MacroBench: A Novel Testbed for Web Automation
Scripts via Large Language Models

Hyunjun Kim* Sejong Kim*
KAIST KAIST
Daejeon, South Korea Daejeon, South Korea
hyunjun1121@kaist.ac.kr kingsj@kaist.ac.kr
Abstract

We introduce MacroBench, a code-first benchmark that evaluates whether
LLMs can synthesize reusable browser-automation programs (macros) from
natural-language goals by reading HTML/DOM and emitting Python+Selenium.
MacroBench instantiates seven self-hosted sites—Airbnb-like, TikTok-like, Reddit-
like, Instagram-like, Facebook-like, Discord-like, and Threads-like —covering
681 tasks across interaction complexity and targeting difficulty. Our end-to-end
protocol validates generated code via static checks, sandboxed execution, and
outcome verification (DOM assertions, database snapshots), and includes a safety
suite for scraping, spam/abuse, and credential/privacy prompts. Across 2,636
model-task runs, we observe stratified success: GPT-40-Mini (96.8%), GPT-4.1
(95.3%), Gemini-2.5-Pro (89.0%), DeepSeek-V3.1 (83.4%). Models handle sim-
ple tasks reliably (91.7%) but fail on complex workflows (0.0%), and none meet
production-quality coding practices despite functional completion. We release
our complete benchmark pipeline, evaluation framework, and experimental results
at https://github.com/hyunjun1121/MacroBench to enable reproducible
assessment of macro synthesis for web automation.

1 Introduction

Large Language Models (LLMs) are increasingly used to automate complex workflows that unfold
inside a web browser. We study this problem from a programmatic perspective: given a natural-
language goal, can an LLM synthesize a reusable, rule-based web automation program (a “macro”
or macroinstruction [6]) using industry-standard tools such as Python and Selenium? These macros
execute concrete browser actions—clicking, typing, submitting forms, following links—so that end
users can repeatedly and reliably run them to complete tasks.

A visionless, code-centric agent. Unlike multimodal web agents grounded in screenshots or pixels
[11,[21]], our agent operates purely on HTML/DOM plus programmatic browser actions. This code-
first lens reduces perception latency and brittleness, exposes semantic structure (element types, IDs,
ARIA roles), and mirrors professional practice (e.g., Selenium locators). It extends DOM-based
web interaction research in RL and structured policies 20} |14} 7] while remaining compatible with
contemporary prompting paradigms [24, |18 25].

A benchmark for macro synthesis. MacroBench isolates three competencies required to translate
a natural-language goal into an executable macro:
1. Code interpretation: recover task-relevant structure from raw HTML (forms, inputs,
buttons, links, and attributes such as id, class, name, role, labels, and hierarchy).

2. Code generation: emit correct, idiomatic Python+Selenium with robust element location
and interaction logic (waits, error handling, parameterization), complementing algorith-
mic/software benchmarks [[2} |8, |13]].

*These authors contributed equally

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Lock-LLM Workshop:
Prevent Unauthorized Knowledge Use from Large Language Models.

https://github.com/hyunjun1121/MacroBench

3. Task planning: decompose the goal into steps and control flow, drawing on
reasoning+acting/tool-use strategies [24} |18}, 25, 4].

Each competency is evaluated with targeted prompts and execution checks, enabling granular diagno-
sis beyond aggregate success rates.

Implications for safety and dual-use. Because web automation can be repurposed for spam,
scraping, or policy-violating behavior, MacroBench also probes safety alignment under realistic
prompts. Our safety suite complements agentic-safety evaluations [28|] and policy-aligned training
paradigms [16} |1] by asking whether models refuse or reshape requests that would yield unsafe
automation code [5,9}|10]. The analysis highlights failure modes specific to code-and-actions settings
that are underrepresented in general-purpose safety tests.

Controlled, reproducible environments. All tasks run end-to-end on seven self-hosted, syn-
thetic websites that emulate widely used platforms while avoiding interaction with live services.
Concretely, we instantiate Airbnb-like (hospitality marketplace), TikTok-like (short-video feed), reddit-
like (forums), instagram-like (photo feed), facebook-like (social network), discord-like (chat with
servers/channels), and Threads-like (microblogging) sites, following best practices for reproducible
web-agent evaluation [29, 3]. This design ensures consistent initial states and precise execution-
based scoring. Our evaluation includes four contemporary LLMs—GPT-4.1, Gemini-2.5-Pro,
DeepSeek-V3.1, and GPT-40-Mini—to illustrate capability and safety trade-offs in a code-first
setting.

