Under review as a conference paper at ICLR 2026

TOWARDS THE TRAINING OF DEEPER PREDICTIVE
CODING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Predictive coding networks are neural models that perform inference through an
iterative energy minimization process, whose operations are local in space and
time. While effective in shallow architectures, they suffer significant performance
degradation beyond five to seven layers. In this work, we show that this degradation
is caused by exponentially imbalanced errors between layers during weight updates,
and by predictions from the previous layers not being effective in guiding updates in
deeper layers. Furthermore, when training models with skip connections, the energy
propagated by the residuals reaches higher layers faster than the one propagated by
the main pathway, affecting test accuracy. We address the first issue by introducing
a novel precision-weighted optimization of latent variables that balances error
distributions during the relaxation phase, the second issue by proposing a novel
weight update mechanism that reduces error accumulation in deeper layers, and
the third one by using auxiliary neurons that slow down the propagation of the
energy in the residual connections. Empirically, our methods achieve performance
comparable to backpropagation on deep models such as ResNets, opening new
possibilities for predictive coding in complex tasks.

1 INTRODUCTION

Training deep learning models is extremely expensive in terms of energy consumption. To address
this problem, a recent direction of research is studying the use of alternative accelerators that leverage
the properties of physical systems to perform computations (Wright et al.,[2022; Momeni et al., [2024)),
such as in-memory computations using memristor crossbars (Tsai et al.,[2018; |Haensch et al.| [2018]).
However, transitioning to new hardware without altering the main algorithm — error backpropagation
(Rumelhart et al., [1986) — has proven to be challenging due to two central issues: the requirement of
sequential forward and backward passes, and the need to analytically compute gradients of a global
cost function. These issues do not arise when using learning algorithms that rely computations that
are local in space and time (i.e., all updates rely on locally available information only) (Bengiol [2014;
Hinton| |2022). A popular example is equilibrium propagation, a framework that allows the learning
of the parameters of a neural network by simulating a physical system brought to an equilibrium
(Scellier & Bengiol 2017). This physical system is usually defined via an energy function that
describes the state of a neural network in terms of its weights and neurons, with different functions
describing different systems (Krotov & Hopfield, 2016).

In recent years, researchers have devoted significant effort to scaling up the deployment of energy-
based models. Two recent works have benchmarked multiple variants of common learning algorithms
using the Hopfield energy function (Scellier et al., 2024)) and the predictive coding energy (Pinchetti
et al.| [2024), showing that this class of models can match the performance of standard deep learning
when training relatively shallow networks of up to five or seven layers. However, this success does not
extend to deeper architectures, where performance degrades substantially. Notably, the degradation is
even more severe in predictive coding implementations of residual networks, which perform worse
than equally deep models without skip connections. Since the major advances of modern deep
learning rely on very deep architectures with residual connections, understanding and overcoming
these limitations is a critical step toward scaling predictive coding networks to the regimes where
deep learning has been most successful.

Under review as a conference paper at ICLR 2026

To understand the poor scalability of predictive coding networks, it is instructive to examine how
energy propagates across depth. It has recently been shown that in a three-layer model, the energy
concentrated in a layer can be up to an order of magnitude larger than the energy concentrated in the
layer before (Pinchetti et al.|[2024). While such shallow models can still achieve good test accuracies,
we conjecture that this ’energy imbalance’ becomes a critical bottleneck in deeper architectures,
leading to performance degradation in a way that is conceptually similar to the vanishing gradient
problem (Hochreiter, [1998). More precisely, this imbalance prevents the effective propagation
of energy — and crucially, the associated error information — from the output layer back to the
early layers, creating two problems: first, it prevents the model from fully leveraging its depth, as
early layers receive insufficient error signals for effective training; second, latent states may diverge
substantially from their forward pass values, due to the excessive energy in later layers.

Addressing this energy imbalance requires mechanisms that can adaptively modulate the relative
influence of different layers as errors propagate through the network, a challenge similar to what
biological neural systems solve through precision-based regulation. In predictive processing theories,
precision refers to the estimated reliability of a prediction error (formally, its inverse variance), and it
is thought to be dynamically regulated to balance bottom-up and top-down signals across cortical
hierarchies (Feldman & Friston, |2010; [Bastos et al., [2012). Despite its central role in biological
inference, most machine learning formulations of predictive coding set precision to 1 for simplicity
(Whittington & Bogacz, [2017), thereby overlooking its potential as a powerful mechanism to stabilize
learning dynamics. The forst contribution of this work, is to propose to leverage precision weighting
to regularize energy propagation in predictive coding networks.

