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ABSTRACT

The data representation plays an important role in evaluating similarity between
objects. In this paper, we propose a novel approach for implicit data representa-
tion to evaluate similarity of input data using a trained neural network. In contrast
to the previous approach, which uses gradients for representation, we utilize only
the outputs from the last hidden layer of a neural network and do not use a back-
ward step. The proposed technique explicitly takes into account the initial task
and significantly reduces the size of the vector representation, as well as the com-
putation time. Generally, a neural network obtains representations related only
to the problem being solved, which makes the last hidden layer representation
useless for input similarity task. In this paper, we consider two reasons for the
decline in the quality of representations: correlation between neurons and insuffi-
cient size of the last hidden layer. To reduce the correlation between neurons we
use orthogonal weight initialization for each layer and modify the loss function to
ensure orthogonality of the weights during training. Moreover, we show that ac-
tivation functions can potentially increase correlation. To solve this problem, we
apply modified Batch-Normalization with Dropout. Using orthogonal weight ma-
trices allow us to consider such neural networks as an application of the Random
Projection method and get a lower bound estimate for the size of the last hidden
layer. We perform experiments on MNIST and physical examination datasets. In
both experiments, initially, we split a set of labels into two disjoint subsets to train
a neural network for binary classification problem, and then use this model to
measure similarity between input data and define hidden classes. We also cluster
the inputs to evaluate how well objects from the same hidden class are grouped
together. Our experimental results show that the proposed approach achieves com-
petitive results on the input similarity task while reducing both computation time
and the size of the input representation.

1 INTRODUCTION

Evaluating object similarity is an important area in machine learning literature. It is used in various
applications such as search query matching, image similarity search, recommender systems, clus-
tering, classification. In practice, the quality of similarity evaluation methods depends on the data
representation.

For a long time neural networks show successful results in many tasks and one such task is obtaining
good representations. Many of these methods can be considered in terms of domain and task. The
first case is when we have only unlabeled dataset. Then we can use autoencoders (Bank et al.,
2020) or self-supervised approaches (Chen et al., 2020; Devlin et al., 2018; Doersch et al., 2015;
Dosovitskiy et al., 2014; Gidaris et al., 2018; Noroozi & Favaro, 2016; Noroozi et al., 2017; Oord
et al., 2018; Peters et al., 2018), which require formulation of a pretext task, which in most cases
depends on the data type. These methods can be called explicit because they directly solve the
problem of representation learning. Moreover, these models can be used for transfer knowledge
when we have labeled data only in the target domain. The second case is where we have labeled
data in the source and target domains. Then we can apply a multi-task learning approach (Ruder,
2017) or fine-tune the models (Simonyan & Zisserman, 2014; He et al., 2016) trained on a large
dataset like ImageNet. Finally, there is the domain adaptation approach (Wang & Deng, 2018)
where we have a single task but different source and target domains with labeled data in the target
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domain (Hu et al., 2015) or with unlabeled data (Li et al., 2016; Yan et al., 2017; Zellinger et al.,
2017).

In our study the target task is to measure similarity between objects and to define hidden classes
based on it. We are interested in studying the issue of implicit learning of representations. Can the
neural networks store information about subcategories if we don’t explicitly train them to do this?
More formally, we have the same source and target domains but different tasks and we don’t have
labeled data in the target domain. That makes our case different from the cases of transfer learning.

A solution to this problem could be useful in many practical cases. For example, we could train
a model to classify whether messages are spam or not and then group spam campaigns or kind of
attacks (phishing, spoofing, etc.) based on similarity measuring by trained neural network. Similar
cases could be in the medicine (classifying patients into healthy/sick and grouping them by the
disease) or in financial (credit scoring) area. The benefits are that we do not depend on the data
type and, more importantly, we use only one model for different tasks without fine-tuning, which
significantly reduces time for developing and supporting of several models.

