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ABSTRACT

Large pre-trained models have demonstrated extensive applications across vari-
ous fields. However, fine-tuning these models for specific downstream tasks de-
mands significant computational resources and storage. One fine-tuning method,
gradient-based parameter selection (GPS), focuses on fine-tuning only the param-
eters with high gradients in each neuron, thereby reducing the number of training
parameters. Nevertheless, this approach increases computational resource require-
ments and storage demands. In this paper, we propose an efficient gradient-based
and regularized fine-tuning method (GRFT) that updates the rows or columns of
the weight matrix. We theoretically demonstrate that the rows or columns with
the highest sum of squared gradients are optimal for updating. This strategy effec-
tively reduces storage overhead and improves the efficiency of parameter selec-
tion. Additionally, we incorporate regularization to enhance knowledge transfer
from the pre-trained model. GRFT achieves state-of-the-art performance, surpass-
ing existing methods such as GPS, Adapter Tuning, and LoRA. Notably, GRFT
requires updating only 1.22% and 0.30% of the total parameters on FGVC and
VTAB datasets, respectively, demonstrating its high efficiency and effectiveness.

1 INTRODUCTION

Figure 1: The figure illustrates a comparison between the mask storage formats of the GRFT and
GPS schemes. As shown, for a 4× 4 gradient matrix, GPS stores a full 4× 4 sparse mask, whereas
GRFT selects either row-wise or column-wise masks, storing only a 4 × 1 row index or a 1 × 4
column index. This significantly reduces storage overhead.

The applications of large models are expanding rapidly across domains such as natural language pro-
cessing, computer vision, and scientific research. Multimodal dialogue systems like GPT OpenAI
et al. (2024) and LLaMA Touvron et al. (2023) demonstrate their general-purpose adaptability, while
in specialized fields, pre-trained models are typically fine-tuned with task-specific datasets to opti-
mize performance for downstream tasks. Despite these successes, fine-tuning large models remains
computationally expensive, with excessive memory usage and stringent hardware requirements lim-
iting accessibility for many researchers Li et al. (2024). Moreover, naively reducing parameters
often degrades accuracy, making the balance between fine-tuning efficiency and model performance
a key research challenge.

To address the high cost of fine-tuning, various parameter-efficient fine-tuning (PEFT) methods
have been developed. Approaches such as LoRA Hu et al. (2021), Adapter Tuning Houlsby et al.
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(2019b), and Vision Prompt Tuning Jia et al. (2022) introduce small sets of trainable parameters
while keeping most weights frozen, thereby improving efficiency. However, these methods often
introduce inference latency or compromise the original model structure, reducing expressiveness Li
(2024). More recently, Gradient-Based Parameter Selection (GPS) Zhang et al. (2024) directly fine-
tunes a subset of the model’s own parameters, achieving strong performance. Yet GPS suffers from
the need to store large sparse masks, which incurs significant memory overhead and limits hardware
efficiency during training and updates.

In our proposed method, we introduce Gradient-based and Regularized Fine-Tuning (GRFT) for
parameter-efficient fine-tuning. In particular, rather than selecting sparse parameters, we select en-
tire rows or columns of the weight matrix, meaning that only the indices of these rows or columns
need to be stored in the mask. This approach significantly reduces storage costs, while also simplify-
ing the masking mechanism, making it more efficient in terms of memory usage and computational
overhead (Figure 1). Additionally, by selecting structured groups of parameters, the method aligns
better with modern hardware optimizations, facilitating improved performance during training and
inference. Besides, to enhance knowledge transfer from the pre-trained model and improve accu-
racy, we incorporate an L2 regularization term into the loss function.

To evaluate our method, we conduct experiments and evaluated our method on image classifica-
tion tasks and text classification tasks. Our proposed method achieves state-of-the-art performance
compared to GPS and other PEFT methods while using fewer parameters in certain tasks.

Overall, our contributions are summarized as follows:

• We propose new gradient-based parameter selection frameworks, GRFT, a Gradient-based
and Regularized Fine-Tuning method that only trains the parameters associated with large
gradients and additional regularization constraints.

• We introduce a novel gradient-based parameter selection method to reduce storage require-
ments, which fine-tune the entire rows or columns of the parameter matrix. Moreover, a
theoretical justification is provided for selecting parameters with larger squared gradients.
Additionally, we introduce regularization constraints that limit parameters sizes to be close
to those of the pre-trained parameters, thereby facilitating knowledge transfer and enhanc-
ing generalization.

• Empirical evaluations over image classification and text classification across ViT models
and LLaMA-3 models demonstrate that our method outperforms fine-tuning methods such
as GPS and LoRA in terms of accuracy, while not significantly increasing the parameter
count.

