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Abstract
The geometry of representations in a neural network can significantly impact downstream general-
ization. It is unknown how representation geometry changes in large language models (LLMs) over
pretraining and post-training. Here, we characterize the evolving geometry of LLM representations
using spectral methods (effective rank and eigenspectrum decay). With the OLMo and Pythia model
families we uncover a consistent non-monotonic sequence of three distinct geometric phases in
pretraining. An initial “warmup” phase sees rapid representational compression. This is followed by
an “entropy-seeking” phase, characterized by expansion of the representation manifold’s effective
dimensionality, which correlates with an increase in memorization. Subsequently, a “compression-
seeking” phase imposes anisotropic consolidation, selectively preserving variance along dominant
eigendirections while contracting others, correlating with improved downstream task performance.
We link the emergence of these phases to the fundamental interplay of cross-entropy optimization,
information bottleneck, and skewed data distribution. Additionally, we find that in post-training the
representation geometry is further transformed: Supervised Fine-Tuning (SFT) and Direct Prefer-
ence Optimization (DPO) correlate with another “entropy-seeking” dynamic to integrate specific
instructional or preferential data, reducing out-of-distribution robustness. Conversely, Reinforce-
ment Learning with Verifiable Rewards (RLVR) often exhibits a “compression-seeking” dynamic,
consolidating reward-aligned behaviors and reducing the entropy in its output distribution. This
work establishes the utility of spectral measures of representation geometry for understanding the
multiphase learning dynamics within LLMs.

1. Introduction

Loss curves during training offer an incomplete account of how large language models (LLMs) learn
specific behaviors [8, 38]. While training loss typically decreases monotonically [16, 18], model
capabilities and internal representational structures exhibit significant qualitative shifts [5, 31, 32].
This disconnect highlights a fundamental challenge: How do high-dimensional distributed represen-
tations within LLMs evolve during training, and how do these representational transformations give
rise to emergent capabilities?

Here, we use spectral analyses to quantify the representation geometry in LLMs. We focus on the
spectral properties of the last token’s feature covariance matrix, computing effective rank ("RankMe")
and spectral decay rate ("αReQ") to measure variance concentration, indicative of representational
compression or expansion [1, 10]. These measures have been linked to generalization and learnability
via gradient descent [2, 35]. Our analysis shows that LLM pretraining unfolds through a consistent
sequence of distinct geometric phases (c.f. Figure 1):

• An initial “warmup” phase: rapid representational collapse coinciding with LR ramp-up.
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Figure 1: Spectral geometry reveals evolving representation complexity: Pretraining shows non-
monotonic “entropy-seeking” (expansion for n-grams) and “compression-seeking” (con-
solidation for long-range dependencies) phases. Post-training (SFT, DPO, RLVR) further
refines the geometry, most notably RLVR is “compression-seeking” (details in Figure A5)

• An “entropy-seeking” phase: manifold expansion, increased n-gram memorization.

• A “compression-seeking” phase: anisotropic consolidation, correlating with enhanced
learning of long-range dependencies and robust generalization.

Our investigation of post-training stages shows analogous geometric shifts: Supervised Fine-Tuning
(SFT) and Direct Preference Optimization (DPO) often induce an “entropy-seeking” -like manifold ex-
pansion for specific instruction assimilation, while Reinforcement Learning from Verifiable Rewards
(RLVR) typically produces a “compression-seeking” -like contraction, consolidating reward-aligned
behaviors. These findings offer a granular view of LLM training with practical implications.

2. Methods

2.1. Spectral Analysis of Representation Geometry

To quantitatively measure representation geometry, we perform spectral analysis of the feature
covariance matrix Σ̂. This matrix is derived from the last-layer representations yN of the final token
tN from input sequences. The eigenspectrum {σi(Σ̂)}di=1 of Σ̂ measures information concentration
along principal axes; a sharp decay indicates anisotropic geometry (compression), while a slow decay
suggests significant variance across several directions (expansion). We use two key metrics:

• Effective Rank (RankMe): Based on Von Neumann entropy, RankMe := exp(−
∑d

i=1 pi ln pi),
where pi = σi/(

∑
j σj) is the variance proportion along the i-th principal axis [10, 29].

• Spectral Decay Rate (αReQ): LLM activation matrices often exhibit a powerlaw eigenvalue
spectrum, i.e. σi ∝ i−αReQ [11]. A smaller αReQ implies higher dimensionality, while larger
αReQ indicates compactness [1, 34].