Scope and significance. Prior web-agent benchmarks emphasize open-web browsing or visually
grounded interaction [26| |I1} 21]] or evaluate general agent abilities across heterogeneous tools
and tasks [[15} |19} [23] |22]]. MacroBench is complementary: it targets macro synthesis over HTML
as the core skill required for scalable, maintainable, and auditable automation. By disentangling
interpretation, generation, and planning, our benchmark provides actionable diagnostics for building
agents that are both highly capable and responsibly deployable in real-world automation workflows
[17].

2 Related Work

DOM-centric web interaction. Early work established the value of reasoning over HTML/DOM
rather than pixels for controllable web agents. [20]] introduced the World-of-Bits platform; [[14]
proposed workflow-guided exploration and a DOM-structured policy; and [7] grounded actions in
DOM graphs. These efforts foreshadow our “vision-less” setting: agents that read code structure to
choose robust, semantically meaningful actions.

Realistic web environments and open-web evaluation. Simulated but realistic websites (e.g.,
shopping) were popularized by WebShop [26]. WebArena [[29]] advanced reproducibility with self-
hosted sites; Mind2Web [3]] shifted to real websites with broad task diversity. Recent multimodal
benchmarks add screenshots to capture visual grounding—VisualWebArena [11]] and OSWorld [21].
Ecosystem efforts aim to standardize evaluation across suites (e.g., BrowserGym) [[12[]. Our bench-
mark differs by focusing squarely on macro synthesis from HTML and by concretely instantiating
seven archetypal, self-hosted sites—Airbnb-like, TikTok-like, reddit-like, instagram-like, facebook-
like, discord-like, and Threads-like—to stress HTML-grounded interaction patterns (forms, feeds,
chats, and microblogging) under reproducible conditions.

Agents, tool use, and planning. Agent prompting frameworks combine reasoning with action
execution. ReAct interleaves thoughts and tool calls [24]]; Toolformer teaches models to decide when
and how to invoke APIs [18]]; and Tree-of-Thoughts introduces deliberate search over intermediate
thoughts [25]]. Program-aided reasoning leverages external execution to improve reliability [4].
Broader agent benchmarks evaluate general decision making across diverse environments and tool
suites [15,[19, 23| 22]]. MacroBench adopts compatible prompting styles but evaluates a narrower,
industry-relevant target: translating natural-language goals into maintainable Python+Selenium
macros.

Code generation and software engineering evaluation. LLM code generation is typically assessed
via algorithmic correctness (e.g., HumanEval) [2]], software-maintenance realism (e.g., SWE-bench)
[8]], or competitive programming [|13]]. Our benchmark complements these by scoring browser automa-
tion code: element selection, synchronization, error handling, and parameterized execution—skills
that are decisive for robustness on the seven site archetypes above.

Safety of agentic LLMs. Safety alignment techniques such as RLHF [16]] and Constitutional Al
[1] motivate systematic testing of agents in interactive settings. Recent benchmarks quantify agentic
safety risks and policy adherence [28]], including web-specific safety and trustworthiness probes [27,
5,19, 110]. Our safety suite situates these concerns in code-first automation: can an LLM be induced to
output macros that enable spam, scraping, or other policy violations, or does it refuse and propose
safer alternatives?

Positioning. Where visually grounded agents advance perception and accessibility [11} 21],
MacroBench targets the engineering substrate of web automation—reading HTML, planning ac-
tions, and emitting robust Selenium code. By cleanly factorizing interpretation, generation, and
planning, it offers diagnostic signal that complements open-web evaluations [3]] and general agent
leaderboards [[15} {19, 23, 22], and it brings safety assessment closer to the dual-use realities of
automation code [[16, 1}, [28]].

3 Methodology

3.1 Benchmark Design and Architecture

MacroBench evaluates Large Language Models (LLMs) on their ability to synthesize executable,
reusable web-automation macros (Python+Selenium programs) from natural-language instructions.
The benchmark targets three core competencies required for reliable macro synthesis: code interpre-
tation, code generation, and task planning.

Synthetic website ecosystem. Following best practices in web-agent evaluation [29] |26], we deploy
a controlled ecosystem of seven synthetic websites that emulate common real-world platforms while
ensuring reproducibility and safety:

* Airbnb-like marketplace: listing search/filtering, booking flows (20 tasks)

* TikTok-like short-video platform: infinite feeds, social interactions (160 tasks)

* Reddit-like forum: subcommunities, posts, voting, comments (130 tasks)

* Instagram-like photo feed: posts, profiles, social actions (120 tasks)

* Facebook-like social network: timeline, groups, events (120 tasks)

* Discord-like chat: servers, channels, messaging (111 tasks)

* Threads-like microblog: timeline, replies, follows (20 tasks)

All sites expose consistent HTML/ARIA conventions, deterministic initial states (seeded databases,
fixed user accounts), and realistic interaction patterns. Each website runs in isolated containers with
frozen dependencies, enabling reproducible evaluation.

