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Abstract

Neural sentence embedding models for dense retrieval typically rely on
binary relevance labels, treating query-document pairs as either relevant
or irrelevant. However, real-world relevance often exists on a continuum,
and recent advances in large language models (LLMs) have made it fea-
sible to scale the generation of fine-grained graded relevance labels. In
this work, we propose BiXSE, a simple and effective pointwise training
method that optimizes binary cross-entropy (BCE) over LLM-generated
graded relevance scores. BiXSE interprets these scores as probabilistic tar-
gets, enabling granular supervision from a single labeled query-document
pair per query. Unlike pairwise or listwise losses that require multiple
annotated comparisons per query, BiXSE achieves strong performance with
reduced annotation and compute costs by leveraging in-batch negatives.
Extensive experiments across sentence embedding (MMTEB) and retrieval
benchmarks (BEIR, TREC-DL) show that BiXSE consistently outperforms
softmax-based contrastive learning (InfoNCE), and matches or exceeds
strong pairwise ranking baselines when trained on LLM-supervised data.
BiXSE offers a robust, scalable alternative for training dense retrieval mod-
els as graded relevance supervision becomes increasingly accessible.

1 Introduction

Training sentence embedding models for dense retrieval, as in DPR (Karpukhin et al., 2020)
or Sentence-BERT (Reimers & Gurevych, 2019), typically relies on contrastive learning (Oord
et al., 2018, InfoNCE) with binary relevance labels – where query-document pairs are marked
as either relevant (positive) or irrelevant (negative). Models are trained to produce similar
embeddings for query-positive pairs and dissimilar embeddings for query-negative pairs.
While effective, this binary approach can be limiting, as real-world relevance often exists
on a continuum rather than as a strict yes/no. For instance, a document might be partially
relevant to a query, yet traditional contrastive training would treat it as equally irrelevant
as a completely unrelated document. This issue is particularly pronounced when using
mined “hard negatives”, documents typically selected among the top-ranking retrieval
candidates according to an initial retriever model and labeled as irrelevant (Karpukhin
et al., 2020; Wang et al., 2022; Lee et al., 2024b; de Souza P. Moreira et al., 2024). While hard
negatives are crucial for effective learning (Lee et al., 2024b), they are uniformly labeled as
having zero relevance, even if some may actually be partially relevant, introducing false
negatives into the training data (Ni et al., 2021; Qu et al., 2021). Thus, binary simplification
provides incomplete supervision – with moderately relevant passages receiving no credit
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Figure 1: BIXSE amortizes the expensive inference process of an effective graded LLM
ranker into the training of a dense retrieval model via a simple binary cross-entropy loss.

– and produces noisy datasets containing false negatives, potentially over-penalizing the
model during training.

These limitations can be addressed by using graded relevance scores that quantify the degree
of relevance between text pairs. This can be achieved for instance via ordinal scales which
capture varying relevance levels (e.g. integers 0–3 or 1–5). Historically, graded relevance
evaluation has been central in the information retrieval community for assessing system
quality (Järvelin & Kekäläinen, 2000; 2002; Sakai, 2021). For example, in the Deep Learning
track of the Text REtrieval Conference (TREC-DL) 2023 (Craswell et al., 2024), systems were
evaluated based on how closely their scores align with human judgments across graded
relevance levels: 0 (‘Irrelevant’), 1 (‘Relevant topic, but does not contain the answer’), 2 (‘Highly
relevant, partial or unclear answer’), and 3 (‘Perfectly relevant, exact answer’). On the other hand,
manually annotating text pairs with graded relevance is labor-intensive, restricting dataset
scalability beyond evaluation benchmark sizes.

Early efforts to provide with scalable graded relevance signals involved training cross-
encoding rankers on annotated data, followed by using their judgments as pseudo-labels to
be distilled into bi-encoders (Hofstätter et al., 2021; Santhanam et al., 2022; Chen et al., 2024;
Huang & Chen, 2024). More recently, prompting LLMs like GPT-4 to serve as zero-shot
rankers has yielded surprisingly strong results, sometimes surpassing supervised retriev-
ers (Sun et al., 2023). These LLM-based rankers can produce nuanced relevance judgments at
scale, unconstrained by binary decisions. For instance, an LLM can be prompted with: ”On
a scale from 1 to 5, how well does this passage answer the query?” or offered options like
‘Not relevant’, ‘Partially relevant’, and ‘Highly relevant’. Zhuang et al. (2024) demonstrated that
permitting GPT-4 or PaLM to select among fine-grained relevance labels (instead of binary
yes/no decisions) significantly enhances ranking accuracy by more effectively handling
borderline cases and reducing labeling noise.

Prior to the emergence of LLM-based relevance scoring, graded supervision was primarily
leveraged via training with listwise or pairwise objectives (Burges et al., 2005; Wang et al.,
2018; Qu et al., 2021; Reddi et al., 2021; Huang & Chen, 2024). However, such methods
often rely on labeling multiple hard negative documents per query, significantly increasing
annotation cost when using powerful LLMs as teachers, which hinders scalability. The op-
portunity of LLM-generated large-scale graded relevance data, however, calls for revisiting
training objectives to align with the increased costs of quality graded relevance data. In
this work, we propose Binary Cross-Entropy Sentence Embeddings (BIXSE), a simple
pointwise training method that directly optimizes a binary cross-entropy (BCE) loss on
graded relevance scores. BIXSE interprets graded relevance scores as probabilities within
the range [0, 1] to represent relevance continuity from completely irrelevant (0) to absolutely
relevant (1). Unlike pairwise or listwise objectives, which rely on multiple supervised com-
parisons per query, BIXSE scales efficiently by enabling competitive performance by just
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Figure 2: Left: BIXSE vs standard InfoNCE training of QWEN2.5 dense encoders. Our
method outperforms the standard softmax-based contrastive recipe (InfoNCE) across model
sizes when training on the LightBlue dataset, which contains multilingual query-document
pairs graded by a zero-shot QWEN2.5-32B-INSTRUCT ranker. We measure nDCG@10 on a
100k random samples of TREC-DL qrels collected from 2019 to 2023. Right: BIXSE displays
improved robustness to noise compared to InfoNCE models. We train MODERNBERT
models on the open portion of E5 dataset and control the chance of flipping the binary label
between the positive and the hard negative document. We report the average nDCG@10
score on a subsampled version of BEIR.

using a single labeled query-document pair per query, while capturing structure implicitly
via in-batch negatives.

We validate BIXSE through extensive experiments across retrieval and sentence embedding
benchmarks, demonstrating consistent gains over standard InfoNCE objectives. Further-
more, BIXSE is, to the best of our knowledge, the first pointwise training method to
consistently match or outperform strong pairwise ranking baseline losses when training on
LLM-labeled graded relevance datasets. BIXSE scales across architectures and languages,
approaches the performance of much larger zero-shot LLM-based rankers, and exhibits
improved robustness to label noise compared to InfoNCE. Notably, it benefits from learning
across a wider spectrum of graded relevance and achieves peak performance even without
aggressive data filtering, making it a strong and efficient alternative for training dense
models on LLM-generated supervision. As graded relevance becomes increasingly easy to
generate, we argue that BIXSE offers a practical, robust, and scalable training paradigm for
the next generation of dense retrieval systems.