We begin by analyzing the energy propagation of deep convolutional architectures for both predictive
coding (PC) and incremental PC (iPC) — a recently introduced variant of PC that updates weights
and neurons simultaneously [Salvatori et al.|(2024). Building on the insights from these analyses,
we propose time-dependent precisions that address the identified issues. Our results show that this
substantially improves test accuracy, supporting our conjecture of a causal link between energy
propagation and empirical performance. More broadly, we propose two algorithmic improvements
(spiking precision and a novel weight-update mechanism) and two structural improvements (PC-
tailored batch normalization and auxiliary neurons for skip connections) that enable PC to achieve
competitive performance with backprop on image classification benchmarks, including VGG models
with up to 15 layers and ResNets18 on Tiny ImageNet. Our contributions can be detailed as follows:

* We show that in models trained with PC, the energy is orders of magnitude larger in layers closer
to the output, supporting the hypothesis that information fails to propagate effectively to the early
layers. This phenomenon is less pronounced in iPC, where continuous weight updates rapidly
reduce the excess energy. However, these updates result in even lower test accuracy.

* To mitigate this imbalance, we propose dynamical precision-weightings that depend on both time
and layer depth. The most effective variant, which we call spiking precision, applies very large
precisions as soon as the energy reaches a given layer, thereby boosting it forward. Experiments
show that this method regulates the energy imbalance and improves test accuracy in deep PC
models. In the case of iPC, spiking precisions alone are already sufficient to achieve performance
comparable to backpropagation in deep networks.

* To further improve the performance of standard PC models, we introduce a novel weight-update
mechanism that modifies how parameters are updated. This method combines predictions computed
at initialization (hence adding a degree of implausibility, as they have to be stored in memory)
with the neural activities at convergence, resulting in more effective updates. With this approach,
PC attains performance on par with backpropagation and iPC on deep convolutional models. In
addition, we propose a variant of batch normalization (loffe & Szegedy}, |2015) tailored for PC,
which further enhances performance.

* While effective for VGG-like models, when training PC-based ResNets He et al.| (2016), we
still observe a significant drop in performance. We conjecture that this is caused by the energy
propagated by the residuals, that reach higher layers faster than the one propagated by the main
pathway, disrupting learning dynamics. We show that this can be addressed by adding extra
families of neurons inside the skip connection, that have the sole goal of slowing down the feedback
signal of the skip connections so that it reaches the higher layers at the same time as the main
one. The results show that such auxiliary neurons allow models trained with PC and iPC to reach
performance comparable to these of backprop on ResNet18.

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

Equilibrium Propagation (EP). EP is a learning algorithm for supervised learning that is largely
inspired by contrastive learning on continuous Hopfield networks (Movellan, [1991). Here, neural
activities are updated in two phases: In the first, to minimize an energy function defined on the
parameters of the neural network; in the second, to minimize the same energy with the addition of a
loss function defined on the labels (Scellier & Bengiol |2017)). Interestingly, these two phases allow
us to approximate the gradient of the loss function up to arbitrary levels of accuracy using finite
difference coefficients (Zucchet & Sacramentol [2022). The consequence is that EP can be seen as a
technique that allows the minimization of loss functions using arbitrary physical systems that can
be brought to an equilibrium, and it has hence been studied in a large number of domains (Scellier,
2024; Kendall et al., [2020). The state of the art is that EP models are able to match the performance
of BPTT (BP Through Time) on models with 5 and 7 hidden layers (Scellier et al., [2024)), with the
exception of hybrid models, which manage to achieve a good performance on models with 15 layers
by alternating blocks of layers trained with BP and blocks trained with EP (Nest & Ernoult, [2024)).

Predictive Coding (PC). The formulation of PC that we use here was developed to model hier-
archical information processing in the brain (Rao & Ballard} [1999; [Friston, [2005)). Intuitively, this
theory states that neurons and synapses at one level of the hierarchy are updated to better predict the
activities of the neurons of the layers below, and minimize the prediction error. Interestingly, the
same algorithm can be used as a training algorithm for deep neural networks (Whittington & Bogacz|
2017), where several similarities with backpropagation were observed (Song et al., 2020; [Salvatori
et al.,[2022). To this end, it has been used in a large number of machine learning tasks, from image
generation and classification to natural language processing and associative memory (Sennesh et al.,
2024; Salvatori et al., [2023}; [Pinchetti et al., 2022; |Ororbia & Kifer, 2020; |Salvatori et al., |2021]).
Again, the state of the art has been reached by training convolutional models with 5 hidden layers,
with performance starting to get worse as soon as we use models with 7 layers (Pinchetti et al., 2024)).
To this end, a recent interesting work has proposed pPC), a theoretical framework that allows the
training of very deep feedforward models Innocenti et al.| (2025). However, this work does not tackle
non-feedforward layers, and does not test on datasets larger than MNIST. The connection between
PC and EP is well explained by the concept of bi-level optimization (Zucchet & Sacramento, 2022),
where the neural activities used for learning are the equilibrium state of a physical system.