Similar study was done in (Hanawa et al., 2020), where authors proposed evaluation criteria for
instance-based explanation of decisions made by neural network and tested several metrics for mea-
suring input similarity. In particular, they proposed the Identical subclass test which checks whether
two objects considered similar are from the same subclass. According to the results of their exper-
iments, the most qualitative approach is the approach presented in (Charpiat et al., 2019), which
proposed to measure similarity between objects using the gradients of a neural network. In experi-
ments, the authors applied their approach to the analysis of the self-denoising phenomenon. Despite
the fact that this method has theoretical guaranties and does not require to modify the model to
use it, in practice, especially in real-time tasks, using gradients tends to increase the computation
time and size of vector representation. This approach will be described in more detail in Section
2. To avoid these problems, we propose a method that only uses outputs from the last hidden
layer of a neural network and does not use a backward step to vectorize the input. In our research,
we found that a correlation of neurons and insufficient width of the last hidden layer influence on
the quality of representations obtained in implicit way. To solve these issues, we propose several
modifications. First, we show that the weight matrix should be orthogonal. Second, we modify
Batch-Normalization (Ioffe & Szegedy, 2015) to obtain the necessary mathematical properties, and
use it with dropout(Srivastava et al., 2014) to reduce the correlation caused by nonlinear activation
functions. Using orthogonal weight matrices allows us to consider the neural network in terms of
Random Projection method and evaluate the lower bound of the width of the last hidden layer. Our
approach will be discussed in detail in Section 3. Finally, in Section 4 we perform experiments on
MNIST dataset and physical examination dataset (Maxwell et al., 2017). We used these datasets to
show that our approach can be applied for any type of data and combined with different architectures
of neural networks. In both experiments, we split a set of labels into two disjoint subsets to train a
neural network for binary classification problem, and then use this model to measure the similarity
between input data and define hidden classes. We also cluster the inputs to evaluate how well objects
from the same class are grouped together. Our experimental results show that the proposed approach
achieves competitive results on the input similarity task while reducing both computation time and
the size of the input representation.

2 RELATED WORKS

Using a trained neural network to measure similarity of inputs is a new research topic. In (Charpiat
et al., 2019) the authors introduce the notion of object similarity from the neural network perspective.
The main idea is as follows: how much would parameter variation that changed the output for x
impact the output for x′? In principle, if the objects x and x′ are similar, then changing parameters
should affect the outputs in a similar way. The following is a formal description for one- and multi-
dimensional cases of the output value of a neural network.

One-dimensional case Let fθ(x) ∈ R be a parametric function, in particular a neural network,
x, x′ be input objects, θ ∈ Rnθ - model parameters, nθ - number of parameters. The authors
proposed the following metric:
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ρθ(x,x
′) =

∇θfθ(x′)∇θfθ(x)

||∇θfθ(x′)|| ||∇θfθ(x)||
(1)

In this way, the object similarity is defined as the cosine similarity between the gradients computed
at these points.

Multi-dimensional case Let fθ(x) ∈ Rd, d > 1. In this case, the authors obtained the following
metric:

ρθ,d(x,x
′) =

1

d
Tr(Kθ(x,x′)), (2)

where Kθ(x,x
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Summary Unlike using third-party models for vectorization, such as VGG, this approach allows
us to use any pre-trained neural network to calculate the similarity of input data. To achieve this,
authors use gradients of neural network as illustrated in equation 1 and equation 2. This gradient-
based solution takes into account all activations, which does not require the selection of a hidden
layer for vectorization. However, it has a number of drawbacks. First of all, fast computation of
gradients require additional computational resources. Second, the size of objects representation is nθ
for one-dimensional output and nθ ∗d for multi-dimensional case. This means that increasing model
complexity increases representation size and, as a result, can lead to large memory consumption.
Motivation of this research is to develop an approach that reduces the size of the representation and
uses only the forward pass of a trained neural network to work. In the next section, we will discuss
the proposed approach in detail.

3 PROPOSED METHOD

In this paper, we suggest using outputs from the last hidden layer of a trained neural network to
encode inputs. This representation has several advantages. First, the output of the last layer is
usually low-dimensional, which allows us to get a smaller vector dimension. Second, and more
importantly, on the last hidden layer the semantics of the original problem is taken into account to
the greatest extent. For example, for a classification problem, data is theoretically linearly separable
on the last hidden layer. Informally, this allows us to measure similarities within each class, which
reduces false cases in terms of the original problem. This is extremely important for clustering
spam campaigns, because this representation reduces the probability to group spam and legitimate
messages together. However, as already mentioned in the section 1, a neural network that is trained
to solve a simple problem does not retain the quality of representaions needed to solve a more
complex one. Due to this fact, it’s impossible to apply this representation as is. We have identified
the main causes of this: a strong correlation of neurons and an insufficient size of the last hidden
layer. Our goal is to avoid these in order to make the proposed vectorization reasonable. In practice,
last hidden layers are usually fully connected. For this reason, we consider only this type of the last
layer. In 3.1, we show how to reduce correlation between neurons, and in 3.2 we offer an estimate
of the lower bound of the size of the last hidden layer and prove that the proposed representation can
be used for the input similarity problem. We introduce the following notation:

1. l ∈ {0, 1, . . . , L} - layer number,
where l = 0 - input layer (source space), l = L - output layer, other - hidden layers.

2. Nl - number of units in layer l

3. hl ∈ RNl - pre-activation vector

4. Φ(hl) = (φ(hl,1), . . . , φ(hl,Nl
)) - activation vector

5. Wl ∈ RNl−1×Nl , bl ∈ RNl - weight matrix and bias vector

3



Under review as a conference paper at ICLR 2021

3.1 NEURON CORRELATION

The benefits of decorrelated representations have been studied in (LeCun et al., 2012) from an op-
timization viewpoint and in (Cogswell et al., 2015) for reducing overfitting. We consider the decor-
related representations from information perspective. Basically, correlation of neurons means that
neurons provide similar information. Therefore, we gain less information from observing two neu-
rons at once. This phenomenon may occur due to the fact that the neural network does not retain
more information than is necessary to solve a particular task. Thus, only important features are
highlighted. The example in Fig. 1A illustrates that the output values of two neurons are linearly
dependent, which entails that many objects in this space are indistinguishable. On the contrary (Fig.
1B), decorrelation of neurons provides more information and, as a result, the ability to distinguish
most objects.
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Figure 1: A) Correlated neurons. Only end task semantics are taken into account. B) Uncorrelated
neurons. More objects are distinguishable

In the following paragraphs, we identify the main causes of the correlation of neurons and suggest
ways to prevent it. We decided to consider the correlations before and after activation of neurons
separately.

Reducing correlation of neurons before activation Statement 1 explains the main reason for the
correlation that occurs before activation.

Statement 1. Suppose that for some layer l the following conditions are satisfied:

1. E[Φ(hl)] = 0

2. E[Φ(hl)
TΦ(hl)] = σ2

l I - covariance matrix as we required E[Φ(hl)] = 0

Then, in order for correlation not to occur on the layer l + 1, it is necessary that the weight matrix
Wl+1 be orthogonal, that is, satisfy the conditionW T

l+1Wl+1 = I

The statement 1 shows that the first correlation factor on a fully connected layer is a non-orthogonal
weight matrix, given that, if the input neurons do not correlate. See Appendix A.1 for proof of the
statement 1. During training, the network does not try to maintain this property, solving the problem
at hand. Later in this paper, we will add regularization to penalize the loss function if the weights
are not orthogonal.

The corollary follows from the statement 1, which gives the second condition for preventing corre-
lation. This corollary states that the dimension of the layer l + 1 should be no greater than on the
layer l. Otherwise, this leads to a correlation and does not increase information. See Appendix A.1
for proof this corollary.

Corollary 1. Suppose that the conditions of statement 1 are satisfied, then if the dimension Nl+1 >
Nl, then there is certainly a pair of neurons hl+1,i,hl+1,j ; i 6= j : Cov(hl+1,i,hl+1,j) 6= 0

It should be noted that there are also the studies addressing orthogonal weight matrices (Huang et al.,
2017; Jia et al., 2019; Xie et al., 2017). However all of these works consider this topic from opti-
mization perspective. In particular, in (Cho & Lee, 2017) was proposed an approach for optimization
of loss on the Stiefel manifold Vp(Rn) = {W ∈ Rn×p|W TW = I} to ensure orthonormality of
weight matrices throughout training. To achieve this, they applied the orthogonality regularization
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(3) to require the Gram matrix of the weight matrix to be close to identity matrix. In our study we
also use regularization (3) to ensure orthonormality of weight matrices.