2 Related Work

Label Noise in Retrieval Datasets and Mining Hard Examples. Retrieval datasets generally
consist of a query and a corresponding document with a relevance score. In the simplest
case, the dataset only consists of positive documents (relevance score of 1.0). However, the
dataset curation can introduce label noise in the dataset (Qu et al., 2021; Wang et al., 2022).
For example, to select positive passage using question-answering dataset, Karpukhin et al.
(2020) declare the highest-ranked passage from BM25 that contains the answer string as the
positive passage. This process generates false positives as it is possible to match passages
that are not relevant but include the answer string. Label noise also exists in form of false
negatives. For example, Qu et al. (2021) report that within the top-retrieved passages for
MSMARCO (Bajaj et al., 2018) dataset, 70% of them are actually positives while not being
explicitly marked as positive. Reasonably, label noise is further amplified when retrieved
passages are used as hard negatives during training (Xiong et al., 2021; de Souza P. Moreira
et al., 2024). We thus argue that utilizing training objectives that are more robust to noise
can lead to downstream improvements in text encoders.

Training Dual Encoders with Synthetic Data. Many recent approaches have turned to
synthetic data to get high-quality and diverse training samples at scale (Zhang et al., 2023a;
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Wang et al., 2023; Dai et al., 2023; Muennighoff et al., 2024). E5 (Wang et al., 2023) proposed
a two-step generation, where LLM first brainstorms potential downstream retrieval tasks,
and then generates samples for each of those tasks. Promptagator (Dai et al., 2023) prompts
an LLM to generate synthetic queries for existing passages and trains dense retrievers on
these generated pairs. More recent approaches like Gecko (Lee et al., 2024b) and Gemini
Embeddings (Lee et al., 2025) use LLMs for both sample generation and filtering, yielding
high quality training dataset. The strong results of Gemini on MMTEB demonstrate the
effectivess of LLM based dataset generation and filtering. Despite this progress, synthetic
data generation has predominantly treated relevance as a binary signal, as documents
are either relevant or not. The use of graded relevance scores, such as those common in
TREC and traditional IR evaluation, remains largely unexplored as a training signal. Our
work investigates this underutilized axis of synthetic supervision in training dense retrieval
models.

Distillation Methods for Dense Retrieval and Ranking Models. In addition to data
filtering, another key way to improve dual encoders is via distillation from stronger re-
rankers. The idea is to train the dense retriever to imitate the outputs of a more powerful
but slower model (the teacher). Typically, the teacher is a cross-encoder that can deeply
inspect each query–document pair, producing superior relevance judgments.

Several loss formulations have been proposed to train with relevance judgements from the
teacher model. Cheng et al. (2023) introduce “soft” InfoNCE, where regular one-hot label
in InfoNCE is replaced by the soft labels from the teacher. We showcase in Section 5 that
BIXSE outperforms this loss formulation. MarginMSE (Hofstätter et al., 2021) minimizes the
mean squared error between teacher and student score margins for positive–negative pairs.
A limitation of this approach is its inability to profit from in-batch negatives, as performance
tends to decay with increased number of negative documents per positive ones. BIXSE fixes
this by incorporating a special logit bias term targetted at counteracting this effect.

Pairwise training objectives have also been widely used for dense retrieval. RankNet (Burges
et al., 2005), and its recent adaptations such as PairDistill (Huang & Chen, 2024), supervise
the model by comparing pairs of documents for the same query. Instead of assigning
an absolute relevance score to each document independently, these methods teach the
model to prefer one document over another based on their relative graded relevance. In
LambdaLoss (Wang et al., 2018), individual pairwise losses are further weighted according to
their estimated impact on evaluation metrics such as nDCG. While effective, these pairwise
methods tend to achieve their best performance when each query is compared against
multiple other labeled documents. This increases annotation costs when labels come from
expensive cross-encoders or LLM rankers. Because BiXSE applies binary cross-entropy loss
at the pointwise level, it scales more naturally to large datasets and varied supervision
sources. It enables training with fewer graded annotations per query, making it well-suited
to scenarios where labeling costs are a concern. Our experiments show that BiXSE is
competitive against strong pairwise baselines, while offering a lower annotation cost per
query.

RocketQA(Qu et al., 2021) and its successor RocketQAv2 (Ren et al., 2021) employ an iterative
listwise training procedure: a cross-encoder teacher is used to label a large set of positives
and hard negatives, and the dual encoder is jointly trained on those via minimizing a KL on
the document batch likelihoods. Similarly, RankDistill (Reddi et al., 2021) encourages the
student to reproduce the teacher’s top-k rankings, by using the teachers’ scores to construct
targets for the document batch likelihoods. However, these listwise or teacher-in-the-loop
approaches tend to be computationally expensive and less scalable – running a cross-encoder
over many candidate passages for every query (often repeatedly in training) incurs a large
cost. Moreover, while listwise objectives seem desirable as they align with ranking metrics
like nDCG, they assume access to complete and consistent slates of query-document pairs
– an assumption that could be violated in practice due to noisy, sparse, or inconsistent
supervision from LLMs or heuristics. In contrast, BiXSE’s pointwise formulation offers a
scalable and robust alternative, enabling effective learning from graded signals without
requiring coherent global rankings.
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3 Preliminaries

We present the notation needed to expose our training procedure by contrasting it to the
typical multi-class contrastive learning of dense encoders, or InfoNCE (Oord et al., 2018)
as it is commonly referred to in the context of self-supervised learning literature. Let f
be the text encoder we would like to train, which, in general, is a neural network that
takes text as input and outputs a fixed-dimensional vector. During training, the encoder is
presented with batches of B text tuples B := {(qi, d+i , d−i )}

B
i=1. Let qi be a query associated

with a positive document d+i and potentially a (hard) negative document d−i . We define x
(boldface math font) to be the L2-normalized embedding pooled from the text encoder
f , that is x := f (x)

∥ f (x)∥ . To train with the InfoNCE objective, we first separately compute

the normalized embeddings for each query qi =
f (qi)

∥ f (qi)∥
, and similarly for each positive

document d+
i , and each hard negative document d−

i . Now, consider a scoring function
s : (q, y) 7→ R between a pair (q, d) of text according to the dense encoder f . Typically, this
is taken as a scaled dot-product between the normalized embeddings, s(q, d) := α q⊤d, for
scalar hyperparameter α > 0 that acts as an inverse temperature. Then, the training loss for
f can be expressed in terms of the function s(x, y) as

LInfoNCE =
1
B ∑

i∈[B]
− log

exp(s(qi, d+i ))

∑j∈[B] exp(s(qi, d+j )) + exp(s(qi, d−j ))
. (1)

This loss function corresponds to the negative log-likelihood of classifying each query qi
into one of 2B possible classes, where each class represents a document from B. The target
class for query qi is always determined by the positive d+i for every i ∈ [B]. The alternative
classes are defined by the hard negative document d−i and in-batch negatives1, meaning that
positives d+j and hard negatives d−j associated by the dataset with other queries qj, j ̸= i
are also considered as negative documents with respect to qi. Karpukhin et al. (2020) show
that this assumption is essential for achieving strong performance on downstream tasks,
particularly in the absence of hard negative documents.