3 BACKGROUND

Let us consider a network with L layers, and let us denote W' and x! the weight parameters
and the neural activities of layer [/, respectively. Note that, differently from standard models, the
neural activities are variables of the model, optimized over time steps ¢. This optimization is
performed with the goal of allowing the activities of every layer to predict those of the layer
below. Together with the neural activities, the two other quantities related to single neurons are
the prediction 1 = W'f (xy '), given by the layer-wise operation through an activation function,
and the prediction error, defined as the deviation of the actual activity from the prediction, that is,
el = xL — ul. A fourth quantity, usually overlooked in machine learning applications but of vital
importance in neuroscience, is the precision, or covariance Y. of a specific neuron E} Differently
from the standard literature, we consider the covariance to be time-dependent. Furthermore, instead
of updating it to minimize an objective function as done in previous works (Ofner et al., [2021), we
will manually define the rule that governs its updates. The predictive coding energy is then the sum
of the squared norms of the precision-weighted prediction errors of every layer over time:

L L
U i = pill® 1~ leill®

By=o Yy i o SN (1
2 =1 Xt 2 =1 2t

where we consider covariances to be layer-dependent: all the neurons of the same layer will have
the same covariance. To this end, we use the same notation when the covariance Zi is a scalar, or a
diagonal matrix whose entries are equal to such a scalar.

'In predictive coding, and more generally in statistics, the precision matrix is the matrix inverse of the
covariance matrix. In this work, we follow the standard convention and divide the prediction error by a factor
of X, instead of multiplying it by a factor of p.

Under review as a conference paper at ICLR 2026

——: Forward

.
s - S < S -

- - - - - - - - - - - - - - - - - -
- - - - -

---------- »: Backward - - -

/ - -
1 : Prediction | 125 i (®)
X :Neural Activities ! 1
& : Prediction Error i 1 a
W : Weights 3 f“J\—\ : .
S : Covariance } (=)™ (=)! (=)~
|
|
|
I
|
|

Usual Precisions Spiking Precisions Decaying Precisions

Figure 1: (a) Evolution of predictive coding models over multiple time iterations. The green diamond élT“

refers to the information needed to compute the proposed forward updates. The rest of the figure represents
the standard components and mechanisms of a predictive coding network. (b) Visualization of the proposed
precision-weighting strategies, where the height of the bar is proportional to the precision at different time steps.

Training. Suppose that we are provided with a labeled data point (o, y), where o denotes sensory
inputs, and y € R? is the label. Training is then performed via a form of bi-level optimization
(Zucchet & Sacramento} 2022)), divided into three phases. In the first phase, the neural activities of
every neuron are initialized via a forward pass, that is, we set x}) = pl) for every layer, with 23 = o.
In the second phase, that we call the inference phase, we fix the neural activities of the output layer to
the label, that is, we set x;, = y, and we update the neural activities via gradient descent, to minimize
the total energy of the model. The update rule is then the following:

OE; el elt!
a——r = (=t —WHDT o f/(x! 2
o = o 01/, @
where « is the learning rate of the neural activities. This phase will continue until it reaches the
fixed number of iterations T or convergence. The third phase is the learning phase, where the neural
activities x/. are fixed, and the weight parameters are updated to decrease the energy, weighted by a
learning rate 7, via the following equation:

I _
Ax, = —

OEr eh f(xr)

AWZ =N =—-n ’
oW st

3

Incremental PC (iPC). An alternative to the bi-level optimization described above is iPC [Salvator1
et al.| (2024)), that differs from the standard implementation as also the weight parameters are updated
at every time step ¢ until convergence, according to Eq[3] From the variational inference perspective,
this schema introduces a form of incremental expectation-maximization Neal & Hinton| (1998)), and
has been argued to be more biologically plausible than standard PC, as it avoids the need for a control
signal that halts the updates of the neural activities and triggers the weight updates. In practice,
however, this method has been shown to perform even worse than PC when it is used to train deep
models such as VGG7 and VGGY on CIFAR10|Pinchetti et al.|(2022). We will show that it is this
fully automatic training method that will benefit the most from hard-coded precisions, and reach the
best performance on models such as ResNet18.

Nudging. Instead of providing the original label y to the model, it is common in the literature to
slightly translate the output neurons of the system x{ in the direction of y. More precisely, it fixes
xt = ul + By — pk) for every time step ¢, where 3 controls the supervision strength. The sign of
[determines supervision polarity: positive for standard nudging and negative for inverse supervision.
Performing a stochastic sampling from {3, — 3} across training epochs and batches is called center
nudging (Scellier et al.,|2024). In practice, PC with centered nudging has been shown to be the best
performing method on deep models such as VGG7 |Pinchetti et al.| (2024).