2 RELATED WORKS

2.1 PARAMETER-EFFICIENT FINE TUNING

Parameter-efficient fine-tuning is a widely used fine-tuning method in both computer vision and
natural language processing, focusing on training parts of the model parameters or fine-tuning ad-
ditional modules, which has the advantages of lower computational cost and shorter time require-
ments compared to full fine-tuning. Lately, various existing techniques, including Adapter Tuning
Karimi Mahabadi et al. (2021); Lu et al. (2023); Zhang et al. (2023), Prompt Tuning Jia et al. (2022);
Zhou et al. (2022); Wang et al. (2023), LoRA Hu et al. (2021) and its variants Qiang et al. (2024);
Hayou et al. (2024), are attempting to maintain the model performance while reducing the compu-
tation and storage costs. In a recent study, GPS Zhang et al. (2024) fine-tune a few parameters from
the pre-trained model while freezing the reminder of the model. The selection of these parameters
depends on their individual gradients. The advantage of this method is that it does not introduce
additional computational costs and parameters, and it has good adaptability to any agnostic models.

2.2 TRANSFER LEARNING AND REGULARIZATION

Fine-tuning is essentially a transfer learning strategy that leverages the knowledge that the model has
learned from large-scale datasets, enabling the model to be fine-tuned with a smaller, task-specific
dataset. The key advantage of fine-tuning is that it allows the model to converge faster and achieve
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better performance with less data compared to training from scratch. However, excessive fine-tuning
can lead to catastrophic forgetting. As a result, the model may experience a decline in performance
on the tasks Toneva et al. (2018); French (1999). Regularization can improve the generalization
ability of models, such as Ridge Regression Hoerl & Kennard (2000). It introduces a regulariza-
tion term proportional to the square of the magnitude of the model parameters. Additionally, Ridge
Regression Hoerl & Kennard (2000) improves the generalization ability of models by preventing
overfitting. The L2 regularization provided by Ridge Regression helps reduce this risk by penaliz-
ing excessively large weights. In our methods, we add L2 regularization in the training loss function
to limit the parameters close to pre-trained parameters, achieveing knowledge transferring and reg-
ularization.

3 PROPOSED METHOD

Figure 2: The overall pipeline of our approach. This approach primarily consists of two steps.
Step 1: Gradients Selection. Before training, we firstly compute gradients of the pre-trained model
with SCL loss and calculate squares sum of the each row. Then,we gain the mask to freezing the
parameters. Step 2: Masked Tuning. For pre-trained models, an additional constraint is incorporated
alongside the traditional cross-entropy loss function to account for knowledge transfer from the pre-
trained models.

In this section, we present the gradient-based fine-tuning approach, a parameter-efficient method that
selects and updates parameters with large gradients. The approach consists of two main components:
gradient selection and model regularization.

3.1 GRADIENT SELECTION

In GPS Zhang et al. (2024), the key step is gradient-based selection, where the top gradients from
each neuron are chosen to ensure every neuron contributes to downstream tasks. However, this
design poses hardware challenges: gradients must still be computed for the entire weight matrix,
with irrelevant parts masked during updates. Since the mask has the same dimensions as the weight
matrix, this also results in considerable storage overhead.

The Principle of Gradient Selection To address this issue, we adopt a row-wise selection strategy.
In the strategy, for the weight matrix W , we only select the row parameters with large gradient.
Compared to sparse matrices, selecting gradient parameters row by row imposes lower hardware
demands and is more beneficial for subsequent applications and practical implementations. Further-
more, the storage cost is reduced since the mask only needs to store the indices of the rows, rather
than the entire mask. Specifically, for a weight matrix W ∈ Rm×n and its corresponding mask M ,
the GPS approach stores a full mask M ∈ Rm×n, which is a sparse matrix where each row contains
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K ones and the remaining entries are zeros. In contrast, the row-wise or column-wise parameter
selection methods only store the indices of the selected rows or columns, resulting in M ∈ RK .
During the selection process, we typically have K ≪ min(m,n), which leads to a substantial re-
duction in storage cost.

At the time step t with the model parameters θt, we considerL to be the loss function. The first-order
Taylor expansion is

L(θt+1) ≈ L(θt) + ⟨∇L(θt), θt+1 − θt⟩. (1)
At the same time, if we assume that the learning rate is αt at time step t, it is evident that for gradient
descent optimization, there is θt+1−θt = −αt∇L(θt)⊙M . Here⊙ is element-wise multiplication
and M is the gradient mask to freeze the parameters. Put it in the above Eq. equation 1:

∆L = L(θt+1)− L(θt) ≈ −⟨∇L(θt), αt∇L(θt)⊙M⟩.
We determine M to facilitate a larger decrease in the loss during each iteration:

M = argmaxM ⟨∇L(θt),∇L(θt)⊙M⟩ (2)

= argmaxM ⟨∇L(θt)⊙M,∇L(θt)⊙M⟩. (3)

Note that since M is a binary matrix with values of 0 or 1, when ∇L(θt) =
[∇L(θt)1,∇L(θt)2, · · · ,∇L(θt)d] ∈ Rd is a one-dimensional vector and the mask M =
[M1,M2, · · · ,Md] ∈ Rd, performing the element-wise multiplication with M results in zeros at
the corresponding positions. We have

⟨∇L(θt),∇L(θt)⊙M⟩ =
d∑

i=1

∇L(θt)i · (∇L(θt)i ·Mi) =

d∑
i=1

(∇L(θt)i ·Mi)
2

=⟨∇L(θt)⊙M,∇L(θt)⊙M⟩,
Therefore, when computing Eq. equation 2, the values at those positions in the final result will also
be zero. This leads to the conclusion that Eq. equation 3 holds.