InfoNCE contrastive learning has been the de-facto paradigm for training dense retrievers
and generalist sentence embedders. The training loss formulation in Equation (1) relies on
binary relevance, i.e. a boolean assignment (relevant/positive or non-relevant/negative) for
every query-document pair.

4 BiXSE: Binary Cross-Entropy Sentence Embeddings

The search for a more fine-grained learning signal starts within the information retrieval
community (Järvelin & Kekäläinen, 2000; 2002; Sakai, 2021) and its efforts to define a query-
document relevance that is more closely aligned with human judgement. Such reliance
on human annotations has hindered the scalability of graded relevance labeled datasets.
However, recent LLMs have demonstrated strong zero-shot ranking capabilities (Sun et al.,
2023; Zhuang et al., 2024), surpassing dense retrieval models based on human judgement,
without requiring additional fine-tuning on ranking data. Although automated, querying
LLMs for generating a quality dataset remains an expensive procedure constrained by
financial considerations. Therefore, it is crucial to develop scalable solutions that still
provide competitive advantages when training with graded relevance data. As discussed in
Section 2, listwise approaches (Qu et al., 2021; Ren et al., 2021; Reddi et al., 2021) require
labeling multiple documents per query by the LLM, which constraints the scalability of data
along another qualitative axis – such as the number of queries contained in a dataset – given
a fixed LLM token consumption budget. At the same time, many of those query-document

1or cross-batch if they belong to mini batches sampled on different computational devices of a data
parallel training trial. In the paper, we use in-batch and cross-batch interchangeably to mean that all
other unlabeled query-document combinations are used as negatives.
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pairs are filtered out in state-of-the-art pipelines (Lee et al., 2024b; 2025) based on LLM-
generated graded relevance, leading to token waste. By exploring a pointwise solution, our
goal is to develop a scalable, token-efficient and effective method for leveraging graded
relevance information.

Our work focuses on improving the effectiveness of models trained on a dataset with graded
relevance scores. In contrast to the setting in Section 3, batches from this dataset may now
consist of a query associated with a set of K > 0 documents, and a score that indicates the
relevance of each document. More formally, for a given query qi let d(k)i be the kth document

associated with qi, for each i = 1, 2, . . . , B in the batch. We let z(k)i ∈ [0, 1] denote the

continuous relevance score between query qi and document d(k)i , with 0 being most relevant

and 1 absolutely relevant. Then, a batch B contains a set of tuples (qi, {(d
(k)
i , z(k)i )}K

k=1).
This setup generalizes the one described in Section 3 where relevance is a binary concept:
previously, a document is either relevant to a query (denoted as d+i ) or is not (d−i ), with no
notion of degree of relevance. Our proposed setup, in which relevance degree is represented
as the score zi, is a generalization of the binary setup with zi set to 1 for positive documents
d+i and to 0 for hard negative documents d−i .

Given that we are studying a pointwise solution, we restrict our discussion to the setup
where each query qi is relevant to single document (K = 1). This does not limit generality, as
our pointwise loss can be applied to additional query-document-relevance triplets if needed.
Accordingly, we thus redefine a batch as B := {(qi, di, zi)}B

i=1 as a set of query-document-
relevance triplets during training.

One way we can practically acquire graded relevance labels at scale is by asking an LLM
to output an ordinal judgement about a query-document pair given a relevance definition
in the instruction (Zhuang et al., 2024), as visualized in Figure 1. Having access to the
logits of the model furthermore enables us to convert a finite number of discrete ordinal
judgements to continuous ones by using the constrained predicted probability among the
discrete score options to average the possible ordinal outcomes. More formally, given a
relevance definition that contains a set of possible discrete scores S = {0, 1, . . . , N}, we can
convert these scores to continuous ones z := ∑s∈S s pLLM(s|q, d) (Lightblue, 2025). Then,
z can be converted to [0, 1] via a (rank-preserving) increasing function, such as an affine
transformation z

N .

As before, batches of tuples in B are presented to the encoder during training. Similarly
as before, each query and document are separately processed via encoder f to produce
L2-normalized embeddings qi and di respectively. This time we opt for a different choice
of scoring function, which is defined as s(q, d) := α q⊤d + β for some logit scale and bias
parameters α > 0 and β. We enhance the loss formula from Equation (1) by incorporating
a crucial logit bias term to improve performance. We make use of in-batch negatives by
supposing labels zi,j = 0 for i ̸= j, otherwise we use the graded relevance score from the
batch zi,i = zi. Let σ(x) := (1 + exp(−x))−1 be the sigmoid/logistic function. Then, the
encoder f is trained to minimize the binary cross-entropy (BCE) loss

LBiXSE = − 1
B ∑

i∈[B]
∑

j∈[B]
zi,j log σ

(
s(qi, dj)

)
+ (1 − zi,j) log σ

(
− s(qi, dj)

)
. (2)

The behavior of this loss function depends on the value of zi,j. When zi,j > 0.5, we want the
sigmoid to output a value closer to 1, implying that the normalized embeddings qi and dj
need to be more aligned.

The role of logit bias β. The use of in-batch negatives introduces a strong label imbalance:
for each query qi, the model sees one (likely) positive document di and B − 1 negatives,
skewing the label distribution toward zero. This imbalance becomes more pronounced with
larger batch sizes, making it easier for the encoder f to minimize the loss by predicting
low relevance scores across the board. We interpret the logit bias β in Equation (2) as a
mechanism to correct for this skew by modeling the marginal label distribution. Since β is
not conditioned on query-document pairs, it cannot learn relevance itself, but it can only
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Models finetuned on English-only data
Categories BEIR MTEB(eng, v2) Retr. TREC-DL 19-23† MTEB(eng, v2) All

MODERNBERT-BASE
INFONCE 41.32 39.17 42.32 51.79
BIXSE 42.29 (+2.3%) 41.11 (+5.0%) 47.67 (+12.6%) 55.66 (+7.5%)

META-LLAMA-3.2-1B-INSTRUCT
INFONCE 49.31 48.76 58.39 62.87
BIXSE 49.51 (+0.4%) 50.60 (+3.8%) 59.85 (+2.5%) 63.13 (+0.4%)

Models finetuned on multilingual data
Categories BEIR MTEB(multi, v1) Retr. TREC-DL 19-23† MTEB(multi, v1) All

QWEN2.5-0.5B-INSTRUCT
INFONCE 38.25 50.24 55.29 48.98
BIXSE 73.91 (+6.0%) 51.90 (+3.3%) 55.71 (+0.8%) 49.68 (+1.4%)

QWEN2.5-1.5B-INSTRUCT
INFONCE 43.66 55.00 57.93 52.64
BIXSE 48.08 (+10.1%) 58.45 (+6.3%) 59.95 (+3.5%) 53.59 (+1.8%)

QWEN2.5-3B-INSTRUCT
INFONCE 48.83 59.22 62.40 55.74
BIXSE 50.55 (+3.5%) 61.67 (+4.1%) 64.70 (+3.7%) 57.02 (+2.3%)

Table 1: Average aggregated NDCG@10 performance on various retrieval benchmarks of
models trained with the same data resources. BIXSE consistently outperforms models
trained with the standard softmax-based contrastive learning loss. †We benchmark against
a corpus formed by collecting all annotated documents in the available qrels from 2019 until
2023.

model the marginal distribution of labels. To encourage this separation of roles, we optimize
β with a significantly higher learning rate than f , ensuring that the encoder f must rely on
the actual query-document content to minimize the loss. We study the effect of this design
choice in Figure 5 and Appendix 6.