Under review as a conference paper at ICLR 2026

s Train Accuracy —— layer_1 — Llayer_3 —— Llayer_4 ~— Llayer 5 Layer_6 —— Llayer_7 Layer_8 Layer_ 9 ~— Llayer_10
I Val Accuracy —— layer_2

BackPropagation 0.9988 Predictive Coding (PC) Incremental Predictive Coding (iPC)

100

o)
—— : | t ©
= - . — =)
. - -3 - = 102
08 8 10 - 1072 o
07 ' - BRIy 100 S
~.0. RE—— .7 6388 5]
g I 100 086 100 &
50.6 .6 0.6 S
S i = 10722 102 ¢
<0.5 .5+ 0.5- o
X 10715 10-158
0.4 .4- 0.4- ‘5
i 1018 1018 o
0.3 .3- 0.3- =
. 10-2 109
o2 HS HE ES BN BN BN S ES BN o2 A HE BN BN BN BN BN BN E o2- HE HE S BN BN BN BN ES BN wi
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Epocl Epoch Epoch
PC & Forward Update (FU) PC & Spiking Precision (SP) iPC & SP 0.9992 PC & SP & FU 0.9985
1.0 0.9534 1.0- 1.0 1.0

0 51015 ZE(;)E(S:h3O 35 40 45 0 51015 é(:)gthO 35 40 45 0 51015 ZEL:)‘ZthO 35 40 45 0 5 1015 20 25 30 35 40 45

Figure 2: Normalized layer-wise energy distribution and accuracy comparison between BP and PCNs
in a VGG10 on the CIFAR10 dataset. Colored curves represent the total energy of the individual
layers of the model (or, the squared error of every layer for BP). The vertical lines represent the train
and test accuracies of the model.

4 METHODS

In this section, we first study the phenomenon of energy imbalance across different layers, and then
use the derived insights to propose time-dependent covariances that address it. In detail, we propose
spiking precisions, a method that better distributes the energy across the model by dynamically
updating the precisions as soon as individual neurons are reached by the energy term. In practice, we
show that this largely improves the performance of models trained with PC and iPC. In the case of iPC,
spiking precisions allow us to reach performance comparable to that of backprop. To further boost
the performance of standard PC, we introduce a variation of the weight update rule, which leverages
neural activities at initialization to perform a better update of the parameters and improve overall
model performance. Figure[T(a) presents a flowchart that intuitively illustrates the modules discussed
in subsequent sections, while Figure[I[b) provides a visualization of the covariance matrices.

To study the energy imbalance across different levels of the network, we have tracked the normalized
total energy of each layer during training, along with the test and training accuracy, and compared it
against that of BP. We have performed a broad study that tests multiple models, datasets, and setups,
which we mostly report in the supplementary material, while presenting in Figure 2] the plots of the
best performing models. As BP does not have a proper definition of energy, we have used the squared
error of every layer computed during the backward pass, equivalent to the error of PC' when it comes
to the update of the weight parameters.

Results. In models trained with PC, there is a significant energy imbalance, where early layers
have up to 18 orders of magnitude less energy than later layers, while in models trained with iPC this
phenomenon is less pronounced but still present, as the layer with less energy has an energy of about
10~? . This does not happen in BP-trained models, which exhibit a more uniform energy distribution
across layers. In fact, the first layer has energy above 102 almost the whole training. This set of
experiments shows the potential reason why deep PC models do not perform well. In the bottom row,
we show how combinations of our proposed methods mitigate such an energy imbalance, with the
best performing ones being iPC with spiking precisions, and PC with spiking precisions and a novel
update rule we will discuss later. In both cases, the first layer has an energy above the layer of lowest
energy above 103, These two methods are also the only ones reaching test accuracy slightly better
than those of backprop.

Under review as a conference paper at ICLR 2026

mm Without CN mmm With CN
_ spiking Precision (S) Forward Update (F) iPC+S PCHS+E
89, 93.03 89 90.08 928 59
5-22 828743 4287 3276 38,9990 1 43.25°085.37

88,
85.65 8551 8715 ss Hai

80.15 s2d

Hoes 83 i

VGG5 VGG7 VGG10 VGG5 VGG7 VGGL0

89.43 89.91 222l

Figure 3: Test accuracies of various algorithms on the CIFAR10 dataset, evaluated on models of
different depths. From the second plot onward, each pair of bars compares the performance of the
algorithm with and without center nudging (CN).