2.2. Quantifying Distributional Memorization

To differentiate distributional memorization from generalization, we measure alignment with n-gram
frequencies in the pretraining corpus D using an ∞-gram language model [21]. The distributional
memorization metric, Mem∞, is the Spearman rank correlation (ρs) between ∞-gram LM outputs
and LLM outputs for a target sequence y [36], given context u and input x:

Mem∞(LLM,D, T ) := ρs
(
P̄∞,D(y|u⊕ x), P̄LLM (y|u⊕ x)

)
. (1)
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2.3. Post-Training Methodologies and Evaluation

We analyze models undergoing: Supervised Fine-Tuning (SFT), which adapts LLMs by minimiz-
ing negative log-likelihood on a curated dataset DSFT of instruction-response pairs, and evaluate
performance on In-Distribution (ID) and Out-of-Distribution (OOD) benchmarks [33]; Direct
Preference Optimization (DPO) [27], which refines policy πθ using a static preference dataset
Dpref = {(x, yw, yl)} by minimizing a loss dependent on the log-ratio of probabilities r̂θ(x, y) against
a reference policy πref; and Reinforcement Learning from Verifiable Rewards (RLVR) [20, 30],
which optimizes πθ to maximize expected cumulative reward J(θ) from verifiable properties of LLM
outputs, with problem-solving efficacy evaluated using pass@k [6, 19, 40].

3. Experimental Setup

Our analysis relies on publicly available checkpoints from two primary model suites: the Pythia
Suite (70M to 12B parameters) [3] and the OLMo Framework (e.g., OLMo-7B, OLMo-2 7B, 1B)
[14, 20, 22]. The availability of numerous intermediate checkpoints from these suites is crucial
for tracking training dynamics. For post-training analysis, we also examined Tülu-3.1 models [20]
(which are LLaMA-based). Further details on architectures and training are provided in Appendix A.

4. Probing the Representation Geometry of Language Models

4.1. Phases of Pretraining: Non-Monotonic Changes in Representation Geometry

While standard pretraining metrics like loss typically decrease near-monotonically, offering limited
insight into capability development, we find that representation geometry metrics show significant
non-monotonic changes that correlate with downstream performance. Figure 2 illustrates this:
measuring RankMe [10] and αReQ [1] on last-layer last-token representations (FineWeb dataset
[24]), we identify three distinct pretraining phases:

• A “warmup” phase: rapid representational collapse during learning rate ramp-up.

• An “entropy-seeking” phase: characterized by manifold expansion.

• A “compression-seeking” phase: anisotropic consolidation along principal eigenvectors.

These phases are consistently observed across OLMo-2 and Pythia models and scales (Figure 2C-F),
indicating robust non-monotonic geometric evolution.

4.2. Role of Learning Objective and Optimization in Learning Dynamics (Toy Model)

Having identified the distinct learning phases using the spectral geometry metrics, we now seek to
understand the role of loss and optimization frameworks used in LLM pretraining in engendering
these phases. Specifically, we studied the dynamics imposed by gradient descent while optimizing the
cross-entropy loss in an analytically-tractable setting: the model fθ(x) is linear, i.e. fθ(x) = θx ∈ Rd,
and logits are obtained (like in LLMs) as z = W fθ(x) ∈ R|V|. The outputs are obtained by applying
a softmax operation on z (see Figure 3A). Extending the results of Pezeshki et al. [25], we found two
key properties of gradient descent that contribute to the emergent geometric properties of the fθ(x)

• Primacy bias: fθ and W corresponding to high-frequency tokens are learned earlier in training.
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Figure 2: Loss decreases monotonically, but representation geometry does not. (A) Schematic
from Fig 1, for the pretraining stage. (B) Cross-entropy loss, gradient norm and learning
rate schedule during OLMo-2 7B model pretraining. (C, D) RankMe and αReQ, respec-
tively, for OLMo-2 7B model vary non-monotonically across pretraining, demonstrating
three key phases: “warmup” , “entropy-seeking” , and “compression-seeking” . (E, F)
Same as C,D, but for Pythia models, demonstrating the consistent existence of the three
phases across model families and scales.

• Selection bias: Under information bottleneck conditions, dominant directions in fθ are more
likely to be used for encoding new information.