1

2

L∑
l=1

λl
∣∣∣∣W T

l Wl − I
∣∣∣∣2
F
, (3)

Providing the necessary moments of neurons after activation In the statement 1, we relied on
the zero expected value and the same variance of units in the layer. But the nonlinear activation
function does not guarantee the preservation of these properties. Due to this fact, we cannot reason
in the same way for the following layers. Therefore, we propose using an activation normalization
approach similar to Batch-Normalization:

φ̂(hl,i) = γl
φ(hl,i)− µφ(hl,i)√

σ2
φ(hl,i)

+ ε
, (4)

where γl is a trainable scale parameter, µφ(hl,i), σ
2
φ(hl,i)

- parameters that are evaluated, as inIoffe
& Szegedy (2015). The difference compared to the standard Batch-Normalization is that the γl is
the same for all neurons and we removed the βl,i parameters. This leads to an expected value of
zero and the same variance γ2

l of each unit in the layer.

Reducing correlation of neurons after activation It should be noted that an activation function
can also impact the formation of redundant features (Ayinde et al., 2019). In particular, in this work
we use tanh(x) ∈ (−1, 1) as the activation function. There are several methods that prevent for-
mation of redundant features. In (Cogswell et al., 2015) was proposed DeCov loss which penalizes
non-diagonal elements of estimated covariance matrix of hidden representation. In (Desjardins et al.,
2015; Blanchette & Laganière, 2018; Huang et al., 2018) were proposed approaches for learning
decorrelation layers that perform the following transformation: Φ̃(hl) = (Φ(hl) − µΦ(hl))Σ

− 1
2

Φ(hl)
.

All of these methods have a common drawback: they require estimating covariance matrices. Often
in practice the size of mini-batch is much smaller than is needed for estimating covariance matrices.
Therefore, the covariance matrix is often singular. Moreover, methods that use the decorrelation
layer are computationally expensive when it comes to high-dimensional embeddings, since it is nec-
essary to calculate the square root of the inverse covariance matrix. This is especially evident in
wide neural networks. Besides, these techniques add a significant amount of parameters

∑L−1
l=1 N2

l .

As an alternative, we suggest using Dropout (Srivastava et al., 2014), which prevents units from
co-adapting too much and reduces the correlation between neurons during training stage in the layer
in proportion to p - the probability of retaining a unit in the network. See Appendix A.2 for the proof
of this statement.

It is important to note that we apply normalization to the input data (input layer l = 0) as well as
Dropout, since it is not always possible to decorrelate data so that this does not affect the quality
of training. Moreover, fully-connected layers are often used in more complex architectures, such
as convolutional neural networks. Obviously, after convolution operations, transformed data will be
correlated. In this case, we must apply dropout after the convolutional block in order to reduce the
correlation of neurons and use the proposed approach for vectorization.

3.2 NEURAL NETWORK FROM THE RANDOM PROJECTION PERSPECTIVE

In the previous section, we proposed techniques of minimizing correlation between neurons. How-
ever, it is not guaranteed that the obtained representations are useful or sufficient for the similarity
measuring of objects. In order to prove this, we consider a neural network as an application of the
Random Projection method that allow us to estimate a lower bound of the representation size and
define a metric to measure similarity.

The Random Projection method (Matoušek, 2013) is one of the methods of dimensionality reduction,
which is based on the Johnson-Lindenstrauss lemma (Matoušek, 2013):
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Lemma 1. Let ε ∈ (0, 1) and X = {x1, . . . ,xn} - a set of n points in space Rd; k ≥ C logn
ε2 ,

where C > 0 is a large enough constant. Then there exists a linear map f : Rd → Rk such that
∀x, x′ ∈ X:

(1− ε)||x− x′|| ≤ ||f(x)− f(x′)|| ≤ (1 + ε)||x− x′|| (5)

As can be seen, Lemma 1 states only the existence of a linear map. However, there is also a proba-
bilistic formulation of the Lemma 1, which states that if we take a sufficiently large k and consider
a random orthogonal projection onto the space Rk, then inequality in equation 5 holds with high
probability. This is the cornerstone of this work, allowing us to obtain Neural Random Projection,
which is explained below.

In this work, we use the tanh activation function and assume that we are working in the linear region
of the activation function. Due to this, we can make the following approximation:

hL−1(x) ≈ xW̃1W̃2 . . .WL−1 + b̃ = xγ̂Ŵ + b̂ (6)

where W̃l, b̃means that consistent use of scales and shifts was taken into account, respectively. Just
WL−1 means that we consider the output before activation and hence before applying equation 4.
And γ̂ is common multiplier after all modified batch-normalizations. It is obvious that the final
matrix Ŵ is still orthonormal.