5 Experiments

Base Models. For our experiments we finetune a variety of base models seeking to
validate the benefits of our approach for different pretraining methods and model sizes.
For this reason, we experiment with MODERNBERT (Warner et al., 2024), a bidirectional
masked language model (MLM), as well as with META-LLAMA-3.2 (Meta AI, 2024) and
QWEN2.5 (Qwen Team, 2024) models exemplifying decoder-as-encoder approaches. As a
sentence embedding for the MODERNBERTarchitecture, we use the representation extracted
by the standard pooler on top of the beginning-of-sentence token. On the other hand, we
convert decoder LLM architecture following the LLM2Vec recipe (BehnamGhader et al.,
2024). In particular, we disable the autoregressive masking, thus enabling bidirectional
connections among tokens, and we pool token representations into a fixed dimensional
sentence embedding by averaging the last layer representations over the query tokens,
or the document tokens accordingly. We skip the first MLM finetuning step of LLM2Vec,
instead we directly finetune the adapted models with constrastive objectives. Finally, we
enable our models to be prompted with task-specific instructions (Su et al., 2023) when we
encode queries, allowing for extra flexibility in the representation space.

Datasets. Our experiments span across multilingual and English-exclusive data. We also
experiment with data labeled with graded relevance scores, binary and mixed cases, hoping
to demonstrate the effectiveness of BIXSE in a backward-compatible manner. For binary
relevance data, we use the public portion of the E5 dataset (Wang et al., 2022) reconstructed
by Springer et al. (2024). In Table 2 of the Appendix, we describe the composition of training
sets and their corresponding tasks. In Section 6 of the Appendix, we provide the list of
instructions we used to augment queries. We use the same task instructions as previous
works Wang et al. (2023); Springer et al. (2024); BehnamGhader et al. (2024). As for graded
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Figure 3: Ablating loss function variants by training QWEN2.5-0.5B-INSTRUCT models;
binary cross-entropy loss performs the best when both graded relevance scores and a logit
bias in the scoring function are used.

relevance data, we base our experiments on a public dataset (Lightblue, 2025) that we will
call LightBlue (or LB in abbreviation). LightBlue is a collection of 35 high quality question-
answering datasets covering more than 95 languages, whose authors curate for training
distilled cross-encoders. For query-document pairs in the collection, the authors ask a
QWEN2.5-32B-INSTRUCT-GPTQ-INT42 model to zero-shot rank their relevance with a
discrete number scaling from 1 to 5. The provide with model logits over the token responses,
which we then convert to a continuous label in [0, 1], as we discussed in Section 4. More
details about LightBlue dataset are discussed in Appendix 6.

Benchmarks. We evaluate our approach on several benchmarks spanning heterogeneous
retrieval, graded relevance retrieval, and universal text embedders. BEIR (Thakur et al., 2021)
is a zero-shot heterogeneous retrieval evaluation framework encompassing diverse tasks
and domains. It consists of 18 different datasets from nine different tasks – Fact checking,
citation prediction, duplicate question retrieval, argument retrieval, news retrieval, question
answering, tweet retrieval, bio-medical IR, and entity retrieval.

To evaluate our method beyond retrieval, we also consider MMTEB (Enevoldsen et al., 2025)
(multilingual version of MTEB Muennighoff et al. (2023)) which covers multiple embedding-
based tasks across various languages. MMTEB introduced several benchmarks – MTEB(eng,
v2) is the faster zero-shot version of widely popular MTEB benchmark (Muennighoff
et al., 2023) which contains 41 English embedding tasks across seven task categories –
retrieval, reranking, clustering, pair classification, classification, sentence similarity, and
summarization. MTEB(multi, v1) on the other hand consists of 131 tasks from several task
categories and languages. We show results on both retrieval and the complete set of MMTEB
benchmarks.

Last, we perform evaluations against graded relevance scores reflecting human judgement
about query-document relations using publically available data from TREC-DL (Craswell
et al., 2024) competitions. We assemble the qrels from all competitions from 2019 till 2023 into
a collection of 422612 graded relevance scores over 1988 queries on the MSMARCO (Bajaj
et al., 2018) passage corpus.

Main Results. We train models on English data consisting of a mixture of binary rele-
vance E5 and graded relevance LB datasets, and multilingual models purely on graded
relevance scored data from LB. Table 1 reports NDCG@10 performance of models trained
with BIXSE versus InfoNCE across English and multilingual settings, covering both retrieval
and sentence embedding tasks. BIXSE consistently outperforms InfoNCE across all base
models and benchmarks, with the most substantial gains observed on TREC-DL 2019–2023
highlighting BIXSE’s strength in modeling nuanced relevance signals; for instance, BIXSE
achieves +12.6% improvement on MODERNBERT-BASE, +3.7% on QWEN2.5-3B-INSTRUCT,
and +3.5% on QWEN2.5-1.5B-INSTRUCT. On binary relevance benchmarks such as BEIR
and MTEB (Retrieval), BIXSE maintains consistent improvements – e.g., +10.1% on BEIR

2https://huggingface.co/Qwen/Qwen2.5-32B-Instruct-GPTQ-Int4
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Figure 4: Performance of QWEN2.5-0.5B-INSTRUCT models trained using BIXSE or InfoNCE
models under different graded relevance cutoff values for positives. InfoNCE improves as
we discard data pairs of lower graded relevance, while BIXSE follows a reverse U-curve
trend. Overall the best BIXSE model outperforms the best InfoNCE one, showing that
BIXSE effectively enables learning from graded relevance labels, and consequently less
token consumption waste during dataset creation.

with QWEN2.5-1.5B-INSTRUCT. Gains also extend to the average of all tasks in MTEB, a
general sentence embedding suite, where BIXSE yields up to +7.5% improvement, indicat-
ing that training with graded supervision enhances embedding quality beyond retrieval.
Altogether, across six model backbones and four benchmark families, BIXSE delivers re-
liable, architecture-agnostic improvements in both binary and graded settings, validating
its core motivation of leveraging LLM-derived graded relevance labels through a simple
yet effective binary cross-entropy objective. In Appendix 6, we provide with analytical
reports of model performance per individual tasks contained in BEIR or MTEB, whereas in
Table 9 of Appendix 6 we provide with analytical model performance results on the top-100
document reranking tasks of TREC-DL for each year separately.