We demonstrate (c.f. Figure 3) that two conditions are necessary for replicating the multiphase
learning dynamics in our toy-model, as observed within LLMs: (1) non-uniform class distribution,
and (2) information bottleneck (d < |V|). These conditions are commonplace in LLM pretraining.

Figure 3: Learning dynamics of cross-entropy loss replicate multiphase learning dynamics
(Toy Model). (A) Schematic of a model with feature extractor fθ(∈ Rd), linear classifier
W (∈ Rn×d) and cross-entropy loss LCE . Skewed class distribution and information
bottleneck (d < n) are critical. (B, C) Wi and fθ(x) demonstrate distinctive trajectories
analogous to “warmup” (dotted), “entropy-seeking” (solid), and “compression-seeking”
(dashed) phases. (D) Quantitative spectral metrics RankMe and eigenvalues, σ1, σ2.

4.3. Representation Geometry Changes During Post-Training Stages

Post-training refines LLM capabilities and representation geometry. Analyzing Tülu-3.1 models [37]
(LLaMA-3.1-8B base [13]) through SFT, DPO, and RLVR show distinct geometric shifts (Figure 4A).
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Figure 4: Post-training induces distinct geometric transformations in model representations,
aligned with specific behavioral changes. (A) Conceptual overview of post-training
(top), corresponding RankMe metrics from Llama-3.1-Tülu-3.1-8B (bottom). (B) Impact
of pretraining on OLMo-2-1B SFT (Anthropic-HH): (top) longer pretraining improves ID
performance, while OOD generalization (Alpaca farm) saturates; (bottom) Overtrained
models show distinct outputs after SFT on different datasets. (C) RLVR post-training
narrows Llama-3.1-8B-Tülu-3-DPO’s exploratory behavior on AMC-23 (e.g., at k = 256).

SFT & DPO exhibit “entropy-seeking” : SFT correlates with a monotonic RankMe increase
(Figure 4A, bottom). This expansion aids instruction memorization for in-distribution (ID) examples
but can reduce out-of-distribution (OOD) robustness, evidenced by SFT on OLMo2-1B showing
improved ID loss but increased OOD loss with more base model pretraining (Figure 4B, top). The
DPO objective is analogous to the contrastive visual learning loss function, and unsurprisingly
demonstrates an increase in representation complexity [12, 41].

RLVR exhibits “compression-seeking” : RLVR, conversely, is associated with a monotonic
RankMe decrease (Figure 4A, bottom). This "“compression-seeking” " correlates with constrained
exploration; on the AMC-23 math benchmark (Figure 4C), RLVR (2400 steps) excels at pass@16,
but the base DPO model performs better at pass@256, suggesting RLVR amplifies existing capa-
bilities rather than broadening exploration [40, 42].

5. Discussion
Geometry of Pretraining: Memorization vs Generalization. We show that LLM pretraining is
multiphasic, primarily characterized by “entropy-seeking” and “compression-seeking” phases.
These geometric phases offer a quantitative framework to examine the interplay between memorizing
short-context statistics (n-gram memorization during the “entropy-seeking” phase) and generalizing
long-context information (promoted by the structured manifold of the “compression-seeking”
phase). This geometric refinement aligns with phenomena like grokking.

Geometry of Post-Training: Alignment vs Exploration. Different post-training recipes induce
distinct geometric shifts. Supervised Fine-Tuning (SFT) and DPO typically drive an “entropy-
seeking” dynamic, expanding the representational manifold for specific instruction-response exam-
ples. This SFT manifold expansion is consistent with lazy-regime learning [28] and can improve
in-distribution performance at the risk of overfitting. In contrast, Reinforcement Learning from
Verifiable Rewards (RLVR) promotes a “compression-seeking” dynamic, refining representations
towards reward-aligned directions.
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Appendix A. Experimental Setup and Model Details

This section provides detailed information about the datasets and model suites used in our study, as
summarized in the main paper.

A.1. Studied Model Suites: Pythia & OLMo

This work analyzes checkpoints from two publicly released model suites:

• Pythia Suite [3]: Developed by EleutherAI, this suite consists of models ranging from 70M
to 12B parameters, all trained on the Pile dataset [9] using the same data ordering and hyper-
parameters across scales. This allows for controlled study of scaling effects. Architecturally,
they are based on the GPT-NeoX [4] design, featuring parallel attention/FFN layers and RoPE.
Checkpoints are available at various training steps (e.g., 0, 1k, 2k, ..., 143k steps, where one
step processes 2 million tokens).