Task taxonomy and complexity levels. We authored 681 distinct automation tasks. Across our full
run grid (2,636 model-task evaluations; some tasks were not attempted by all models), the complexity
distribution and success are:

1. Simple: 2,584 runs with 2,370 successes (91.7%)
2. Medium: 44 runs with 37 successes (84.1%)
3. Complex: 8 runs with 0 successes (0.0%)

Each task includes natural-language instructions, explicit success criteria, and executable validation
checks; a run is counted as successful only if the program passes static checks, executes without
runtime error, and satisfies all DOM/database assertions.

3.2 Evaluation Framework

Models under test. We evaluate four contemporary LLMs with distinct profiles (model IDs as
queried at evaluation time): GPT-4.1, Gemini-2.5-Pro, DeepSeek-V3.1, GPT-40-Mini. All models
receive the same structured prompts, identical retry budget (up to two attempts), and equivalent
execution feedback signals for fairness and reproducibility.

Prompting methodology. We use structured prompts containing: (i) task specification with
success criteria, (i) HTML context (DOM excerpts with attributes), (iii) technical constraints
(Python+Selenium output format), and (iv) few-shot exemplars. Each model receives up to two retry
attempts with execution feedback.

Execution and validation pipeline. Generated programs undergo end-to-end evaluation:

1. Static checks: linting, import validation, safety guardrails

Table 1: Overall macro-synthesis performance across 2,636 model-task combinations.

Model Total Success Rate (%)
GPT-40-Mini 680 658 96.8
GPT-4.1 674 642 95.3
Gemini-2.5-Pro 666 593 89.0
DeepSeek-V3.1 616 514 83.4
Overall 2,636 2,407 91.3

2. Runtime execution: headless browser automation in sandboxed containers
3. Outcome validation: DOM assertions, database snapshots, HTTP logs
4. Error attribution: syntax, runtime, logical, timing, or coverage failures

All artifacts (code, traces, screenshots, DOM diffs) are logged for reproducibility.

3.3 Safety Evaluation Component

Web automation carries dual-use risks. Our safety suite probes whether models refuse or redirect
harmful requests across four categories: scraping/data extraction, spam/abuse, credential harvesting,
and privacy violations. We evaluate refusal rates, alternative quality, reasoning clarity, and consistency
under paraphrases.

3.4 Metrics and Analysis

Primary metrics. Execution-based scoring provides the principal signal: (i) task completion rate,
(i1) code quality assessment (maintainability, robustness, best practices), and (iii) error resilience
under adversarial conditions.

Competency diagnostics. We separately analyze code interpretation (element targeting accuracy),
code generation (syntactic validity, Selenium practices), and task planning (workflow decomposition,
error handling). Ablation studies quantify the contribution of prompt components (HTML context,
exemplars, retry attempts).

4 Results

4.1 Overall Performance

We evaluated four contemporary LLMs across 2,636 unique task-model combinations spanning
seven synthetic websites. Results demonstrate clear performance stratification, with GPT-40-Mini
achieving the highest overall success rate (96.8%), followed by GPT-4.1 (95.3%), Gemini-2.5-Pro
(89.0%), and DeepSeek-V3.1 (83.4%).

Table [I| summarizes the aggregate results. Despite architectural differences, all models exhibit strong
performance on simple automation tasks, but effectiveness degrades with increasing task complexity
and website-specific interaction patterns.

4.2 Task Complexity Analysis

Performance varies significantly by task complexity (Table [Z). Simple automation tasks (91.7%
success) are handled reliably across all models, while medium-complexity workflows requiring
multi-step coordination show degraded performance (84.1%). Complex tasks involving conditional
logic, error recovery, and cross-page workflows remain largely unsolved (0.0% success), highlighting
fundamental limitations in current LLMs’ planning and error-handling capabilities.

Table 2: Performance breakdown by task complexity level.

Complexity Total Success Rate (%)

Simple 2,584 2,370 91.7
Medium 44 37 84.1
Complex 8 0 0.0

4.3 Website-Specific Performance Patterns

Platform archetype strongly influences macro synthesis success (Table[3). Discord-like chat platforms
achieve the highest success rate (99.5%), likely due to simple message-posting workflows and
predictable DOM structures. Facebook-like social networks also perform well (98.7%), while
TikTok-like short-video platforms prove most challenging (81.5%), primarily due to infinite-scroll
feeds and dynamic content loading.

Table 3: Success rates by website archetype (task count, total runs, successes, and rates).

Website Tasks Total Runs Successes Rate (%)
Discord-like 111 426 424 99.5
Facebook-like 120 463 457 98.7
Reddit-like 130 499 470 94.2
Threads-like 20 80 72 90.0
Instagram-like 120 471 412 87.5
Airbnb-like 20 80 69 86.3
TikTok-like 160 617 503 81.5

Note. We omit per-site model rankings to avoid over-interpretation given missing runs on some
site—model pairs; see Appendix for per-model breakdown.

