
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS THE TRAINING OF DEEPER PREDICTIVE
CODING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Predictive coding networks are neural models that perform inference through an
iterative energy minimization process, whose operations are local in space and
time. While effective in shallow architectures, they suffer significant performance
degradation beyond five to seven layers. In this work, we show that this degradation
is caused by exponentially imbalanced errors between layers during weight updates,
and by predictions from the previous layers not being effective in guiding updates in
deeper layers. Furthermore, when training models with skip connections, the energy
propagated by the residuals reaches higher layers faster than the one propagated by
the main pathway, affecting test accuracy. We address the first issue by introducing
a novel precision-weighted optimization of latent variables that balances error
distributions during the relaxation phase, the second issue by proposing a novel
weight update mechanism that reduces error accumulation in deeper layers, and
the third one by using auxiliary neurons that slow down the propagation of the
energy in the residual connections. Empirically, our methods achieve performance
comparable to backpropagation on deep models such as ResNets, opening new
possibilities for predictive coding in complex tasks.

1 INTRODUCTION

Training deep learning models is extremely expensive in terms of energy consumption. To address
this problem, a recent direction of research is studying the use of alternative accelerators that leverage
the properties of physical systems to perform computations (Wright et al., 2022; Momeni et al., 2024),
such as in-memory computations using memristor crossbars (Tsai et al., 2018; Haensch et al., 2018).
However, transitioning to new hardware without altering the main algorithm — error backpropagation
(Rumelhart et al., 1986) — has proven to be challenging due to two central issues: the requirement of
sequential forward and backward passes, and the need to analytically compute gradients of a global
cost function. These issues do not arise when using learning algorithms that rely computations that
are local in space and time (i.e., all updates rely on locally available information only) (Bengio, 2014;
Hinton, 2022). A popular example is equilibrium propagation, a framework that allows the learning
of the parameters of a neural network by simulating a physical system brought to an equilibrium
(Scellier & Bengio, 2017). This physical system is usually defined via an energy function that
describes the state of a neural network in terms of its weights and neurons, with different functions
describing different systems (Krotov & Hopfield, 2016).

In recent years, researchers have devoted significant effort to scaling up the deployment of energy-
based models. Two recent works have benchmarked multiple variants of common learning algorithms
using the Hopfield energy function (Scellier et al., 2024) and the predictive coding energy (Pinchetti
et al., 2024), showing that this class of models can match the performance of standard deep learning
when training relatively shallow networks of up to five or seven layers. However, this success does not
extend to deeper architectures, where performance degrades substantially. Notably, the degradation is
even more severe in predictive coding implementations of residual networks, which perform worse
than equally deep models without skip connections. Since the major advances of modern deep
learning rely on very deep architectures with residual connections, understanding and overcoming
these limitations is a critical step toward scaling predictive coding networks to the regimes where
deep learning has been most successful.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To understand the poor scalability of predictive coding networks, it is instructive to examine how
energy propagates across depth. It has recently been shown that in a three-layer model, the energy
concentrated in a layer can be up to an order of magnitude larger than the energy concentrated in the
layer before (Pinchetti et al., 2024). While such shallow models can still achieve good test accuracies,
we conjecture that this ’energy imbalance’ becomes a critical bottleneck in deeper architectures,
leading to performance degradation in a way that is conceptually similar to the vanishing gradient
problem (Hochreiter, 1998). More precisely, this imbalance prevents the effective propagation
of energy — and crucially, the associated error information — from the output layer back to the
early layers, creating two problems: first, it prevents the model from fully leveraging its depth, as
early layers receive insufficient error signals for effective training; second, latent states may diverge
substantially from their forward pass values, due to the excessive energy in later layers.

Addressing this energy imbalance requires mechanisms that can adaptively modulate the relative
influence of different layers as errors propagate through the network, a challenge similar to what
biological neural systems solve through precision-based regulation. In predictive processing theories,
precision refers to the estimated reliability of a prediction error (formally, its inverse variance), and it
is thought to be dynamically regulated to balance bottom-up and top-down signals across cortical
hierarchies (Feldman & Friston, 2010; Bastos et al., 2012). Despite its central role in biological
inference, most machine learning formulations of predictive coding set precision to 1 for simplicity
(Whittington & Bogacz, 2017), thereby overlooking its potential as a powerful mechanism to stabilize
learning dynamics. The forst contribution of this work, is to propose to leverage precision weighting
to regularize energy propagation in predictive coding networks.

We begin by analyzing the energy propagation of deep convolutional architectures for both predictive
coding (PC) and incremental PC (iPC) — a recently introduced variant of PC that updates weights
and neurons simultaneously Salvatori et al. (2024). Building on the insights from these analyses,
we propose time-dependent precisions that address the identified issues. Our results show that this
substantially improves test accuracy, supporting our conjecture of a causal link between energy
propagation and empirical performance. More broadly, we propose two algorithmic improvements
(spiking precision and a novel weight-update mechanism) and two structural improvements (PC-
tailored batch normalization and auxiliary neurons for skip connections) that enable PC to achieve
competitive performance with backprop on image classification benchmarks, including VGG models
with up to 15 layers and ResNets18 on Tiny ImageNet. Our contributions can be detailed as follows:

• We show that in models trained with PC, the energy is orders of magnitude larger in layers closer
to the output, supporting the hypothesis that information fails to propagate effectively to the early
layers. This phenomenon is less pronounced in iPC, where continuous weight updates rapidly
reduce the excess energy. However, these updates result in even lower test accuracy.

• To mitigate this imbalance, we propose dynamical precision-weightings that depend on both time
and layer depth. The most effective variant, which we call spiking precision, applies very large
precisions as soon as the energy reaches a given layer, thereby boosting it forward. Experiments
show that this method regulates the energy imbalance and improves test accuracy in deep PC
models. In the case of iPC, spiking precisions alone are already sufficient to achieve performance
comparable to backpropagation in deep networks.

• To further improve the performance of standard PC models, we introduce a novel weight-update
mechanism that modifies how parameters are updated. This method combines predictions computed
at initialization (hence adding a degree of implausibility, as they have to be stored in memory)
with the neural activities at convergence, resulting in more effective updates. With this approach,
PC attains performance on par with backpropagation and iPC on deep convolutional models. In
addition, we propose a variant of batch normalization (Ioffe & Szegedy, 2015) tailored for PC,
which further enhances performance.

• While effective for VGG-like models, when training PC-based ResNets He et al. (2016), we
still observe a significant drop in performance. We conjecture that this is caused by the energy
propagated by the residuals, that reach higher layers faster than the one propagated by the main
pathway, disrupting learning dynamics. We show that this can be addressed by adding extra
families of neurons inside the skip connection, that have the sole goal of slowing down the feedback
signal of the skip connections so that it reaches the higher layers at the same time as the main
one. The results show that such auxiliary neurons allow models trained with PC and iPC to reach
performance comparable to these of backprop on ResNet18.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

Equilibrium Propagation (EP). EP is a learning algorithm for supervised learning that is largely
inspired by contrastive learning on continuous Hopfield networks (Movellan, 1991). Here, neural
activities are updated in two phases: In the first, to minimize an energy function defined on the
parameters of the neural network; in the second, to minimize the same energy with the addition of a
loss function defined on the labels (Scellier & Bengio, 2017). Interestingly, these two phases allow
us to approximate the gradient of the loss function up to arbitrary levels of accuracy using finite
difference coefficients (Zucchet & Sacramento, 2022). The consequence is that EP can be seen as a
technique that allows the minimization of loss functions using arbitrary physical systems that can
be brought to an equilibrium, and it has hence been studied in a large number of domains (Scellier,
2024; Kendall et al., 2020). The state of the art is that EP models are able to match the performance
of BPTT (BP Through Time) on models with 5 and 7 hidden layers (Scellier et al., 2024), with the
exception of hybrid models, which manage to achieve a good performance on models with 15 layers
by alternating blocks of layers trained with BP and blocks trained with EP (Nest & Ernoult, 2024).

Predictive Coding (PC). The formulation of PC that we use here was developed to model hier-
archical information processing in the brain (Rao & Ballard, 1999; Friston, 2005). Intuitively, this
theory states that neurons and synapses at one level of the hierarchy are updated to better predict the
activities of the neurons of the layers below, and minimize the prediction error. Interestingly, the
same algorithm can be used as a training algorithm for deep neural networks (Whittington & Bogacz,
2017), where several similarities with backpropagation were observed (Song et al., 2020; Salvatori
et al., 2022). To this end, it has been used in a large number of machine learning tasks, from image
generation and classification to natural language processing and associative memory (Sennesh et al.,
2024; Salvatori et al., 2023; Pinchetti et al., 2022; Ororbia & Kifer, 2020; Salvatori et al., 2021).
Again, the state of the art has been reached by training convolutional models with 5 hidden layers,
with performance starting to get worse as soon as we use models with 7 layers (Pinchetti et al., 2024).
To this end, a recent interesting work has proposed µPC, a theoretical framework that allows the
training of very deep feedforward models Innocenti et al. (2025). However, this work does not tackle
non-feedforward layers, and does not test on datasets larger than MNIST. The connection between
PC and EP is well explained by the concept of bi-level optimization (Zucchet & Sacramento, 2022),
where the neural activities used for learning are the equilibrium state of a physical system.

3 BACKGROUND

Let us consider a network with L layers, and let us denote Wl and xl
t the weight parameters

and the neural activities of layer l, respectively. Note that, differently from standard models, the
neural activities are variables of the model, optimized over time steps t. This optimization is
performed with the goal of allowing the activities of every layer to predict those of the layer
below. Together with the neural activities, the two other quantities related to single neurons are
the prediction µl

t = Wlf
(
xl−1
t

)
, given by the layer-wise operation through an activation function,

and the prediction error, defined as the deviation of the actual activity from the prediction, that is,
εlt = xl

t − µl
t. A fourth quantity, usually overlooked in machine learning applications but of vital

importance in neuroscience, is the precision, or covariance Σl
t of a specific neuron 1. Differently

from the standard literature, we consider the covariance to be time-dependent. Furthermore, instead
of updating it to minimize an objective function as done in previous works (Ofner et al., 2021), we
will manually define the rule that governs its updates. The predictive coding energy is then the sum
of the squared norms of the precision-weighted prediction errors of every layer over time:

Et =
1

2

L∑
l=1

∥xl
t − µl

t∥2

Σl
t

=
1

2

L∑
l=1

∥εlt∥2

Σl
t

, (1)

where we consider covariances to be layer-dependent: all the neurons of the same layer will have
the same covariance. To this end, we use the same notation when the covariance Σl

t is a scalar, or a
diagonal matrix whose entries are equal to such a scalar.