The Computation of Gradient Mask Accordingly, we can infer that if M is sparse, the Eq. equa-
tion 3 implies a preference for retaining the largest gradients in the entire weight matrix. Therefore,
it is reasonable for GPS Zhang et al. (2024) to select based on neurons, retaining the largest value
in each row of the gradient matrix. However, the sparse gradient computation has vital hardware
requirements. And the mask is stored as the same size of weight matrix, making it a high storage
cost. Therefore, our proposed approach is to select the entire row or column, which is theoretically
justified to select the rows with the largest squared sums of the gradients. Given the pretrained pa-
rameter Wpre, we obtain the optimal fine-tuned parameter based on with gradient∇Lscl(Wpre) in the
following optimization objective,

minM∥∇Lscl(Wpre)−∇Lscl(Wpre)⊙M∥22 s.t.∥M,j∥0 ≤ k, ∀j ∈ [n].

Note that, to prevent the effects of the randomly initialized classification head on fine-tuning, the
SCL loss Lscl Khosla et al. (2020); Zhang et al. (2024) is used to calculate the gradients.

Based on the conclusion in Eq. equation 3, we compute the sum of the squared gradient of each row.
Let the squared sum of the ith row be defined as:

Si =

n∑
j=1

h2
ij , for i = 1, 2, . . . ,m, (4)

where hij is the element of H ≡ ∇Lscl(W ) in the ith row and jth column. We then select the indices
corresponding to the top-k largest values in {S1, S2, . . . , Sm}, denoted the selected index set as T .
A mask M is constructed as follows:

Mij =

{
1, if i ∈ T ,
0, otherwise.

(5)

Therefore, the mask determines the parameters we select. In the backpropagation update process,
only the selected parameters are updated. For the t training epoch, the lth layer of the model has the
following:

W l
t+1 −W l

t = −ηt∇L(W l
t )⊙M l, (6)

where W l
t means the parameters of l-th layer at t step and M l is the mask of l-th layer.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Gradient-based and Regularized Fine-tuning (GRFT)
Input: A layer weight matrix W ∈ Rm×n. Epochs N , learning rate ηt, decay rates β1, β2, select
row number k, scale hyperparameter λ, regular module setR.

1: Computing mask M
2: H ← ∇Lscl(Wpre) ∈ Rm×n

3: Si← h2
i1 + h2

i2 + · · ·+ h2
in,i = 1, 2, · · · ,m

4: Sort S = {S1, S2, . . . , Sm}
5: Obtain the mask M based on Eq. equation 5
6: Training
7: for t = 1 to N do
8: LR = Lcross + λ

∑
l∈R ||W l

t −W l
0||22

9: UPDATE (ĝt) by Adam:
10: ĝt = ∇LR(Wt)⊙M
11: mt ← β1mt−1 + (1− β1)ĝt
12: vt ← β2vt−1 + (1− β2)ĝ

2
t

13: m̂t ← mt/(1− βt
1)

14: v̂t ← vt/(1− βt
2)

15: Wt ←Wt−1 − ηtm̂t/
√
v̂t + ϵ

16: t← t+ 1
17: end for

3.2 MODEL REGULARIZATION

The essence of fine-tuning large models is to transfer the knowledge acquired during pre-training
to downstream tasks. Trained on massive datasets, pre-trained models capture general features and
representations that benefit diverse applications. Effective fine-tuning must preserve this knowledge
while adapting it to new contexts.

A major challenge in fine-tuning is avoiding catastrophic forgetting Toneva et al. (2018); French
(1999), where over-adaptation to a new task causes the model to lose generalizable knowledge from
pre-training. To address this, regularization techniques are often introduced during the fine-tuning
process. We employ an L2 norm constraint in the loss function to restrict parameter updates during
fine-tuning, thereby facilitating the transfer of pre-trained knowledge to downstream tasks. For the
classification head, whose parameters are initialized within a small interval around zero due to the
large input dimension He et al. (2015), the L2 norm further reduces parameter complexity, helping
to prevent overfitting and improve generalization. The overall objective function is

LR = Lcross + λ∥W −Wpre∥22. (7)
where LR is the final loss function, Lcross is the cross-entropy loss function during the training
process, λ is the regularization parameter for the L2 norm. However, since the parameters of the last
few layers of the model have a significant impact on the training results during fine-tuning Zhang
et al. (2023), the constraint primarily targets these layers. The final loss function includes both the
original loss function and the modified regularization function, specifically as follows:

LR = Lcross + λ
∑
l∈R

∥W l −W l
pre∥22, (8)

whereR is the regular layers set consisting of the last L layers, patch embedding, and classification
head.