• OLMo Framework [14, 20, 22]: Developed by AI2, OLMo provides a suite of truly open
models (including training code, data, logs, and weights). We focus on the OLMo-7B model
(and potentially others in the suite) trained on AI2’s Dolma dataset. Architecturally, OLMo

9

https://openreview.net/forum?id=IQxBDLmVpT
https://openreview.net/forum?id=Ax2yRhCQr1


TRACING THE REPRESENTATION GEOMETRY OF LANGUAGE MODELS

makes specific choices like SwiGLU activation, RMSNorm, no biases in linear layers, and
RoPE. Checkpoints are available at regular intervals throughout its 2.5T token training run.
The OLMo-2 series, such as OLMo-2 7B and 1B models, were trained for approximately 4T
tokens.

A.2. Post-Training Models: Tülu-3.1

For analyzing post-training stages, we utilized checkpoints from the Tülu-3.1 models developed
by AI2 [20, 37]. These are LLaMA-based models (specifically LLaMA-3.1-8B [13]) that have
undergone a sequential three-stage post-training recipe: Supervised Fine-Tuning (SFT), Direct
Preference Optimization (DPO), and Reinforcement Learning with Verifiable Rewards (RLVR). We
analyzed checkpoints from all post-training stages of these models.

A.3. Dataset for Spectral Analysis During Pretraining

Unless otherwise specified for a particular experiment (e.g., downstream task evaluations), the
spectral metrics (RankMe, αReQ) during pretraining were measured by processing sequences from
the FineWeb dataset [24].

Appendix B. Detailed Methodologies

This section provides an expanded description of the methodologies summarized in the main paper.

B.1. Detailed Spectral Analysis, Matrix Entropy, and Effective Rank

Last token representations in autoregressive language models: A rigorous understanding of LLM
capabilities necessitates a precise characterization of the geometry of their learned representations.
An autoregressive language model processes an input sequence of discrete tokens s = (t1, t2, . . . , tN ),
transforming each token tk through its l layers (conditioned on preceding tokens t<k) into a sequence
of high-dimensional continuous vectors f (l)θ (tk|t<k). For autoregressive models, the representation
of the final token (tN ) at the last layer, yN := f

(L)
θ (tN |t<N ), is particularly pivotal. Its significance

stems from different factors: (i) it directly parameterizes the predictive distribution for the subsequent
tokens P (tN+1|t1, ..., tN ); (ii) it synthesizes information from the entire context t≤N (or t<N ) to in-
form this prediction, meaning it inherently reflects the model’s capacity for contextual understanding;
and (iii) is often used as input to task-specific layers in downstream applications.

High-dimensional representation complexity metrics: To quantitatively measure represen-
tation geometry, we perform spectral analysis of the feature covariance matrix. Given a set of M
input sequences, we form a feature matrix F ∈ RM×d; each row is a feature vector of the last
token yN for each input. Assuming the features are centered, the empirical covariance matrix is
Σ̂ := 1

MFTF. The eigenspectrum of Σ̂, denoted by eigenvalues {σi(Σ̂)}di=1, measures the concen-
tration of information along the principal axes of variation. The distribution of {σi}di=1 provides a
quantitative description of feature geometry: a sharp decay indicates information compressed in a
lower-dimensional subspace (anisotropic geometry), while a slow decay indicates a high-dimensional
subspace is utilized.

This spectral perspective motivates using matrix entropy to measure the uniformity of the
eigenvalue distribution. If pi = σi/(

∑
j σj) is the proportion of variance along the i-th principal
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Figure A5: Spectral framework of LLM feature geometry during training. (A) LLM learning
analyzed with empirical feature covariance Σ̂(fθ) of last-token representations fθ(xi).
(B) Representation geometry quantified by covariance spectral properties: spectral
decay rate (αReQ) for variance concentration, and effective rank (RankMe) for utilized
dimensionality. (C) Spectral geometry reveals evolving representation complexity.
Pretraining shows non-monotonic phases: post-echolalia, an “entropy-seeking” phase
expands capacity (e.g., for recapitulating n-grams), then a “compression-seeking” phase
consolidates representations for long-range dependencies. Post-training stages (SFT,
DPO, RLVR) further refine geometry for instruction following and complex reasoning

axis, the Von Neumann entropy-based effective rank [10, 29] is defined as:

RankMe := exp
(
S(Σ̂)

)
= exp

(
−

d∑
i=1

pi ln pi

)
∈ (0, d]. (A2)

Low entropy indicates a skewed eigenvalue distribution, i.e. low-dimensional (anisotropic) representa-
tions, while high entropy implies a uniform spread, i.e. high-dimensional (isotropic) representations.

