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Abstract
Direct policy optimization in reinforcement learn-
ing is usually solved with policy-gradient algo-
rithms, which optimize policy parameters via
stochastic gradient ascent. This paper provides a
new theoretical interpretation and justification of
these algorithms. First, we formulate direct policy
optimization in the optimization by continuation
framework. The latter is a framework for opti-
mizing nonconvex functions where a sequence
of surrogate objective functions, called continu-
ations, are locally optimized. Second, we show
that optimizing affine Gaussian policies and per-
forming entropy regularization can be interpreted
as implicitly optimizing deterministic policies by
continuation. Based on these theoretical results,
we argue that exploration in policy-gradient al-
gorithms consists in computing a continuation
of the return of the policy at hand, and that the
variance of policies should be history-dependent
functions adapted to avoid local extrema rather
than to maximize the return of the policy.

1. Introduction
Applications where one has to control an environment are
numerous and solving these control problems efficiently is
the preoccupation of many researchers and engineers. Re-
inforcement learning (RL) has emerged as a solution when
the environments at hand have complex and stochastic dy-
namics (Sutton & Barto, 2018). Direct policy optimization
and more particularly (on-policy) policy gradients are meth-
ods that have been successful in recent years (Duan et al.,
2016; Andrychowicz et al., 2020). We distinguish two basic
elements that determine the performance of these methods.
As first element, we have the formalization of the optimiza-
tion problem. It is defined through two main choices: the
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(functional) parametrization of the policy and the learning
objective function, which mostly relies on adding an entropy
regularization term to the return. As second element, there
is the choice of the local-search algorithm to solve the opti-
mization problem – we focus on stochastic gradient ascent
methods in this study.

The policy parameterization is the first formalization choice.
In theory, there exists an optimal (parametric) deterministic
policy (Sutton & Barto, 2018), which can be optimized by
deterministic policy gradient (Silver et al., 2014) with a guar-
antee of converging towards a stationary solution (Xiong
et al., 2022). However, this approach gives poor results in
practice as it is subject to convergence towards local op-
tima (Silver et al., 2014). It is therefore usual to optimize
stochastic policies where this problem is mitigated in prac-
tice (Duan et al., 2016; Andrychowicz et al., 2020). For
discrete state and action spaces, theoretical guarantees of
global convergence hold for softmax or direct policy param-
eterization (Bhandari & Russo, 2019; Zhang et al., 2021;
Agarwal et al., 2020). In the general case of continuous
spaces, these results no longer hold and only convergence
towards stationarity can be ensured under strong hypotheses
(Bhatt et al., 2019; Zhang et al., 2020b; Bedi et al., 2021).
Recently, convergence under milder assumptions was es-
tablished assuming that the policy follows a heavy-tailed
distribution, which guarantees a sufficiently spread distri-
bution of actions (Bedi et al., 2022). Nevertheless, most of
the empirical works have focused on (light-tailed) Gaussian
policies (Duan et al., 2016; Andrychowicz et al., 2020) for
which convergence is thus not ensured in the general case
(Bedi et al., 2022). The importance of a sufficiently spread
distribution in policy gradient had already been observed
in early works and was loosely interpreted as exploration
(Lillicrap et al., 2015; Mnih et al., 2016). This concept
originally introduced in bandit theory and value-based RL,
where it consists in selecting a suboptimal action to execute
in order to refine a statistical estimate (Simon, 1955; Sutton
& Barto, 2018), is to our knowledge not well defined for
direct policy optimization. In summary, no consensus has
yet been reached on the exact policy parameterization that
should be used in practice.

The second formalization choice is the learning objective
and more particularly the choice of entropy regularization.
Typically, a bonus enforcing the uniformity of the action
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distribution is added to the rewards in the objective function
(Williams & Peng, 1991; Haarnoja et al., 2019). Intuitively,
it avoids converging too fast towards policies with small
spread, which are subject to being locally optimal. More
general entropy regularizations were applied for encourag-
ing high-variance policies while keeping the distribution
sparse (Nachum et al., 2016) or enforcing the uniformity
of the state-visitation distribution in addition to the action
distribution (Islam et al., 2019). Again, no consensus is
reached about the best regularization to use in practice.

The importance of introducing sufficient stochasticity and
regularizing entropy is commonly accepted in the commu-
nity. Some preliminary research has been conducted to de-
velop a theoretical foundation for this observation. Ahmed
et al. (2019) proposed an empirical analysis of the impact
of the entropy regularization term. They concluded that
adding this term yields a smoothed objective function. A
local-search algorithm will therefore be less prone to con-
vergence to local optima. This problem was also studied by
Husain et al. (2021). They proved that optimizing a policy
by regularizing the entropy is equivalent to performing a
robust optimization against changes in the reward function.
This result was recently reinterpreted by Brekelmans et al.
(2022) who deduced that the optimization is equivalent to
a game where one player adapts the policy while an adver-
sary adapts the reward. The research papers that have been
reviewed concentrate solely on learning objectives in the
context of entropy regularization, leaving unanswered the
question of the relationship between a policy’s return and
the distribution of actions. This question is of paramount
importance for understanding how the formalization of the
direct policy optimization problem impacts the resulting
control strategy.

In this work, we propose a new theoretical interpretation
of the effects of the action distribution on the objective
function. Our analysis is based on the theory of optimiza-
tion by continuation (Allgower & Georg, 1980), which con-
sists in locally optimizing a sequence of surrogate objective
functions. The latter are called continuations and are of-
ten constructed by filtering the optimization variables in
order to remove local optima. Our main contributions are
twofold. First, we define a continuation for the return of
policies and formulate direct policy optimization in the op-
timization by continuation framework. Second, based on
this framework, we study different formulations, i.e., pol-
icy parameterization and entropy regularization, of direct
policy optimization. Several conclusions are drawn from
the analysis. First, we show that the continuation of the
return of a deterministic policy is equal to the return of a
Gaussian policy. Second, we show that the continuation of
the return of a Gaussian policy equals the return of another
Gaussian policy with scaled variance. We then derive from
the previous results that optimizing Gaussian policies using

policy-gradient algorithms and performing regularization
can be interpreted as optimizing deterministic policies by
continuation. In this regard, exploration as it is usually
understood in policy gradients, consists in computing the
continuation of the return of the policy at hand. Finally, we
show that for a more general continuation, the continuation
of the return of a deterministic policy equals the return of
a Gaussian policy where the variance is a function of the
observed history of states and actions. These results provide
a new interpretation for the variance of a policy: it can be
seen as a parameter of the policy-gradient algorithm instead
of an element of the policy parameterization. Moreover, to
fully exploit the power of continuations, the variance of a
policy should be a history-dependent function iteratively
adapted to avoid the local extrema of the return.