According to approximation in equation 6, pre-activation outputs of the last layer are an orthogonal
projection of the input data. Moreover, the process of random orthogonal initialization and opti-
mization on the Stiefel manifold can be seen as a random sampling of an orthogonal matrix. For this
reasons, we consider the neural network from the point of view of the Random Projection method.
Due to this fact, we use the similarity metric L2 and get a lower bound estimate for the size of the
last hidden layer (k ≥ C logn

ε2 ), although in practice this estimate is often too conservative, since
Lemma 1 does not take data structure into account. Therefore a small C and ε closer to one can be
considered, as will be shown in the experiments section.

4 EXPERIMENTS

In this section we present the experiments on two datasets with different data types. Both experi-
ments have the same structure. Initially, we group a set of labels into two disjoint subsets to train
a neural network for binary classification problem, and then use this model to measure similarity
between input data and define hidden classes. To evaluate the quality of defining hidden classes and
hence the quality of similarity measure we use kNN classifier. To evaluate how well objects from
the same hidden class are grouped together we use KMeans approach and v-measure (Rosenberg &
Hirschberg, 2007). We use source data representation as baseline. To compare our approach, we
consider 3 models (A, B, C) that have the same architectures but different regularizations in fully-
connected layers. We also compare the representations from the last hidden layer with the previous
gradient-based approach (Charpiat et al., 2019) using Model A, since the authors did not impose
additional requirements on the neural network.

4.1 MNIST

We performed experiments on MNIST dataset, which consists of 70,000 images of size 28x28 with
a 6-1 training-testing split. This dataset was chosen to show that our approach works with images
and can be plugged-in after convolution blocks. See Appendix B.1 for more detailed description of
the experiments.

Results As illustrated in Table 1, we achieved results comparable (kNN digit accuracy) with the
previous approach and much better results from v-measure perspective. We also obtained a much
smaller dimension of the representation (30 vs 14.9k), and in addition it is smaller than the original
dimension (30 vs 784). This allowed us to drastically reduce the time for vectorization, using only
the forward pass, and the time to measure the similarity of objects (kNN prediction time) and search
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Model A Model B Model C (Our model) Model A (Gradient) Source space
Digit 0
Digit 1
Digit 2
Digit 3
Digit 4
Digit 5
Digit 6
Digit 7
Digit 8
Digit 9
Even
Odd

Figure 2: t-SNE last hidden layer (test set)

Table 1: Experimental results (MNIST dataset)
Model
(object
rep.)

Model
accuracy

(even/odd)

kNN
digit

accuracy

V
measure

Vec.
time (s)

kNN
prediction
time (s)

Space
dimension

A (∇θfθ) - 96.8 0.542 677.04 188.79 14911
A (hL−1) 97.3±0.2 52.9±3.7 0.322±0.003 1.93±0.07 25.23±0.97 275
B (hL−1) 98.6±0.2 93.1±0.4 0.588±0.016 1.95±0.10 21.46±0.97 30
C (hL−1) 98.9±0.1 97.7±0.3 0.812±0.029 1.83±0.08 21.04±0.73 30
h0 = x - 94.29 0.4 - 21.48 784
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Model C

Figure 3: Distribution of correlations between pairs of neurons of the last hidden layer

Table 2: Spearman’s correlattion between median of correlation distribution of neurons and target
metrics

ε (dimhL−1) KNN digit accuracy V-measure
0.2 (275) -0.28 -0.47
0.4 (68) -0.86 0.13
0.6 (30) -0.72 -0.82
0.8 (17) -0.57 -0.81
1.0 (11) -0.46 -0.83

for the closest object. It should be noted that only our model (Model C) achieves comparable quality
with the previous approach. Moreover we could improve evaluation of similarity in comparison to
source representation.