Our empirical studies also show that LLM activation matrices exhibit heavy-tailed eigenvalue
spectra, i.e., a power law distribution where σi ∝ i−αReQ, where αReQ > 0 [11]. Slower decay or
smaller αReQ implies a more uniform spread of σi’s (higher dimensional), and thus higher S(Σ̂) and
RankMe. Conversely, faster decay or larger αReQ implies representations are compactly packed
along fewer principal directions [1, 34], yielding lower entropy and smaller RankMe. αReQ and
RankMe thus provide related metrics of representation geometry, though unlike RankMe, αReQ
does not change with the model’s feature dimensionality, d.

B.2. Detailed Quantification of Distributional Memorization

To dissect how LLMs utilize their pretraining corpus D, we differentiate distributional memorization,
i.e. how aligned are LLM output probabilities with n-gram frequencies in D, from distributional
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generalization, i.e. LLM capabilities beyond such statistics [21]. To quantify the alignment with
n-gram statistics, we use the ∞-gram language model (LM) which uses the largest possible value of
n for predicting the next token probability. Briefly, an ∞-gram LM can be viewed as a generalized
version of an n-gram LM which starts with n = ∞, and then performs backoff till the n-gram count
in D is non-zero [21]. Consequently, the output probability of the ∞-gram LM for each token is
dependent on its longest existing prefix in D.

The distributional memorization metric is defined as the spearman rank correlation (ρs) between
the ∞-gram LM outputs and the LLM outputs for all tokens in a target sequence [36]. Formally,
consider a concatenated sequence of instructions, u, question, x and target, y, from a question-
answering task, T . Then, the distributional memorization is computed as:

Mem∞(LLM,D, T ) := ρs
(
P̄∞,D(y|u⊕ x), P̄LLM (y|u⊕ x)

)
(A3)

where P̄.(y|u⊕ x) :=
∏

ti∈y P.(ti|u⊕ x⊕ y[t0:ti−1]) denotes the joint likelihood of all tokens in y
and P.() is the next token prediction distribution, as described above.

B.3. Detailed Post-Training Methodologies and Evaluation

Supervised Fine-Tuning (SFT) adapts pre-trained LLMs by further training on a curated dataset
DSFT = {(xi, yi)}NSFT

i=1 typically consisting of instruction-response pairs. The standard objective is
to minimize the negative log-likelihood of the target responses, effectively maximizing Pθ(y|x) for
examples in DSFT. We evaluate the robustness of the SFT model by contrasting its performance on
held-out examples from DSFT (In-Distribution, ID) with its performance on examples from a related
but distinct dataset DOOD (Out-of-Distribution, OOD), which may vary in task, style, or complexity
not present in DSFT [33].

Direct Preference Optimization (DPO) [27] refines an LLM policy πθ based on a static dataset
of human preferences Dpref = {(x, yw, yl)}, where the response yw is preferred over yl for prompt x.
It directly optimizes for preference satisfaction by minimizing the loss:

LDPO(πθ;πref) = −E(x,yw,yl)∼Dpref [log σ (r̂θ(x, yw)− r̂θ(x, yl))] , (A4)

where r̂θ(x, y) = β log(πθ(y|x)/πref(y|x)) represents the implicit log-ratio of probabilities scaled
by β against a reference policy πref, and σ(.) is the logistic function.

Reinforcement Learning from Verifiable Rewards (RLVR), as applied in works like Lambert
et al. [20] and Shao et al. [30], optimizes the LLM’s policy πθ to maximize the expected discounted
cumulative reward, J(θ) = Eτ∼πθ

[∑T
t=0 γ

tRt

]
, where τ = (s0, a0, . . . , sT , aT ) is a trajectory

generated by actions at ∼ πθ(·|st) in states st, γ ∈ [0, 1] is a discount factor, and Rt = R(st, at) is
the reward at time t. This optimization is typically performed using policy gradient algorithms (e.g.,
PPO). Critically, the reward Rt in RLVR is derived from verifiable properties of the LLM’s outputs,
e.g. correctness on mathematical problems or passing unit tests.