Comparison to other training objectives. We further compare BIXSE against alternative
training objectives such as Soft InfoNCE (Cheng et al., 2023) and Margin MSE (Hofstätter
et al., 2021), as well as ablated variants of BIXSE. While Soft InfoNCE offers a smoother alter-
native to one-hot probability targets and Margin MSE explicitly models pairwise differences,
both underperform BIXSE across all benchmarks, highlighting the advantage of directly
optimizing for graded relevance via BCE. Notably, ablations that remove the logit bias
or discretize the targets into binary values consistently degrade performance, confirming
the importance of BIXSE’s full formulation. Finally, we have conducted a comprehensive
comparison between BiXSE and other strong pairwise ranking objective baselines, which
we detail in Appendix 6. Across both LightBlue and BGE-M3 (Chen et al., 2024) training
datasets, BIXSE consistently matches or outperforms alternatives like Pairwise BCE (Burges
et al., 2005; Huang & Chen, 2024) and LambdaLoss (Wang et al., 2018), while requiring
fewer labeled negatives and enabling more efficient in-batch training. These findings vali-
date the scalability and supervision efficiency of BIXSE, when compared against pairwise
alternatives.

Effective distillation from reranker. To contextualize BIXSE’s performance, in the left
plot of Figure 2, we compare our dense encoders to two 32B LLM-based rerankers. We
instruct Qwen2.5-32B-Instruct to score query-document pairs from TREC-DL (2019–2023),
using prompts aligned with the original human annotation guidelines. In the 0–3 relevance
setting, the model uses a four-point relevance scale; in the 0–1 setting, it operates under
a simplified binary prompt distinguishing “Irrelevant” from “Relevant, Exact Answer.”
Despite the model size gap, our 3B BIXSE encoder achieves an nDCG@10 of 62.06 – within
3.0 points of the 32B ranker with full 0–3 prompting (65.06), and just 0.8 points behind
the 32B ranker trained with binary prompts (62.86). This result demonstrates that BIXSE
can effectively distill LLM supervision into fast, efficient dense retrieval models without
sacrificing ranking quality.
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Robustness to noise. A key motivation for BIXSE is its robustness to labeling noise, which
is prevalent in large-scale retrieval datasets due to imperfect negative mining, synthetic
supervision, or human annotation inconsistencies. To test this, we simulate controlled label
noise by flipping the binary labels between the positive and hard negative documents in the
E5 dataset according to a prescribed probability, prior to training. We observe in the right
plot of Figure 2 that, as the noise level increases, BIXSE exhibits a markedly more gradual
degradation in nDCG@10 compared to InfoNCE. While both methods see performance
drops, the curve for BIXSE remains more concave and stable, indicating greater tolerance
to noise. We invite the reader to Appendix 6, where we discuss our intuition behind these
results.

Learn best by filtering less. We investigate how BIXSE and InfoNCE respond to different
thresholds for filtering training data by graded relevance. In large-scale datasets built from
LLM-generated scores, a common preprocessing step is to discard query-document pairs
with low relevance to improve training quality. We vary the minimum relevance cutoff
required to retain a pair, and treat the remaining data differently: for InfoNCE, retained pairs
are binarized and used as positives; for BIXSE, we preserve their graded scores and train
using the full BCE formulation. To control for dataset size, we fix the number of training
examples across all cutoff values by subsampling each filtered set to match the smallest
resulting dataset (corresponding to the highest cutoff of 0.9). The results, shown in Figure 4,
reveal that InfoNCE performance improves monotonically with stricter filtering, suggesting
that it benefits from high-confidence positives and sharper separation from negatives.
In contrast, BIXSE follows a reverse U-shaped trend, achieving peak performance at a
moderate cutoff (e.g., 0.7), indicating that it can effectively learn from a broader range of
relevance signals. Crucially, the best BIXSE model outperforms the best InfoNCE model,
suggesting that BIXSE not only enables better generalization from nuanced supervision, but
also reduces the need for aggressive data pruning—allowing more effective use of available
training pairs with less token waste.

6 Conclusion

We present BIXSE, a simple and effective training objective that enables dense retrieval
models to learn directly from graded relevance labels. By replacing contrastive formulations
with a binary cross-entropy loss over continuous targets, BIXSE captures fine-grained
supervision more faithfully, yielding consistent performance gains across diverse retrieval
and embedding benchmarks. Our results show that BIXSE not only outperforms standard
objectives like InfoNCE and Margin MSE, but also narrows the gap to large zero-shot
LLM rankers, improves robustness to label noise, and learns better without aggressive
filtering. At the same time, it performs competitively with state-of-the-art pairwise losses,
while requiring fewer annotated documents per query. As LLMs make graded relevance
supervision increasingly accessible, BIXSE provides a practical and scalable solution for
distilling this supervision into fast and generalizable dense encoders.
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Appendix

Extended Related Work

Neural Dense Retrieval. Classical retrieval methods like TF-IDF and BM25 (Robertson &
Zaragoza, 2009) represent texts as sparse, high-dimensional vectors based on lexical overlap,
effectively capturing keyword matches but lacking deeper semantic understanding. Neural
dense retrieval methods address this by embedding texts into dense semantic vector spaces
using pre-trained language models (Karpukhin et al., 2020; Xiong et al., 2021).

Dense retrieval methods broadly fall into two categories based on their trade-offs between
computational efficiency and retrieval accuracy: bi-encoders (dual encoders) and cross-
encoders. Bi-encoders encode queries and documents independently, enabling efficient
approximate nearest neighbor (ANN) searches suitable for large-scale retrieval (Ni et al.,
2022; Li et al., 2023; Wang et al., 2022; BehnamGhader et al., 2024; Lee et al., 2024a), but they
fail to capture fine-grained contextual understanding. Cross-encoders jointly encode query-
document pairs, providing more accurate relevance estimates but at higher computational
costs, limiting their scalability. The simplest example of cross-encoder is feeding query-
document pairs into large language models (LLMs) to explicitly assess relevance (Sun et al.,
2023).

With advancements in sentence representation techniques, the research community has
expanded its focus from narrow retrieval tasks to general-purpose text embeddings.
BEIR (Thakur et al., 2021) is a zero-shot evaluation framework encompassing diverse
retrieval tasks and domains whereas MMTEB (Enevoldsen et al., 2025) covers multiple
embedding-based tasks like retrieval, classification, and clustering across various languages.
To encourage generalization across tasks, it is now common to prepend each input with a
natural language task description, guiding the encoder to produce task-specific representa-
tions (Su et al., 2023). In this paper, we adopt a similar formulation by conditioning on a
prompt that describes the relevance task.

Representation Learning with Binary Cross-Entropy. To our knowledge, binary cross-
entropy loss in self-supervised representation learning was first explored by Hjelm et al.
(2019). Their work introduces Deep InfoMax (DIM), a framework for representation learning
that maximizes mutual information between different views of the same image. In its Jensen-
Shannon mutual information formulation (Hjelm et al., 2019, See Equation 4, Section 3.1),
the DIM loss functions as a binary cross-entropy loss and the logits are computed from
pairs of views: pairs derived from the same image are labeled as positive, while pairs from
different images are labeled as negative.

