations and bounded logit
863 Jacobians.864
865 **Lemma B.2** (Gradient Discrepancy Bound). Let $g(r) := \nabla_{\theta_S} \mathcal{L}_{\text{KD}}(\theta_S; r) = \mathbb{E}_t \mathbb{E}_{y_t \sim r_t} \left[-\right.$
866
$$\left. \nabla_{\theta_S} \log p_S(y_t | c_t; \theta_S) \right]$$
. For any two token distributions r_t, s_t on the same context c_t ,

867
868
$$\|g(r) - g(s)\| \leq G \sqrt{2 \mathbb{E}_t [\text{KL}(r_t \| s_t)]}.$$

864 *Proof.* Let $f(y_t) = -\nabla_{\theta_S} \log p_S(y_t \mid c_t; \theta_S)$. The difference in gradients is $g(r) - g(s) =$
 865 $\mathbb{E}_t[\mathbb{E}_{y_t \sim r_t}[f(y_t)] - \mathbb{E}_{y_t \sim s_t}[f(y_t)]]$. By Jensen's inequality for norms, $\|g(r) - g(s)\| \leq \mathbb{E}_t[\|\mathbb{E}_{r_t}[f] -$
 866 $\mathbb{E}_{s_t}[f]\|]$. For a fixed t , the variational characterization of total variation (TV) distance for vector-
 867 valued functions gives $\|\mathbb{E}_{r_t}[f] - \mathbb{E}_{s_t}[f]\| \leq \sup_{y_t} \|f(y_t)\| \cdot 2 \cdot \text{TV}(r_t, s_t)$. By Assumption B.1,
 868 $\sup_{y_t} \|f(y_t)\| \leq G$. Applying Pinsker's inequality, $\text{TV}(r_t, s_t) \leq \sqrt{\frac{1}{2} \text{KL}(r_t \| s_t)}$. Combining these,
 869 $\|g(r) - g(s)\| \leq \mathbb{E}_t[G \cdot 2 \cdot \sqrt{\frac{1}{2} \text{KL}(r_t \| s_t)}] = G\sqrt{2} \cdot \mathbb{E}_t[\sqrt{\text{KL}(r_t \| s_t)}]$. A final application of Jensen's
 870 inequality for the concave square root function yields the result. \square
 871

873 B.2 ONE-STEP SURROGATE: INCREASING DOGE'S DIVERGENCE IMPEDES STUDENT 874 PROGRESS

876 Let q be the *proxy-averaged* reference distribution: $q_t = \frac{1}{N} \sum_{i=1}^N q_{i,t}$. The student's progress
 877 on $\mathcal{L}_{\text{KD}}(\cdot; q)$ after one SGD step of size $\eta > 0$ using a sample from the teacher distribution p is
 878 controlled by the alignment $g(q)^\top g(p)$.

879 **Proposition B.3** (One-Step Lower Bound on Expected Loss Change). *Under Assumption B.1, for a*
 880 *single step $\theta_S^+ = \theta_S - \eta g(p)$,*

$$881 \mathcal{L}_{\text{KD}}(\theta_S^+; q) \leq \mathcal{L}_{\text{KD}}(\theta_S; q) - \eta g(q)^\top g(p) + \frac{L}{2} \eta^2 \|g(p)\|^2. \quad (8)$$

883 Moreover, by Cauchy-Schwarz, $g(q)^\top g(p) = \|g(q)\|^2 - g(q)^\top (g(q) - g(p)) \geq \|g(q)\|^2 -$
 884 $\|g(q)\| \|g(q) - g(p)\|$. Combining these with Lemma B.2 yields

$$886 \mathcal{L}_{\text{KD}}(\theta_S^+; q) - \mathcal{L}_{\text{KD}}(\theta_S; q) \leq -\eta \|g(q)\|^2 + \eta \|g(q)\| G \sqrt{2 \bar{D}} + \frac{L}{2} \eta^2 \|g(p)\|^2, \quad (9)$$

$$887 \text{where } \bar{D} := \mathbb{E}_t \left[D_{\text{KL}}^{(\alpha, \epsilon)}(p_t \| q_t) \right].$$

889 **Corollary B.4** (Threshold on DOGe Divergence for Non-Improvement). *The student's ex-
 890 pected progress on the proxy-aligned objective $\mathcal{L}_{\text{KD}}(\cdot; q)$ becomes non-negative (i.e., learning
 891 is stalled or reversed) if the average divergence \bar{D} manipulated by DOGe satisfies $\sqrt{\bar{D}} \geq$
 892 $\frac{\|g(q)\|}{G\sqrt{2}} \left(1 - \frac{L\eta\|g(p)\|^2}{2\|g(q)\|^2} \right)$. For small step sizes η , this simplifies to the condition that $\sqrt{\bar{D}}$ must ex-
 893 ceed a threshold proportional to the norm of the ideal gradient $\|g(q)\|$.*

895 Corollary B.4 formalizes that once the divergence between the DOGe teacher p and the proxy-
 896 averaged q is sufficiently large, a student trained on p makes no expected first-order progress on
 897 the objective it is meant to optimize (learning from q).