Accuracy (%)

IS
S

4.1 ALGORITHMIC CONTRIBUTIONS

Spiking Precision. Training predictive coding models involves a critical trade-off between stability
and the efficient propagation of error signals. On the one hand, large learning rates « for the neural
activities can lead to instabilities: most of the best results in the field have been obtained using a
small learning rate, such as o = 0.05 (Pinchetti et all,[2024). On the other hand, such small learning
rates can exponentially slow down the propagation of error signals across model layers, as noted in
the supplementary material of 2020). To this end, we propose to modulate the precision
having a spike proportional to the learning rate the first time the energy — initially concentrated in the
output neurons — reaches a specific layer. In terms of temporal scheduling, this happens at{ = L —¢.
For a network with L layers and 7" inference steps, the proposed spiking precision hence is:

a whenl=1L—t,
Eé:{)

1, otherwise.

Intuitively, the spikes allow the energy to be well propagated from the last to the first layer during the
first L iterations, with the other updates happening as usual.

Forward Updates. Due to large prediction errors that we find in the last layers, the neural activities
observed at the end of the inference process tend to significantly deviate from their initial feed-
forward values. But the feedforward values are the ones that are then used for predictions. We
hence conjecture that synaptic weight updates based on x4, could potentially introduce errors that
accumulate with network depth, leading to performance degradation in deeper architectures. To
assess whether the proposed conjecture is correct, we introduce a new method for updating the weight
parameters that uses both the starting and final states of neurons, according to the energy function
defined as

2
Z 5 T” where &b = x — . 5)

Our method makes sure that welght adjustments stay connected to the initial feed-forward predictions
while incorporating the refined representations obtained through iterative inference. This approach
has the advantage of maintaining stability during learning and prevents the accumulation of errors
in deeper layers, which is crucial for scaling PC networks, but also the disadvantage of storing
information in memory, which is then used for the weight update only, making it less bio-plausible
than the original formulation. A similar energy function has been used in a different way in a previous
work, where the authors used it to guide the update of the neural activities instead of the weight
updates (Whittington & Bogacz, [2017).

4.1.1 EXPERIMENTS

Our hypothesis is that the proposed methods improve the performance of PC and iPC on deep
models. To this end, we perform experiments on VGG-like models (Simonyan & Zisserman, 2014) —
convolutional models followed by feedforward layers — on the CIFAR10 dataset, where we observe
their test accuracies as a function of their depth. We again use backprop, PC, and iPC as baselines,
and report the results computed with and without centered nudging in Figure 3] All the details
needed to reproduce the experiments, architectures, and hyperparameters used can be found in the
supplementary material.

Under review as a conference paper at ICLR 2026

Results. The barplots show that PC and iPC with and without center nudging significantly drop in
test accuracy when the depth of the model is increased. In contrast, our proposed methods avoid the
accuracy degradation as model depth increases. Particularly, iPC with spiking precision is the method
that exhibits performance comparable to BP across VGG5/7/10 models, despite being completely
local in space and time. We will later see that this is consistent with the more complex experiments,
where this method is still the one achieving the best performance overall. In models without forward
update, consistent with previous findings, using center nudging enhances algorithm accuracy, with
more pronounced effects as the number of model layers increases in most cases. However, we found
that once forward update is added, center nudging ceases to yield performance benefits.

. . Table 1: Performance of different precision
Linear and exponential decays. To address the problem 41000651 0/CIFAR-10.

of energy imbalances, we used spikes that help propagate
the energy to the first layers. However, alternative options Method Test Accuracy (%)
would have been to attenuate the energy accumulation in Fixed + FU 8733+ 0.14
the last layers by gradually reducing their precision over Lin Decay + FU 88.35 + 0.12
time. We therefore evaluate two variants where precisions Exp Decay + FU 89.43 4 0.18
decay either linearly or exponentially with the number of Spiking + FU 92.07 & 0.10
time steps, using the same setup of the experiment above,
that is, a VGG10 on CIFARI10. The results, reported in
Tab. [T} show that such decays provide improvements over the baseline, confirming the benefit of
dynamically modulating precisions. However, spiking precisions consistently outperform both decay
schedules, underscoring that actively boosting error propagation is more effective than passively
damping energy imbalances. We refer to the supplementary material for a more detailed description.

4.2 STRUCTURAL CONTRIBUTIONS

Residual Connections. In the previous subsection, we showed that our proposed methods overcome
the depth limitation when training VGG-style models with 10 layers. However, this improvement
does not extend to ResNet10, where performance still drops catastrophically. We conjecture that
this degradation arises from a mismatch in how energy propagates through residual connections:
the skip path delivers energy to higher layers earlier than the main feedforward path. Concretely,
consider the residual block in Fig.a): when the neurons x'*2 receive energy at time ¢, in the next
step they propagate it both to x/*! (through the feedforward connection) and to x'~! (through the
skip connection). As a result, higher-level neurons begin updating before the main stream of energy
arrives.