1In predictive coding, and more generally in statistics, the precision matrix is the matrix inverse of the
covariance matrix. In this work, we follow the standard convention and divide the prediction error by a factor
of Σ, instead of multiplying it by a factor of p.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

�10

��−10

��0

......

�10

��−10

��0

�11

��1

�11

��−11

��1

�01

��0

� �1

F Y

� �1

� �1

�1�

���

...

...

...��1

...

t=T

t=1

t=T-1

t=T

...

��1

...

��−1���−11��−10

�00

�11

Output:
Input:

Decaying PrecisionsSpiking Precisions

1
�

� = 1
� = 3 � = 4

� = 2

Usual Precisions
}1

(a)

(b): Prediction
: Neural Activities
: Prediction Error
: Weights
: Covariance
: Forward
: Backward

�
�

�
�

Figure 1: (a) Evolution of predictive coding models over multiple time iterations. The green diamond ε̃l+1
T

refers to the information needed to compute the proposed forward updates. The rest of the figure represents
the standard components and mechanisms of a predictive coding network. (b) Visualization of the proposed
precision-weighting strategies, where the height of the bar is proportional to the precision at different time steps.

Training. Suppose that we are provided with a labeled data point (o,y), where o denotes sensory
inputs, and y ∈ Ro is the label. Training is then performed via a form of bi-level optimization
(Zucchet & Sacramento, 2022), divided into three phases. In the first phase, the neural activities of
every neuron are initialized via a forward pass, that is, we set xl

0 = µl
0 for every layer, with x0

0 = o.
In the second phase, that we call the inference phase, we fix the neural activities of the output layer to
the label, that is, we set xL = y, and we update the neural activities via gradient descent, to minimize
the total energy of the model. The update rule is then the following:

∆xl
t = −α

∂Et

∂xl
t

= α(
εlt
Σl

t

−W(l+1)⊤ εl+1
t

Σl
t

⊙ f ′(xl
t)), (2)

where α is the learning rate of the neural activities. This phase will continue until it reaches the
fixed number of iterations T or convergence. The third phase is the learning phase, where the neural
activities xl

T are fixed, and the weight parameters are updated to decrease the energy, weighted by a
learning rate η, via the following equation:

∆Wl = −η
∂ET

∂Wl
= −η

εlT f(x
l−1
T)

Σl
T

, (3)

Incremental PC (iPC). An alternative to the bi-level optimization described above is iPC Salvatori
et al. (2024), that differs from the standard implementation as also the weight parameters are updated
at every time step t until convergence, according to Eq.3. From the variational inference perspective,
this schema introduces a form of incremental expectation-maximization Neal & Hinton (1998), and
has been argued to be more biologically plausible than standard PC, as it avoids the need for a control
signal that halts the updates of the neural activities and triggers the weight updates. In practice,
however, this method has been shown to perform even worse than PC when it is used to train deep
models such as VGG7 and VGG9 on CIFAR10 Pinchetti et al. (2022). We will show that it is this
fully automatic training method that will benefit the most from hard-coded precisions, and reach the
best performance on models such as ResNet18.

Nudging. Instead of providing the original label y to the model, it is common in the literature to
slightly translate the output neurons of the system xL

0 in the direction of y. More precisely, it fixes
xL
t = µL

0 + β(y − µL
0) for every time step t, where β controls the supervision strength. The sign of

β determines supervision polarity: positive for standard nudging and negative for inverse supervision.
Performing a stochastic sampling from {β,−β} across training epochs and batches is called center
nudging (Scellier et al., 2024). In practice, PC with centered nudging has been shown to be the best
performing method on deep models such as VGG7 Pinchetti et al. (2024).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35 40 45
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
BackPropagation

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

0.9988
0.9211

0 5 10 15 20 25 30 35 40 45
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Predictive Coding (PC)

10 21

10 18

10 15

10 12

10 9

10 6

10 3

1000.9002
0.8316

0 5 10 15 20 25 30 35 40 45
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Incremental Predictive Coding (iPC)

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

En
er

gy
 o

f E
ac

h
La

ye
r (

Lo
g

Sc
al

e)

0.60930.6388

0 5 10 15 20 25 30 35 40 45
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

PC & Forward Update (FU)

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100
0.9534

0.8692

0 5 10 15 20 25 30 35 40 45
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
PC & Spiking Precision (SP)

10 21

10 18

10 15

10 12

10 9

10 6

10 3

1000.8902
0.8113

0 5 10 15 20 25 30 35 40 45
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
iPC & SP

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

0.9992
0.9301

0 5 10 15 20 25 30 35 40 45
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
PC & SP & FU

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

En
er

gy
 o

f E
ac

h
La

ye
r (

Lo
g

Sc
al

e)

0.9985
0.9234

Train Accuracy
Val Accuracy

Layer_1
Layer_2

Layer_3 Layer_4 Layer_5 Layer_6 Layer_7 Layer_8 Layer_9 Layer_10

Figure 2: Normalized layer-wise energy distribution and accuracy comparison between BP and PCNs
in a VGG10 on the CIFAR10 dataset. Colored curves represent the total energy of the individual
layers of the model (or, the squared error of every layer for BP). The vertical lines represent the train
and test accuracies of the model.

4 METHODS

In this section, we first study the phenomenon of energy imbalance across different layers, and then
use the derived insights to propose time-dependent covariances that address it. In detail, we propose
spiking precisions, a method that better distributes the energy across the model by dynamically
updating the precisions as soon as individual neurons are reached by the energy term. In practice, we
show that this largely improves the performance of models trained with PC and iPC. In the case of iPC,
spiking precisions allow us to reach performance comparable to that of backprop. To further boost
the performance of standard PC, we introduce a variation of the weight update rule, which leverages
neural activities at initialization to perform a better update of the parameters and improve overall
model performance. Figure 1(a) presents a flowchart that intuitively illustrates the modules discussed
in subsequent sections, while Figure 1(b) provides a visualization of the covariance matrices.

To study the energy imbalance across different levels of the network, we have tracked the normalized
total energy of each layer during training, along with the test and training accuracy, and compared it
against that of BP. We have performed a broad study that tests multiple models, datasets, and setups,
which we mostly report in the supplementary material, while presenting in Figure 2 the plots of the
best performing models. As BP does not have a proper definition of energy, we have used the squared
error of every layer computed during the backward pass, equivalent to the error of PC when it comes
to the update of the weight parameters.

Results. In models trained with PC, there is a significant energy imbalance, where early layers
have up to 18 orders of magnitude less energy than later layers, while in models trained with iPC this
phenomenon is less pronounced but still present, as the layer with less energy has an energy of about
10−5 . This does not happen in BP-trained models, which exhibit a more uniform energy distribution
across layers. In fact, the first layer has energy above 10−2 almost the whole training. This set of
experiments shows the potential reason why deep PC models do not perform well. In the bottom row,
we show how combinations of our proposed methods mitigate such an energy imbalance, with the
best performing ones being iPC with spiking precisions, and PC with spiking precisions and a novel
update rule we will discuss later. In both cases, the first layer has an energy above the layer of lowest
energy above 10−3. These two methods are also the only ones reaching test accuracy slightly better
than those of backprop.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

VGG5 VGG7 VGG10
40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

89.43 89.91 92.21
BP

VGG5 VGG7 VGG10

87.98
89.47

84.6288.40

72.75

85.65

PC

VGG5 VGG7 VGG10

85.51

69.19

80.15

61.8063.83

50.35

iPC

VGG5 VGG7 VGG10

88.06
87.15

82.1684.88
78.09

86.80

Spiking Precision (S)

VGG5 VGG7 VGG10

88.79
87.8287.4387.4287.3386.76

Forward Update (F)

VGG5 VGG7 VGG10

89.3288.9990.25
85.74

93.03

58.38

iPC + S

VGG5 VGG7 VGG10

89.4589.25
90.0889.37

92.0791.59
PC + S + F

Without CN With CN

Figure 3: Test accuracies of various algorithms on the CIFAR10 dataset, evaluated on models of
different depths. From the second plot onward, each pair of bars compares the performance of the
algorithm with and without center nudging (CN).

4.1 ALGORITHMIC CONTRIBUTIONS

Spiking Precision. Training predictive coding models involves a critical trade-off between stability
and the efficient propagation of error signals. On the one hand, large learning rates α for the neural
activities can lead to instabilities: most of the best results in the field have been obtained using a
small learning rate, such as α = 0.05 (Pinchetti et al., 2024). On the other hand, such small learning
rates can exponentially slow down the propagation of error signals across model layers, as noted in
the supplementary material of (Song et al., 2020). To this end, we propose to modulate the precision
having a spike proportional to the learning rate the first time the energy — initially concentrated in the
output neurons — reaches a specific layer. In terms of temporal scheduling, this happens at l = L− t.
For a network with L layers and T inference steps, the proposed spiking precision hence is:

Σl
t =

{
α when l = L− t,

1, otherwise.
(4)

Intuitively, the spikes allow the energy to be well propagated from the last to the first layer during the
first L iterations, with the other updates happening as usual.

Forward Updates. Due to large prediction errors that we find in the last layers, the neural activities
observed at the end of the inference process tend to significantly deviate from their initial feed-
forward values. But the feedforward values are the ones that are then used for predictions. We
hence conjecture that synaptic weight updates based on xl

T could potentially introduce errors that
accumulate with network depth, leading to performance degradation in deeper architectures. To
assess whether the proposed conjecture is correct, we introduce a new method for updating the weight
parameters that uses both the starting and final states of neurons, according to the energy function
defined as

ẼT =
1

2

∑
l

∥ε̃lT ∥2

Σl
t

, where ε̃lT = xl
T − µl

0. (5)

Our method makes sure that weight adjustments stay connected to the initial feed-forward predictions
while incorporating the refined representations obtained through iterative inference. This approach
has the advantage of maintaining stability during learning and prevents the accumulation of errors
in deeper layers, which is crucial for scaling PC networks, but also the disadvantage of storing
information in memory, which is then used for the weight update only, making it less bio-plausible
than the original formulation. A similar energy function has been used in a different way in a previous
work, where the authors used it to guide the update of the neural activities instead of the weight
updates (Whittington & Bogacz, 2017).