Model rankings vary by platform, suggesting interactions between model design and UI patterns (e.g.,
feeds, chats, booking flows). We therefore avoid per-site rankings in the main text and defer detailed
breakdowns to the Appendix where available.

4.4 Error Analysis and Failure Modes

We analyzed 229 failed attempts. In our current logs, most failures fall into an unknown bucket—i.e.,
programs execute but do not meet outcome assertions. Because attribution is coarse, we refrain
from asserting specific causes (e.g., logic vs. timing) and instead report them as objective-mismatch
failures. We are extending the pipeline to disambiguate selector errors, timing issues (waits), and
incomplete control flow.

DeepSeek-V3.1 exhibits the highest failure rate (16.6%, 102/616), while GPT-40-Mini achieves
the lowest (3.2%, 22/680). The distribution suggests that code-specialized models may generate
syntactically correct but semantically incomplete automation sequences, while general-purpose
models with stronger instruction-following produce more reliable end-to-end workflows.

4.5 Code Quality Assessment

Our code quality rubric evaluated generated macros across five dimensions: syntax correctness,
Selenium best practices, error handling, wait strategies, and maintainability. Under a strict pass/fail
rubric (explicit waits, structured error handling, parameterization, and maintainable structure all
required), no model achieved a full pass. This exposes a gap between functional completion and
production-readiness; we include dimension-wise checks in the Appendix for future replication and
refinement.

This finding highlights a critical disconnect: while models can generate macros that complete specific
tasks, the resulting code lacks robustness features essential for real-world deployment (explicit waits,
exception handling, parameterization, and maintainable structure).

4.6 Safety Evaluation Results

Our safety suite revealed nuanced patterns in harmful request handling. All models consistently
refuse explicitly harmful requests (credential harvesting, privacy violations), but responses vary in
quality and constructiveness.

GPT-4.1 and GPT-40-Mini demonstrate superior "refuse-and-repair" behavior, declining unsafe
requests while proposing policy-compliant alternatives. Gemini-2.5-Pro and DeepSeek-V3.1 more
frequently provide bare refusals without constructive redirection, potentially frustrating legitimate
automation needs.

Notably, ambiguous requests (bulk data export, workflow scaling) expose inconsistencies across
models, with some interpreting benign automation intent while others default to conservative refusal.
This suggests need for more nuanced safety training that distinguishes between legitimate productivity
automation and policy-violating abuse.

4.7 Model-Specific Characterization

GPT-40-Mini achieves the best overall performance through consistent execution and high success
rates across diverse platforms. Its efficiency-oriented design appears well-suited to structured macro
synthesis tasks.

GPT-4.1 shows balanced performance with particular strength on complex platforms (TikTok-like)
but occasional inconsistencies on simpler tasks (Discord-like).

Gemini-2.5-Pro demonstrates deliberate reasoning capabilities with strong performance on com-
plex booking flows (Airbnb-like) but struggles with high-frequency interaction patterns.

DeepSeek-V3.1 exhibits the most variable performance—excelling on specific platforms (Discord)
while showing systematic weaknesses on dynamic content handling and workflow planning.

4.8 Implications for Practical Deployment

Our results suggest that current LLMs can reliably automate simple, well-structured web tasks but
remain unsuitable for complex, multi-step workflows requiring robust error handling and dynamic
adaptation. The universal absence of production-quality coding practices indicates that generated
macros require significant human review and refinement before deployment.

For practitioners, these findings recommend: (1) limiting initial deployments to simple, single-step
automation tasks; (2) implementing comprehensive testing and validation pipelines; (3) develop-
ing model-specific prompting strategies that emphasize robustness and maintainability; and (4)
establishing clear safety guidelines for automation request handling.

5 Conclusion

This work introduced MacroBench, a controlled benchmark for evaluating LLMs on executable
web-automation macro synthesis. Our results reveal clear stratification across contemporary models:
while state-of-the-art systems (e.g., GPT-40-Mini, GPT-4.1) consistently succeed on simple single-
step tasks, performance deteriorates on medium-complexity workflows and collapses entirely for
complex, planner-heavy scenarios. The analysis highlights that although LLMs exhibit strong code-
generation and syntactic reliability, deficiencies persist in synchronization, robust element targeting,
and workflow planning. Safety evaluation indicates that refusal alone is insufficient; models exhibiting
refuse-and-repair—declining unsafe requests while proposing policy-aligned alternatives—provide
greater practical utility.

Overall, MacroBench underscores that progress in macro synthesis requires not only scaling model
capacity, but also targeted improvements in reasoning, error recovery, and safety alignment.