Having two streams of energy that reach the same levels in different time steps contrasts with both the
philosophy behind the spiking updates, that are supposed to boost the neural activities the first time
this is reached by the energy, and iPC, that updates some weight parameters before the information
that goes through the model has reached them. To address this temporal mismatch, we introduce
auxiliary families of neurons along each residual connection, one for every skipped layer, as shown
in Fig. (). These auxiliary units act as buffers that delay the propagation of energy through the
skip path, ensuring that energy arriving via the residual connection reaches the start of the block
synchronously with the energy propagated through the main path.

BatchNorm Freezing (BF). BatchNorm has proven instrumental in stabilizing the training of deep
neural networks, as it mitigates gradient-related issues and ensures smooth gradient propagation.
During training, it achieves this by normalizing layer activations through the function

T —
) + 6, ©)
\Vop te€
where v and 3 are learnable parameters, and 1 and 0% are the mean and variance of the minibatch
B. At test time, it uses statistics y,- and o2 learned through exponential moving averages. However,
when applied directly to PCNs, BatchNorm fails to yield similar improvements. We hypothesize that
this failure results from the iterative inference phase, where processing the same batch multiple times
leads to a possible overfitting of the layer statistics. To address this issue, we propose BatchNorm
Freezing (BF), a modification that freezes the states of the BatchNorm state during the inference
phase, and updates running statistics exclusively during the learning phase while still using batch
statistics for normalization during inference iterations.

BN(z) = ~(

Under review as a conference paper at ICLR 2026

(a) (b) I v/ Auxiliary Nodes [X1 iPC+S (C)
-1 J=il il
X X B w/o Auxiliary Nodes [PC+S+F
Id 0.8-
1 1 e 100-)
W W 93.03 92. E.IS 91.96 91.91 —— without BN
; ; s 80- 0.45 —— standard BN
| x | | X | | X" . §0-6 —— BN without affine
> o 5 —— BF without affine
141 141) 3
lw lw |Idz g eo- .04 3 —— standard BF
5 <04
| xl+1 | | xl+1 | | xTes2 g 20-
W2 W2 0.2 W
Id, 20-
Xl+2 Xl+2 0.0 ; i i i ;
0- 3 . 1 357 91113151719212325

ResNet10 ResNet18 Epoch

Figure 4: (a): A sketch of a residual block (left) and our proposed variation (right) with auxiliary
neural activities, that prevent the error signal to travel from x!*2 to x!~! in one timestep; (b) A
barplot showing the gap in test accuracy on the CIFAR10 dataset between models with and without
added neural activities on a ResNet18. Both plots refer to the best test accuracies reached by PC and
iPC with the novel methods presented above. (c) Shows the test accuracy between models with the
standard formulation of BN, without BN, and our proposed BF.

Experiments. With the goal of validating the conjectures outlined above, we conducted two sets
of experiments on the CIFAR-10 dataset: First, we trained a ResNet10 and a ResNet18 both with
and without auxiliary neurons on the residual connections. In this setting, we used the two best-
performing training schemes identified earlier, iPC with spiking updates, and PC with spiking plus
forward updates. Second, we revisited the VGG10 architecture and compared different forms of
batch normalization, including our newly proposed BF variant. The results of both experiments are
reported in Fig. fb) and (c), respectively.

Results. For ResNetl0, the results indicate that introducing auxiliary neurons resolves the skip-
connection issue, enabling both algorithms to match the performance of the VGG10 baseline reported
previously. This result is even starker in ResNet18, where the presence of multiple skip connections
causes a much larger degradation of performance. Again, the addition of auxiliary neurons completely
solves the problem, as the proposed models reach almost 92% test accuracy, compared to a maximum
of 64%. A similar result is obtained in the experiments with BF, where we show that normalization
not only maintains convergence but also improves accuracy, indicating that stabilizing activation
distributions plays a crucial role in supporting energy-based optimization within predictive coding
architectures. In the next section we will show that such results, together with the ones obtained at
the beginning of the section, will also extend to deeper models and more complex datasets.

5 EXPERIMENTS

Here we test our proposed methods combined, and show that we are able to reach performance compa-
rable to those of BP when trained on models with the same complexity. To provide a comprehensive
evaluation, we test them on CIFAR-10/100 (Krizhevsky et al.,|2009) and TinyImageNet (Le & Yang,
2015)), a scaled down version of ImageNet with 200 classes. As architectures, we use VGG-like
models and ResNet architectures (He et al.,|2016). Similarly to the setups of the aforementioned
works, in this work we only consider models with a single feedforward layer after the convolutional
layers. In all cases, we perform a large number of hyperparameter searches, and report the best test
accuracy obtained with early stopping, averaged over 5 runs. We have run the experiments with and
without BN/BF, and reported the best one obtained. Details on the architecture used, information
needed to reproduce the results, study on hyperparameter importance, are in Appendix [A]

Results. We report a comprehensive comparison in Table[2] As expected, in shallow models all
methods can either match or approximate the performance of BP with all the methods, while in
deeper models, this is not the case for our baselines, but it is for our newly proposed methods. For
standard PC, spiking precisions and forward updates alone slightly improve the performance, and it
is the combination of both inference and update methods that performs the best, always matching the
performance of models trained with BP. To conclude, we note that batch freezing further improves
the results, clearly showing that the best combination of methods is batch freezing, forward updates,
and spiking precisions, which get the best results on all benchmarks when testing on a VGG10. In
this case, we use models with normal BN when testing with BP.