Although there is no theoretical guarantee that optimization
by continuation converges towards a global optimum, it
has been successfully applied to several machine learning
applications (Mobahi et al., 2012; Bengio, 2009; Pathak &
Paffenroth, 2019). To our knowledge, it has never yet been
applied for direct policy optimization. However, optimizing
a distribution over the policy parameters rather than directly
optimizing the policy is an RL technique that has been
used to perform direct policy optimization (Sehnke et al.,
2010; Salimans et al., 2017; Zhang et al., 2020a). It is
equivalent to optimizing the policy by Gaussian continuation
(Mobahi et al., 2012; Hazan et al., 2016; 2019). Here the
continuation is the convolution of the return by a Gaussian
kernel. Another method, called RL with logistic reward-
weighted regression (Wierstra et al., 2008; Peters & Schaal,
2007), consists in optimizing a utility function of the return,
which can thus be seen as an optimization by continuation
method.

The paper is organized as follows. In Section 2, the back-
ground of direct policy optimization is reminded. The frame-
work for optimizing policies by continuation is developed
in Section 3 and theoretical results relating the return of
policies to their continuations are presented in Section 4. In
Section 5, these results are used for elaborating on the for-
mulations of direct policy optimization. Finally, the results
are summarized and further works discussed in Section 6.

2. Theoretical Background
In this section, we remind the RL background and discuss
the direct policy optimization problem.

2.1. Markov Decision Processes

We study problems in which an agent makes sequential de-
cisions in a stochastic environment in order to maximize
an expected sum of rewards (Sutton & Barto, 2018). The
environment is modeled with an infinite-time Markov Deci-
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sion Process (MDP) composed of a state space S , an action
space A, an initial state distribution with density p0, a tran-
sition distribution (dynamic) with conditional density p, a
bounded reward function ρ, and a discount factor γ ∈ [0, 1[.
When an agent interacts with the MDP (S,A, p0, p, ρ, γ),
first, an initial state s0 ∼ p0(·) is sampled, then, the agent
provides at each time step t an action at ∈ A leading to
a new state st+1 ∼ p(·|st, at). A sequence of states and
actions ht = (s0, a0, . . . , st−1, at−1, st) ∈ H is a history
and H is the set of all histories. In addition, at each time
step t, a reward rt = ρ(st, at) ∈ R is observed.

A (stochastic) history-dependent policy η ∈ E = H →
P(A) is a mapping from the set of histories H to the set
of probability measures on the action space P(A), where
η(a|h) is the associated conditional probability density of
action a given the history h. A (stochastic) Markov policy
π ∈ Π = S → P(A) is a mapping from the state space
S to the set of probability measures on the action space
P(A), where π(a|s) is the associated conditional proba-
bility density of action a in state s. Finally, deterministic
policies µ ∈M = S → A are functions mapping an action
a = µ(s) ∈ A to each state s ∈ S. We note that for each
deterministic policy µ there exists an equivalent Markov
policy, where the probability measure is a Dirac measure
on the action a = µ(s) in each state s. In addition, for each
Markov policy, there exists an equivalent history-dependent
policy only accounting for the last state in the history. We
therefore write by abuse of notation that M ⊊ Π ⊊ E .

The function J : E → R is defined as the function mapping
to any policy η the expected discounted cumulative sum
of rewards gathered by an agent interacting in the MDP by
sampling actions from the policy η. The value J(η) is called
the return of the policy η and is computed as follows:

J(η) = E
s0∼p0(·)
at∼η(·|ht)

st+1∼p(·|st,at)

[ ∞∑
t=0

γtρ(st, at)

]
. (1)

An optimal agent follows an optimal policy η∗ maximizing
the expected discounted sum of rewards J .

2.2. Direct Policy Optimization

Problem statement. Let (S,A, p0, p, ρ, γ) be an MDP and
let ηθ ∈ E be a policy parameterized by the real vector
θ ∈ RdΘ . The objective of the optimization problem is to
find the optimal parameter θ∗ ∈ RdΘ such that the return of
the policy is maximized:

θ∗ = argmax
θ∈RdΘ

J(ηθ) . (2)

In this work, we consider on-policy policy-gradient algo-
rithms (Andrychowicz et al., 2020). These algorithms opti-
mize differentiable policies with local-search methods using

the derivatives of the policies. They iteratively repeat two
operations. First, they approximate an ascent direction rely-
ing on histories sampled from the policy, with the current
parameters, in the MDP. Second, they update these parame-
ters in the ascent direction.

Deterministic Policies. In an MDP, it is theoretically pos-
sible to find an optimal deterministic policy by solving the
optimization problem described in equation (2) where the
parameterized policy is a (universal) function approximator
µθ ∈ M (Sutton & Barto, 2018). In practice, optimizing
deterministic policies with policy-gradient methods usually
results in locally optimal policies (Silver et al., 2014).

Gaussian Policies. In direct policy optimization, most of
the works focus on learning a Gaussian policy πGP

θ ∈ Π
(Duan et al., 2016; Andrychowicz et al., 2020), i.e., a policy
where the actions follow a Gaussian distribution of mean
µθ(s) and covariance matrix Σθ(s) for each state s and
parameter θ. It thus has the following density:

πGP
θ (a|s) = N (a|µθ(s),Σθ(s)) . (3)

Affine Policies. A parameterized policy (deterministic or
stochastic) is said to be affine, if the function approxima-
tors used to construct the functional form of the policy are
affine functions of the parameter θ. Formally, each func-
tion approximator fθ of a history-dependent policy has the
following form ∀h ∈ H:

fθ(h) = a(h)T θ + b(h) , (4)

where a and b are general functions of the histories.

3. Optimizing Policies by Continuation
In this section, we introduce optimization by continuation
and formulate direct policy optimization in this framework.

3.1. Optimization by Continuation

Optimization by continuation (Allgower & Georg, 1980) is
a technique used to optimize nonconvex functions with the
objective of avoiding local extrema. A sequence of optimiza-
tion problems is solved iteratively using the optimum of the
previous iteration. Each problem consists in optimizing a de-
formation of the original function and is typically solved by
local search. Through the iterations, the function is less and
less deformed. Such procedure is also sometimes referred
to as graduated optimization (Blake & Zisserman, 1987) or
optimization by homotopy (Watson & Haftka, 1989).