4.1.1 EXPERIMENTS

Our hypothesis is that the proposed methods improve the performance of PC and iPC on deep
models. To this end, we perform experiments on VGG-like models (Simonyan & Zisserman, 2014) —
convolutional models followed by feedforward layers — on the CIFAR10 dataset, where we observe
their test accuracies as a function of their depth. We again use backprop, PC, and iPC as baselines,
and report the results computed with and without centered nudging in Figure 3. All the details
needed to reproduce the experiments, architectures, and hyperparameters used can be found in the
supplementary material.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Results. The barplots show that PC and iPC with and without center nudging significantly drop in
test accuracy when the depth of the model is increased. In contrast, our proposed methods avoid the
accuracy degradation as model depth increases. Particularly, iPC with spiking precision is the method
that exhibits performance comparable to BP across VGG5/7/10 models, despite being completely
local in space and time. We will later see that this is consistent with the more complex experiments,
where this method is still the one achieving the best performance overall. In models without forward
update, consistent with previous findings, using center nudging enhances algorithm accuracy, with
more pronounced effects as the number of model layers increases in most cases. However, we found
that once forward update is added, center nudging ceases to yield performance benefits.

Table 1: Performance of different precision
schedules on VGG10/CIFAR-10.

Method Test Accuracy (%)

Fixed + FU 87.33± 0.14
Lin Decay + FU 88.35± 0.12
Exp Decay + FU 89.43± 0.18
Spiking + FU 92.07± 0.10

Linear and exponential decays. To address the problem
of energy imbalances, we used spikes that help propagate
the energy to the first layers. However, alternative options
would have been to attenuate the energy accumulation in
the last layers by gradually reducing their precision over
time. We therefore evaluate two variants where precisions
decay either linearly or exponentially with the number of
time steps, using the same setup of the experiment above,
that is, a VGG10 on CIFAR10. The results, reported in
Tab. 1, show that such decays provide improvements over the baseline, confirming the benefit of
dynamically modulating precisions. However, spiking precisions consistently outperform both decay
schedules, underscoring that actively boosting error propagation is more effective than passively
damping energy imbalances. We refer to the supplementary material for a more detailed description.

4.2 STRUCTURAL CONTRIBUTIONS

Residual Connections. In the previous subsection, we showed that our proposed methods overcome
the depth limitation when training VGG-style models with 10 layers. However, this improvement
does not extend to ResNet10, where performance still drops catastrophically. We conjecture that
this degradation arises from a mismatch in how energy propagates through residual connections:
the skip path delivers energy to higher layers earlier than the main feedforward path. Concretely,
consider the residual block in Fig. 4(a): when the neurons xl+2 receive energy at time t, in the next
step they propagate it both to xl+1 (through the feedforward connection) and to xl−1 (through the
skip connection). As a result, higher-level neurons begin updating before the main stream of energy
arrives.

Having two streams of energy that reach the same levels in different time steps contrasts with both the
philosophy behind the spiking updates, that are supposed to boost the neural activities the first time
this is reached by the energy, and iPC, that updates some weight parameters before the information
that goes through the model has reached them. To address this temporal mismatch, we introduce
auxiliary families of neurons along each residual connection, one for every skipped layer, as shown
in Fig. 4(a). These auxiliary units act as buffers that delay the propagation of energy through the
skip path, ensuring that energy arriving via the residual connection reaches the start of the block
synchronously with the energy propagated through the main path.

BatchNorm Freezing (BF). BatchNorm has proven instrumental in stabilizing the training of deep
neural networks, as it mitigates gradient-related issues and ensures smooth gradient propagation.
During training, it achieves this by normalizing layer activations through the function

BN(x) = γ(
x− µB√
σ2
B + ϵ

) + β, (6)

where γ and β are learnable parameters, and µB and σ2
B are the mean and variance of the minibatch

B. At test time, it uses statistics µr and σ2
r learned through exponential moving averages. However,

when applied directly to PCNs, BatchNorm fails to yield similar improvements. We hypothesize that
this failure results from the iterative inference phase, where processing the same batch multiple times
leads to a possible overfitting of the layer statistics. To address this issue, we propose BatchNorm
Freezing (BF), a modification that freezes the states of the BatchNorm state during the inference
phase, and updates running statistics exclusively during the learning phase while still using batch
statistics for normalization during inference iterations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) (c)(b)

Figure 4: (a): A sketch of a residual block (left) and our proposed variation (right) with auxiliary
neural activities, that prevent the error signal to travel from xl+2 to xl−1 in one timestep; (b) A
barplot showing the gap in test accuracy on the CIFAR10 dataset between models with and without
added neural activities on a ResNet18. Both plots refer to the best test accuracies reached by PC and
iPC with the novel methods presented above. (c) Shows the test accuracy between models with the
standard formulation of BN, without BN, and our proposed BF.

Experiments. With the goal of validating the conjectures outlined above, we conducted two sets
of experiments on the CIFAR-10 dataset: First, we trained a ResNet10 and a ResNet18 both with
and without auxiliary neurons on the residual connections. In this setting, we used the two best-
performing training schemes identified earlier, iPC with spiking updates, and PC with spiking plus
forward updates. Second, we revisited the VGG10 architecture and compared different forms of
batch normalization, including our newly proposed BF variant. The results of both experiments are
reported in Fig. 4(b) and (c), respectively.

Results. For ResNet10, the results indicate that introducing auxiliary neurons resolves the skip-
connection issue, enabling both algorithms to match the performance of the VGG10 baseline reported
previously. This result is even starker in ResNet18, where the presence of multiple skip connections
causes a much larger degradation of performance. Again, the addition of auxiliary neurons completely
solves the problem, as the proposed models reach almost 92% test accuracy, compared to a maximum
of 64%. A similar result is obtained in the experiments with BF, where we show that normalization
not only maintains convergence but also improves accuracy, indicating that stabilizing activation
distributions plays a crucial role in supporting energy-based optimization within predictive coding
architectures. In the next section we will show that such results, together with the ones obtained at
the beginning of the section, will also extend to deeper models and more complex datasets.

5 EXPERIMENTS

Here we test our proposed methods combined, and show that we are able to reach performance compa-
rable to those of BP when trained on models with the same complexity. To provide a comprehensive
evaluation, we test them on CIFAR-10/100 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang,
2015), a scaled down version of ImageNet with 200 classes. As architectures, we use VGG-like
models and ResNet architectures (He et al., 2016). Similarly to the setups of the aforementioned
works, in this work we only consider models with a single feedforward layer after the convolutional
layers. In all cases, we perform a large number of hyperparameter searches, and report the best test
accuracy obtained with early stopping, averaged over 5 runs. We have run the experiments with and
without BN/BF, and reported the best one obtained. Details on the architecture used, information
needed to reproduce the results, study on hyperparameter importance, are in Appendix A.

Results. We report a comprehensive comparison in Table 2. As expected, in shallow models all
methods can either match or approximate the performance of BP with all the methods, while in
deeper models, this is not the case for our baselines, but it is for our newly proposed methods. For
standard PC, spiking precisions and forward updates alone slightly improve the performance, and it
is the combination of both inference and update methods that performs the best, always matching the
performance of models trained with BP. To conclude, we note that batch freezing further improves
the results, clearly showing that the best combination of methods is batch freezing, forward updates,
and spiking precisions, which get the best results on all benchmarks when testing on a VGG10. In
this case, we use models with normal BN when testing with BP.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Test accuracies of different algorithms across datasets and architectures.

Dataset Algorithm VGG5 VGG7 VGG10 ResNet10 ResNet18

CIFAR10

BP 90.01±0.15 91.32±0.14 92.68±0.10 92.93±0.11 93.13±0.16

PC 87.98±0.11 84.62±0.10 76.22±0.43 69.85±2.12 15.63±7.22

iPC 86.01±0.10 80.15±0.18 63.83±0.33 62.34±0.27 21.90±1.51

iPC + Spiking Updates 89.73±0.06 91.12±0.08 93.03±0.18 92.39±0.04 91.96±0.07

PC + Spiking + Forward 89.45±0.18 90.89±0.04 93.27±0.10 92.47±0.01 91.93±0.14

CIFAR100 (Top-1)

BP 67.39±0.25 67.67±0.11 71.25±0.21 71.21±0.09 71.69±0.21

PC 61.84±0.18 56.80±0.14 50.76±0.37 41.51±0.32 1.59±0.02

iPC 56.07±0.16 43.99±0.30 31.99±0.17 22.91±0.23 1.56±0.24

iPC + Spiking Updates 66.91±0.12 67.10±0.12 69.84±0.17 70.02±0.24 70.38±0.20

PC + Spiking + Forward 67.16±0.16 67.71±0.10 72.02±0.12 71.30±0.21 70.90±0.18

CIFAR100 (Top-5)

BP 89.56±0.08 90.05±0.13 92.10±0.12 89.49±0.13 89.43±0.14

PC 86.53±0.15 83.00±0.09 78.68±0.27 70.95±0.35 5.89±0.12

iPC 78.91±0.23 73.23±0.30 61.17±0.31 46.41±0.31 6.33±0.26

iPC + Spiking Updates 89.47±0.02 89.42±0.06 88.75±0.29 88.90±0.21 90.74±0.10

PC + Spiking + Forward 89.57±0.09 89.62±0.18 92.10±0.10 89.56±0.1 90.47±0.11

TinyImageNet (Top-1)

BP 47.81±0.12 50.13±0.06 53.61±0.12 53.02±0.20 58.18±0.12

PC 41.29±0.20 41.15±0.14 31.87±0.03 13.59±0.12 0.84±0.02

iPC 29.94±0.47 19.76±0.15 11.41±0.23 11.66±0.39 1.44±0.05

iPC + Spiking Updates 48.13±0.10 48.75±0.12 52.40±0.20 54.94±0.30 57.83±0.21

PC + Spiking + Forward 49.35±0.09 50.64±0.12 55.31±0.25 53.25±0.27 54.24±0.63

TinyImageNet (Top-5)

BP 72.15±0.10 73.94±0.10 77.11±0.10 72.90±0.16 79.94±0.06

PC 66.68±0.09 66.25±0.11 58.14±0.04 37.99±0.08 5.34±0.01

iPC 54.73±0.52 40.36±0.22 30.42±0.36 26.51±0.71 11.58±0.21

iPC + Spiking Updates 72.71±0.12 73.39±0.10 76.76±0.15 78.88±0.32 77.55±0.12

PC + Spiking + Forward 73.46±0.09 75.63±0.08 79.30±0.17 77.72±0.23 74.70±0.47

Scaling up. When performing the analysis that lead to the numbers in Table 2, we noted that iPC
often performed better without BF. To explicitate this phenomenon, we have performed additional
experiments on a VGG15 on the Tiny ImageNet dataset. The model that we use is identical to the one
proposed in the hybrid equilibrium propagation work (Nest & Ernoult, 2024). The results, reported
in Table 3, show that the effect of BF is much stronger when training models with our version of
PC, rather than iPC, whose performance is better when using a vanilla model, without any kind of
normalization. Again, the numbers reported here are the result of an hyperparameter search, whose
details are in the supplementary material.