Under review as a conference paper at ICLR 2026

Table 2: Test accuracies of different algorithms across datasets and architectures.

Dataset Algorithm VGGS5 VGG7 VGG10 ResNet10 ResNet18
BP 90.01%0-15 91.32%0-14 g2 6g8+0:10 92 93+0.11 g3 13+0.16
PC 87.98%0-11 84 62010 7629048 69 g5E212 15 635722
iPC 86.0110-10 80.15+0-18 3.83%0:33 2344027 21 gp*+1-51

CIFAR10 iPC + Spiking Updates ~ 89.73%0:06 91,12%0-08 93 (3+0.18 g9 39+0.04 g7 9G+0.07
PC + Spiking + Forward ~ 89.45%0:18 9(.89+0-04 93 274010 g9 47+0.01 g7 93+0.14
BP 67.39%0-25 g7.67t0-11 71254021 71214009 77 g9+0-21
PC 61.84%0-18 5680014 50.76E03T 4] 51082 592002
iPC 56.0710-16 43.99%0-30 37.99#017 99 91#023 1 5024

CIFAR100 (Top-1) iPC + Spiking Updates ~ 66.91%012 §7.10%0-12 69.84+0-17 70,02%0-24 70.38+0-20
PC + Spiking + Forward ~ 67.16%016 §7.71%010 72 02%0-12 71 30%0-21 70.90*018

BP 89.5610,08 90.0510.13 92.10:t0.12 89.49i0'13 89.4310,14
PC 86.53i0‘15 83.00i0'09 78.68i0'27 7095i035 5A89i0A12
iPC 78.91%023 7393080 6] 172081 46414031 6,33+0-26

CIFAR100 (Top-5) iPC + Spiking Updates ~ 89.47%0:02 89 42+0.06 g8 75+0:29 gg go+0-21 g0 74+0-10
PC + Spiking + Forward ~89.57+009 89 62+0-18 92 10+010 89 56*0-1 90.47+0-11

BP 47.81%0-12 50.13%0.06 53 61012 53 02+0-20 58 18+0-12
PC 41.29:{:020 41'15j:0.14 31.87i0'03 13.59j:0.12 0484:{:0‘02
TinyImageNet (Top-1) iPC 29.941047 19761015 11.41%0-23 11.66%0-39 1.44+0.05

iPC + Spiking Updates ~ 48.13%010 48754012 59 40+0.20 54 94+0.30 57 g3+0.21
PC + Spiking + Forward 49.357009 50.64%012 5531%0-25 5325%0-2T 54 04+0:63

BP 72151010 73 94+0.10 77 11£0.10 79 g+0.16 79 94+0.06
PC 66.681000 66255011 58.14+0-04 37.99£0.08 5 34+0.01
TinyImageNet (Top-5) iPC 54.73%0-52 40367022 30.42%036 2651071 11 58021

iPC + Spiking Updates 72.71%012 73 39£0.10 76 76+0.15 78 g8+0.32 77 55+0.12
PC + Spiking + Forward ~ 73.46%009 7563%0.08 79 30+*017 7772%0.23 74 70+047

Scaling up. When performing the analysis that lead to the numbers in Table 2| we noted that iPC
often performed better without BF. To explicitate this phenomenon, we have performed additional
experiments on a VGG15 on the Tiny ImageNet dataset. The model that we use is identical to the one
proposed in the hybrid equilibrium propagation work (Nest & Ernoult, 2024). The results, reported
in Table [3] show that the effect of BF is much stronger when training models with our version of
PC, rather than iPC, whose performance is better when using a vanilla model, without any kind of
normalization. Again, the numbers reported here are the result of an hyperparameter search, whose

details are in the supplementary material. Table 3: Test accuracies on Tiny ImageNet.