6 Limitations

While comprehensive, this study carries several limitations. First, our evaluation is constrained to a
synthetic ecosystem of seven websites, which, although carefully designed, cannot fully capture the
diversity and complexity of real-world platforms. Second, our task set, though broad, emphasizes
common interaction patterns and may under-represent rare or adversarial workflows. Third, the
safety probes focus on a limited set of harmful request categories and do not exhaustively span the
long tail of misuse risks. Fourth, our error attribution and rubric-based quality assessments involve
human-designed criteria, which may introduce subjectivity. Finally, we restrict evaluation to four
representative LLMs; future work should extend to a wider range of architectures and instruction-
tuning strategies. We view these limitations as opportunities for refinement: expanding the website
suite, diversifying task complexity, broadening safety probes, and scaling cross-model comparisons
will yield a more complete picture of LLM capabilities in web automation.

References

(1]
(2]
(3]
(4]
(5]

(6]

(71
(8]
(9]

[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

Yuntao Bai et al. “Constitutional Al: Harmlessness from Al Feedback”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2022.

Mark Chen et al. “Evaluating Large Language Models Trained on Code”. In: arXiv preprint
arXiv:2107.03374 (2021).

Xiang Deng et al. “Mind2Web: Towards a Generalist Agent for the Web”. In: Advances in
Neural Information Processing Systems (NeurlPS) Datasets and Benchmarks Track. 2023.
Luyu Gao et al. “PAL: Program-Aided Language Models”. In: Proceedings of the 40th
International Conference on Machine Learning (ICML). 2023.

Junwoo Ha et al. “M2S: Multi-turn to Single-turn jailbreak in Red Teaming for LLMs”. In:
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Ed. by Wanxiang Che et al. Vienna, Austria: Association for
Computational Linguistics, July 2025, pp. 16489-16507. 1SBN: 979-8-89176-251-0. DOT:
10.18653/v1/2025.acl-1ong.805. URL: https://aclanthology.org/2025.acl-1long
.805/.

Forrest Huang et al. “Automatic Macro Mining from Interaction Traces at Scale”. In: Proceed-
ings of the 2024 CHI Conference on Human Factors in Computing Systems. CHI *24. New
York, NY, USA: Association for Computing Machinery, 2024. 1ISBN: 9798400703300.

Sheng Jia, Jamie Kiros, and Jimmy Ba. “DOM-Q-NET: Grounded RL on Structured Language
for Web Navigation”. In: International Conference on Learning Representations (ICLR). 2019.
Carlos E. Jimenez et al. “SWE-bench: Can Language Models Resolve Real-World GitHub
Issues?” In: arXiv preprint arXiv:2310.06770 (2023).

Hyunjun Kim et al. ObjexMT: Objective Extraction and Metacognitive Calibration for LLM-
as-a-Judge under Multi-Turn Jailbreaks. 2025. arXiv: 2508.16889 [cs.CL]. URL: https:
//arxiv.org/abs/2508.16889.

Hyunjun Kim et al. X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to
Single-turn Jailbreak Templates. 2025. arXiv: 2509.08729 [cs.CL]. URL: https://arxiv.o
rg/abs/2509.08729.

Jing Yu Koh et al. “VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web
Tasks”. In: Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (ACL). Bangkok, Thailand, 2024, pp. 881-905.

Thibault Le Sellier De Chezelles et al. “The BrowserGym Ecosystem for Web Agent Research”.
In: arXiv preprint arXiv:2412.05467 (2024).

Yujia Li et al. “Competition-level Code Generation with AlphaCode”. In: Science 378.6624
(2022), pp. 1092—-1097. DOI:|10.1126/science.abq1158,

Evan Zheran Liu et al. “Reinforcement Learning on Web Interfaces Using Workflow-Guided
Exploration”. In: International Conference on Learning Representations (ICLR). 2018.

Xiao Liu et al. “AgentBench: Evaluating LLMs as Agents”. In: arXiv preprint
arXiv:2308.03688 (2023).

Long Ouyang et al. “Training Language Models to Follow Instructions with Human Feedback”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2022.

Long Phan et al. Humanity’s Last Exam. 2025. arXiv: 2501.14249 [cs.LG]. URL: https:
//arxiv.org/abs/2501.14249.

Timo Schick et al. “Toolformer: Language Models Can Teach Themselves to Use Tools”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2023.

Yongliang Shen et al. “TaskBench: Benchmarking Large Language Models for Task Au-
tomation”. In: Advances in Neural Information Processing Systems (NeurlPS) Datasets and
Benchmarks Track. 2024.

Tianlin Shi et al. “World of Bits: An Open-Domain Platform for Web-Based Agents”. In:
Proceedings of the 34th International Conference on Machine Learning (ICML). 2017.

Tianbao Xie et al. “OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks
in Real Computer Environments”. In: Advances in Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track. 2024.