6 CONCLUSION

Table 3: Test accuracies on Tiny ImageNet.
% Accuracy BP PC+S+F iPC+S

VGG-15
Top-1 44.52±0.16 50.10±0.16 50.24±0.13

Top-5 69.28±0.06 73.23±0.18 75.41±0.10

VGG-15-BN/BF
Top-1 53.21±0.39 53.04±0.36 48.19±0.71

Top-5 77.26±0.17 76.64±0.23 72.64±0.20

In this work, we have investigated the following re-
search question: Why do deep models trained with
the predictive coding energy fail to match the accu-
racy of their counterparts trained with backpropaga-
tion? We have addressed this problem from both the
algorithmic and the architectural sides. Algorithmically, we have proposed both a novel technique
that leverages a dynamical precision-weighting of prediction errors to better regularize the energy
landscape, and a novel weight update mechanism. From the architectural side, we have shown how to
modify the residual connections to allow the training of PC-based ResNets, and developed a more
effective normalization technique. The results show that we are now able to train VGG models with
15 layers, and ResNet18 on Tiny Imagenet.

A limitation of the work is the presence of the value of the predictions at initialization during
the forward updates, which means that the algorithm has to store this value in memory, adding a
degree of biological implausibility, due to computations not being completely local in time anymore.
Future work will investigate how to address this problem with a bio-plausible weight update, with a
nice starting point being a contemporaneous study that theoretically shows how to train very deep
feedforward models (Innocenti et al., 2025). Despite this limitation, however, we have reached the
same performance using iPC with spiking updates, and can hence claim that we have reached our
goal of training complex models such as ResNet18 with a learning algorithm that is local in time and
space, reaching the same performance as backprop.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

All the experiments in this work have been run using the PCX library Pinchetti et al. (2024), an
open-source software that allows training and testing predictive coding models. Besides this, all the
details needed to reproduce the results are carefully described in the supplementary material. We will
release the code in case of acceptance.

REFERENCES

Andre M Bastos, W Martin Usrey, Rick A Adams, George R Mangun, Pascal Fries, and Karl J Friston.
Canonical microcircuits for predictive coding. Neuron, 76(4):695–711, 2012.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv:1407.7906, 2014.

Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, and Benjamin Scellier. Equilib-
rium propagation with continual weight updates. arXiv preprint arXiv:2005.04168, 2020.

Harriet Feldman and Karl J Friston. Attention, uncertainty, and free-energy. Frontiers in human
neuroscience, 4:215, 2010.

Simon Frieder and Thomas Lukasiewicz. (non-) convergence results for predictive coding networks.
In International Conference on Machine Learning, pp. 6793–6810. PMLR, 2022.

Karl Friston. A theory of cortical responses. Philosophical Transactions of the Royal Society B:
Biological Sciences, 360(1456), 2005.

Wilfried Haensch, Tayfun Gokmen, and Ruchir Puri. The next generation of deep learning hardware:
Analog computing. Proceedings of the IEEE, 107(1):108–122, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem
solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):
107–116, 1998.

Francesco Innocenti, El Mehdi Achour, and Christopher L Buckley. µPC: Scaling predictive coding
to 100+ layer networks. arXiv preprint arXiv:2505.13124, 2025.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456.
PMLR, 2015.

Jack Kendall, Ross Pantone, Kalpana Manickavasagam, Yoshua Bengio, and Benjamin Scellier.
Training end-to-end analog neural networks with equilibrium propagation. arXiv preprint
arXiv:2006.01981, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Dmitry Krotov and John J. Hopfield. Dense associative memory for pattern recognition. In Advances
in Neural Information Processing Systems, 2016.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Ali Momeni, Babak Rahmani, Benjamin Scellier, Logan G. Wright, Peter L. McMahon, Clara C
Wanjura, Yuhang Li, Anas Skalli, Natalia G Berloff, Tatsuhiro Onodera, et al. Training of physical
neural networks. arXiv preprint arXiv:2406.03372, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Javier R. Movellan. Contrastive Hebbian learning in the continuous hopfield model. In Connectionist
Models, pp. 10–17. Elsevier, 1991.

Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Learning in Graphical Models, pp. 355–368. Springer, 1998.

Timothy Nest and Maxence Ernoult. Towards training digitally-tied analog blocks via hybrid gradient
computation. Advances in Neural Information Processing Systems, 37:83877–83914, 2024.

Andre Ofner, Raihan Kabir Ratul, Suhita Ghosh, and Sebastian Stober. Predictive coding, precision
and natural gradients. arXiv preprint arXiv:2111.06942, 2021.

Alex Ororbia and Daniel Kifer. The neural coding framework for learning generative models.
arXiv:2012.03405, 2020.

Luca Pinchetti, Tommaso Salvatori, Beren Millidge, Yuhang Song, Yordan Yordanov, and Thomas
Lukasiewicz. Predictive coding beyond Gaussian distributions. 36th Conference on Neural
Information Processing Systems, 2022.

Luca Pinchetti, Chang Qi, Oleh Lokshyn, Gaspard Olivers, Cornelius Emde, Mufeng Tang, Amine
M’Charrak, Simon Frieder, Bayar Menzat, Rafal Bogacz, et al. Benchmarking predictive coding
networks–made simple. arXiv preprint arXiv:2407.01163, 2024.

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: A functional in-
terpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1):79–87,
1999.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

Tommaso Salvatori, Yuhang Song, Yujian Hong, Lei Sha, Simon Frieder, Zhenghua Xu, Rafal Bogacz,
and Thomas Lukasiewicz. Associative memories via predictive coding. In Advances in Neural
Information Processing Systems, volume 34, 2021.

Tommaso Salvatori, Yuhang Song, Thomas Lukasiewicz, Rafal Bogacz, and Zhenghua Xu. Reverse
differentiation via predictive coding. In Proc. AAAI, 2022.

Tommaso Salvatori, Ankur Mali, Christopher L Buckley, Thomas Lukasiewicz, Rajesh PN Rao, Karl
Friston, and Alexander Ororbia. Brain-inspired computational intelligence via predictive coding.
arXiv preprint arXiv:2308.07870, 2023.

Tommaso Salvatori, Yuhang Song, Beren Millidge, Zhenghua Xu, Lei Sha, Cornelius Emde, Rafal
Bogacz, and Thomas Lukasiewicz. Incremental predictive coding: A parallel and fully automatic
learning algorithm. International Conference on Learning Representations 2024, 2024.

Benjamin Scellier. Quantum equilibrium propagation: Gradient-descent training of quantum systems.
arXiv preprint arXiv:2406.00879, 2024.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

Benjamin Scellier, Maxence Ernoult, Jack Kendall, and Suhas Kumar. Energy-based learning
algorithms for analog computing: a comparative study. Advances in Neural Information Processing
Systems, 36, 2024.

Eli Sennesh, Hao Wu, and Tommaso Salvatori. Divide-and-conquer predictive coding: a structured
bayesian inference algorithm. arXiv preprint arXiv:2408.05834, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the brain do backpropa-
gation? — Exact implementation of backpropagation in predictive coding networks. In Advances
in Neural Information Processing Systems, volume 33, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hsinyu Tsai, Stefano Ambrogio, Pritish Narayanan, Robert M. Shelby, and Geoffrey W. Burr. Recent
progress in analog memory-based accelerators for deep learning. Journal of Physics D: Applied
Physics, 51(28):283001, 2018.

James C. R. Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local Hebbian synaptic plasticity. Neural Computation, 29(5),
2017.

Logan G. Wright, Tatsuhiro Onodera, Martin M. Stein, Tianyu Wang, Darren T. Schachter, Zoey Hu,
and Peter L. McMahon. Deep physical neural networks trained with backpropagation. Nature, 601
(7894):549–555, 2022.

Nicolas Zucchet and João Sacramento. Beyond backpropagation: bilevel optimization through
implicit differentiation and equilibrium propagation. Neural Computation, 34(12):2309–2346,
2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

Here we provide an explanation of the performed experiments, as well as a detailed description of all
the parameters needed to replicate the results of the paper. We also provide an ablation study that
shows the performance of the individual methods in isolation.

LLM Usage. We have used LLMs for proofreading the paper and to polish writing, for retrieval
and discovery of related work, and for low-level coding help (e.g. to help us produce the code for
individual figures).

A EXPERIMENTS SETTING

Model. We conducted experiments on four VGG-based models: VGG5, VGG7, VGG10, and
VGG15 and two ResNet-based models: ResNet-10, ResNet-18. The detailed architectures of these
models are presented in Table 4.

Table 4: Detailed architectures of base models.