Gradient-based and Regularized Fine-tuning Algorithm We present the proposed method in Al-
gorithm 1, which consists of two main parts: Mask Computation and Training. Specifically, before
training begins, we first compute the model gradients under the SCL loss ∇Lscl(Wpre). Subse-
quently, we calculate the sum of squares for each row or column of the gradient Si and select the
top k rows or columns with the largest sums. Based on Eq. equation 5, we compute our mask M .
During the training phase, for the standard loss function (such as cross-entropy Lcross), we add an
L2 regularization term, thereby obtaining the final loss function LR as defined in Eq. equation 8. In
this process, we employ the Adam Kingma & Ba (2014) optimizer, where we set ĝ in Adam to be
the masked gradient and then the standard Adam update procedure is applied to iteratively update
the weight matrix until convergence.

5
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Dataset CUB-2011 NABirds Oxford Flowers Stan.Dogs Stan.Cars Mean Acc. Params.(%)

Full 87.3 82.7 98.8 89.4 84.5 89.44 100.00

Linear 85.3 75.9 97.9 86.2 51.3 79.32 0.21

Bias Zaken et al. (2022) 88.4 84.2 98.8 91.2 79.4 88.40 0.33

Adapter Houlsby et al. (2019a) 87.1 84.3 98.5 89.8 68.6 85.66 0.48

LoRA Hu et al. (2021) 85.6 79.8 98.9 87.6 72.0 84.78 0.90

VPT-Shallow Jia et al. (2022) 86.7 78.8 98.4 90.7 68.7 84.66 0.29

VPT-Deep Jia et al. (2022) 88.5 84.2 99.0 90.2 83.6 89.10 0.99

SSF Lian et al. (2023) 89.5 85.7 99.6 89.6 89.2 90.72 0.45

SPT-AdapterHe et al. (2023) 89.1 83.3 99.2 91.1 86.2 89.78 0.47

SPT-LoRA He et al. (2023) 88.6 83.4 99.5 91.4 87.3 90.04 0.60

GPS* Zhang et al. (2024) 89.6 86.8 99.7 88.9 90.4 91.06 1.07

GRFT (ours) 90.1 87.0 99.7 89.1 90.8 91.33 1.22

Table 1: Comparisons results on FGVC with ViT-B/16 models pre-trained on ImageNet-21K.

4 EXPERIMENTS

4.1 IMPLEMENTATION

In image classification tasks, the model we implement is vit-base-patch16-224-in21k Dosovitskiy
et al. (2020). The model uses 16 × 16 image patches as inputs and is pre-trained on ImageNet-21k
Deng et al. (2009) at resolution 224 × 224. By pretraining on the dataset, the model learns the
internal representation of the images, which can be used in downstream tasks to extract features.
We use the Adam Kingma & Ba (2014) optimizer and apply a cosine learning rate decay for fine-
tuning. Each downstream task is trained for 100 iterations, with an additional 10 warm-up epochs
for the learning rate before the training iterations begin. In text classification tasks, we implement
Llama3.2 1B model Grattafiori & etc. (2024) and fine-tuning in CoLA, MRPC and RTE datasets of
GLUE benchmark Wang et al. (2019). We added a linear classification head module to the model to
perform our classification task. The optimizer we use is AdamW Loshchilov & Hutter (2019).

4.2 DATASETS

FGVC (Fine-Grained Visual Classification): FGVC is a subset of image classification tasks which
mainly deal with distinguishing between visually similar objects within a category. FGVC datasets
include: Stanford Dogs Khosla et al. (2011), Stanford Cars Krause et al. (2013), Nabirds Van Horn
et al. (2015), CUB_200_2011 Wah et al. (2011), Oxfordflower 102 Nilsback & Zisserman (2008).

VTAB (Visual Task Adaptation Benchmark): a benchmark designed to evaluate the performance
of transfer learning techniques in visual tasks, testing the performance of models trained on one set
of tasks generalizing to a wide variety of other visual tasks. VTAB includes 19 different datasets,
covering various visual domains. Natural: includes tasks like CIFAR-100 Krizhevsky et al. (2009)
and Caltech101 Fei-Fei et al. (2004). Specialized: includes tasks like Patch Camelyon Veeling et al.
(2018) and Resisc45 Cheng et al. (2017). Structured: includes tasks like DMLab Zhai et al. (2020)
and Clevr Johnson et al. (2017).

GLUE (General Language Understanding Evaluation) Wang et al. (2019): a benchmark dataset
designed to measure the capabilities of models in natural language understanding (NLU). It consists
of various subtasks, including text classification, sentence similarity evaluation, and natural language
inference (NLI), among others. GLUE is primarily used to assess the performance of pre-trained
language models.