Performance with pass@k: To evaluate problem-solving efficacy and generative exploration,
particularly for RLVR-tuned models, we employ the pass@k metric [19]. For a given problem, k
independent responses are stochastically generated from the model; the problem is deemed solved if
at least one response constitutes a verifiable solution. Since direct estimation of pass@k can exhibit
high variance, we utilize the unbiased estimator [6, 40]:

pass@k = EPi

[
1−

(
N−ci

k

)(
N
k

) ]
(A5)
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Figure A6: Distinct learning phases are linked to different LLM capabilities. (A) Memorization
metric, i.e. spearman correlation between LLM and ∞-gram outputs, and representation
geometry metric, αReQ, across Pythia models’ (1–12B parameters) pretraining. Memo-
rization peaks late in the “entropy-seeking” phase before plateauing or degrading slightly
in the “compression-seeking” phase, suggesting that the former prioritizes capturing
short-context n-gram statistics. (B) 0-shot performance on multiple-choice (SciQ) and
factual question-answering (TriviaQA) tasks across pretraining. While accuracy on SciQ
benefits from learning in both phases, accuracy on TriviaQA groks once the model learns
long-context statistics, primarily in the “compression-seeking” phase.

where, N samples are generated for each problem Pi , and ci denotes the count of correct solutions
among them (parameters for this work are N=512 and k ≤ 256).

Appendix C. Supplementary Results and Analyses

This section provides additional details, figures, and discussions corresponding to the Results section
of the main paper.

C.1. Memorization & beyond: Distributional memorization happens in entropy-seeking phase

In this section, we seek to associate the different geometric phases to specific LLM behaviors.
Downstream tasks that test the LLM’s factual reasoning and language understanding abilities seem
to improve with more pretraining. However, it is unclear to what extent this increase is due to an
improvement in the model’s memorization ability, i.e. how good is the model in “regurgitating”
short-context phrases from the pretraining dataset, as opposed to a general language understanding,
i.e. leveraging long-context dependencies to generate reasonable output. We disentangle these two
factors by using the distributional memorization metric Wang et al. [36] presented in eq. (A3) for
Pythia models when processing sequences from the TriviaQA dataset [17].

Figure A6 illustrates the memorization metric and task performance over the course of pretraining
for Pythia models of 5 different sizes – ranging from 1B to 12B. Across all models, the distributional
memorization metric increased during the “entropy-seeking” phase and peaked towards the end of this
phase. Intuitively, this result suggests that the “entropy-seeking” phase is particularly important for
learning short-context statistics, e.g. high-frequency n-grams, present in the pretraining corpus. This
intuition is also supported by Wang et al. [36] (c.f. Fig 12). Following this peak in the memorization
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metric, it plateaued (or slightly decreased) during the “compression-seeking” phase, suggesting
that the model’s output in this phase is guided by factors beyond n-gram statistics. Notably, the
0-shot accuracy on multiple-choice question-answering tasks, e.g. SciQ [39], consistently improved
throughout both the “entropy-seeking” and “compression-seeking” phases, potentially benefiting
from both short- and long-context information learned in the respective phases.

However, 0-shot performance on factual question-answering tasks, e.g. TriviaQA [17], demon-
strate a grokking-like behavior with the rise in accuracy closely aligned with the saturation of the
memorization metric. Consequently, most of the improvement in task accuracy happens during
the “compression-seeking” phase, potentially benefiting from the long-context statistics learned in
this phase, which are crucial for this task. Taken together, these findings outline a distinct associ-
ation between each phase and the emergence of different LLM capabilities: short-context n-gram
modeling during the “entropy-seeking” phase and long-context information aggregation during the
“compression-seeking” phase.

C.2. Role of Learning Objective and Optimization in Learning Dynamics (Toy Model)

Having demonstrated the existence and salience of distinct learning phases, we now seek to understand
the role of loss and optimization frameworks used in LLM pretraining in engendering these phases.
Specifically, we studied the gradient descent dynamics while optimizing the cross-entropy loss in
an analytically-tractable setting — the model fθ(x) is linear, i.e. fθ(x) = θx ∈ Rd, and logits
are obtained (like in LLM models) as z = W fθ(x) = Wθx ∈ R|V|. The outputs are obtained by
applying a softmax operation on z (see Figure A7A). We extended the results of Pezeshki et al. [25]
to study how W and fθ(.) change when optimizing the loss using gradient descent. Notably, we
found two key properties of gradient descent that contribute to the emergent geometric properties of
the representation space

• Primacy bias: Representations and weights corresponding to high-frequency tokens are
learned earlier in training.