Formally, let f : X → R be the real-valued function to
optimize. Let g : Y → R be another real-valued func-
tion used for building the deformation of f . Finally, let
the conditional distribution function p : X → P(Y) be
the mapping from an optimization variable x ∈ X to the
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set of probability measures P(Y), such that p(y|x) is the
associated density function for any random event y ∈ Y
given x ∈ X . The continuation of the function f under the
distribution p and deformation function g is defined as the
function fp : X → R such that ∀x ∈ X :

fp(x) = E
y∼p(·|x)

[g(y)] . (5)

For the optimization by continuation described hereafter,
there must exist a conditional distribution p∗ for which fp

equals f in the limit as p approaches p∗. A typical example
is to choose the function g equal to f , and to use a Gaus-
sian distribution with a constant diagonal covariance matrix
for the distribution p. We then have so-called Gaussian
continuations (Mobahi & Fisher III, 2015).

Finally, optimizing a function f by continuation involves
iteratively locally optimizing its continuation for a sequence
of conditional distributions approaching p∗ with decreasing
spread. Formally, let p0 ≻ p1 ≻ · · · ≻ pI−1 be a sequence
of conditional distributions (monotonically) approaching p∗

with strictly decreasing covariance matrices1. Then, opti-
mizing f by continuation consists in locally optimizing its
continuation fpi with a local-search algorithm initialized at
x∗
i for each iteration i. This general procedure is summa-

rized in Algorithm 1. Particular instances of this algorithm
are described by Hazan et al. (2016) and Shao et al. (2019).

In practice, the optimization process can be approximated
by performing a limited number of local-search iterations
at each step of the optimization by continuation. In the
following sections, we consider that each optimization of
the continuation fpi is approximated with a single gradient
ascent step and that the continuation distribution sequence
p0 ≻ p1 ≻ · · · ≻ pI−1 is constructed by iteratively re-
ducing the variance of the distribution pi. Note that if this
variance reduction is sufficiently slow, and the stepsize is
well chosen, a single gradient ascent step enables to accu-
rately approximate x∗

i .

Algorithm 1 Optimization by Continuation
1: Provide a sequence p0 ≻ p1 ≻ · · · ≻ pI−1

2: Provide an initial variable value x∗
0 ∈ X

3: for all i = 0, 1, . . . , I − 1 do
4: x∗

i+1 ← Optimize the continuation fpi by local
search initialized at x∗

i

5: end for
6: return x∗

I

1We consider the convergence of the density functions, imply-
ing weak convergence of the distributions, and convergence of
the continuations towards the function f . The set of covariance
matrices is ordered with the Loewner order (Siotani, 1967).

3.2. Continuation of the Return of a Policy

The direct policy optimization problem usually consists in
maximizing a nonconvex function. Optimization by contin-
uation is thus a good candidate for computing a solution. In
this section, we introduce a novel continuation adapted to
the return of policies.

The return of a policy depends on the probability of a
sequence of actions through the product of the density
ηθ(at|st) of each action at for a given parameter θ, see
equation (1). We define the continuation of interest as the
expectation of the return where each factor in the prod-
uct of densities depends on a different parameter vector.
This expectation is taken according to a distribution that
disturbs these parameter vectors at each time step with a
variance depending on the history. Formally, using the no-
tations from Section 3.1, we optimize the function f that
for all x = θ equals the return, f(θ) = J(πθ), over the set
X = RdΘ . Let the covariance function Λ : H → RdΘ×dΘ

be a function mapping a history ht ∈ H to a covariance
matrix Λ(ht). Let the continuation distribution q be a dis-
tribution such that q(θt|θ,Λ(ht)) is the density of θt dis-
tributed with mean θ and covariance matrix Λ(ht). Then,
let Y =

(
S ×A× RdΘ

)N
be the set of (infinite) sequences

of states, actions and parameters and let p and g, the two
functions defining the continuation, be as follows:

p(y|x) = p(s0)

∞∏
t=0

ηθt(at|ht)pθ(θt|ht)p(st+1|st, at) (6)

g(y) =

∞∑
t=0

γtρ(st, at) , (7)

where pθ(θt|ht) = q(θt|θ,Λ(ht)) such that the spread of pθ
depends on the function Λ. Taken together, the continuation
fq
Λ = fp of the return of the policy ηθ ∈ E corresponding

to the distribution q and covariance function Λ, is defined
∀θ ∈ RdΘ as:

fq
Λ(θ) = E

s0∼p0(·)
θt∼q(·|θ,Λ(ht))
at∼ηθt (·|ht)

st+1∼p(·|st,at)

[ ∞∑
t=0

γtρ(st, at)

]
. (8)

Finally, the continuation equation (8) converges towards
the return of ηθ in the limit as the covariance function Λ
approaches zero, as required in Section 3.1.

This continuation is expected to be well-suited for removing
local extrema of the return for three main reasons. First,
marginalizing the variables of a function as in our contin-
uation is expected to smooth this function and therefore
remove local extrema – the particular case of Gaussian blur-
ring has been widely studied in the literature (Mobahi &
Fisher, 2015; Nesterov & Spokoiny, 2017). Second, we
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underline the interest of considering a continuation in which
the disturbance of the policy parameters may vary based
on the time step. Indeed, changing the parameter vector of
the policy at different time steps (and changing the action
distributions) may modify the objective function in signif-
icantly different ways. Third, we justify the factorization
of the conditional distribution pθ equation (6) by the causal
effect of actions in the MDP. As the actions only influence
the rewards to come, the past history is expected to provide
a sufficient statistic for disturbing the parameters in order to
remove local optima. We therefore chose parameter prob-
abilities conditionally independent given the past history.
This history-dependency is encoded through the covariance
function Λ in equation (8).

Maximizing fq
Λ to solve the optimization problem from Al-

gorithm 1 is a complicated task. A common local-search
algorithm used in machine learning is stochastic gradient
ascent (Bottou, 2010). The gradient of fq

Λ can be computed
by Monte-Carlo sampling applying the reparameterization
trick (Goodfellow et al., 2016) for simple continuation dis-
tributions or relying on the REINFORCE trick (Williams,
1992) in the more general case. These vanilla gradient es-
timates have practical limitations: the estimates may have
large variance, the infinite horizon shall be truncated, and
the direction provided is computed in the Euclidean space
of parameters rather than in a space of distributions (Peters
& Schaal, 2008). Finally, the evaluation of the continu-
ation and its derivatives require one to sample parameter
vectors, which may be computationally expensive for com-
plex high-dimensional distributions. The study of different
continuation distributions and the application of the opti-
mization procedure from Algorithm 1 to practical problems
is left for further works. In this work, we rather rely on the
continuation to study direct policy optimization algorithms.

4. Mirror Policies and Continuations
This section is dedicated to the interpretation of the continu-
ation of the return of a policy. We show it equals the return
of another policy, called a mirror policy. The existence and
closed form of mirror policies is also discussed.