Although the classic Batch-Normalization (Model B) gives a good increase in the quality of digit
recognition compared to Model A, it still fails to achieve sufficient results on similarity task. This
is well illustrated by the visualization of the representation of the last hidden layer (Fig. 2). As can
be seen, Model A can only take into account the semantics of the original problem. In Model B, for
the most part, the numbers are locally distinguishable, but some classes are strongly mixed, which
is confirmed by the presence of high correlation (Fig. 3). Our model (Model C) can significantly
reduce the correlation and gives an explicit separation with a large margin between the classes. In
addition, the proposed modifications do not impair the quality of the model, as seen in Table 1
(Model accuracy).
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As can be seen from Table 2, generally, there is a negative statistical relationship between target
metrics and neuronal correlation.

4.2 HENAN RENMIN HOSPITAL DATA

Next, we used physical examination dataset (Maxwell et al., 2017), which contains 110,300 anony-
mous medical examination records. We retained only four most frequent classes (Normal, Fatty
Liver, Hypertension and Hypertension & Fatty Liver), because this dataset is highly imbalanced. As
a result, we got 100140 records. After that we split four classes on two corresponding groups ”Sick”
(Fatty Liver, Hypertension and Hypertension & Fatty Liver) and ”Healthy” (Normal). After that we
divided data set into train and test subsets in proportion 4-1.

It should be noted that this task is more difficult in comparison to the previous experiment because
hidden classes are semantically related which makes it easier for the neural network to mix these
classes into one.

This dataset was chosen to show that our approach works well with categorical features. Also we
show that we can make the first layer wider than the source dimension and after that plug-in our
approach. As mentioned above, the original classes are imbalanced so instead of accuracy metric
we used F1micro score to evaluate the quality of the similarity measurement (kNN F1micro). See
Appendix B.2 for more detailed description of the experiments.

Model A Model B Model C (Our model) Model A (Gradient) Source space

Hypertension Fatty Liver Normal Hypertension & Fatty Liver Sick Healthy

Figure 4: t-SNE last hidden layer (test set)

Table 3: Experimental results (Henan Renmin Hospital Data)

Model
(object
rep.)

Model
acc.

(sick/
healthy)

kNN
disease
F1micro

V
measure

Vec.
time (s)

kNN
pred.

time (s)

Space
dim

A (∇θfθ) - 79.1 0.316 169.2 980.8 29111
A (hL−1) 88.25±0.06 75.0±2.7 0.371±0.004 0.16±0.01 62.22±1.27 31
B (hL−1) 86.7±0.1 79.6±0.2 0.411±0.015 0.28±0.02 93.26±2.59 31
C (hL−1) 87.4±0.2 79.6±0.2 0.398±0.008 0.26±0.02 75.87±1.45 31
h0 = x - 61.1 0.066 - 45.91 62
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Figure 5: Distribution of correlations between pairs of neurons of the last hidden layer

Results As illustrated in Table 3, we achieved results comparable (kNN disease F1micro score)
with the previous approach. As in the previous experiments we obtained a much smaller dimension
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of the representation (31 vs 29k) and drastically reduced the time for vectorization and the time
to measure the similarity of objects (kNN prediction time). It should be noted that we noticeably
improved the quality of similarity measurement in comparison to the source space (61.1 vs 79.6) as
can be seen also in Fig. 4. We also reduced correlation in comparison of the Model A and Model B,
however it did not help us to obtain more quality representaions. This result can be explained by the
fact that the hidden classes are strongly semantically related, in particular in ”Sick” class. Therefore,
it is easier for the neural network to mix these hidden classes into one. Probably, the data have more
complicated structure in source space (see Table 3 for h0) and it’s not enough to only reduce the
correlation. See Table 4 for detailed results.

Table 4: Spearman’s correlattion between median of correlation distribution of neurons and target
metrics

ε (dimhL−1) KNN F1micro disease V-measure
0.2 (282) -0.83 -0.6
0.4 (70) -0.81 -0.13
0.6 (31) -0.11 -0.34
0.8 (17) 0.1 -0.1
1.0 (11) 0.02 -0.15

As can be seen from Tabel 4, in this case, the statistical relationship between neuron correlation and
target metrics is not so strong. Especially for the small dimension of the last hidden layer. This may
be due to the fact that if the layer size is insufficient, there are not enough dimensions to describe
the variability of the data, even if the data is not highly correlated.