4.3 EXPERIMENTAL RESULTS

We compare with different fine-tuning methods, including full fine-tuning, linear and bias Zaken
et al. (2022), Adapter Houlsby et al. (2019a), LoRA Hu et al. (2021), VPT Jia et al. (2022), SSF
Lian et al. (2023), SPT He et al. (2023) and GPS Zhang et al. (2024). Except for GPS, the results
of the other methods follow the results in the GPS paper, while the GPS results are reproduced by
ourselves, marked as GPS*. Our results are shown in Table 1 and Table 2.
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Full 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.57 100.00

Linear 63.4 85.0 64.3 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 53.00 0.05

Bias Zaken et al. (2022) 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 62.05 0.16

Adapter Houlsby et al. (2019a) 74.1 86.1 63.2 97.7 87.0 34.6 50.8 76.3 88.0 73.1 70.5 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 55.82 0.31

LoRA Hu et al. (2021) 68.1 91.4 69.8 99.0 90.5 86.4 53.1 85.1 95.8 84.7 74.2 83.0 66.9 50.4 81.4 80.2 46.6 32.2 41.1 72.63 0.90

VPT-Shallow Jia et al. (2022) 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 64.85 0.13

VPT-Deep Jia et al. (2022) 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 69.43 0.70

SSF Lian et al. (2023) 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 73.10 0.28

SPT-ADAPTER He et al. (2023) 72.9 93.2 72.5 99.3 91.4 88.8 55.8 86.2 96.1 85.5 75.5 83.0 68.0 51.9 81.2 51.9 31.7 41.2 61.4 73.03 0.44

SPT-LoRA He et al. (2023) 73.5 93.3 72.5 99.3 91.5 87.9 55.5 85.7 96.2 85.9 75.9 84.4 67.6 52.5 82.0 81.0 51.1 30.2 41.3 74.07 0.63

GPS* Zhang et al. (2024) 68.7 93.6 72.6 99.3 90.0 90.1 52.4 87.0 95.9 86.5 76.1 78.9 62.2 54.7 79.7 80.8 54.9 30.7 44.6 73.61 0.24

GRFT(ours) 69.5 93.6 75.9 99.5 91.4 91.2 52.2 88.2 96.0 86.5 76.3 81.4 62.3 55.1 80.9 81.9 55.8 32.0 43.6 74.38 0.30

Table 2: Comparisons results on VTAB-1k with ViT-B/16 models pre-trained on ImageNet-21K.

In Table 1, The average accuracy of GRFT is the highest, reaching 91.33%, indicating that it has
better generalization ability when handling different datasets. In contrast, the average accuracies of
the other models range from 84.66% (VPT-Shallow) to 91.06% (GPS*), all of which are lower than
GRFT. In terms of the number of parameters, GRFT has 1.22% of the total parameters, which is
considered above average among all methods. This suggests that GRFT achieves a high accuracy
in the large datasets while increasing the number of parameters to be updated. Some other meth-
ods, although having fewer parameters, also show relatively lower accuracy. From this, it can be
concluded that GRFT performs exceptionally well in the FGVC experiment.

In Table 2, The GRFT achieves an impressive mean accuracy of 74.38%, which is the highest among
all the methods listed in the table. For instance, GRFT outperforms GPS*, which has a mean accu-
racy of 73.89%, and SPT-LoRA, which has a mean accuracy of 74.07%. The GRFT operates with
a mean parameter percentage of 0.30%, which is relatively low compared to some other methods.
This suggests that GRFT can achieve high accuracy, making it more efficient in terms of computa-
tional resources. In summary, the GRFT stands out for its high accuracy and parameter efficiency
across a wide range of datasets. Its ability to achieve superior results with fewer parameters makes it
a promising candidate for applications where computational efficiency and model compactness are
critical.

Dataset CoLA MRPC RTE Mean Acc. Params.(%)

Full 0.8428 0.8603 0.8087 0.8373 100.00

LoRA Hu et al. (2021) 0.8562 0.8554 0.8159 0.8425 0.19

GRFT(ours) 0.8495 0.8554 0.8484 0.8511 0.08

Table 3: Comparisons results on sub-tasks of the GLUE with LLaMA3-1B models on a single GPU.

We conducted experiments on Llama3, with the results presented in Table 3. Due to the high stor-
age requirements of GPS, it was not feasible to run it on Llama3. Therefore, we compared our
method with full fine-tuning and LoRA. The results clearly demonstrate that our approach ex-
hibits strong adaptability across different models, ensuring generalization and enabling efficient
fine-tuning across various model architectures. Additionally, our method significantly reduces com-
putational and storage overhead while maintaining high performance, making it more practical for
real-world applications with resource constraints.

To analyze storage efficiency, we conducted a comparative study on the FGVC dataset. We examined
the time interval from the onset of training to the point of convergence, during which the trajectory
of GPU memory allocation over time is depicted in Fig. 3.
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(a) (b)

(c) (d)

Figure 3: The GPU memory usage curve

4.4 ABLATION STUDY

4.4.1 SELECTED ROWS OR COLUMNS NUMBER

We select the top k rows or columns of each gradient matrix as the trainable parameters, with k rang-
ing from 1 to 30, and conduct experiments across multiple tasks. It can be observed that having more
trainable parameters does not necessarily lead to better performance; instead, each dataset exhibits
a performance peak. Furthermore, on larger datasets, adding trainable parameters significantly en-
hances accuracy. By controlling the number of trainable parameters, it is possible to achieve optimal
results across different datasets. The Rows number results are shown in Fig. 4 (a).