899 B.3 CONNECTING DOGE'S OBJECTIVE TO \bar{D} AND MASKING

901 The DOGe adversarial term is $\mathcal{L}_{\text{adv}} = -\frac{1}{N} \sum_{i=1}^N \mathbb{E}_t[m_t D_{\text{KL}}^{(\alpha, \epsilon)}(p_t \| q_{i,t})]$. Minimizing this is equiv-
 902 alent to maximizing the masked, proxy-averaged divergence. By convexity of KL, Jensen's inequality
 903 implies that maximizing this term also increases our analysis variable \bar{D} on the masked (inter-
 904 mediate) positions that drive distillation. Simultaneously, \mathcal{L}_{SFT} keeps answer-region probabilities
 905 aligned with ground truth, bounding the unmasked portion of the divergence.

907 B.4 CONCLUDING THE JUSTIFICATION FOR PROPOSITION 4.2

908 The argument proceeds as follows: (1) Assumption 4.1 posits that the proxy-averaged distribution
 909 q is a good target for distillation. (2) DOGe's adversarial objective, when optimized, increases the
 910 divergence \bar{D} between the teacher's output distribution p and q on intermediate reasoning tokens. (3)
 911 By Proposition B.3 and Corollary B.4, once this divergence crosses a threshold, the resulting DOGe
 912 teacher impedes or reverses the distilled student's expected one-step progress on the distillation
 913 objective. (4) Aggregated over training, this leads to lower task performance for students distilled
 914 from $\mathcal{T}_{\theta_{\text{final}}^*}$ than from a standard SFT teacher, thus justifying Proposition 4.2.

916 **Scope and limitations.** This justification is *local* (analyzing one gradient step) and relies on stan-
 917 dard assumptions of bounded gradients and smoothness. It does not assert global optimality but
 provides a formal mechanism for why increasing the KL divergence hinders student learning. The

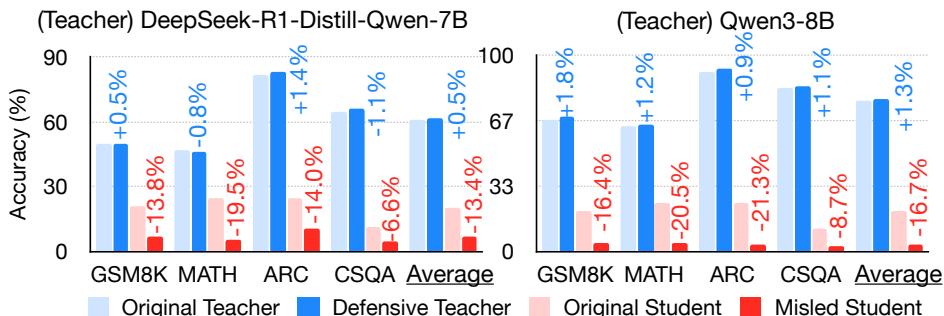
918 stability and effectiveness in practice depend on the trade-off parameters $\alpha, \epsilon, \lambda$, for which we report
 919 empirical ablations.
 920

922 C ABLATION ON DIFFERENT DECODING STRATEGY

925 D RESULTS OF USING TULU FOR DEFENSIVE TRAINING

927 To further validate the generalizability of our approach across different defensive training datasets,
 928 we conduct additional experiments using the Tulu dataset (Lambert et al., 2024), which contains
 929 diverse general-purpose instruction-tuning data, instead of the math-specific GSM8K dataset used
 930 in our main results. Figure 11 presents the comparative evaluation results when DOGe is trained
 931 on Tulu data. Consistent with our main findings in Section 5.2, we observe that defensive teachers
 932 maintain or improve their original performance while significantly degrading student model capa-
 933 bilities through knowledge distillation.

934 Notably, using the more diverse Tulu dataset for defensive training leads to **enhanced teacher per-
 935 formance improvement** compared to GSM8K-based training. For both teacher models, we ob-
 936 serve consistent gains across all benchmarks, with the defensive teachers achieving superior per-
 937 formance to their original counterparts. However, the student performance degradation is **slightly less
 938 pronounced** than with GSM8K training, though still substantial (ranging from -6.4% to -21.3%
 939 across different benchmarks).