4.1. Optimizing by Continuation with Mirror Policies

Definition 1. Let (S,A, p0, p, ρ, γ) be an MDP and let
ηθ ∈ E be a history-dependent policy parameterized with
the vector θ ∈ RdΘ . In addition, let fq

Λ be the continuation
of the return of the policy ηθ corresponding to a continua-
tion distribution q and covariance function Λ as defined in
equation (8). We call a mirror policy of the original policy
ηθ, under the continuation distribution q and covariance
function Λ, any history-dependent policy η′θ ∈ E such that

∀θ ∈ RdΘ :

fq
Λ(θ) = J(η′θ) . (9)

Let us assume we are provided with the continuation fq
Λ of

the return of an original policy ηθ depending on the param-
eter θ that shall be optimized. In addition, let us assume
we can compute a mirror policy η′θ for the original policy
ηθ. By Definition 1, the continuation of the original policy
equals the return of the mirror policy for all θ. In addi-
tion, under smoothness assumptions, all their derivatives
are equal too. Therefore, maximizing the continuation of
an original policy by stochastic gradient ascent can be per-
formed by maximizing the return of its mirror policy by
policy gradient.

4.2. Existence and Closed Form of Mirror Policies

In this section, we first show that there always exists a mirror
policy. In addition, several closed forms are provided de-
pending on the original policy, the continuation distribution,
and the covariance function.

Theorem 1. For any original history-dependent policy
ηθ ∈ E parameterized with the vector θ ∈ RdΘ and for
any continuation distribution q and covariance function Λ,
there exists a mirror history-dependent policy η′θ ∈ E of the
original policy ηθ that writes as:

η′θ(a|h) = E
θ′∼q(·|θ,Λ(h))

[ηθ′(a|h)] . (10)

Theorem 1 guarantees the existence of mirror policies. Such
a mirror policy is a function depending on the same parame-
ters as its original policy but that has a different functional
form and may therefore provide actions following a different
distribution compared to the original policy.

Theorem 1 leads to two important corollary results. First, as
demonstrated in Appendix A, let η′′ be a mirror policy of
η′ and let η′ be a mirror policy of the original policy η of
the form of equation (10). Then, there exists a continuation
for which η′′ is a mirror policy of the original policy η. It
follows that the return of the mirror policy of another mirror
policy is itself equal to a continuation of the original policy.
Second, Theorem 1 also reveals that for a given original
policy and continuation distribution, the variance of the mir-
ror policy is defined through the continuation covariance
function Λ. Furthermore, we remind that the variance of
the continuation is an hyperparameter that shall be selected
for each iteration of the optimization by continuation, see
Section 3. This choice of hyperparameter is thus reflected
as the choice of the variance of a mirror policy. The expert
making this choice sees the effect of the disturbed parame-
ters on the environment through the variance of the mirror
policy. From a practical perspective, it is probably easier to
quantify the effect on the local extrema depending on the
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variance of the mirror policy rather than depending on the
variance of the continuation.

Property 4.1. Let the original policy πθ ∈ Π be a Markov
policy and let the covariance function depend solely on the
last state in the history. Then, there exists a mirror Markov
policy π′

θ ∈ Π.

Property 4.1 is an intermediate result providing sufficient
assumptions on the continuation for having mirror Markov
policies. Note that for this type of continuation, the parame-
ters of the policy are disturbed independently of the history
followed by the agent.

Property 4.2. Let the original policy πGP
θ ∈ Π be a Gaus-

sian policy as defined in equation (3) with affine function
approximators. Let the covariance function depend solely
on the last state in the history and let the distribution q be a
Gaussian distribution. Then, there exists a mirror Markov
policy π′

θ ∈ Π such that for all states s ∈ S, it converges
towards a Gaussian policy in the limit as the affine coef-
ficients of the covariance matrix Σθ(s) approaches zero
(∥∇θΣθ(s)∥ → 0):

π′
θ(a|s)→ N (a|µθ(s),Σ

′
θ(s)) , (11)

where Σ′
θ(s) = Cθ(s) + Σθ(s) and Cθ(s) =

∇θµθ(s)
T Λ(s)∇θµθ(s).

Under the assumptions of Property 4.2, a mirror policy can
be approached by a policy that only differs from the orig-
inal one by having a variance which is increased by the
term Cθ(s) proportional to the variance of the continua-
tion. In particular, when the variance of the original policy
πGP
θ is solely dependent on the state, then ∥∇θΣθ(s)∥ = 0

and π′
θ(a|s) = N (a|µθ(s),Σ

′
θ(s)). In this case, for any θ,

the covariance matrix of this mirror policy is additionally
bounded from below such that Σ′

θ(s) ⪰ Cθ(s).

Property 4.3. Let the original policy µθ ∈M be an affine
deterministic policy. Let the covariance function depend
solely on the last state in the history and let the distribution
q be a Gaussian distribution. Then, the Markov policy
πGP
θ

′ ∈ Π is a mirror policy:

πGP
θ

′
(a|s) = N (a|µθ(s),Σ

′
θ(s)) , (12)

where Σ′
θ(s) = ∇θµθ(s)

T Λ(s)∇θµθ(s).

Therefore, under some assumptions, disturbing a determin-
istic policy and optimizing it afterwards can be interpreted
as optimizing the continuation of the return of this policy.

Property 4.4. Let the original policy µθ ∈M be an affine
deterministic policy. Let the distribution q be a Gaussian
distribution. Then, the policy η′θ ∈ E is a mirror policy:

η′θ(a|h) = N (a|µθ(s),Σ
′
θ(h)) , (13)

where Σ′
θ(h) = ∇θµθ(s)

T Λ(h)∇θµθ(s).

Property 4.4 extends Property 4.3 to more general continua-
tion distributions. This extension is used later to justify the
interest of optimizing history-dependent policies in order to
optimize an underlying deterministic policy by continuation.
The theorem and properties are shown in Appendix B.

5. Implicit Optimization by Continuation
In this section, two formulations, i.e., a parameterized pol-
icy and a learning objective each, used by several policy-
gradient algorithms are analyzed relying on original and
mirror policies. In Section 5.1, we show that optimizing
each formulation by local search corresponds to optimizing
a continuation. The optimized policy is thus the mirror pol-
icy of an unknown original policy. We show the existence
of the corresponding continuation and original policy and
discuss their closed form. This analysis provides a novel
interpretation of the state-of-the-art algorithms for direct pol-
icy optimization. We discuss the role of stochastic policies
in light of this interpretation in Section 5.2.