4.4.2 SELECTED METHODS: SPARSE, ROW, OR COLUMN?

Our approach incorporates two selection methods: one based on selecting rows and the other on
selecting columns. To investigate the differences among these two methods and sparse selection, we
conducted an ablation experiment on the FGVC dataset, and the performance results are presented
in Table 4. Our findings reveal that while both rows and columns selection types exhibit comparable
overall performance, they yield different results depending on the specific characteristics of the
data. And the row/column selection outperforms the sparse selection scheme. This suggests that
the choice of rows/columns selection method may have varying impacts on model performance,
influenced by the structure and nature of the dataset.

Figure 4: Impacts of different setting. From left to right: (a) Impacts of different numbers of selected
rows on performance. (b) Impacts of different Magnitude of lambda in L2 norm on performance.
(c) Impacts of different numbers of selected block on performance. (d) Impacts of different numbers
of train data subsets on performance.
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Dataset CUB-2011 NABirds Oxford Flowers Stan.Dogs Stan.Cars Mean Acc.

GPS* Zhang et al. (2024) 89.6 86.8 99.7 88.9 90.4 91.06

GRFT-Sparse 89.7 86.8 99.7 88.9 90.6 91.13

GRFT-Row 90.0 87.0 99.7 89.1 90.7 91.29

GRFT-Column 90.1 86.9 99.7 88.8 90.8 91.27

Table 4: Comparisons results on FGVC in different selected methods.

4.4.3 TYPES OF REGULARIZATION NORMS

The aims of regularization are two aspects. Firstly, it ensures that the model parameters are updated
in the vicinity of the pre-trained model’s weights, facilitating the transfer of knowledge from the pre-
trained model. Secondly, it enhances the model’s generalization ability. There are various choices
of regularization norms, and here we focus on comparing the performance differences between L1

and L2 norms under the same parameter settings. The experimental results are shown in Table 5.
From the results, we observe that L2 regularization generally outperforms L1 regularization.

Dataset CUB-2011 NABirds Oxford Flowers Stan.Dogs Stan.Cars Mean Acc.

Without Norm 89.5 86.9 99.6 88.9 90.5 91.10

L1 Norm 89.8 85.8 99.6 88.8 88.7 90.54

L2 Norm 89.9 86.9 99.7 89.1 90.6 91.25

Table 5: Comparisons results on FGVC in different norms.

4.4.4 MAGNITUDE OF REGULARIZATION PARAMETER

After determining the selection and regularization methods, we tested different values of λ ranging
from 1 × 10−8 to 1 × 10−3 across tasks. As shown in Fig. 4(b), each dataset achieves its best
performance at an optimal λ.

4.4.5 NUMBER OF REGULAR BLOCKS

Once λ was determined, we further tested the number of regular blocks, ranging from 1 to 8, and
selected the best performing configuration as the optimal result for the dataset under our proposed
approach Fig.4 (c).

4.4.6 DATA PROCESSING

We preprocess the training data by randomly splitting it into n subsets and selecting the one with
minimal loss to compute the mask and determine trainable parameters. The hyperparameter n con-
trols the number of subsets (from 1 to 7, where n = 1 means no partitioning). Results under different
n are shown in Fig. 4(d).

5 CONCLUSION

In this paper, we proposed Gradient-based and Regularized Fine-Tuning (GRFT), an innovative
parameter-efficient fine-tuning method. GRFT selects structured groups of parameters correspond-
ing to rows or columns with the largest sum of squared gradients to update, while incorporating L2

regularization to mitigate the challenges of computational and storage inefficiency and to preserve
knowledge when adapting large pre-trained models to downstream tasks. GRFT demonstrates sig-
nificant improvements in average accuracy on FGVC and VTAB, outperforming existing parameter-
efficient fine-tuning (PEFT) methods. Future work can explore the integration of GRFT with contin-
ual learning techniques to enable lifelong adaptation across evolving tasks without excessive com-
putational cost.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, we employed large language models (LLMs) as auxiliary tools to
polish the language. Specifically, LLMs were used to refine grammar, improve fluency, and enhance
readability of the manuscript. It is important to note that LLMs were not involved in generating the
core content, experiments, or results of this work. Their role was limited to linguistic assistance,
ensuring the clarity and academic style of the final presentation.

A.2 BASELINE DESCRIPTION

A.2.1 GPS

GPS (Gradient-based Parameter Selection) is an innovative Parameter-Efficient Fine-Tuning (PEFT)
method designed to address the computational and storage challenges associated with fine-tuning
large-scale pretrained models on downstream tasks. Compared to traditional full-parameter fine-
tuning approaches, GPS achieves efficient model adaptation by adjusting only a small subset of key
parameters in the pretrained model while keeping the remaining parameters frozen. This signifi-
cantly reduces computational costs and memory consumption.
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The core idea of GPS is to select the most critical parameters for a downstream task based on
gradient information. Specifically, the method first computes the gradient values of each neuron’s
input connections, where the magnitude of the gradient reflects the importance of the parameter
in the current task. GPS selects parameters with the highest gradient values, as these parameters
exhibit the most rapid changes in the loss function and contribute the most to model performance
improvement. Additionally, to ensure that the model can adjust to features at different levels, GPS
employs a distributed parameter selection strategy—rather than simply selecting the parameters with
the highest gradients across the entire network, it selects the top input connections within each
neuron. This strategy ensures a more balanced parameter distribution across different layers of the
model, allowing for better adaptation to the feature requirements of downstream tasks.