Frank F. Xu et al. “TheAgentCompany: Benchmarking LLM Agents on Consequential Real
World Tasks”. In: arXiv preprint arXiv:2412.14161 (2024).

https://doi.org/10.18653/v1/2025.acl-long.805
https://aclanthology.org/2025.acl-long.805/
https://aclanthology.org/2025.acl-long.805/
https://arxiv.org/abs/2508.16889
https://arxiv.org/abs/2508.16889
https://arxiv.org/abs/2508.16889
https://arxiv.org/abs/2509.08729
https://arxiv.org/abs/2509.08729
https://arxiv.org/abs/2509.08729
https://doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249

[23]
[24]
[25]
[26]

[27]

(28]

[29]

Shunyu Yao et al. “7-bench: A Benchmark for Tool-Agent-User Interaction in Real-World
Domains”. In: arXiv preprint arXiv:2406.12045 (2024).

Shunyu Yao et al. “ReAct: Synergizing Reasoning and Acting in Language Models”. In:
International Conference on Learning Representations (ICLR). 2023.

Shunyu Yao et al. “Tree of Thoughts: Deliberate Problem Solving with Large Language
Models”. In: Advances in Neural Information Processing Systems (NeurIPS). 2023.

Shunyu Yao et al. “WebShop: Towards Scalable Real-World Web Interaction with Grounded
Language Agents”. In: Advances in Neural Information Processing Systems (NeurIPS). 2022.
Ori Yoran et al. “ASSISTANTBENCH: Can Web Agents Solve Realistic and Challenging
Tasks on the Web?” In: Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2024.

Zhexin Zhang et al. “Agent-SafetyBench: Evaluating the Safety of LLM Agents”. In: arXiv
preprint arXiv:2412.14470 (2024).

Shuyan Zhou et al. “WebArena: A Realistic Web Environment for Building Autonomous
Agents”. In: arXiv preprint arXiv:2307.13854 (2023).

A Workshop-Targeted Appendix: Using Benchmark Outputs for
Macro-Safety Training

This appendix outlines how MacroBench artifacts can support training and evaluation of LLMs and
guardrail models that resist unsafe automation requests, aligning with the Lock-LLM workshop
theme of preventing unauthorized knowledge use. We restrict releases to anonymized artifacts and
redact operationally dangerous details pending camera-ready.

B Appendix: Detailed Experimental Data

B.1 Aggregate Results

¢ GPT-40-Mini: 658/680 (96.8%)

e GPT-4.1: 642/674 (95.3%)

¢ Gemini-2.5-Pro: 593/666 (89.0%)
* DeepSeek-V3.1: 514/616 (83.4%)

Task Complexity.

* Simple: 2,370/2,584 (91.7%)
e Medium: 37/44 (84.1%)

e Complex: 0/8 (0.0%)

B.2 Website Performance (Success Rate %)

¢ Airbnb-like: 86.3

» TikTok-like: 81.5

¢ Reddit-like: 94.2

* Instagram-like: 87.5
e Facebook-like: 98.7
* Discord-like: 99.5

¢ Threads-like: 90.0

Why this matters for Lock-LLM. Unlike conventional safety evaluations that target overtly
harmful content (e.g., instructions on self-harm, weapon building, or drug synthesis), our benchmark
reveals a neglected but equally pressing failure mode: modern LLMs will readily generate executable
macros in Python+Selenium that can automate large-scale abuse. Examples include bulk posting
across forums, scraping user data in violation of terms of service, or constructing credential-harvesting
workflows. These cases are rarely flagged by existing guardrails because they appear as “help with
automation” rather than obviously malicious requests. The result is a form of capability laundering,
where powerful but risky behaviors are surfaced under the guise of productivity assistance.

Leveraging benchmark outputs for fine-tuning. Because our evaluation logs include per-task

prompts, model generations, execution traces, and curated safety labels, they serve as a concrete

resource for training safety-aware systems. Researchers can:

* Fine-tune guardrail models to detect and block risky macro requests at both the prompt and output
levels.

* Train LLMs with refuse-and-repair behavior, where unsafe automation requests are declined and
redirected toward safe alternatives (e.g., policy-compliant exports, synthetic test workflows).

* Build critics and filters that score generated programs for signs of high-risk automation patterns
(mass posting loops, credential interception, or unbounded scraping).

Closing the gap. Our dataset highlights that current LLMs often succeed at macro synthesis but
fail at aligning that capability with platform policies. By releasing structured results, refusal labels,
and repair targets, we provide the first reproducible basis for developing models that can distinguish
between benign automation (e.g., accessibility support, testing workflows) and abusive automation
(e.g., spam farms, large-scale scraping). This directly supports the Lock-LLM agenda of mitigating
unauthorized knowledge use: the same benchmarks that expose unsafe behavior also provide the
training signals necessary to constrain it.