VGG5 VGG7
Channel Sizes: [128, 256, 512, 512] Channel Sizes: [128, 128, 256, 256, 512, 512]

Kernel Sizes: [3, 3, 3, 3] Kernel Sizes: [3, 3, 3, 3, 3, 3]
Strides: [1, 1, 1, 1] Strides: [1, 1, 1, 1, 1, 1]

Paddings: [1, 1, 1, 0] Paddings: [1, 1, 1, 0, 1, 0]
Pool window: 2 × 2 Pool window: 2 × 2

Pool stride: 2 Pool stride: 2
Linear Layers: 1 Linear Layers: 1

VGG10 VGG15
Channel Sizes: [64, [128]x3, [256]x4, 512] Channel Sizes: [64, 64, 128, 128, [256]x3, [512]x6]

Kernel Sizes: [3, 3, 3, 3, 3, 3, 3, 3, 3] Kernel Sizes: [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
Strides: [1, 1, 1, 1, 1, 1, 1, 1, 1] Strides: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Paddings: [1, 1, 1, 1, 1, 1, 1, 1, 1] Paddings: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Pool window: 2 × 2 Pool window: 2 × 2

Pool stride: 2 Pool stride: 2
Linear Layers: 1 Linear Layers: 2

ResNet10 ResNet18
Initial Conv: 3x3, Stride 1, Channel Size 64 Initial Conv: 3x3, Stride 1, Channel Size 64

Res-Block: [1, 1, 1, 1] Res-Block: [2, 2, 2, 2]
Channel Sizes: [64, 128, 256, 512] Channel Sizes: [64, 128, 256, 512]

Strides: [1, 2, 2, 2] Strides: [1, 2, 2, 2]
Linear Layers: 1 Linear Layers: 1

Experiments. The benchmark results of above models are obtained with CIFAR10, CIFAR100 and
Tiny ImageNet. The datasets are normalized as in Table 5.

Table 5: Data normalization.

Mean (µ) Std (σ)
CIFAR10 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]

CIFAR100 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]
Tiny ImageNet [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

For data augmentation on CIFAR10, CIFAR100, and Tiny ImageNet training sets, we use 50%
random horizontal flipping. We also apply random cropping with different setups. For CIFAR10
and CIFAR100, images are randomly cropped to 32×32 resolution with 4-pixel padding. For Tiny
ImageNet, images are randomly cropped to 64×64 resolution images with 8-pixel padding. For
testing on those datasets, we applied only standard data normalization, without using any additional
data augmentation techniques.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters search configuration.

Parameter PCNs BP

Epoch 25
Batch Size 128
Activation [leaky relu, gelu, hard tanh, relu]

α [0.01, 0.05, 0.001, 0.005] -
β [0.0, 1.0], 0.151 -

lrx∗ (5e-3, 9e-1)2 -
lrw (1e-5, 3e-2)2 (1e-5, 3e-4)2

momentumx [0.0, 1.0], 0.11 -
weight_decayw (1e-5, 1e-2)2

T (VGG-5) [5,6,7,8] -
T (VGG-7) [7,9,11,13] -

T (VGG-10) [10,12,14,16] -
T (VGG-15) [15,17,19,21] -

T (ResNet-10) [10,12,14,16] -
T (ResNet-18) [18,20,22,24] -

1: “[a, b], c” denotes a sequence of values from a to b with a step size of c. 2: “(a, b)” represents a
log-uniform distribution between a and b.

Table 7: Comparison of the training times (seconds per epoch) of BP against PCNs on different architectures
with CIFAR10

Task BP PC PC+ S+ F iPC iPC+ S

VGG5 (T = 5) 1.16±0.02 1.56±0.01 1.55±0.01 1.94±0.01 1.94±0.01

VGG7 (T = 7) 1.29±0.02 2.20±0.01 2.20±0.01 2.94±0.01 2.95±0.01

VGG10 (T = 10) 1.90±0.01 5.08±0.02 5.06±0.02 7.00±0.05 7.01±0.03

ResNet10 (T = 10) 1.75±0.01 5.02±0.02 5.10±0.01 7.08±0.05 7.08±0.05

ResNet18 (T = 18) 2.78±0.01 14.92±0.01 15.17±0.03 22.14±0.05 22.14±0.01

For the optimizer and scheduler, we employ mini-batch stochastic gradient descent (SGD) with
momentum for updating x during the relaxation phase. For the learning phase, we optimize weights
W using AdamW with weight decay. The learning rate schedule follows a warmup-cosine annealing
pattern without restarts. This scheduler initiates training with a low learning rate during the warmup
period, then smoothly transitions to a cosine-shaped decay curve, preventing abrupt performance
degradation. The schedule parameters are configured as follows: the peak learning rate reaches 1.1
times the initial rate, the final learning rate settles at 0.1 times the initial rate, and the warmup phase
spans 10% of the total iteration steps.

We conduct a rigorous hyperparameter search for all models, including the baselines, based on the
search space specified in Table 6. All experiments were implemented using the PCX library, a JAX-
based framework specifically designed for predictive coding networks that provides comprehensive
benchmarking capabilities. All the experiments were conducted on NVIDIA A100/H100 GPUs,
with each trial involving a hyperparameter search using the Tree-Structured Parzen Estimator (TPE)
algorithm over 200 iterations. The results presented in Table 2 and Figure 3 are obtained using 5
different random seeds (selected from 0-4) with the optimal hyperparameter configuration. The
training process is capped at 50 epochs, with an early stopping mechanism that terminates training if
no accuracy improvement is observed for 10 consecutive epochs. To maintain consistency with the
hyperparameter search settings, we employ a two-phase learning rate schedule: during the first 25
epochs, the weight learning rate follows a warmup-cosine-annealing schedule as previously described,
after which it remains fixed at the final learning rate of the scheduler. For the results shown in
Figure 2, 5 and 6, we utilize a single random seed with the optimal hyperparameters, setting the
maximum training epochs to 50 without implementing early stopping. The weight learning rate
schedule remains identical to the aforementioned approach.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B COMPUTATIONAL COMPLEXITY

In Table 7, we present the average time required to train one epoch using BP, PC, iPC, iPC with
Spiking Precision (iPC + S) and PC with Spiking Precision and Forward Update (PC + S + F) across
various tasks on a single H100 GPU. To eliminate the overhead associated with loading datasets
into memory, we began timing from the fifth epoch onward, calculating the average duration across
five consecutive epochs. We repeated this measurement process five times and report the mean and
standard deviation of these five experimental runs. It is worth noting that the reported times for
predictive coding suffer from an implementation bottleneck: despite the possibility of updating all
the neural activities in parallel, our library does not allow that. This largely slows down our models
when trained on deep architectures.

Results. The results in Table 7 lead to several key observations. First, our proposed methods,
PC+S+F and iPC+S, exhibit training times nearly identical to their respective baselines, PC and
iPC. This demonstrates that the proposed spiking precision and forward update mechanisms do not
introduce a significant computational overhead.

The table also shows that iPC is consistently slower than PC. This performance difference stems from
their distinct weight update strategies. PC first runs the inference learning for T timesteps to allow the
neural activities (x) to converge and then performs a single weight update at the end. In contrast, iPC
performs weight updates within each of the T inference steps, alongside the neural activity updates.
This approach results in T separate weight updates for every layers instead of one, is the direct cause
of its higher computational cost compared to PC.

Finally, all PC models are slower than BP, with this ratio increasing as the number of model layers
increases, mostly for the bottleneck just described. While the forward pass is computationally
identical for both BP and PC, their backward/update passes differ fundamentally. BP computes
gradients in a single backward pass. In contrast, PC perform an iterative inference process to update
neural activities by minimizing a global prediction error. This process runs for a fixed number of T.
The computational complexity of a single BP epoch is proportional to the number of layers, L. For
PC, each of the T inference steps involves computations across all layers, making their complexity
roughly proportional to T×L. Since optimal performance often requires T to be equal to or greater
than the network depth L, the computational cost for PC naturally scales more rapidly with deeper
architectures, despite this not being as much of a bottleneck as the full parallelization of the operations.
Thus, We expect predictive coding networks to maintain computational efficiency across larger model
architectures while offering substantial performance advantages when implemented on specialized
analog neuromorphic hardware.

C ABLATION STUDY

In this section, we conduct ablation studies to evaluate the individual and synergistic effects of
our proposed components. By systematically isolating each mechanism, we quantify its specific
contribution to the overall performance of the model.

C.0.1 COMPARISON OF DIFFERENT PRECISION SCHEDULES

Our central hypothesis is that mitigating the energy imbalance in deep networks requires a potent
and precisely timed signal amplification. This amplification should occur at the moment the error
information, propagating from the output layer, first arrives at a given hidden layer. To test this
hypothesis, we designed and compared several dynamic precision schedules.

Based on this perspective, in addition to Spiking Precision, we designed a Decaying Precision
schedule, which offers a slightly smoother, yet still powerful, amplification profile. The formula for
Decaying Precision is as follows:

Σl
t =

{∑T−L+l
j=0 e−k·j

e−k·(l−L+t) , when l ≥ L− t,

1, when l < L− t.
(7)

Here, the numerator sum serves as a normalization term that ensures that the sum of the layer-wise
precisions over time is equal to one, that is,

∑T
t=1(Σ

l
t)

−1 = 1. The denominator e−k·(l−L+t) allows

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Test accuracies of the different algorithms across architectures and datasets.

Dataset Algorithm VGG5 VGG7 VGG10 VGG5BF VGG7BF VGG10BF

CIFAR10

BP 89.43±0.12 89.91±0.12 92.21±0.08 90.01±0.15 91.32±0.14 92.68±0.10

PC 87.98±0.11 84.62±0.10 72.75±6.03 87.77±0.14 80.62±0.14 76.22±0.43

Decaying Precision (D) 87.91±0.22 81.14±0.19 84.87±0.19 88.55±0.09 80.00±0.10 81.68±0.18

Spiking Precision (S) 88.06±0.16 82.16±0.14 78.09±0.61 88.53±0.07 86.51±0.21 83.17±0.07

PC+D+F 89.32±0.14 89.34±0.09 89.43±0.18 90.37±0.13 91.48±0.12 91.46±0.12

PC+S+F 89.45±0.18 90.08±0.21 92.07±0.10 89.30±0.13 90.89±0.04 93.27±0.10

CIFAR100 (Top-1)

BP 66.28±0.23 65.36±0.15 69.35±0.16 67.39±0.25 67.67±0.11 71.25±0.21

PC 60.00±0.19 56.80±0.14 45.86±1.70 61.84±0.18 55.57±0.14 50.76±0.37

Decaying Precision (D) 57.76±0.33 45.05±0.37 55.66±0.88 66.05±0.12 51.11±0.32 53.27±0.48

Spiking Precision (S) 59.18±0.20 56.98±0.19 51.56±0.16 60.34±0.28 55.74±0.15 56.24±0.37

PC+D+F 66.10±0.09 64.86±0.10 66.54±0.12 67.56±0.25 67.27±0.21 69.81±0.22

PC+S+F 66.49±0.15 66.34±0.22 69.08±0.08 67.16±0.16 67.71±0.10 72.02±0.12

CIFAR100 (Top-5)

BP 85.85±0.27 84.41±0.26 88.74±0.08 89.56±0.08 90.05±0.13 92.10±0.12

PC 84.97±0.19 83.00±0.09 74.61±1.08 86.53±0.15 82.07±0.35 78.68±0.27

Decaying Precision (D) 81.59±0.13 74.00±0.30 83.13±0.74 88.82±0.07 78.93±0.29 81.16±0.36

Spiking Precision (S) 84.58±0.12 83.61±0.15 78.62±0.15 85.86±0.10 82.64±0.14 83.44±0.21

PC+D+F 85.85±0.10 83.80±0.20 86.10±0.21 89.84±0.17 89.74±0.12 91.24±0.07

PC+S+F 86.36±0.11 84.53±0.15 86.84±0.07 89.57±0.09 89.62±0.18 92.10±0.10

Table 9: Test accuracies of the different algorithms on Tiny ImageNet.