GPS offers several significant advantages. First, it does not introduce any additional parameters,
thereby avoiding increased computational overhead during both training and inference. Second,
GPS is model-agnostic and can be applied to various architectures, such as Transformers and CNNs,
without requiring modifications to the model structure. Furthermore, GPS dynamically selects pa-
rameters based on the specific needs of each downstream task, leading to improved adaptability and
overall performance.

A.2.2 LORA

LoRA (Low-Rank Adaptation) is an efficient parameter adaptation method specifically designed
for fine-tuning large-scale pre-trained language models. It adapts to downstream tasks by injecting
trainable low-rank factorized matrices into each layer of the Transformer architecture, while keep-
ing the pre-trained weights frozen. This significantly reduces the number of trainable parameters
required for the downstream task. The core idea of LoRA is based on the assumption that the weight
changes during model adaptation have low "intrinsic rank," meaning they can be approximated by
low-rank matrices. This approach allows LoRA to substantially reduce computational and storage
costs while maintaining model performance, and it does not introduce additional inference latency
during deployment. LoRA has shown outstanding performance across multiple natural language
processing tasks, being competitive with full-parameter fine-tuning in terms of model quality, while
significantly reducing the number of trainable parameters and GPU memory requirements.

A.3 THE DIFFERENCES BETWEEN GPS AND GRFT

A.3.1 PARAMETER SELECTION STRATEGY

The differences of strategy is shown as Fig.5.

Figure 5: The differences selection methods between GPS and GRFT. The illustration depicts the
parameter selection when K = 1 for both methods, which marked in blue. Specifically, GPS selects
one connection per neuron, while GRFT selects an entire row or column. The selection pattern of
GPS is sparse, meaning that each row of the parameter matrix updates only a single element. In
contrast, GRFT updates an entire row of the weight matrix at once.

• GPS: GPS selects parameters for fine-tuning by computing the gradient values of each
neuron’s input connections. For each neuron, it selects the top-K parameters with the
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highest gradient values. This approach ensures that the selected parameters undergo the
most rapid changes in the loss function, enabling the model to quickly adapt during fine-
tuning. GPS relies on a sparse matrix-based parameter selection strategy, requiring a mask
matrix of the same dimensions as the weight matrix, which increases storage costs.

• GRFT: GRFT selects entire rows or columns of the weight matrix for fine-tuning instead
of individual parameters. Specifically, it selects the top-K rows or columns with the high-
est gradient squared sum. This method reduces storage costs as it only requires storing
the indices of the selected rows or columns, rather than a full mask matrix. GRFT’s pa-
rameter selection strategy is more efficient in hardware implementation since it avoids the
computational complexity associated with sparse matrix operations.

To analyze the differences between row selection and column selection, we have conducted a simple
preliminary analysis, as illustrated in the Fig. 5. For a weight matrix W and its corresponding
gradient matrix of the same dimensions, selecting a row corresponds to the parameters that represent
all input connections for a specific feature component in the output vector y, while selecting a
column corresponds to all output connections for a specific feature component in the input vector x.
We assume that row selection focuses on the complete feature from the previous layer to a specific
feature component in the current layer, and during back propagation, it represents the impact of the
feature component in the current layer on the previous layer. In contrast, column selection focuses
on the influence from a specific feature component in the previous layer to the features in the next
layer. The choice of which one to select in practice, along with the related principles, can be left for
future research.

A.3.2 REGULARIZATION STRATEGY

• GPS: GPS does not introduce additional regularization strategies. It primarily relies on
gradient selection for parameter optimization.

• GRFT: GRFT incorporates L2 regularization by adding a regularization term to the loss
function. This constrains the updates of fine-tuned parameters to remain close to those
of the pre-trained model. The regularization strategy helps prevent excessive parameter
adjustments during fine-tuning, preserves the knowledge acquired in the pre-training phase,
and mitigates catastrophic forgetting.

A.3.3 STORAGE

• GPS: GPS requires storing a mask matrix of the same dimensions as the weight matrix,
leading to increased storage costs.

• GRFT: GRFT only requires storing the indices of selected rows or columns, significantly
reducing storage costs.

A.4 EXPERIMENT DETAILS

In this section, we present the relevant experimental parameter settings for our image classification
tasks on FGVC and VTAB. The tables below include several parameters associated with the methods
discussed in the paper. Their specific meanings are as follows: Data Subsets Number denotes the
number of splits in the training dataset during data processing, Regular Parameter refers to the scale
parameter in regularization, Regular Layer Number indicates the number of modules added for
regularization constraints, with all presenting the all layers in model being added for regularization,
and Row/Column Number represents the number of specific rows/columns selected during the fine-
tuning process, corresponding to the number of training parameters.