More recently, Zhai et al. (2023) introduced SigLIP, a framework that pre-trains vision-
language encoders by aligning image embeddings with their corresponding caption embed-
dings. Compared to its softmax-based anchor classification alternative (Radford et al., 2021,
CLIP), pretraining with binary cross-entropy loss in SigLIP has demonstrated better scaling
of downstream task performance as the number of in-batch negatives increases. In our work,
we adapt the SigLIP objective to fine-tune large language models (LLMs) (BehnamGhader
et al., 2024) for general-purpose text embedding tasks.
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Lightblue Reranker Distillation Dataset

Lightblue (2025) constructed this dataset through a four-step process aimed at creating a di-
verse, high-quality resource for evaluating query-text relevance. First, they collected queries
and associated text passages from 35 publicly available datasets spanning over 95 languages.
For datasets lacking hard negatives, they mined them using the BAAI/BGE-M3 embedding
model to ensure a challenging contrastive setup. Then, we used the QWEN/QWEN2.5-32B-
INSTRUCT-GPTQ-INT4 model to rate the relatedness of each query-text pair on a 5-point
scale, producing token-level probabilities for scores “1” through “5”.

Training and Evaluation Details

Table 2: Composition of the public portion of the E5 training dataset (Wang et al., 2023),
reconstructed by Springer et al. (2024). In the task categories below, Natural Language
Inference is denoted by NLI and Question-Answering as QA. Details on the instructions
used for each dataset can be found at Section 6 of the Appendix.

Dataset Name Task Category Meaning of anchor/associated text

AllNLI (Gao et al., 2021) NLI premise/hypothesis
DuReader (He et al., 2018) Passage Retrieval query/passage
ELI5 (Fan et al., 2019) Popular Responses forum question/user response
FEVER (Thorne et al., 2018) Fact Checking claim/document
HotpotQA (Yang et al., 2018) Passage Retrieval for Multi-Hop QA query/passage
Miracl (Zhang et al., 2023b) Passage Retrieval query/passage
MrTydi (Zhang et al., 2021) Passage Retrieval query/passage
MSMARCO (Bajaj et al., 2018) Passage Retrieval query/document or passage
Natural Questions (Kwiatkowski et al., 2019) Passage Retrieval query/Wikipedia article
Quora Duplicates (DataCanary et al., 2017) Duplicates Classification forum question/forum question
SQuAD (Rajpurkar et al., 2016) Passage Retrieval query/Wikipedia article
T2Ranking (Xie et al., 2023) Passage Retrieval query/web passage
TriviaQA (Joshi et al., 2017) Passage Retrieval query/Wikipedia article

Table 3: Instructions used for datasets contained in the public portion of the E5 dataset and
the Lightblue reranker distillation mixture (LB).

Dataset Instruction(s)

E5/NLI Given a premise, retrieve a hypothesis that is entailed by the premise
Retrieve semantically similar text

E5/DuReader Given a Chinese search query, retrieve web passages that answer the question
E5/ELI5 Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum
E5/FEVER Given a claim, retrieve documents that support or refute the claim
E5/HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
E5/MIRACL Given a question, retrieve Wikipedia passages that answer the question
E5/MrTyDi Given a question, retrieve Wikipedia passages that answer the question
E5/MSMARCO Passage Given a web search query, retrieve relevant passages that answer the query
E5/MSMARCO Document Given a web search query, retrieve relevant documents that answer the query
E5/NQ Given a question, retrieve Wikipedia passages that answer the question
E5/QuoraDuplicates Given a question, retrieve questions that are semantically equivalent to the given question

Find questions that have the same meaning as the input question
E5/SQuAD Retrieve Wikipedia passages that answer the question
E5/T2Ranking Given a Chinese search query, retrieve web passages that answer the question
E5/TriviaQA Retrieve Wikipedia passages that answer the question

LB/cpgqa Given a question about clinical practice guidelines, retrieve relevant passages that answer the
question

LB/logqa Given a question about a system’s log, retrieve the most relevant log entries
LB/lsat Retrieve the passage which is most relevant to the given LSAT question
LB/narrativeqa Retrieve the story that is most relevant to the given question
LB/pubmedqa Given a biomedical research question, retrieve relevant passages that answer it
LB/qasports Given a sports question, retrieve relevant passages that answer the question

Training Details. We employ the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9,
β2 = 0.98. We apply no weight decay. For the learning rate scheduler, we adopt a linear
warmup over 5% of the total training steps, followed by a linear decay till end of training.
We train all models for a constant of 4 epochs. The logit scale α is tuned and we find the
value 20 to work well, which corresponds to a temperature of 0.05. In all experiments,
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we make use of in-batch negatives, except for Margin MSE where we observed that the
performance drops. We implement task-conditioned sampling for batching, in which all
the samples in a batch belong to the same task. Doing so improves the quality of in-batch
negatives as all the associated text belong to the same domain. The learning rate is initially
set to a base batch size of 16 and then scaled according to the square root of the ratio between
the total batch size across devices and the base batch size (Malladi et al., 2022), expressed

as
√

total batch size
16 . We apply gradient checkpointing. For our experiments, we use batch

size 256 for all models, except some ablation where we use 128 for GPU economy. Context
length is set to 8192 for all models, except 3B models where it is set at 4096 for memory
economy. For similar reasons, we use LORA parameter efficient finetuning with 32 ranks
for those models.

Model Selection. For model selection, we derive a validation score by using a subset of tasks
from BEIR, which we call BEIR (short) throughout the paper. In particular, we take the
DBPedia, HotpotQA, FiQA2018, FEVER, QuoraRetrieval and NQ tasks, and we subsample
256 queries and up to 131,072 passages from each of them. We do this because evaluating
many retrieval tasks is time-consuming due to their large corpus size, often in the millions
of documents. We periodically evaluate the performance of the sentence embedders that we
train on the validation set, by computing the average NDCG@10 score over our validation
tasks, and we select the best model that occurs during a training trial. Similarly, we use the
same validation score to perform hyperparameter search and analysis.

LB, E5, BEIR and MMTEB instructions. As we have mentioned at Section 5, for some
trials we use the public portion of the E5 dataset, as reproduced by Springer et al. (2024),
for training our sentence embedders. In Table 2, we describe the composition of training
sets and their corresponding tasks. In addition to comprising public permissible datasets,
this training data mix has minimal overlap with MTEB tasks, enabling us to evaluate the
robustness of our models on domains beyond the training set. Training encoders can
leverage an extra conditioning signal to improve generalization across tasks (Su et al.,
2023). This conditioning signals comes in the form of a task-specific instruction, which can
be combined with the anchor sentence, and potentially with its associated sentences. In
Section 6, we provide the list of instructions we used to augment the anchor texts, and also
their associated text in the case of symmetric tasks. We use the same task instructions as
previous works (Wang et al., 2023; Springer et al., 2024; BehnamGhader et al., 2024).