5.1. Gaussian Policies and Regularization

The policy-gradient literature has mainly focused on op-
timizing two problem formulations by local search – typ-
ically with stochastic gradient ascent and (approximate)
trust-region methods. First, the vast majority of works fo-
cuses on optimizing the return of Gaussian policies (Duan
et al., 2016; Andrychowicz et al., 2020). Second, in many
formulations this objective function is extended by adding a
bonus to the entropy of the optimized policy (Williams &
Peng, 1991; Haarnoja et al., 2019). We show that when opti-
mizing a policy according to these formulations, there exists
an (unknown) deterministic original policy and a continu-
ation under which the optimized policy is a mirror policy.
Provided with the local-search algorithm from the policy-
gradient method, we conclude that optimizing both formula-
tions is equivalent to implicitly optimizing a deterministic
policy by continuation.

First, we remind that under Property 4.3, for any affine de-
terministic policy µθ, there exists an affine Gaussian mirror
policy πGP ′

θ as defined by equation (12). In Property 5.1,
the converse of Property 4.3 is stated, which answers to
the question: under which conditions a Gaussian policy
is the mirror policy of an (unknown) deterministic policy.
For this converse statement to be true, the transformation
between covariance functions in Property 4.3 must be sur-
jective, which is guaranteed if dA ≤ dΘ and ∇θµθ(s) is
full rank. The first assumption is always met in practice and
the second is met when no action is a deterministic function
of the others.
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Property 5.1. Let πGP ′

θ be an affine Gaussian policy with
mean function µθ, and with covariance function Σ′

θ = Σ′

constant with respect to the parameters of the policy (i.e.,
a function depending solely on the state). If dA ≤ dΘ and
if ∇θµθ(s) is full rank, then, there exists a continuation,
with covariance Λ proportional to Σ′, for which πGP ′

θ is a
mirror policy of the original policy µθ.

Entropy regularization ensures that the variance of the policy
remains sufficiently large during the optimization process.2

Similar objectives are pursued with maximum entropy rein-
forcement learning (Haarnoja et al., 2019) or with (approxi-
mate) trust-region methods where the trust-region constraint
is dualized (Schulman et al., 2015; 2017). Let us consider
an affine Gaussian original policy πGP

θ with constant co-
variance Σθ = Σ. Under Property 4.2, there exists another
affine Gaussian policy πGP ′

θ that is a mirror policy of πGP
θ .

This mirror policy has the same mean function and a covari-
ance function bounded from below by Cθ = C. Property
5.2 provides the converse and answers to the question: un-
der which conditions a Gaussian policy with sufficiently
large covariance is the mirror policy of an (unknown and
Gaussian) policy. Similar to the previous property, this is
guaranteed when dA ≤ dΘ and∇θµθ(s) is full rank.

Property 5.2. Let πGP ′

θ be an affine Gaussian policy with
mean function µθ, and with covariance function Σ′

θ = Σ′ ⪰
C constant with respect to the parameters of the policy (i.e.,
a function depending solely on the state) and bounded from
bellow by C. If dA ≤ dΘ and if∇θµθ(s) is full rank, then,
there exists a continuation, with covariance Λ proportional
to C, for which πGP ′

θ is a mirror policy of an original
Gaussian policy πGP

θ with the same mean function µθ and
with constant covariance function Σ ⪯ Σ′.

The two previous properties indicate that a Gaussian pol-
icy is guaranteed to be a mirror policy of another policy,
Gaussian or deterministic, under some assumptions. If we
furthermore guarantee that the continuation covariance de-
creases during the optimization, policy-gradient algorithms
optimizing affine Gaussian policies can be interpreted as
algorithms optimizing an original policy by continuation.
Let us consider two cases, each corresponding to a problem
formulation, where we optimize by policy gradient an affine
Gaussian policy πGP ′

θ with covariance function constant
with respect to the parameters of the policy. First, we con-
sider the case where its covariance matrix decreases during
the optimization through a manual scheduling. In this con-

2Formally, for two matrices A and B, we have that A ⪰ B ⇒
|A| ≥ |B| (Siotani, 1967). As the entropy of a Gaussian policy
is a concave function of the determinant of the covariance matrix,
a bounded covariance matrix implies a bounded entropy. The
entropy-regularization learning objective can therefore be inter-
preted as the Lagrangian relaxation of the latter entropy-bounded
optimization problem.

text, under property 5.1, there exists an original determinis-
tic policy and the covariance of the continuation decreases
through the optimization, such that the policy-gradient al-
gorithm optimizes this policy by continuation. Second, we
consider the case where the entropy is regularized with a
decreasing regularization term (e.g., by scheduling the La-
grange multiplier). Then, as entropy regularization can be
seen as a constraint on the covariance of the policy, under
property 5.2, there exists an original Gaussian policy and the
covariance of the continuation decreases through the opti-
mization, such that the policy-gradient algorithm optimizes
this stochastic policy by continuation. Finally, as stated pre-
viously and shown in Theorem 2 in Appendix B, optimizing
the return of the mirror policy of another mirror policy is
equivalent to optimizing a continuation of the original pol-
icy. Therefore, policy-gradient algorithms that optimize
affine Gaussian policies with both discounted covariance
and decreasing regularization by local search can also be
interpreted as algorithms optimizing the mean function (i.e.,
a deterministic policy) of this policy by continuation.

We now illustrate how policy-gradient algorithms implicitly
optimize by continuation. We take as example an environ-
ment in which a car moves in a valley and must reach its
lowest point (positioned in xtarget) to maximize the ex-
pected sum of rewards gathered by the agent, see Appendix
C. We assume we want to find the best K-controller, i.e., a
deterministic policy µθ(x) = θ × (x − xtarget), where x
is the position of the car. Directly optimizing such a policy
is in practice subject to converging to a local extremum,
as explain hereafter. We thus consider the Gaussian policy
πGP
θ (a|x) = N (a|µθ(x), σ

′), where µθ(x) and σ′ are the
mean and variance of the policy, respectively. This policy is
a mirror policy of the deterministic policy µθ under a con-
tinuation of variance λ = σ′/(x− xtarget)

2, see Property
4.3. As can be seen in Figure 1, for each value of σ′, the
return of the mirror policy equals the smoothed return of
the original deterministic policy µθ. Consequently, optimiz-
ing by policy gradient the Gaussian policy is equivalent to
optimizing the deterministic policy by continuation. For a
well-chosen sequence of σ′, with a fixed scheduling or with
adequate entropy regularization, the successive solutions
found by local search will escape the basin of attraction of
the suboptimal parameter for any initial parameter of the
local search – whereas optimizing the deterministic policy
directly would provide suboptimal solutions.