A.4.1 EXPERIMENTS ON FGVC

We provide a detailed description of the experimental setup and results on the FGVC task. We list
the hyperpamameters of the best performance on FGVC in Table 6.
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Dataset Learning
Rate

Batch
size Epoch Data Subsets

Number
Regular
Parameter

Regular Layer
Number

Row/Column
Number

CUB-2011 5e-3 32 100 4 1e-3 2 2

NaBirds 1e-4 32 100 1 1e-4 7 26

Oxford Flowers 1e-3 32 100 1 1e-4 2 1

Stan. Dogs 2e-4 64 100 2 5e-5 4 5

Stan. Cars 5e-4 32 100 7 1e-4 all 20

Table 6: Hyperparameters on FGVC

A.4.2 EXPERIMENTS ON VTAB

We present explanations of the experimental setup and results for the VTAB task. We list the hyper-
pamameters of the best performance on VTAB in Table 7.

Dataset Learning
Rate

Batch
size Epoch Data Subsets

Number
Regular
Parameter

Regular Layer
Number

Row/Column
Number

CIFAR-100 2e-3 32 100 1 1e-6 all 1

Caltech101 2e-3 16 100 1 1e-8 2 1

DTD 2e-3 16 100 1 1e-8 3 1

Flowers102 2e-3 16 100 1 1e-6 all 1

Pets 3e-3 32 100 1 1e-3 all 2

SVHN 5e-3 32 100 1 1e-3 1 4

Sun397 2.5e-3 16 100 1 1e-6 2 1

Patch Camelyon 4e-3 32 100 1 1e-7 all 2

EuroSAT 2e-3 16 100 1 1e-4 3 2

Resisc45 1.5e-3 16 100 1 1e-3 all 3

Retinopathy 2e-3 32 100 1 1e-6 1 1

Clevr/count 3e-4 16 100 1 0 0 3

Clevr/distance 2e-3 16 100 1 1e-5 all 2

DMLab 1.5e-3 16 100 1 0 0 2

KITTI/distance 1e-3 16 100 1 1e-5 all 1

dSprites/loc 7e-3 32 100 1 1e-4 5 3

dSprites/ori 5e-4 16 100 1 0 0 2

SmallNORB/azi 3e-3 32 100 1 1e-8 all 3

SmallNORB/ele 3e-4 32 100 1 1e-3 2 2

Table 7: Hyperparameters on VTAB

Dataset Params.
(%)

Row/Column
Number Dataset Params.

(%)
Row/Column

Number Dataset Params.
(%)

Row/Column
Number

CUB-2011 0.47 2 Pets 0.28 2 DMLab 0.30 2

NaBirds 2.56 26 SVHN 0.41 4 KITTI/distance 0.18 1

Oxford.Flowers 0.26 1 Sun397 0.53 1 dSprites/loc 0.34 3

Stan.Dogs 0.58 5 Patch Camelyon 0.25 2 dSprites/ori 0.31 2

Stan.Cars 2.22 20 EuroSAT 0.26 2 SmallNORB/azi 0.34 3

CIFAR-100 0.26 1 Resisc45 0.37 3 SmallNORB/ele 0.30 2

Caltech101 0.26 1 Retinopathy 0.18 1 CoLA 0.08 3

DTD 0.22 1 Clevr/count 0.33 3 MRPC 0.08 3

Flowers102 0.26 1 Clevr/distance 0.26 2 RTE 0.08 3

Table 8: The number of learnable parameters across all tasks.
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A.4.3 EXPERIMENTS ON GLUE

For GLUE, we test only three datasets for training to demonstrate the generalizability of our method
across different models. Since we used the Llama 3 model and ran it on a single GPU, GPS requires
storing a mask of the same size as the model, leading to excessive memory usage that caused the
experiment to be unfeasible. Therefore, we compared our method with the full model and LoRA.
This comparison further highlights the applicability of GRFT in large models.

A.4.4 THE NUMBER OF TRAINING PARAMETERS ON DIFFERENT TASKS

For neural networks, our method selects entire rows or columns of parameters, as shown in the
Fig.5. For datasets with larger volumes of data, such as Nabirds, we can choose more rows and
columns to increase the training parameters, which can improve the model’s performance. The
Table 8 below shows the proportion of parameters selected in our paper. The datasets include all
tasks from FGVC, VTAB and GLUE. The Param represents the proportion of parameters updated
using GRFT in a given task relative to the total model parameters. The Row/Column Number
indicates the number of selected rows and columns. For most tasks in this paper, we only select no
more than five rows/columns.

16


	Introduction
	Related works
	Parameter-Efficient Fine Tuning
	Transfer Learning and Regularization

	Proposed Method
	Gradient Selection
	Model Regularization

	Experiments
	Implementation
	Datasets
	Experimental Results
	Ablation Study
	Selected Rows or Columns number
	Selected Methods: Sparse, Row, or Column?
	Types of Regularization Norms
	Magnitude of Regularization Parameter
	Number of Regular Blocks
	Data Processing


	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Baseline Description
	GPS
	LoRA

	The Differences Between GPS And GRFT
	Parameter Selection Strategy
	Regularization Strategy
	Storage

	Experiment Details
	Experiments on FGVC
	Experiments on VTAB
	Experiments on GLUE
	The Number of Training Parameters on Different Tasks