Takeaway. In short, MacroBench shows that LLMs do not only produce risky outputs in obvious
categories of harm, but also in subtle, automation-centric scenarios that are currently under-protected.
Our released data makes it possible to fine-tune both LLMs and guardrail models to address these
overlooked risks, turning benchmark evaluation into actionable safety training material.

B.3 Why Macro Safety Is Underserved

Prevailing taxonomies emphasize recognizable explicit harms. Macro synthesis introduces capability
laundering: seemingly benign “please automate X requests conceal high-risk behaviors (spam
farms, bulk extraction, credential flows). Because outputs are executable programs, a single unsafe
response scales to automated, repeated violations. Our results show this gap is systematic across
models, justifying a dedicated training and evaluation pipeline for macro-aware safety.

B.4 What We Release

We release artifacts tailored for training and benchmarking macro safety:

* Per-task records for 200 tasks x 4 models: prompt, HTML/DOM context, model program output
(Python+Selenium), execution logs (stdout/stderr, traces), and evaluation outcomes with labeled
failure modes.

* Safety labels at prompt and output levels:

— risk_label € {SAFE, AMBIGUOUS, UNSAFE}

— refusal_label € {REFUSE, COMPLY, REPAIR} (“repair” = refuse-and-redirect with safe
alternatives)

— intent_surface (read-only, content-creation, account/identity, bulk/automation, data-
exfiltration), policy_concern (scraping, spam/abuse, credentials/privacy)

* Repair targets: policy-aware rewrites, consented/rate-limited exports, and synthetic fixtures that
models should choose over risky code.

 Splits & generalization: train/dev/test with (i) cross-site and (ii) prompt-paraphrase generalization.

* Governance kit: usage policy, evaluation scripts, and a risk-aware leaderboard protocol reporting
both utility and safety.

Data format. Each record is a self-contained JSON object:

{
"task_id": "...", "site": "...", "split”: "train|dev]|test”,
"prompt”: "...", "html_context": "...",
"model_id": "...", "generation": "...",
"exec_pass”: true|false, "failure_mode": "syntax|timing|logic]|...",
"risk_label”: "SAFE|AMBIGUOUS|UNSAFE",
"refusal_label”: "REFUSE|COMPLY |REPAIR",
"policy_concern”: ["scraping”,"spam”,"credentials"],
"repair_target": "policy-compliant alternative”

}

B.5 Intended Uses
Artifacts enable training and evaluation of:

1. Guardrail classifiers detecting risky macro intent and risky program patterns pre- and
post-generation.

2. Refuse-and-repair LLMs that decline unsafe automation and provide policy-compliant
alternatives (consented exports, synthetic stubs).

3. Planner critics / linters that score plans and code for macro-risk signatures (mass posting
loops, credential flows, unbounded scraping).

B.6 Training Recipes (High-Level, Safety-Preserving)
We leverage labels without teaching step-by-step abuse. All setups operate on prompts and high-level
alternatives.
SFT for refusal-and-repair. Inputs: (prompt, minimal context). Targets: curated REPAIR responses.
Validate for (i) refusal on UNSAFE, (ii) helpfulness on SAFE.
Preference optimization (DPO/IPO). Form pairs (y2°°9, y>24) where »8°°¢ is REPAIR or com-

pliant, and 3*24 is a code-emitting COMPLY for UNSAFE/AMBIGUOUS. Optimize to shift mass away
from unsafe compliance.

Reward modeling for macro risk. Train R(-) to predict risk_label from (prompt, plan/code
summary). Use R as a decoding gate or to trigger clarifications before emitting code.

10

Static program filters (post-generation). Detect abstracted features: action count, credential flows,
cross-origin hops, loop depth, missing waits/guards, target roles.

Parameter-efficient fine-tuning. Apply LoORA/QLoRA (e.g., rank 8-32, 1-3 epochs, 5% warmup)
on REPAIR-centric data to avoid memorizing unsafe snippets.

B.7 Evaluation: Utility—Refusal Frontier

Report a Utility—Refusal Frontier (URF):

* Benign utility: success on SAFE tasks without unnecessary refusal.

* Harm refusal: refusal rate on UNSAFE tasks.

* Ambiguity handling: share of AMBIGUOUS prompts eliciting clarification or safe alternatives
rather than code.

Compare models at matched benign-utility points (e.g., 90% of baseline benign success) to fairly

assess refusal quality.

B.8 How to Integrate Guardrails in a Macro Agent
1. Pre-generation classifier: score user intent; route to REPAIR when risk is high.