In this section, we have established an equivalence between
the optimization of some policies by policy gradient and
the optimization of an underlying policy by continuation. It
opens up new questions about the hypothesis space of the
(mirror) policy to consider in practice in order to exploit the
properties of continuations at best. These considerations
are made in the next section. We finally recall that a central
assumption in the previous results is the affinity of policies.
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Figure 1. Illustration of the return of the policies N (a|µθ(x), σ
′),

where µθ(x) = θ × (x − xtarget), for different σ′ values. The
darker the curve, the smaller σ′, and the darkest one is the return
of the deterministic policy µθ . The green dots represent the global
maxima and the red dots the local maxima. For some sufficiently
large value for σ′, the return of the policy has a single extremum.

Such policies are often considered in theoretical studies
(Busoniu et al., 2017) and perform well on complex tasks in
practice (Rajeswaran et al., 2017).

5.2. Continuations for Interpreting Stochastic Policies

In practice, we know that optimizing stochastic policies
tends to converge to a final policy with low variance and
better performance than if we had directly optimized a deter-
ministic policy. Practitioners often justify this observation
by the need to explore through a stochastic policy. Nev-
ertheless, to our knowledge, this concept inherited from
bandit theory is not well defined for direct policy optimiza-
tion. The previous analysis establishes an equivalence be-
tween optimizing stochastic policies with policy-gradient
algorithms and optimizing deterministic policies by con-
tinuation. Furthermore, as explained in Section 3.2, the
continuation equation (8) consists in smoothing the return
of this deterministic policy through the continuation distribu-
tion. Local optima tend to be removed when the variance of
the continuation is sufficiently large. Optimizing stochastic
policies and regularizing the entropy, as in most state-of-the-
art policy-gradient algorithms, is therefore expected to avoid
local extrema before converging towards policies with small
variance. We thus provide a theoretical motivation for the
performance reached by algorithms applying exploration as
understood in direct policy optimization.

The relationships between optimization by continuation and
policy gradient in Section 5.1 have been established relying
on Property 4.2 and Property 4.3. They assume continu-
ations where the covariance matrix depends only on the
current state and not on the whole observed history. In the

general case, Property 4.4 allows one to extend these results
by performing an analysis similar to Section 5.1. To be
more specific, let us assume an affine Gaussian policy πGP ′

θ ,
where the mean µθ is a function of the state and where the
covariance Σθ = Σ is a function of the history and is con-
stant with respect to θ. Under this assumption, if dA ≤ dΘ
and ∇θµθ(s) is full rank, the return of the policy πGP ′

θ is
equal to a (unknown) continuation of the mean function µθ

(i.e., a deterministic policy). Furthermore, optimizing the
Gaussian policy by policy gradient while discounting the co-
variance can be interpreted as optimizing the deterministic
policy µθ by continuation. In practice, this result suggests
to optimize history-dependent policies by policy gradient
to take advantage of the most general regularization of the
objective function through implicit continuation. A similar
observation was recently made by Mutti et al. (2022) who
argued that history-dependent policies are required when
more complex regularizations are involved.

Finally, a last point has been left open in the previous dis-
cussions, namely the update of the covariance matrix of the
mirror policies. The latter is defined through the covariance
of the continuation. Therefore, the covariance must decrease
through the optimization and must be chosen to avoid local
optima. One direction to investigate in order to select a vari-
ance that removes local extrema is to update the parameters
of the policy by following a combination of two directions:
the functional gradient of the optimized policy’s return with
respect to the policy mean and the functional gradient of
another measure (to be defined) with respect to the policy
variance. An example of heuristic measure for smoothness
might be the entropy of the actions and/or states encoun-
tered in histories. This strategy obviously does not follow
the classical approach when optimizing stochastic policies
where the covariance is adapted by the policy-gradient algo-
rithm to locally maximize the return and the exact procedure
for updating the variance will require future studies. The
empirical inefficiency of this classical approach was high-
lighted in previous works that improved the performance of
policy-gradient algorithms by exploring alternative learning
objective functions (Houthooft et al., 2018; Papini et al.,
2020).

6. Conclusion
In this work, we have studied the problem formulation, i.e.,
policy parameterization and reward-shaping strategy, when
solving direct policy optimization problems. More partic-
ularly, we established connections between formulations
of state-of-the-art policy-gradient algorithms and the opti-
mization by continuation framework (Allgower & Georg,
1980). We have shown that algorithms optimizing stochastic
policies and regularizing the entropy inherit the properties
of optimization by continuation and are thus less subject to
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converging towards local optima. In addition, the role of the
variance of the policies is reinterpreted in this framework:
it is a parameter of the optimization procedure to adapt in
order to avoid local extrema. Additionally, to inherit the
properties of generic continuations, it may be beneficial to
consider variances that are functions of the history of states
and actions observed at each time step.

Our study leaves several questions open. Firstly, our results
rely on several assumptions that may not hold in practice.
Specifically, it is unclear how our findings can be gener-
alized to non-affine policies and alternative to Gaussian
policies. Nonetheless, our results can be extended in cases
where we can obtain an analytic expression for the mirror
policy outlined in Theorem 1. While finding such an expres-
sion may be challenging in general, we can easily extend
our conclusions to non-affine policies by considering the
first-order approximation. Additionally, our study is focused
on Gaussian policies, which are commonly used in continu-
ous state-action spaces. However, for discrete action spaces,
a natural choice of policy is a Bernoulli distribution over
the actions (or a categorical distribution for more than one
action). If the state space is also discrete, this distribution
may be parameterize by a table providing the success proba-
bility of the Bernoulli distribution for each state. In the case
of a Beta continuation distribution, a mirror policy can be
derived where actions follow a Beta-binomial distribution
in each state, a result known in Bayesian inference as the
Beta distribution is a conjugate distribution of the binomial
distribution (Bishop & Nasrabadi, 2006). An analysis of
this mirror policy would allow us to draw conclusions equiv-
alent to those of the continuous case studied in this paper.
Secondly, the study focused on entropy regularization of
the policy only. Recent works have underlined the bene-
fits of other regularization strategies that enforce the spread
of other distributions as the state visiting frequency or the
marginal state probability (Hazan et al., 2019; Guo et al.,
2021; Mutti et al., 2022). Future research is also needed to
better understand the effect of these regularizations on the
optimization procedure.

Finally, we give a new interpretation for the variance of
policies that suggests it shall be updated to avoid local ex-
trema rather than to maximize the return locally. A first
strategy for updating the variance is proposed in Section 5.2,
which opens the door to further research and new algorithm
development.
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A. Composition of Mirror Policies
Theorem 2. Let q be a continuation distribution and let Λ be a covariance function as defined in Section 3.2. In addition,
let ηθ, η′θ and η′′θ be three parameterized history-dependent policies such that:

η′θ(a|h) =
∫

ηθ′(a|h)q(θ′|θ,Λ(h)) dθ′ (14)

η′′θ (a|h) =
∫

η′θ′′(a|h)q(θ′′|θ,Λ(h)) dθ′′ . (15)

Then, η′θ is a mirror policy of the original policy ηθ and η′′θ is a mirror policy of the original policy η′θ under continuation
distribution q and covariance function Λ. In addition, there exists a continuation for which η′′θ is a mirror policy of the
original policy ηθ.