952 Figure 11: Comparative evaluation of *defensive v.s. original* teacher models and *misled v.s. original* student
 953 models using Tulu (general) for defensive training. For the single proxy model used
 954 in defensive training, we employ Qwen2.5-3B as the teacher model (left), and Qwen3-4B as the
 955 teacher model (right). The student model is Llama-3.2-1B. We report the performance of: (1)
 956 *Defensive* teacher trained with our proposed DOGe method; (2) Original teacher, the unmodified
 957 pre-trained model; (3) *Misled* student, distilled from the *defensive* teacher; and (4) Original student,
 958 the unmodified pre-trained student model. Compared to Section 5.2, our findings show that while
 959 *defensive* teacher models **further improve** performance compared to using GSM8K (math) for de-
 960 fensive training, *misled* student models experience slightly less substantial performance degradation.

961 E LLM JUDGING INTERMEDIATE STEPS

964 E.1 RESULTS

966 In this experiment, we use LLM-as-a-judge (Li et al., 2025a;b; Zheng et al., 2023) to check if the
 967 intermediate thinking process generated by the teacher LLM is unnatural. Specifically, we employ
 968 Gemini-1.5-Pro (Team, 2024) to judge the generated text from *defensive* teacher models as
 969 specified in Section 4. The results in Table 2 demonstrate that most of the outputs of the defensive
 970 teacher models with DOGe are unperceivable to the strong Gemini judge. This further validates
 971 the effectiveness of DOGe in compromising the performance of the distilled student model while
 maintaining the performance of the teacher model.

972

973

974 Table 2: Ratios of generated unnatural samples per dataset. Due to the computational limit, we test
 975 on 30 samples randomly selected from each dataset. We then check the output manually to further
 validate the naturalness.

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

E.2 PROMPT OF JUDGE

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Thought Process Naturalness Prompt

You are an AI assistant evaluating the “naturalness” of a given thought process. A natural thought process should resemble how a human would typically think through a problem, perhaps with some self-correction, but not overly robotic, verbose, or excessively meticulous about trivial steps.

Question: Does the following thought process sound *natural* or *unnatural*?

Consider factors like:

- Excessive verbosity for simple calculations.
- Redundant self-correction or verification beyond what’s typical.
- A robotic or overly formulaic tone.
- Explaining every single micro-step in extreme detail.

Respond with only the word “natural” or “unnatural.”

Thought Process:

{thought_process_text}

1026 **F PSEUDO CODE FOR DOGE**
10271028 **Algorithm 1** Defensive LM Head Training
1029

1030 **Require:** Teacher LLM \mathcal{T} with frozen base and trainable LM head L_{final} (parameters θ_{final})
 1031 **Require:** Training dataset D_{train}
 1032 **Require:** Ensemble of N proxy student models $\{S_{proxy_i}\}_{i=1}^N$
 1033 **Require:** Hyperparameters: learning rate η , trade-off λ , number of epochs E , temperature α
 1034 1: Initialize θ_{final} (e.g., from pre-trained \mathcal{T})
 1035 2: **for** epoch $e = 1$ to E **do**
 1036 3: **for** each batch $B = \{(x_j, y_{true_j})\}_{j=1}^{|B|} \subset D_{train}$ **do**
 1037 4: Compute teacher hidden states $h_j = \mathcal{T}_{base}(x_j)$
 1038 5: Compute teacher output probabilities $P_{final,j} = \text{softmax}(L_{final}(h_j; \theta_{final})/\tau)$ for each
 token position
 1039 6: Calculate $\mathcal{L}_{SFT} = \frac{1}{|B|} \sum_j \sum_t \text{CrossEntropy}(P_{final,j,t}, y_{true_j,t})$
 1040 7: Calculate $\mathcal{L}_{adv} = \frac{1}{|B|} \sum_j \sum_t \frac{1}{N} \sum_i \text{KL}(P_{final,j,t} \| P_{proxy_i}(x_j)_t)$
 1041 8: Determine mask $m_{j,t}$ for each token t in sequence j based on Eq. equation 4
 1042 9: Compute total loss gradient $\nabla_{\theta_{final}} \mathcal{L}_{total}$ using $m_{j,t}$ as per Eq. equation 5 for the ad-
 versarial component
 1043 10: Update $\theta_{final} \leftarrow \theta_{final} - \eta \cdot \nabla_{\theta_{final}} \mathcal{L}_{total}$
 1044 11: **end for**
 1045 12: **end for**
 1046 13: **return** Defensively trained LM head parameters θ_{final}^*

1049 **G LIMITATION**
1050

1053 First, DOGe requires additional defensive training on top of the original model, which introduces
 1054 computational overhead and extends the deployment pipeline. Second, the trade-off parameter λ is
 1055 not straightforward to control and requires extensive hyperparameter search to achieve the optimal
 1056 balance between teacher performance preservation and defense effectiveness. The sensitivity of this
 1057 parameter means that practitioners may need to conduct multiple training runs to find suitable values
 1058 for their specific use cases.