Similarly for the Lightblue (LB) distillation dataset (Lightblue, 2025), each row of text pairs
originates from a multilingual QA dataset. The dataset and its composition is described
in detail in Section 6. For some of the datasets contained, we define a task instruction that
reflects the domain of the query contained in a row of the training dataset. If a specific task
instruction has not been defined for a dataset, we fallback to a default one: “Retrieve the most
relevant passages to the given query”. In Section 6, we provide the list of instructions we used
for some of the datasets in the Lightblue data mix.

During inference, we allow a user to provide an instruction of their liking. For benchmarks,
like BEIR or MMTEB, we use the predefined set of task instruction provided by the software
package for each of the tasks contained. Please refer to the MMTEB benchmark paper for
more details (Enevoldsen et al., 2025). For TREC-DL evaluations, we use the instruction
corresponding to MSMARCO: “Given a web search query, retrieve relevant passages that
answer the query”.

System prompts for zero-shot QWEN2.5-32B-INSTRUCT rankers. In Figure 2, we evaluate
against zero-shot QWEN2.5-32B-INSTRUCT rankers in a 100kwqrel subset of TREC-DL
19-23 benchmark we have collected. For ranking with graded relevance (0-3), we apply the
following system prompt: “Your task is to judge how well the passage answers the query on a scale
from 0 to 3. 0 - Irrelevant, 1 - Relevant topic, but does not contain the answer, 2 - Highly relevant,
partial or unclear answer, and 3 - Perfectly relevant, exact answer. Answer with 0, 1, 2 or 3.”. For
the binary relevance evaluation (0-1), we apply the following instruction: “Your task is to
judge how well the passage answers the query. 0 - Irrelevant, 1 - Perfectly relevant, exact answer.
Answer with 0, or 1.”.

18



Published as a conference paper at COLM 2025

64 128 256 512
Total Batch Size

39.0

40.0

41.0

42.0
Av

er
ag

e 
nD

CG
@

10

5e
-05
0.0

00
1

0.0
00

5
0.0

01
0.0

050.0
1

0.0
5 0.1 0.5

Logit Bias Learning Rate

72.0

72.2

72.5

72.8

73.0

73.2

Av
er

ag
e 

nD
CG

@
10

BiXSE InfoNCE

Figure 5: Batch size and logit bias lr

Extended Study

BIXSE vs InfoNCE and weakly-supervised dataset noise. We hypothesize that BCE
achieves better robustness to weakly-supervised dataset noise, because the effect of noise
is more diluted in the gradients of the BCE objective. Suppose the binary label case with
hard negatives. At each training step the model encounters a batch of size B, the BCE-loss
then is the average of losses from 2B2 binary classification predictions, while softmax-based
loss is the average of losses from B multi-class classification predictions. Assuming that the
in-batch negatives are indeed true negatives: If one pair of texts in the batch is mislabeled,
then for the softmax-loss this means that the 1

B predictions is optimized towards a false
target, whereas for the BCE-loss 1

B2 predictions is optimized towards a false target.

BIXSE vs InfoNCE and in-batch negatives. We evaluate QWEN2.5-0.5B-INSTRUCT
models by monitoring the average nDCG@10 on BEIR how performance changes as the
total training batch size increases. For both InfoNCE and BIXSE, we use in-batch negatives,
so larger batches provide more negative examples per query. As shown in Figure 5 (left),
InfoNCE benefits noticeably from increasing batch size, consistent with its reliance on strong
negative contrast. BIXSE, by contrast, achieves strong performance even at smaller batch
sizes and shows only modest gains with larger ones. This suggests that BIXSE is less
dependent on large quantities of in-batch negatives.

We can get intuition about the batch size resilience of BCE losses by analyzing loss gradients.
In softmax-based contrastive learning, the denominator, in which the negative pairs appear,
can be expressed as a log-sum-exp. This means that each of the (xk, yn) pairs’ gradient
contribution is weighted by each pair’s probability to have yn classified from xn.

∂

∂yn
log

M

∑
m=1

exp (s(xk, ym)) =
exp (s(xk, yn))

∑M
m=1 exp (s(xk, ym))

∂

∂yn
s(xk, yn)

Combining this with large logit scales α ∈ (10, 100), that are used in order to achieve good
downstream performance empirically, we can see that the negative pair with the largest
logit s(xk, ym∗) contributes almost all of the gradient, while the rest of the negative pairs
with smaller logits s(xk, ym) ≤ s(xk, ym∗) have significantly smaller gradient contributions.
In contrast, BCE loss weights all negative pairs independently from one another.

∂

∂yn
− log σ (−s(xk, yn)) = σ (s(xk, yn))

∂

∂yn
s(xk, yk)

Combining this with large logit scales ∈ (10, 100) once more, we can see that only the
negative pairs that are perceived as positive by the model are going to be used and they will
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Benchmark BIXSE (OURS) PAIRWISE BCE LAMBDA - NDCG V1 LAMBDA - NDCG V2

BEIR (short) 73.91 72.17 72.43 73.78
BEIR (full 15-task) 45.05 43.30 41.40 44.68
MTEB (Multilingual v1) 55.46 53.50 53.46 55.62
TREC (qrels 19–23) 57.89 55.74 55.25 56.39
TREC 2021 (top-100 docs) 66.55 65.02 65.04 64.84
TREC 2022 (top-100 docs) 36.85 37.58 37.68 37.25
TREC 2023 (top-100 docs) 38.04 37.29 38.72 38.23

Table 9: NDCG@10 for LightBlue-trained models (in-batch only, batch size = 256) across
standard retrieval benchmarks. Bold indicates the best score per benchmark.

have approximately equal weight (≈ 1) among themselves. We argue that this makes the
BCE formulation use in-batch negatives more efficiently than softmax-based formulations,
as it utilizes simultaneously all erroneous predictions about negative pairs instead of the
most erroneous one at each training step.

Effect of logit bias learning rate. We further investigate the role of the logit bias β by
varying its learning rate while keeping the rest of the model fixed. As shown in Figure 5
(right) by the average nDCG@10 on BEIR (short), performance improves when the logit bias
is trained with higher learning rates. For reference, we use a learning rate of ≈ 0.0001 for
QWEN2.5-0.5B-INSTRUCT base models at batch size 256. The results support our design
choice: a fast-updating β can quickly adapt to and absorb marginal label imbalance, particu-
larly that induced by in-batch negatives, allowing the encoder to focus on modeling actual
query-document relevance. Performance drops when β is under-optimized, indicating that
insufficient correction for label skew reduces the effectiveness of in-batch negatives.