Proof. First, η′θ is a mirror policy of the original policy ηθ and η′′θ is a mirror policy of the original policy η′θ under
continuation distribution q and covariance function Λ, see Theorem 1. Then, let us substitute equation (14) in equation (15):

η′′θ (a|h) =
∫

η′θ′′(a|h)q(θ′′|θ,Λ(h)) dθ′′ (16)

=

∫ (∫
ηθ′(a|h)q(θ′|θ′′,Λ(h)) dθ′

)
q(θ′′|θ,Λ(h)) dθ′′ (17)

=

∫
ηθ′(a|h)

(∫
q(θ′|θ′′,Λ(h))q(θ′′|θ,Λ(h)) dθ′′

)
dθ′ . (18)

We thus have that:

η′′θ (a|h) =
∫

ηθ′(a|h)pθ(θ′|h) dθ′ (19)

pθ(θ
′|h) =

∫
q(θ′|θ′′,Λ(h))q(θ′′|θ,Λ(h)) dθ′′ . (20)

The distribution pθ is a continuation distribution with a spread depending on the history h through the covariance function Λ.
By Theorem 1, η′′θ is a mirror policy of the original policy ηθ.

□

B. Theoretical Results on Mirror Policies
Theorem 1. For any original history-dependent policy ηθ ∈ E parameterized with the vector θ ∈ RdΘ and for any
continuation distribution q and covariance function Λ, there exists a mirror history-dependent policy η′θ ∈ E of the original
policy ηθ that writes as:

η′θ(a|h) = E
θ′∼q(·|θ,Λ(h))

[ηθ′(a|h)] . (21)

Proof. Let h = (s0, a0, s1, a1, . . . ) ∈ H be a history and let R(h) be the discounted sum of rewards computed from this
history. In addition, let ht = (s0, a0, . . . , st) ∈ H be the history composed of the t first actions and t+ 1 first states in h.
By definition of the continuation fq

Λ and given equation (21), we have that:

fq
Λ(θ) = E

s0∼p0(·)
θt∼q(·|θ,Λ(ht))
at∼ηθt (·|ht)

st+1∼p(·|st,at)

[ ∞∑
t=0

γtρ(st, at)

]
(22)

=

∫ ( ∞∏
t=0

∫
ηθt(at|ht)q(θt|θ,Λ(ht)) dθt

)(
p0(s0)

∞∏
t=0

p(st+1|st, at)
)
R(h) dh (23)

=

∫ ( ∞∏
t=0

η′θ(at|ht)

)(
p0(s0)

∞∏
t=0

p(st+1|st, at)
)
R(h) dh . (24)
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By definition, the latter equation is equal to the return J(η′θ) of the policy η′θ for any parameter vector θ. Therefore, η′θ is a
mirror policy of the original policy ηθ under the process q and covariance matrix Λ.

□

Property 4.1. Let the original policy πθ ∈ Π be a Markov policy and let the covariance function depend solely on the last
state in the history. Then, there exists a mirror Markov policy π′

θ ∈ Π.

Proof. By hypotheses, the covariance matrix only depends on the last state st of the history ht, therefore:

q(θt|θ,Λ(ht)) = q(θt|θ,Λ(st)) . (25)

In addition, the original policy πθ is a Markov policy, therefore :

ηθ(at|ht) = πθ(at|st) . (26)

The closed form of the mirror policy, provided by equation (21), can thus be simplified as:

η′θ(at|ht) =

∫
ηθt(at|ht)q(θt|θ,Λ(ht)) dθt (27)

=

∫
πθt(at|st)q(θt|θ,Λ(st)) dθt . (28)

The previous equation is independent of ht knowing st, there thus exists a Markov mirror policy π′
θ ∈ Π respecting Theorem

1 such that:

η′θ(at|ht) = π′
θ(at|st) . (29)

□

Property 4.2. Let the original policy πGP
θ ∈ Π be a Gaussian policy as defined in equation (3) with affine function

approximators. Let the covariance function depend solely on the last state in the history and let the distribution q be a
Gaussian distribution. Then, there exists a mirror Markov policy π′

θ ∈ Π such that for all states s ∈ S , it converges towards
a Gaussian policy in the limit as the affine coefficients of the covariance matrix Σθ(s) approaches zero (∥∇θΣθ(s)∥ → 0):

π′
θ(a|s)→ N (a|µθ(s),Σ

′
θ(s)) , (30)

where Σ′
θ(s) = Cθ(s) + Σθ(s) and Cθ(s) = ∇θµθ(s)

T Λ(s)∇θµθ(s).

Proof. First, the existence of a Markov mirror policy results from Property 4.1 and is provided by equation (29):

π′
θ(at|st) =

∫
πθt(at|st)q(θt|θ,Λ(st)) dθt . (31)

In addition, πθt and q are Gaussian distributions by hypotheses:

πθt(at|st) = N (at|µθt(st),Σθt(s)) (32)
q(θt|θ,Λ(st)) = N (θt|θ,Λ(st)) , (33)

where µθt(st) and Σθt(st) are affine functions of θt. Therefore, these functions can be written as follows:

µθt(st) = (∇θtµθt(st)) θt + µ′(st) (34)
Σθt(st) = (∇θtΣθt(st)) θt +Σ′(st) . (35)

For any state st, in the limit as affine coefficients of the covariance approaches zero, the covariance is such that:

lim
∥∇θtΣθt (st)∥→0

Σθt(st) = Σ′(st) . (36)
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In this limit, equation (31) consists in marginalizing a conditional linear Gaussian transition model with a Gaussian prior
and is such that (Bishop & Nasrabadi, 2006):

lim
∥∇θΣθ(st)∥→0

π′
θ(at|st) = N

(
at| (∇θµθ(st)) θ + µ′(st), (∇θµθ(st))

T
Λ(st) (∇θµθ(st)) + Σ′(st)

)
(37)

= N
(
at|µθ(st), (∇θµθ(st))

T
Λ(st) (∇θµθ(st)) + Σθ(st)

)
. (38)

□

Property 4.3. Let the original policy µθ ∈M be an affine deterministic policy. Let the covariance function depend solely
on the last state in the history and let the distribution q be a Gaussian distribution. Then, the Markov policy πGP

θ

′ ∈ Π is a
mirror policy:

πGP
θ

′
(a|s) = N (a|µθ(s),Σ

′
θ(s)) , (39)

where Σ′
θ(s) = ∇θµθ(s)

T Λ(s)∇θµθ(s).