• Selection bias: Dominant directions in the representation space are more likely to be used for
encoding new information, i.e. ∆σi ∝ σi.

We demonstrate (c.f. Figure A7) that two conditions are necessary for replicating the multiphase
learning dynamics in our toy-model, as observed within LLMs: (1) non-uniform class distribution,
and (2) information bottleneck (d < |V|). These conditions are common in LLM pretraining.

In this setup, fθ(.) and W for frequently-occurring classes separate during the initial “warmup”
phase (Figure A7B, C, dotted lines), with alignment of weight and feature eigenvectors. An “entropy-
seeking” phase follows, with volume expansion in fθ(.) and W spaces and increasing effective
rank, leading to higher confidence for frequent classes (Figure A7B, C, solid lines). Subsequently,
infrequent classes separate. Constrained by the bottleneck, the system reuses feature eigenvectors,
encoding more information in dominant directions (σ1 grows faster than σ2, Figure A7D). This
anisotropic encoding reduces RankMe, akin to the “compression-seeking” phase. These results
suggest gradient-based cross-entropy optimization under these conditions can cause the observed
non-monotonic geometric changes.
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Figure A7: Learning dynamics of cross-entropy loss replicate multiphase learning dynamics
(Toy Model). (A) Schematic of a model with feature extractor fθ(∈ Rd), linear classifier
W (∈ Rn×d) and cross-entropy loss LCE . Skewed class distribution and information
bottleneck (d < n) are critical. (B, C) Classifier weights (Wi) and feature representations
(fθ(x)) demonstrate distinctive trajectories analogous to “warmup” (dotted), “entropy-
seeking” (solid), and “compression-seeking” (dashed) phases. (D) Quantitative spectral
metrics RankMe and eigenvalues, σ1, σ2.

C.3. Further Details on Post-Training Geometric Changes

SFT Details: The main paper discusses SFT exhibiting an "“entropy-seeking” " dynamic. This
involves manifold expansion for instruction memorization on ID examples, potentially reducing
OOD robustness (Figure 4B, top, in main paper). The chat winrates analysis (Figure 4B, bottom) for
OLMo2-1B SFT on Anthropic-HH vs. Alpaca farm further shows that "overtrained" base models
(higher pretraining RankMe) yield more distinguishable outputs on AlpacaEval, suggesting increased
sensitivity to distribution shifts (e.g., winrate drop from 14% to 9%).

DPO as Contrastive Learning: The DPO loss (Equation A4) can be written as a Noise
Contrastive Estimation (NCE) loss [15]:

LDPO = −Ex,yw,yl [log(σ(r̂θ(x, yw)− r̂θ(x, yl)))] = −Ex,yw,yl

[
log

er̂θ(x,yw)

er̂θ(x,yw) + er̂θ(x,yl)

]
(A6)

This formulation, with one "positive" (yw) and one "negative" (yl) example, is analogous to contrastive
learning objectives in vision [7, 23, 26].

RLVR Details: For the RLVR analysis on the AMC-23 math benchmark (Figure 4C in main
paper), Tülu-3.1-8B (post-DPO) and RLVR checkpoints (steps 1200, 2400; total 2440 steps) were
used. Pass@k was evaluated for k ∈ {16, 32, . . . , 256}. Better performance of the base model at
higher k supports the idea of RLVR constraining exploration [40, 42].

Appendix D. Additional Discussion Points

D.1. Alternative Perspectives on Pretraining and Post-Training Geometry

Our spectral analysis reveals LLM pretraining as a structured sequence of geometric phases, not
uniform optimization. An initial “entropy-seeking” phase expands dimensionality for local patterns
(n-gram memorization), followed by a “compression-seeking” phase that reduces dimensionality,
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packing information along dominant axes for long-range understanding. This suggests an iterative
exploration-consolidation cycle. Post-training recipes also induce characteristic shifts. SFT’s
“entropy-seeking” dynamic expands the manifold for specific examples, enhancing ID performance
but risking overfitting. RLVR’s “compression-seeking” dynamic refines representations towards
reward-aligned principles, potentially amplifying existing capabilities [42] by constraining to a
structured subspace, thus reducing exploration [40].
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