Algorithm Top-1 Accuracy Top-5 Accuracy

VGG15 VGG15BF VGG15 VGG15BF

PC+S+Forward Update 42.51±0.18 53.04±0.36 66.22±0.18 76.64±0.23

PC 22.95±1.50 22.91±0.61 47.04±2.04 45.64±0.63

Decaying Precision (D) 27.29±0.24 22.05±0.16 54.18±0.37 45.22±0.23

Spiking Precision (S) 18.36±0.36 17.95±0.14 39.24±0.31 39.87±0.51

PC+D+Forward Update 21.95±0.20 30.83±0.77 45.15±0.23 56.06±0.85

lower layers to receive larger weights when activated (l ≥ L − t), thereby helping to achieve a
more balanced energy distribution during the inference phase, k is a hyperparameter that controls
the strength of this balancing effect, the search range is [1.0, 1.5, 2.0]. It also ensures that each layer
experiences a significant boost in precision precisely when the energy from the output first reaches
that layer (l = L− t). When l < L− t, we set Σl

t = 1.

As shown in Table 8, both Decaying and Spiking Precision schedules offer improvements over the
baseline PC, particularly in deeper models like VGG10. However, a clear pattern emerges when we
analyze their effectiveness in relation to network depth. In shallower models like VGG5 and VGG7,
the performance of Decaying Precision is comparable to that of Spiking Precision. This suggests that
when the signal path is short, a moderately amplification is sufficient.

As shown in the Tab. 9, when model depth increases to VGG15 with TinyImageNet task, a noticeable
performance gap appears, with Spiking Precision consistently outperforming Decaying Precision.
This finding strongly supports our core hypothesis: the exponential signal attenuation in deeper
networks necessitates a correspondingly sharp and powerful counteracting signal. The abrupt,
targeted amplification of Spiking Precision is more effective at preserving the integrity of the error
signal across many layers than the smoother profile of Decaying Precision. Consequently, for all
subsequent experiments reported in the main body of this paper, we exclusively utilized the superior
Spiking Precision schedule. This investigation also opens exciting avenues for future work, such as
exploring hybrid schedules that might combine the strengths of different amplification profiles.

C.0.2 ENERGY PROPAGATION WITH PRECISION

We observed that removing the decaying/spiking precision module consistently leads to performance
degradation. This effect is particularly evident in deeper models like VGG7 and VGG10, where
its absence causes a significant imbalance in the energy distribution across layers. For instance,
as shown in Figure 5, the energy proportion of the first layer in the VGG7 model with spiking
precision is approximately 10−6. Without this precision term, the proportion plummets to 10−18. A

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35 40 45
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

VGG5-Predictive Coding (PC)

10 20

10 16

10 12

10 8

10 4

100

0.9933

0.8894

0 5 10 15 20 25 30 35 40 45
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
VGG5-PC + D + F

10 20

10 16

10 12

10 8

10 4

100

0.9935

0.8921

0 5 10 15 20 25 30 35 40 45
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
VGG5-PC + S +F

10 20

10 16

10 12

10 8

10 4

100

En
er

gy
 o

f E
ac

h
La

ye
r (

Lo
g

Sc
al

e)

0.9953

0.8901

0 5 10 15 20 25 30 35 40 45
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

VGG7-Predictive Coding (PC)

10 20

10 16

10 12

10 8

10 4

1000.9313

0.8415

0 5 10 15 20 25 30 35 40 45
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
VGG7-PC + D + F

10 20

10 16

10 12

10 8

10 4

100

0.9928

0.8936

0 5 10 15 20 25 30 35 40 45
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
VGG7-PC + S + F

10 20

10 16

10 12

10 8

10 4

100

En
er

gy
 o

f E
ac

h
La

ye
r (

Lo
g

Sc
al

e)

0.9987

0.9007

0 5 10 15 20 25 30 35 40 45
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
VGG10-Predictive Coding (PC)

10 20

10 16

10 12

10 8

10 4

1000.9002
0.8316

0 5 10 15 20 25 30 35 40 45
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
VGG10-PC + D + F

10 20

10 16

10 12

10 8

10 4

100
0.9695

0.8932

0 5 10 15 20 25 30 35 40 45
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
VGG10-PC + S + F

10 20

10 16

10 12

10 8

10 4

100

En
er

gy
 o

f E
ac

h
La

ye
r (

Lo
g

Sc
al

e)

0.9985

0.9234

Train Accuracy
Val Accuracy

Layer_1
Layer_2

Layer_3
Layer_4

Layer_5
Layer_6

Layer_7
Layer_8

Layer_9
Layer_10

Figure 5: Layer-wise Energy Distribution and Accuracy Comparison between PC and Decaying
Precision/Spiking Precision with Forward Update in VGG5, VGG7 and VGG10 on the CIFAR10
dataset. The colored lines represent the total energy of the individual layers of the model. The vertical
lines represent the train and test accuracies of the model.

comparison of the layer-wise energy distributions (Figure 6) confirms that our proposed precision
methods effectively rebalance energy propagation. By increasing the energy in the initial layers
by several orders of magnitude, these methods rectify the imbalance, which contributes directly to
improved model performance.

Furthermore, the degree of this energy rebalancing correlates with the performance difference between
the Decaying and Spiking Precision variants. In the VGG5 and VGG7 models, where the accuracy
gap between the two methods is minimal, the difference in their first-layer energy distributions
is also small. However, in VGG10, where Spiking Precision significantly outperforms Decaying
Precision, the energy gap is far more pronounced. Specifically, the first layer’s energy proportion
is approximately 10−10 for Decaying Precision, whereas Spiking Precision elevates it to 10−4,
highlighting a clear link between balanced energy propagation and model accuracy.

C.1 FORWARD UPDATE (FU)

C.1.1 NEURAL ACTIVITY DIVERGENCY QUANTIFICATION

To quantify the neural activity divergence that Forward Update aims to solve, we conducted a new
experiment on a VGG10 model trained on CIFAR-10. We measured the Mean Squared Error between
the initial and final neural states, MSE(xl

0, x
l
T), at each weight update. We then calculated the ratio

of the square root of this divergence to the energy used for the weight update in that layer. We term
this metric the "Gap Ratio". As shown in Table 10, in the model trained without Forward Update,
the Gap Ratio in the final layer (L10) is extremely large and unstable across epochs, indicating that
the neural activity divergence completely dominates the weight update signal. This supports our
hypothesis that this divergence causes errors to accumulate in the final layers, destabilizing learning.
In contrast, the model trained with Forward Update (Table 11) shows a dramatically reduced and
stable Gap Ratio in the final layer.

To further isolate the effect of Forward Update, we performed an additional ablation where FU was
applied only to the final three layers during the weight update, without any additional hyperparameter

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35 40 45
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
VGG7 - Forward Update 0.9951

0.8785

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

En
er

gy
 o

f E
ac

h
La

ye
r (

Lo
g

Sc
al

e)

0 5 10 15 20 25 30 35 40 45
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

VGG10 - Forward Update
0.9550

0.8718

10 13

10 11

10 9

10 7

10 5

10 3

10 1

En
er

gy
 o

f E
ac

h
La

ye
r (

Lo
g

Sc
al

e)

Train Accuracy
Val Accuracy

Layer 1
Layer 2

Layer 3
Layer 4

Layer 5
Layer 6

Layer 7
Layer 8

Layer 9
Layer 10

Figure 6: Layer-wise Energy Distribution and Accuracy of Forward Update in VGG5, VGG7 and
VGG10 on the CIFAR10 dataset. The colored lines represent the total energy of the individual layers
of the model. The vertical lines represent the train and test accuracies of the model.

Table 10: Gap Ratio on VGG10/CIFAR10 trained without Forward Update.

w/o FU L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Train Acc. Test Acc.
Epoch 5 0.0 99.49 98.98 97.08 106.78 113.52 110.77 468.9 566.52 7065.72 73.75 74.83
Epoch 15 0.0 99.51 99.4 97.2 98.95 105.62 132.44 108.39 101.0 3807.9 51.86 51.9
Epoch 25 0.0 99.25 97.94 98.22 89.95 90.48 116.55 113.2 102.21 4716.88 61.21 62.3
Epoch 35 0.0 99.41 98.24 96.97 79.12 95.99 122.38 106.3 104.07 6498.41 60.31 60.14
Epoch 45 0.0 98.23 97.94 97.36 80.84 90.42 116.96 108.26 106.42 5362.02 59.87 61.42

Table 11: Gap Ratio on VGG10/CIFAR10 trained with Forward Update.

with FU L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Train Acc. Test Acc.
Epoch 5 0.0 292.58 112.77 224.2 120.89 346.42 143.95 248.32 100.78 5.14 88.27 85.66
Epoch 15 0.0 327.43 132.66 265.24 151.09 409.26 264.34 545.12 117.6 8.27 97.97 90.99
Epoch 25 0.0 323.0 135.82 256.2 149.77 407.2 269.14 619.95 115.07 9.43 99.55 92.08
Epoch 35 0.0 322.42 138.05 258.38 148.22 415.02 292.98 681.21 115.12 10.06 99.73 92.04
Epoch 45 0.0 323.25 135.72 261.67 149.45 417.04 312.4 731.19 115.87 10.54 99.83 92.22

tuning. The results in Table 12 show that even this targeted application of Forward Update yields
significant improvements in both training stability and final accuracy compared to the baseline. This
reinforces that addressing the neural activity divergence in the deepest layers is a critical factor for
success.