5 CONCLUSION

In this work, we studied an approach for obtaining implicit data representation. In order to obtain
implicit data representation, we introduced the Neural Random Projection method, which includes
regularization of the neural network in the form of optimization among orthogonal matrices, a mod-
ification of Batch-Normalization and its combination with Dropout. This allowed to obtain repre-
sentations applicable for input similarity measure using trained neural network. We experimentally
compared our approach to the previous one and showed that it significantly reduced both computa-
tion time and the size of the input representation. Finally, our approach allowed us to introduce the
L2 metric on the representations and improve the quality of the similarity measurement in compar-
ison with the source space. And how can be seen from the experiments the correlation and the size
of the last hidden layer not yet all factors affecting on the final implicit representation. This remains
an open question, and in the future we are planning to research it more. We expect that our study
will be useful for many applied problems, where it is initially very difficult to determine a method
for measuring data similarity in its original form.
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Saminger-Platz. Central moment discrepancy (cmd) for domain-invariant representation learn-
ing. arXiv preprint arXiv:1702.08811, 2017.

11



Under review as a conference paper at ICLR 2021

A THEORETICAL PART

A.1 REDUCING CORRELATION OF NEURONS BEFORE ACTIVATION

Statement 1. Suppose that for some layer l the following conditions are satisfied:

1. E[Φ(hl)] = 0

2. E[Φ(hl)
TΦ(hl)] = σ2

l I - covariance matrix as we required E[Φ(hl)] = 0

Then, in order for correlation not to occur on the layer l + 1, it is necessary that the weight matrix
Wl+1 be orthogonal, that is, satisfy the conditionW T

l+1Wl+1 = I .

Proof. To prove this, we consider the expected value and the covariance matrix of the vector hl+1,
using the relation hl+1 = Φ(hl)Wl+1 + bl+1 and let the condition of orthogonality be satisfied:

1. Expected value:

E[hl+1] = E[Φ(hl)Wl+1 + bl+1] = E[Φ(hl)]Wl+1 + E[bl+1] = bl+1

2. Covariance matrix:

E[(hl+1 − E[hl+1])T (hl+1 − E[hl+1])] = E[W T
l+1Φ(hl)

TΦ(hl)Wl+1] =

= W T
l+1E[Φ(hl)

TΦ(hl)]Wl+1 =

= σ2
lW

T
l+1Wl+1 = σ2

l I

Corollary 1. Suppose that the conditions of statement 1 are satisfied, then if the dimension Nl+1 >
Nl, then there is certainly a pair of neurons hl+1,i,hl+1,j ; i 6= j : Cov(hl+1,i,hl+1,j) 6= 0

Proof. Suppose, towards a contradiction, that Nl+1 > Nl and ∀i, j ∈ {1, . . . , Nl+1}, i 6= j ⇒
Cov(hl+1,i,hl+1,j) = 0. By the statement 1, this is possible only ifWl+1 is an orthogonal matrix,

which means that there is a linearly independent system of Nl+1 vectors of dimension Nl−1. It
follows that rank Wl+1 ≥ min(Nl, Nl+1) = Nl, which is impossible, therefore the matrix Wl+1

is not orthogonal, thus we have a contradiction.

A.2 REDUCING CORRELATION OF NEURONS AFTER ACTIVATION

For further discussion, we describe the Dropout method in our notation: zl = rl· Φ̂(hl), where
rl = (rl,1, . . . , rl,Nl

); rl,i ∼ Bernoulli(p) and the · sign means element-wise multiplication, p
the probability of retaining a unit in the network and Φ̂ denotes activation after modified Batch-
Normalization. The following statement explains how Dropout reduces correlation.
Statement 2. Dropout reduces the correlation in proportion to p

Proof. Let Cij , i 6= j - correlation value between neurons i, j. Given the properties of φ̂(hli),

we obtain the following expression for the correlation: Cij =
E[φ̂(hli),φ̂(hlj)]

γ2 . Now consider the
correlation after applying Dropout:

Ĉij =
E[zli, zlj ]√
E[z2

li]E[z2
lj ]

=
E[rliφ̂(hli), rli φ̂(hlj)]√
E[r2

liφ̂
2(hli)]E[r2

lj φ̂
2(hlj)]

=

=
E[rli] E[rlj ] E[φ̂(hli), φ̂(hlj)]√
E[r2

li] E[r2
lj ] E[φ̂2(hli)]E[φ̂2(hlj)]

=

=
p2E[φ̂(hli), φ̂(hlj)]

pγ2
= pCij
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Here we used the fact that rli, rlj are independent Bernoulli random variables, and they are also
independent of φ̂(hli), φ̂(hlj).