Proof. The statement results from the particularization of Property 4.2 to the case of deterministic policies. Let πGP
θ ∈ Π be

an affine Gaussian policy with constant covariance matrix for any state Σθ(st) = C. In that case, we have by Property 4.2
that π′

θ ∈ Π is a mirror policy as follows:

π′
θ(at|st) = N

(
at|µθ(st), (∇θµθ(st))

T
Λ(st) (∇θµθ(st)) + Σθ(st)

)
(40)

= N
(
at|µθ(st), (∇θµθ(st))

T
Λ(st) (∇θµθ(st)) + C

)
. (41)

Taking the limit of πGP
θ as the constant covariance matrix C approaches zero, we get that the original policy from Property

4.2 converges to the one of Property 4.3, namely the deterministic policy µθ. This implies that the policy πGP
θ

′ ∈ Π provided
by the limit of the mirror policy from Property 4.2, see equation (41), is a mirror policy of the original policy µθ from
Property 4.3:

πGP
θ

′
(at|st) = lim

C→0
π′
θ(at|st) = N

(
at|µθ(st), (∇θµθ(st))

T
Λ(st) (∇θµθ(st))

)
. (42)

□

Property 4.4. Let the original policy µθ ∈ M be an affine deterministic policy. Let the distribution q be a Gaussian
distribution. Then, the policy η′θ ∈ E is a mirror policy:

η′θ(a|h) = N (a|µθ(s),Σ
′
θ(h)) , (43)

where Σ′
θ(h) = ∇θµθ(s)

T Λ(h)∇θµθ(s).

Proof. The policy µθt is an affine function of the parameter vector θt and can thus be written as follows:

µθt(st) = (∇θtµθt(st)) θt + µ′(st) . (44)

In addition, the samples drawn from the process q are distributed according to a Gaussian distribution:

q(θt|θ,Λ(ht)) = N (θt|θ,Λ(ht)) . (45)

The closed form of the density of the mirror policy, provided by equation (21), is thus simplified as:

η′θ(at|ht) =

∫
ηθt(at|ht)q(θt|θ,Λ(ht)) dθt (46)

=

∫
ηθt(at|ht)N (θt|θ,Λ(ht)) dθt , (47)



Policy Gradient Algorithms Implicitly Optimize by Continuation

where ηθt is the policy where each action respecting equation (44) has a probability one. The policy is a degenerated
Gaussian distribution (Rao, 1973), it provides a dirac measure to each state, and its (generalized) density function may be
approached as follows:

ηθt(at|ht) = lim
∥Σ∥→0

N (at| (∇θtµθt(st)) θt + µ′(st),Σ) . (48)

By substitution, we therefore get that the mirror policy η′θ writes as follow:

η′θ(at|ht) =

∫
ηθt(at|ht)N (θt|θ,Λ(ht)) dθt (49)

=

∫
lim

∥Σ∥→0
N (at| (∇θtµθt(st)) θt + µ′(st),Σ)N (θt|θ,Λ(ht)) dθt . (50)

The product of the Gaussian prior over parameters and the linear Gaussian transition model of the actions provides a joint
Gaussian distribution of actions and parameters (Bishop & Nasrabadi, 2006), which is degenerated but has a density for the
(marginal) Gaussian distribution of actions (Rao, 1973). The density of the mirror policy η′θ can thus be computed taking the
limit of the marginalization:

η′θ(at|ht) = lim
∥Σ∥→0

∫
N (at| (∇θtµθt(st)) θt + µ′(st),Σ)N (θt|θ,Λ(ht)) dθt (51)

= lim
∥Σ∥→0

N
(
at| (∇θµθ(st)) θ + µ′(st), (∇θµθ(st))

T
Λ(ht) (∇θµθ(st)) + Σ

)
(52)

= lim
∥Σ∥→0

N
(
at|µθ(st), (∇θµθ(st))

T
Λ(ht) (∇θµθ(st)) + Σ

)
(53)

= N
(
at|µθ(st), (∇θµθ(st))

T
Λ(ht) (∇θµθ(st))

)
. (54)

We note that this result can be obtained without working on degenerated Gaussian distributions. The policy is an affine
function of the parameters, which follow a Gaussian distribution, the marginal distribution of actions is thus also a Gaussian
distribution of the form of equation (54). This distribution is furthermore the one of a mirror policy, see Theorem 1.

□

C. Description of the Car Environment
In this section, we formalize the reinforcement learning environment that models the movement of a car in a valley with
two floors separated by a peak, as depicted in Figure 2. The car always starts at the topmost floor and receives rewards
proportionally to its depth in the valley. An optimal agent drives the car from the initial position to the lowest floor in the
valley by passing the peak. In the following, we describe each element composing the environment.
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Figure 2. Valley in which the car moves.
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State Space. The state st ∈ R2 of the environment is composed of two scalar values, namely the position xt ∈ R of the
pointmass representing the car and its tangent speed vt ∈ R.

Action Space. At each time step, the agent controls the force applied on the car through the actions at ∈ R it executes.

Initial Position. The car always starts at the topmost floor xinitial = −3 in the valley at rest. The initial state distribution
thus provides a probability one to the state

x0 = xinitial (55)
v0 = 0 . (56)

Transition Distribution. The continuous motion of the car in the valley is derived for Newton’s formula. The valley’s
analytical description is provided by the function h, the car’s mass is denoted by m = 0.5, gravitational acceleration by
g = 9.81, and damping factor by e = 0.65. The position x and speed v of the car follow the subsequent continuous-time
dynamics as a function of the force a:

ẋ = v (57)

v̇ =
a

m(1 + h′(x)2)
− gh′(x)

1 + h′(x)2
+

v2h′(x)h′′(x)

1 + h′(x)2
− ev2 . (58)

The position and force are furthermore bounded to intervals as part of the dynamics such that

x ∈ [xm, xM ] = [−4, 5] (59)
a ∈ [am, aM ] = [−10, 10] . (60)

Clamped force values are therefore used in equation (58). Similarly, the position is clamped in equation (57).

In discrete time, the state st+1 is computed through Euler integration of the continuous-time dynamics, considering an initial
position given by the current state st. The force a remains constant during a discretization time ∆ = 0.1 and is equal to the
action at, with an additive noise drawn from N (·|0, 1) and clamped before integration.

Reward Function. The rewards correspond to the depth of the valley at the current position. The reward function thus
solely depends on the position

ρ(st, at) = −h(xt) . (61)

Discount Factor. The discount factor equals γ = 0.99 and the horizon is curtailed to T = 100 in each numerical
computation.