1059 **H BROADER IMPACT**
1060

1062 Our work addresses the critical challenge of intellectual property protection for large language mod-
 1063 els. On the positive side, DOGe enables model developers and companies to better protect their
 1064 substantial investments in LLM training and development, potentially encouraging continued inno-
 1065 vation and research by providing stronger IP safeguards.

1066 However, our approach also raises important considerations. While we aim to protect legitimate in-
 1067 tellectual property, overly aggressive defensive mechanisms could potentially limit beneficial knowl-
 1068 edge sharing and collaborative research in the AI community. There is a delicate trade-off between
 1069 protecting commercial interests and fostering open scientific progress.

1071 **I ETHICS STATEMENT**
1072

1073 **Purpose and intended use.** This work studies *anti-distillation* methods that make it harder to
 1074 clone a proprietary teacher model via sequence-level knowledge distillation (KD), while preserving
 1075 the teacher’s utility for legitimate end-users. Our intended use is IP protection, abuse resistance
 1076 (e.g., preventing the removal of safety guardrails via KD), and model stewardship in settings where
 1077 the model owner is authorized to control downstream training on their outputs.

1078 **Dual-use and potential misuse.** Like many security-style defenses, DOGE has dual-use poten-
 1079 tial. It could be misused to (i) hinder reproducibility when applied to models intended for open

1080 research, (ii) create barriers to interoperability and competition, or (iii) degrade the transparency of
 1081 intermediate reasoning traces. We *do not* advocate deploying this technique on community
 1082 models or research artifacts meant to be freely distilled. We recommend that organizations adopting
 1083 DOGE also maintain a non-defensive checkpoint for bona fide research and comply with applicable
 1084 antitrust, competition, and consumer-protection laws.
 1085

1086 **User impact and transparency.** DOGE targets intermediate (“thinking”) tokens and is designed
 1087 to preserve final-answer quality (utility preservation constraint). However, intentionally making
 1088 certain traces harder to learn can reduce apparent interpretability of generated rationales. We
 1089 recommend disclosing in system documentation that (i) intermediate traces may be altered for anti-
 1090 distillation purposes, (ii) such traces are not suitable as training data, and (iii) a switch or header flag
 1091 can disable the defensive head where transparency is required (e.g., education or auditing).
 1092

1093 **Safety, fairness, and bias.** Altering token distributions could unintentionally change safety or fairness
 1094 properties. In our experiments, we propose evaluating standard toxicity, safety, and stereotype
 1095 metrics before and after defense, and reporting group-wise deltas with confidence intervals. If any
 1096 degradation is detected, we recommend (a) tightening the reasoning mask, (b) reducing the defense
 1097 weight λ , or (c) vetoing deployment. Nothing in DOGE is designed to promote harmful content,
 1098 and supervised fine-tuning (SFT) explicitly preserves task correctness; nevertheless, practitioners
 1099 should *re-validate* safety baselines when enabling the defense.
 1100

1101 **Privacy and data governance.** All datasets used for training and evaluation should be publicly
 1102 available under their respective licenses; private or sensitive data should not be distilled or re-
 1103 exposed. If logs are collected during evaluation, they must be filtered for personally identifiable
 1104 information (PII) and handled according to organizational data-retention policies. Model cards and
 1105 data statements should accompany releases, including license terms that prohibit rebuilding models
 1106 from outputs where applicable.
 1107

1108 **Release strategy.** To balance reproducibility with risk, we recommend releasing: (i) code, evalua-
 1109 tion harnesses, and ablation scripts; (ii) proxy-student configurations; and (iii) *moderate-strength*
 1110 defensive heads and checkpoints for research under a license that restricts malicious cloning. We
 1111 discourage releasing maximally aggressive heads without accompanying safety audits and clear use
 1112 restrictions.
 1113

1114 **Human subjects and IRB.** This research does not involve human subjects, user studies, or collec-
 1115 tion of sensitive personal data; hence no IRB approval was required. If future work includes human
 1116 evaluation, it should obtain appropriate ethics approval and informed consent.
 1117

1118 J THE USE OF LARGE LANGUAGE MODELS (LLMs)

1119 To enhance clarity and readability, we utilized OpenAI GPT-5, Google Gemini 2.5-Pro, and An-
 1120 thropic Claude Opus 4.1 exclusively as a language polishing tool. Its role was confined to proof-
 1121 reading, grammatical correction, and stylistic refinement—functions analogous to those provided by
 1122 traditional grammar checkers and dictionaries. This tool did not contribute to the generation of new
 1123 scientific content or ideas, and its usage is consistent with standard practices for scientific writing.
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133