Table 12: Gap Ratio on VGG10/CIFAR10 when applying Forward Update only to the last 3 layers (L8, L9,
L10).

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Train Acc. Test Acc.
Epoch 5 0.0 96.21 57.22 50.78 32.03 53.59 30.16 49.77 66.91 42.19 72.75 74.13
Epoch 15 0.0 95.51 57.52 49.76 31.65 56.92 32.96 40.87 70.08 62.02 79.23 78.56
Epoch 25 0.0 95.58 59.17 46.63 16.04 91.18 34.19 39.63 73.17 67.89 81.4 80.14
Epoch 35 0.0 95.44 56.84 29.72 9.65 94.43 35.13 39.37 72.12 70.17 80.91 79.97
Epoch 45 0.0 95.51 56.88 37.85 15.11 93.49 34.8 38.59 71.82 72.16 80.02 79.4

C.1.2 MODEL ROBUSTNESS ANALYSIS

Predictive Coding (PC) networks are often noted for their inherent robustness compared to networks
trained with Backpropagation Salvatori et al. (2021). Unlike our precision-weighting mechanisms, the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Forward Update (F) method alters the core computational diagram of PC. Therefore, we conducted
experiments to investigate whether this modification adversely affects model robustness.

Our first experiment provides a fair comparison on a VGG5 model, where standard PC and our PC+F
variant achieve similar baseline accuracies on clean data. We trained both models on CIFAR-10 and
evaluated their calibration under six types of data corruption across five levels of intensity. The range
of the Adaptive Expected Calibration Error (adaECE) is reported in Table 13. Note that to ensure a
meaningful ECE calculation, we scale the output logits before applying the softmax function. The
results indicate that our PC+F model maintains a robustness profile that is comparable to, and at
higher corruption levels, superior to that of standard PC.

Table 13: AdaECE range at different levels of corruption using VGG5.

Corruption Level PC+FU PC
0.1 [0.091665, 0.327372] [0.037817, 0.388640]
0.2 [0.089805, 0.349025] [0.036528, 0.406428]
0.3 [0.034430, 0.363157] [0.035065, 0.419023]
0.4 [0.021906, 0.375255] [0.029735, 0.428372]
0.5 [0.026589, 0.383087] [0.033315, 0.434768]

Furthermore, to evaluate our methods on deeper models, we compared ourPC+S+FU model against
the BP baseline on the VGG10 architecture. As shown in Table 14, our method exhibits a robustness
profile that is highly comparable to backpropagation across all tested corruption intensities. Taken
together, these experiments demonstrate that our proposed methods not only enable the training of
deeper PCNs but do so while preserving the desirable property of model robustness.

Table 14: AdaECE range at different levels of corruption using VGG10.

Corruption Level BP PC+S+FU
0.1 [0.039071, 0.485300] [0.039269, 0.486342]
0.2 [0.043376, 0.490541] [0.045973, 0.486978]
0.3 [0.043943, 0.494404] [0.047871, 0.486432]
0.4 [0.067549, 0.496167] [0.077340, 0.486966]
0.5 [0.132682, 0.499181] [0.143458, 0.486497]

C.1.3 ON THE BIOLOGICAL PLAUSIBILITY OF FORWARD UPDATE

A core motivation for using PCNs over backpropagation is their biological plausibility — particularly
their use of local learning rules and temporally local computations. The Forward Update (F) mecha-
nism, while effective, seems to introduce non-locality in time by requiring each synapse to store its
initial feedforward activity µl

0 until convergence.

However, the description of FU in our manuscript was chosen for conceptual clarity; it is not a
fundamental requirement of the method. In practice, the initial feed-forward state can be re-computed
through a temporally local and biologically plausible process. This is achieved by introducing a "free
relaxation" phase after the inference learning and before the weight update. In this phase, the label
clamp is removed, and the network settles to a new equilibrium with only the sensory input clamped,
just as in Equilibrium Propagation (Ernoult et al., 2020) before the nudging phase.

In this setting, the network naturally converges to the state corresponding to its feed-forward predic-
tion (Frieder & Lukasiewicz, 2022). Since the weights have not yet been updated, this re-computed
state is identical to the µl

0 in our formulation. This eliminates the need for long-term storage and
resolves the concern of temporal non-locality. The primary contribution of our F method is that it
identifies and solves a critical failure mode in deep predictive coding networks: the accumulation
of errors caused by the divergence of neural activities from their initial predictions. While the
biologically plausible implementation we describe requires extra computation, future work can focus
on developing mechanisms that are both fully plausible and computationally efficient for PC.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 15: Test accuracies of different algorithms without BatchNorm Freeze across datasets and
architectures.

Dataset Algorithm VGG5 VGG7 VGG10 ResNet10 ResNet18

CIFAR10

BP 89.43±0.12 89.91±0.12 92.21±0.08 92.21±0.20 92.32±0.22

PC 87.98±0.11 84.62±0.10 72.75±6.03 69.85±2.12 15.63±7.22

iPC 85.51±0.12 80.15±0.18 63.83±0.33 62.34±0.27 21.90±1.51

PC+Spiking Precision (S) 88.06±0.16 82.16±0.14 78.09±0.61 80.61±0.20 80.07±0.21

PC+Forward Update (F) 88.79±0.04 87.43±0.30 87.33±0.14 66.94±0.76 25.50±3.12

iPC+S 89.32±0.13 90.25±0.06 93.03±0.18 92.39±0.04 91.96±0.07

PC+S+F 89.45±0.18 90.08±0.21 92.07±0.10 92.04±0.04 91.91±0.09

CIFAR100 (Top-1)

BP 66.28±0.23 65.36±0.15 69.35±0.16 69.23±0.09 71.46±0.12

PC 60.00±0.19 56.80±0.14 45.86±1.70 27.62±3.03 1.59±0.02

iPC 56.07±0.16 43.99±0.30 21.37±0.37 22.91±0.23 1.53±0.06

PC+Spiking Precision (S) 59.18±0.20 56.98±0.19 51.56±0.16 50.23±0.20 22.92±0.15

PC+Forward Update (F) 65.34±0.07 64.50±0.14 61.69±0.79 39.89±0.90 3.42±0.10

iPC+S 65.54±0.62 65.76±0.12 69.84±0.17 70.02±0.24 70.38±0.20

PC+S+F 66.49±0.15 66.34±0.22 69.08±0.08 68.99±0.18 70.81±0.08

CIFAR100 (Top-5)

BP 85.85±0.27 84.41±0.26 88.74±0.08 87.75±0.10 89.43±0.14

PC 84.97±0.19 83.00±0.09 74.61±1.08 57.93±2.62 5.89±0.12

iPC 78.91±0.23 73.23±0.30 48.35±0.79 46.41±0.31 6.33±0.26

PC+Spiking Precision (S) 84.58±0.12 83.61±0.15 78.62±0.15 77.84±0.23 53.89±0.06

PC+Forward Update (F) 85.48±0.08 84.05±0.07 76.73±0.92 69.48±0.70 15.25±0.04

iPC+S 85.66±0.29 84.96±0.14 88.70±0.18 88.90±0.21 90.05±0.20

PC+S+F 86.36±0.11 84.53±0.15 88.66±0.14 88.45±0.16 90.47±0.11

C.2 ABLATION STUDY ON FORWARD UPDATE AND SPIKING PRECISION

To dissect the individual and combined contributions of our primary algorithmic modifications,
Spiking Precision (S) and Forward Update (F), we conducted a detailed ablation study, the results of
which are presented in Table 15. This analysis systematically evaluates each component’s impact
on both standard PC and iPC across various architectures and datasets, excluding the effects of
BatchNorm Freezing to isolate the core mechanisms.

The results reveal a clear and complementary relationship between Spiking Precision and Forward
Update for standard PC. When applied in isolation, Forward Update (PC+F) significantly improves
performance on VGG-style architectures, stabilizing training and preventing the sharp accuracy
degradation seen in the baseline PC as depth increases. For instance, on CIFAR10, PC+F maintains
an accuracy of around 87% on VGG10, whereas the baseline PC drops to 72.75%. However, Forward
Update alone is insufficient for training deep residual networks; its performance on ResNet18 is only
marginally better than the baseline, failing to overcome the catastrophic failure. This suggests that
while F effectively mitigates weight update divergence, it does not solve the underlying problem of
energy imbalance in architectures with skip connections.

Conversely, Spiking Precision alone (PC+S) offers a substantial improvement on ResNet models,
preventing the complete collapse of training. On ResNet18 with CIFAR10, it achieves an accuracy of
80.07%, a dramatic recovery from the baseline’s 15.63%. This confirms its crucial role in rebalancing
energy and ensuring a viable error signal reaches the early layers in models with skip-connections.
However, on its own, it does not elevate performance to the level of backpropagation.

The true strength of our approach is demonstrated when both components are combined. The PC+S+F
model consistently achieves performance on par with, and occasionally exceeding, backpropaga-
tion across all tested architectures, including the challenging ResNet18. This powerful synergy
underscores that both mechanisms are essential: Spiking Precision addresses the signal propagation
problem, while Forward Update addresses the update stability problem.

Interestingly, for iPC, the addition of Spiking Precision alone (iPC+S) is sufficient to achieve state-
of-the-art performance, rivaling both BP and the fully-equipped PC+S+F. This indicates that the
incremental nature of iPC, where weights are updated at every inference timestep, inherently prevents
the large divergence between forward neural state and backward neural states that Forward Update
is designed to correct. With its continuous adaptation, iPC only requires the energy rebalancing
provided by Spiking Precision to successfully train deep architectures.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 BATCHNORM FREEZING (BF)

C.3.1 ISOLATING THE SOURCE OF INSTABILITY: BATCH STATISTICS VS. AFFINE
PARAMETERS

To isolate the precise source of instability when applying BatchNorm (BN) to Predictive Coding
Networks (PCNs), we sought to determine whether the problem stems from the learnable affine
parameters (γ, β) or from the iterative updating of batch statistics (µB , σ

2
B) during the inference

phase. While the affine parameters can be a source of overfitting in standard training, we hypothesized
that the unique, multi-step inference process of PCNs creates a different challenge: the repeated
processing of a single mini-batch causes the batch statistics themselves to overfit, destabilizing the
network dynamics. Our BatchNorm Freezing (BF) method is designed specifically to solve this issue.