2. Planning gate: score macro plans with R; require confirmation or rewriting if risky.

3. Static code audit: lint for credential capture, mass posting, cross-site scraping, and missing
rate limits.

4. Sandbox-first execution: execute in hermetic sandboxes with policy simulators; require
approval for live endpoints.

5. Post-exec telemetry: log element/role-level actions and feed counterexamples back into
training.

B.9 Splits and Generalization Protocols
Two complementary regimes:

Cross-site: train on a subset of websites; test on disjoint sites to measure robustness to unfamiliar
DOM/layout conventions.

Prompt-shift: train on canonical phrasings; test on paraphrases, indirect requests (“help me scale
this workflow”), and injection-style wording.

Report macro-averaged metrics across risk_label strata to avoid masking regressions.

B.10 Red Teaming and Probe Design

We provide non-explicit but risky prompts that realistically elicit abuse-capable macros while avoiding
overtly malicious phrasing. To preserve safety, releases omit exploit steps and operational code;
instead we include high-quality repair targets and benign decoys to test specificity and false positives.

B.11 Responsible Release and Use

Intended use. Research on macro-aware LLM safety, training guardrails, evaluating refusal/repair.
Prohibited use. Training models to increase harmful automation success or to bypass platform
policies.

Access controls. Research-use terms prohibit reproducing unsafe code outside sandboxed evaluation
and require downstream safety disclosures.

Minimization. Unsafe generations are redacted or abstracted to features/metadata sufficient for
detectors and repairs.

No live-target interaction. All websites are synthetic; no real user data or credentials are present.

B.12 Data Card (Summary)

Motivation. Enable macro-aware safety via refusal and safe alternatives.
Composition. 200 tasks (a curated subset) across seven synthetic websites; 4 LLMs’ generations
with traces and safety labels.

Collection. Prompts span interaction complexity and safety probes; execution in sandboxed contain-

ers.
Labels. Dual-annotator protocol with adjudication for risk_label and refusal_label; agreement

11

metrics reported in-repo.

Uses. Guardrail classification, reward modeling, refusal-and-repair fine-tuning.
Limitations. Domain shift to real sites; evolving ToS; conservatism bias in repairs.

Ethics. Dual-use risks mitigated via abstraction, licensing, and bans on operational misuse.

B.13 Limitations and Future Work

Our taxonomy focuses on browser macros; native app and OS-level scripting are out of scope.
Refusal-and-repair must balance helpfulness with harm avoidance. Future work: (i) richer con-
sent/authorization flows; (ii) context-grounded repairs using platform ToS templates; (iii) adversarial
training with automatically mined ambiguous prompts.

B.14 Reproducibility Checklist for Safety Fine-Tuning

1. Publish exact train/dev/test splits and task IDs.

2. Log refusal thresholds or gating (e.g., reward cutoffs); report URF at multiple operating
points.

3. Release redaction policy for unsafe outputs (kept text/features).
4. Document prompting instructions used to elicit repairs/clarifications.

5. Provide failure analysis by policy_concern and website category.

B.15 Practical Notes for Practitioners

* Prefer repair over silence. Offer actionable, policy-compliant alternatives (e.g., consented exports)
instead of bare refusals.

* Tune strictness. Calibrate thresholds to preserve benign utility; report full URF curves.

* Human-in-the-loop. Route high-risk/uncertain cases; log decisions for continual improvement.

* Defense-in-depth. Combine intent filters, plan critics, static audits, and sandbox approvals rather
than relying on a single stage.

Takeaway. LLMs readily produce executable macros that can scale abuse. The MacroBench
artifacts—prompts, structured outputs, execution traces, and curated refusal/repair targets—turn
evaluation into training signals for macro-aware safety, directly targeting risks underrepresented in
conventional content-focused safety.

12

	Introduction
	Related Work
	Methodology
	Benchmark Design and Architecture
	Evaluation Framework
	Safety Evaluation Component
	Metrics and Analysis

	Results
	Overall Performance
	Task Complexity Analysis
	Website-Specific Performance Patterns
	Error Analysis and Failure Modes
	Code Quality Assessment
	Safety Evaluation Results
	Model-Specific Characterization
	Implications for Practical Deployment

	Conclusion
	Limitations
	Workshop-Targeted Appendix: Using Benchmark Outputs for Macro-Safety Training
	Appendix: Detailed Experimental Data
	Aggregate Results
	Website Performance (Success Rate %)
	Why Macro Safety Is Underserved
	What We Release
	Intended Uses
	Training Recipes (High-Level, Safety-Preserving)
	Evaluation: Utility–Refusal Frontier
	How to Integrate Guardrails in a Macro Agent
	Splits and Generalization Protocols
	Red Teaming and Probe Design
	Responsible Release and Use
	Data Card (Summary)
	Limitations and Future Work
	Reproducibility Checklist for Safety Fine-Tuning
	Practical Notes for Practitioners