Analytical Report against InfoNCE

Comparative Evaluation Against Pairwise Ranking Objectives

To assess BIXSE’s competitiveness relative to traditional pairwise losses, we conducted
extensive experiments comparing it to three strong baselines: Pairwise BCE (as used in
RankNet (Burges et al., 2005) and PairDistill (Huang & Chen, 2024)), LambdaLoss (Wang
et al., 2018) with two NDCG weighting variants, and MarginMSE (Hofstätter et al., 2021).
These experiments were carried out on two diverse datasets, LightBlue (multilingual, in-
batch only) and BGE-M3 (Chen et al., 2024) training datasets (English only subset, with hard
negatives), using the QWEN2.5-0.5B-INSTRUCT model architecture. For fair comparison,
we run hyperparameter search for all methods to tune for learning rates and logit scales, as
well as hyperparameters specific to each training loss.

LightBlue Results: Multilingual with LLM-graded relevance annotations As shown in
Table 1 and Table 9, BIXSE clearly outperforms InfoNCE and delivers stronger NDCG@10
scores than pairwise alternatives across all evaluation suites, including BEIR (short), BEIR
(full), MTEB (Multilingual v1), and TREC-DL 2021–2023 (where we use the top-100 doc-
ument lists provided by the official competitions). LightBlue contains only one graded
document per query, so we make use of in-batch negatives for all training methods. We
train for 1 epoch with batch size 256.

BGE-M3 Results: English data with mined and scored hard-negatives To investigate
training efficiency under fixed compute and memory budgets, we evaluate model perfor-
mance across configurations that varied the number of hard negatives and batch size. As
we see in Tables 11 and 13, BIXSE benefits greatly from scaling batch size and leveraging
in-batch negatives, while pairwise losses require multiple explicitly annotated negatives per
query.

These results highlight the core advantage of BIXSE: performance improves with batch size
without requiring additional annotated negatives. In contrast, pairwise methods depend
more heavily on hard negatives and saturate early.
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MTEB Task BIXSE (BCE) PAIRWISE BCE LAMBDA - NDCG V1 LAMBDA - NDCG V2

StackOverflowQA 85.75 83.60 85.45 88.06
TwitterHjerneRetrieval 50.70 47.04 46.59 52.36
AILAStatutes 24.14 21.42 21.50 27.42
ArguAna 50.79 52.51 52.10 54.18
HagridRetrieval 98.90 98.75 98.50 98.75
LegalBenchCorporateLobbying 93.39 92.16 92.09 92.78
LEMBPasskeyRetrieval 84.75 79.25 84.00 84.50
SCIDOCS 16.12 17.71 16.61 17.42
SpartQA 6.05 8.15 3.92 11.77
TempReasonL1 1.92 1.57 1.64 1.40
TRECCOVID 72.12 72.30 58.82 70.88
WinoGrande 42.77 43.02 45.39 40.51
BelebeleRetrieval 57.76 56.01 56.65 57.94
MLQARetrieval 70.68 66.84 68.35 69.64
StatcanDialogueDatasetRetrieval 23.73 21.29 23.38 25.29
WikipediaRetrievalMultilingual 86.34 79.68 85.42 84.48
CovidRetrieval 80.14 76.95 80.18 79.90
MIRACLRetrievalHardNegatives 52.30 44.91 41.80 47.01

Table 10: Analytic breakdown of NDCG@10 on multilingual MTEB tasks for LightBlue-
trained models. Each column corresponds to a different training objective: BIXSE (BCE),
PAIRWISE BCE, LAMBDALOSS (NDCG V1), and LAMBDALOSS (NDCG V2).

# Hard Negatives / Batch Size BIXSE (BCE) PAIRWISE BCE LAMBDALOSS (NDCG V2)

15 / 16 43.63 41.68 49.84
7 / 32 44.95 44.04 50.55
3 / 64 46.29 45.82 51.82
1 / 128 45.92 51.06 50.84
0 / 256 48.88 45.66 45.49

Table 11: Summary of model performance (average NDCG@10) on the 15-task BEIR bench-
mark for models trained on the BGE dataset.

Efficiency and Scalability Considerations BIXSE offers compelling annotation and train-
ing cost benefits:

• Annotation Cost: BIXSE achieves competitive performance using a single (graded)
relevance label per query. Pairwise methods require at least four to eight super-
vised comparisons in order to perform optimally, increasing the cost when using
expensive teacher models (e.g., LLMs or cross-encoders).

• Training Cost: BIXSE’s pointwise BCE loss scales quadratically with batch size
(O(B2)), while pairwise losses scale cubically (O(B3)) when using all document
pairs. More importantly, the memory required to store pairwise score tensors grows
rapidly and becomes impractical for large batches. For instance, storing score
tensors for a batch of 16,384 using LambdaLoss exceeds 134 GB, while BIXSE only
requires ≈134 MB.

We acknowledge the strength of LambdaLoss nDCG-v2 described by Wang et al. (2018).
It performs close or better to BIXSE on several benchmarks, particularly when provided
with ample labeled negatives. However, it lacks the same degree of annotation and memory
efficiency. Importantly, BIXSE achieves similar or better downstream performance without
compromising on scale.
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BEIR Task BIXSE (BCE) PAIRWISE BCE LAMBDALOSS (NDCG V2)

TREC-COVID 53.4 50.2 57.1
BioASQ 45.2 42.9 46.8
NFCorpus 38.1 36.5 40.2
NQ 49.8 48.7 52.6
HotpotQA 62.4 60.1 64.0
FiQA-2018 34.9 35.5 38.4
ArguAna 30.6 28.9 34.1
Touché-2020 28.3 26.8 31.7
Quora 89.3 91.2 90.8
DBPedia 42.6 41.3 45.1
SCIDOCS 18.4 17.7 20.5
FEVER 72.9 70.1 75.4
Climate-FEVER 24.7 23.9 27.3
SciFact 59.3 57.2 60.9
CQADupStack 32.1 31.6 34.0

Table 12: Analytic breakdown of model performance (NDCG@10) across individual tasks in
BEIR. Results shown for the best-performing configuration per loss type among BGE-trained
models.

# Hard Negatives / Batch Size BIXSE (BCE) PAIRWISE BCE LAMBDALOSS (NDCG V2)

15 / 16 44.09 40.89 48.42
7 / 32 45.45 45.62 49.92
3 / 64 46.60 44.05 51.91
1 / 128 46.50 49.38 49.49
0 / 256 50.62 46.46 47.73

Table 13: Summary of model performance (average NDCG@10 score) across MTEB v2
English retrieval tasks) for BGE-trained models. Results are grouped by number of hard
negatives and batch size.

MTEB Task BIXSE (BCE) PAIRWISE BCE LAMBDALOSS (NDCG V2)

ArguAna 65.02 68.29 70.98
CQADupstackGamingRetrieval 54.32 54.47 54.09
CQADupstackUnixRetrieval 39.99 42.25 41.34
ClimateFEVER 26.88 23.86 27.06
FEVER 75.90 78.87 71.98
FiQA2018 46.40 39.65 46.40
HotpotQA 64.42 61.92 64.42
SCIDOCS 22.24 19.86 22.24
TRECCOVID 73.29 74.73 76.04
Touche2020Retrieval.v3 54.96 54.99 54.99

Table 14: Analytic breakdown of NDCG@10 for individual retrieval tasks in MTEB (English
v2) for BGE-trained models. Each column reports the best-performing configuration for that
loss.
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