To test this hypothesis, we conducted an ablation study on the VGG10-CIFAR10 task. The results
presented in Table 16, provide clear evidence for our claim. Removing the affine parameters from
standard BN still had a negligible effect on the performance degradation (24.31% and 24.28%),
indicating that these parameters are not the source of the problem. In contrast, freezing the statistics
during inference improved performance over the without batch normalization baseline. This confirms
that the iterative updates to batch statistics are the primary cause of instability and that our proposed
BF method is an effective solution.

Table 16: Ablation study on different BatchNorm strategies (VGG10-CIFAR10).

Method Test Accuracy (%)
Without BN 92.07± 0.10
Standard BN 24.31± 4.51
BN without affine 24.28± 3.19

BF without affine 93.18± 0.06
BF 93.27± 0.10

C.3.2 ABLATION STUDY ON BATCHNORM FREEZING

VGG5
VGG7

VGG10
ResNet10

ResNet18
0

25

50

75

100

Ac
cu

ra
cy

 (%
) 89.4390.0189.9191.3292.2192.6892.2192.9392.3293.13

BP

VGG5
VGG7

VGG10
ResNet10

ResNet18

87.9887.7784.62
80.6272.75

76.2269.85
64.23

15.6315.21

PC

VGG5
VGG7

VGG10
ResNet10

ResNet18

85.5186.01
80.15

65.3463.8361.8662.34
58.80

21.90
17.80

iPC

VGG5
VGG7

VGG10
ResNet10

ResNet18

88.0688.53
82.16

86.51
78.09

83.17
80.6181.2380.0781.10

Spiking Precision (S)

VGG5
VGG7

VGG10
ResNet10

ResNet18

88.7987.3487.4385.9187.3379.4366.94
62.35

25.50
20.10

Forward Update (F)

VGG5
VGG7

VGG10
ResNet10

ResNet18

89.3289.7390.2591.1293.03
89.36

92.3991.4091.9690.70

iPC+S

VGG5
VGG7

VGG10
ResNet10

ResNet18

89.4589.3090.0890.8992.0793.2792.0492.4791.9191.93
PC+S+F

VGG5
VGG7

VGG10
ResNet10

ResNet18
0

20

40

60

80

Ac
cu

ra
cy

 (%
) 66.28

67.39
65.36

67.6769.35
71.25

69.23
71.2171.4671.69

BP

VGG5
VGG7

VGG10
ResNet10

ResNet18

60.00
61.8456.80

55.57
45.86

50.76

27.62
41.51

1.591.23

PC

VGG7
VGG10

ResNet10
ResNet18

43.99
41.08

21.37
31.99

22.91

1.48 1.531.56

iPC

VGG5
VGG7

VGG10
ResNet10

ResNet18

59.18
60.3456.98

55.7451.56
56.24

50.23
53.17

22.92
24.12

Spiking Precision (S)

VGG5
VGG7

VGG10
ResNet10

ResNet18

65.34
64.6964.50

63.5261.69
60.33

39.89
38.77

3.42
2.26

Forward Update (F)

VGG5
VGG7

VGG10
ResNet10

ResNet18

65.54
66.91

65.76
67.1069.84

64.15
70.0269.9570.38

69.23

iPC+S

VGG5
VGG7

VGG10
ResNet10

ResNet18

66.49
67.16

66.34
67.7169.08

72.02
68.99

71.3070.8170.90
PC+S+F

CI
FA

R1
0

CI
FA

R1
00

Without BF With BF

Figure 7: Test accuracies of different algorithms on the CIFAR10/100 datasets across models of
varying depths, comparing different methods with and without BatchNorm freezing.

Our investigation reveals that BatchNorm Freezing (BF) significantly enhances model performance
when combined with our precision module and forward update mechanism. As illustrated in Figure 7,
the integration of BF with our proposed methods (PC + S + F) consistently improved accuracy
across all model depths and both CIFAR10 and CIFAR100 datasets. Specifically, the PC + S + F
configuration with BF achieved peak performance of 93.27% on CIFAR10, 72.02% on CIFAR100
with the VGG10 architecture and 71.3% on CIFAR100 with the ResNet10 architecture, outperforming
even the BP baseline. In contrast, when BF was applied to standard PC or only with forward
Update, we observed performance degradation rather than improvement in most cases, the effect
of BF was inconsistent and unpredictable across different network depths. These results suggest
that the synergy between our proposed components is crucial—BF appears to stabilize the training
dynamics specifically when used in conjunction with both our energy balancing mechanisms and

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

forward update. This interaction allows deeper networks to maintain stable gradients throughout the
training process, resulting in more robust optimization and ultimately higher classification accuracy.

The effect of BF on iPC-based models is more nuanced. While it improves performance on shallower
architectures, a slight performance degradation is observed in deeper models. This discrepancy can
be attributed to the nature of iPC’s update rule. Because iPC updates weights and neural activities
simultaneously, updating BN’s running statistics requires an additional, separate weight update
step. This modification alters the computational graph compared to the baseline model (without BF)
that was used for the hyperparameter search, which could explain the suboptimal performance in
more complex architectures.

D HYPERPARAMETER ANALYSIS

D.1 HYPERPARAMETER IMPORTANCE

To assess the sensitivity of our approach to different hyperparameters, we conducted a hyperparameter
importance analysis using a functional ANOVA (fANOVA) based method. This score quantifies
the contribution of each hyperparameter to the final optimal validation accuracy. The results for
CIFAR-10 on various architectures are summarized in Tables 17. The analysis shows that while
the learning rate (lrw) is consistently the most critical parameter, our new parameters (like α/k in
Precision) are not overly sensitive and show stable influence across settings, indicating a desirable
robustness in our proposed methods.

Table 17: Hyperparameter Importance Scores (%) on CIFAR-10.

Arch. Method Activation T α/k lrx lrw momentumx weight_decayw

VGG5

BP 0.94 – – – 98.99 – 0.07
PC 5.96 1.00 – 77.29 10.98 3.51 1.26
iPC 2.20 1.15 – 1.53 88.75 1.83 3.25
iPC+S 0.85 0.52 0.22 1.13 94.02 0.31 2.94
PC+S+F 1.68 1.63 0.53 6.64 80.44 8.19 0.89

VGG7

BP 25.94 – – – 61.56 – 12.49
PC 15.65 0.57 – 54.54 23.56 4.35 1.33
iPC 1.68 1.63 – 6.64 80.44 8.19 0.89
iPC+S 1.68 1.63 0.89 6.64 80.44 8.19 0.89
S+F 3.30 0.28 4.13 10.29 54.20 1.80 25.99

VGG10

BP 9.69 – – – 87.86 – 2.45
PC 48.10 5.62 – 4.02 16.15 25.32 0.79
iPC 0.08 0.48 – 34.55 58.50 4.73 1.66
iPC+S 4.85 1.80 1.72 15.15 67.61 5.64 3.22
S+F 4.84 1.55 2.08 9.80 77.14 2.16 2.43

D.2 HYPERPARAMETER TRANSFERABILITY

To evaluate if hyperparameter searching is required for each setting, we conducted two sets of
experiments to evaluate hyperparameter transferability.

• Across Datasets: We took the optimal hyperparameters found on CIFAR-10 and applied them to
CIFAR-100, and vice versa, for the VGG7 architecture.

• Across Architectures: We took the optimal hyperparameters from VGG5 and VGG7 and applied
them to the VGG10 model on CIFAR-10. Since the hyperparameter T needs to be larger than the
number of layers, the T we used in these experiments is max(10, Toptimal).

The results, presented in Table 18 and 19, suggest that while optimal performance requires dedicated
tuning, the hyperparameters show a reasonable degree of transferability, especially for our proposed
methods. This indicates they are not pathologically sensitive to the specific dataset or architecture.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 18: Test Accuracies from Hyperparameters (HPs) Transfer Across Datasets on VGG7.

Method On CIFAR-10 On CIFAR-100
Optimal CIFAR-10 HPs Optimal CIFAR-100 HPs Optimal CIFAR-100 HPs Optimal CIFAR-10 HPs

BP 89.91±0.12 88.75±0.07 65.36±0.15 65.23±0.24

PC 84.62±0.10 78.38±0.17 56.80±0.14 51.65±0.28

S+F 90.08±0.21 89.54±0.09 66.34±0.22 63.66±0.06

iPC 80.15±0.18 74.35±0.90 43.99±0.30 37.26±0.07

iPC+S 90.25±0.06 90.14±0.20 65.76±0.12 61.56±1.56

Table 19: Test Accuracies from Hyperparameters (HPs) Transfer Across Architectures (on CIFAR-10).

Method VGG10 with Optimal HPs VGG10 with VGG7 HPs VGG10 with VGG5 HPs

BP 92.21±0.08 90.70±0.14 90.67±0.22

PC 72.75±6.03 79.20±0.19 49.66±0.54

S+F 92.07±0.10 88.95±0.18 90.67±0.11

iPC 63.83±0.33 72.30±0.55 73.78±0.15

iPC+S 93.03±0.18 90.60±0.60 92.29±0.13

23

	Introduction
	Related Works
	Background
	Methods
	Algorithmic Contributions
	Experiments

	Structural Contributions

	Experiments
	Conclusion
	Reproducibility Statement
	Experiments Setting
	Computational Complexity
	Ablation Study
	Comparison of different Precision Schedules
	Energy Propagation with Precision

	Forward Update (FU)
	Neural activity divergency quantification
	Model Robustness Analysis
	On the Biological Plausibility of Forward Update

	Ablation study on Forward Update and Spiking precision
	BatchNorm Freezing (BF)
	Isolating the Source of Instability: Batch Statistics vs. Affine Parameters
	Ablation study on batchnorm Freezing

	Hyperparameter Analysis
	Hyperparameter Importance
	Hyperparameter Transferability