B DETAILS OF EXPERIMENTS

Computing infrastructure All experiments were performed on Intel(R) Xeon(R) CPU E5-2650
0 @ 2.00GHz, 189GB RAM and CentOS Linux 7 (Core) x86-64 operating system. The models
were implemented using Python 3.6v and TensorFlow 2.2.0v library.

B.1 MNIST

Experiments description

1. Models (A, B, C) trained to solve binary classification problem (even/odd digit). Number
of epochs - 100, optimizer - Adam with learning rate 0.001; batch size - 256; validation
split - 0.1, early stopping: min delta - 1e-3 and patience 5 epochs.

2. kNN classifier trained (k = 9) to solve digit classification problem, using pre-trained model
A and metric from equation 1 from previous approach. We measured vectorization time on
the complete dataset and evaluated digit accuracy, even/odd accuracy and prediction time
of this kNN model on test set.

3. Everything is similar to the previous item, only the representations of the last hidden layer
of each model and the L2 metric were used.

4. Like previous item, only the source space representation and the L2 metric were used.

We used models with the following base architecture:

Conv2D(16× 3× 3)→ ReLU →MaxPolling2D(2× 2)→ Conv2D(8× 3× 3)→ ReLU →
MaxPolling2D(2× 2)→ Dense(64)→ tanh→ Dense(dimhL−1)→ tanh→ Dense(1)

The size of the last hidden layer was chosen corresponding to the lower bound from section 3.2:

dimhL−1 ≈
log 6· 104

ε2

In all models, only l2 with λ = 0.01 regularization was used in the convolution block. Further, the
difference between models in fully-connected layers will be given.

Model A: simple network, only l2 with λ = 0.01 regularization is used. And the variable ranges
from 0.2 to 1.0 with step 0.2.

Model B: orthogonal matrix initialization, regularization from equation 3 with
λl ∈ {0.0, 0.01, 0.1, 1} and l2 regularization on bias vector; standard Batch-Normalization is used
before activation and Dropout with p ∈ {0.0, 0.1, 0.2, 0.3} after activation.

Model C (proposed model): modified Batch-Normalization is used after activation and Dropout
after Batch-Normalization.

Each model with each combination of hyperparameters is trained 20 times. It is needed to obtain
95% confident intervals for target metrics (KNN accuracy digit and v-measure).

B.2 HENAN RENMIN HOSPITAL DATA

Experiments description

1. Models (A, B, C) trained to solve binary classification problem (sick/healthy). Number
of epochs - 200, optimizer - Adam with initial learning rate 0.001 and exponential decay
factor 0.99 every 500 iterations; batch size - 128; validation split - 0.1, early stopping: min
delta - 1e-3 and patience 5 epochs.
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2. kNN classifier (k = 9) trained to classify type of disease, using pre-trained model A and
metric from equation 1. We measured vectorization time on the complete dataset. And
we evaluated F1micro score on hidden classes because they are imbalanced, sick/healthy
accuracy and prediction time of this kNN model on test set.

3. Everything is similar to the previous item, only the representations of the last hidden layer
of each model and the L2 metric were used.

4. Like previous item, only the source space representation and the L2 metric were used.

We used models with the following base architecture: Dense(128) → tanh → Dense(96) →
tanh→ Dense(64)→ tanh→ Dense(32)→ tanh→ Dense(dimhL−1)→ Dense(1)

The size of the last hidden layer was chosen corresponding to the lower bound from previous section:

dimhL−1 ≈
log 8· 104

ε2

Each model with each combination of hyperparameters is trained 20 times. It is needed to obtain
95% confident intervals for target metrics (KNN F1micro disease and v-measure).

Model A: simple network, only l2 with λ = 0.001 regularization is used.

Model B: orthogonal matrix initialization, regularization from equation 3 with λl ∈
{0.0, 0.01, 0.1, 1} except the first layer and l2 regularization on bias vector; standard Batch-
Normalization is used before activation and Dropout with p ∈ {0.0, 0.1, 0.2, 0.3} after activation.

Model C (proposed model): modified Batch-Normalization is used after activation and Dropout
with after Batch-Normalization.
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