% Accuracy | BP PC+S+F iPC+S
6 CONCLUSION VGG1s

. . . . Top-1 44.52%016 50 10016 50.24+013
In this work, we have investigated the following re- Top-5 69.28+006 73 93+0.18 g5 47+0.10

search question: Why do deep models trained with ~vGG.15.BN/BF

the predictive coding energy fail to match the accu- Top-1 ‘ 53.21%0%% 53,04+090 4g.19%0 T
racy of their counterparts trained with backpropaga- _T°P-> 77267017 7664707 72,6470
tion? We have addressed this problem from both the

algorithmic and the architectural sides. Algorithmically, we have proposed both a novel technique
that leverages a dynamical precision-weighting of prediction errors to better regularize the energy
landscape, and a novel weight update mechanism. From the architectural side, we have shown how to
modify the residual connections to allow the training of PC-based ResNets, and developed a more
effective normalization technique. The results show that we are now able to train VGG models with
15 layers, and ResNet18 on Tiny Imagenet.

A limitation of the work is the presence of the value of the predictions at initialization during
the forward updates, which means that the algorithm has to store this value in memory, adding a
degree of biological implausibility, due to computations not being completely local in time anymore.
Future work will investigate how to address this problem with a bio-plausible weight update, with a
nice starting point being a contemporaneous study that theoretically shows how to train very deep
feedforward models (Innocenti et al., 2025)). Despite this limitation, however, we have reached the
same performance using iPC with spiking updates, and can hence claim that we have reached our
goal of training complex models such as ResNet18 with a learning algorithm that is local in time and
space, reaching the same performance as backprop.

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

All the experiments in this work have been run using the PCX library [Pinchetti et al.| (2024), an
open-source software that allows training and testing predictive coding models. Besides this, all the
details needed to reproduce the results are carefully described in the supplementary material. We will
release the code in case of acceptance.

REFERENCES

Andre M Bastos, W Martin Usrey, Rick A Adams, George R Mangun, Pascal Fries, and Karl J Friston.
Canonical microcircuits for predictive coding. Neuron, 76(4):695-711, 2012.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv:1407.7906, 2014.

Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, and Benjamin Scellier. Equilib-
rium propagation with continual weight updates. arXiv preprint arXiv:2005.04168, 2020.

Harriet Feldman and Karl J Friston. Attention, uncertainty, and free-energy. Frontiers in human
neuroscience, 4:215, 2010.

Simon Frieder and Thomas Lukasiewicz. (non-) convergence results for predictive coding networks.
In International Conference on Machine Learning, pp. 6793-6810. PMLR, 2022.

Karl Friston. A theory of cortical responses. Philosophical Transactions of the Royal Society B:
Biological Sciences, 360(1456), 2005.

Wilfried Haensch, Tayfun Gokmen, and Ruchir Puri. The next generation of deep learning hardware:
Analog computing. Proceedings of the IEEE, 107(1):108-122, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem
solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):
107-116, 1998.

Francesco Innocenti, El Mehdi Achour, and Christopher L Buckley. ©PC: Scaling predictive coding
to 100+ layer networks. arXiv preprint arXiv:2505.13124, 2025.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448-456.
PMLR, 2015.

Jack Kendall, Ross Pantone, Kalpana Manickavasagam, Yoshua Bengio, and Benjamin Scellier.
Training end-to-end analog neural networks with equilibrium propagation. arXiv preprint
arXiv:2006.01981, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Dmitry Krotov and John J. Hopfield. Dense associative memory for pattern recognition. In Advances
in Neural Information Processing Systems, 2016.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Ali Momeni, Babak Rahmani, Benjamin Scellier, Logan G. Wright, Peter L. McMahon, Clara C
Wanjura, Yuhang Li, Anas Skalli, Natalia G Berloff, Tatsuhiro Onodera, et al. Training of physical
neural networks. arXiv preprint arXiv:2406.03372, 2024.

10

Under review as a conference paper at ICLR 2026

Javier R. Movellan. Contrastive Hebbian learning in the continuous hopfield model. In Connectionist
Models, pp. 10-17. Elsevier, 1991.

Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Learning in Graphical Models, pp. 355-368. Springer, 1998.

Timothy Nest and Maxence Ernoult. Towards training digitally-tied analog blocks via hybrid gradient
computation. Advances in Neural Information Processing Systems, 37:83877-83914, 2024.

Andre Ofner, Raihan Kabir Ratul, Suhita Ghosh, and Sebastian Stober. Predictive coding, precision
and natural gradients. arXiv preprint arXiv:2111.06942, 2021.

Alex Ororbia and Daniel Kifer. The neural coding framework for learning generative models.
arXiv:2012.03405, 2020.

Luca Pinchetti, Tommaso Salvatori, Beren Millidge, Yuhang Song, Yordan Yordanov, and Thomas
Lukasiewicz. Predictive coding beyond Gaussian distributions. 36th Conference on Neural
Information Processing Systems, 2022.

Luca Pinchetti, Chang Qi, Oleh Lokshyn, Gaspard Olivers, Cornelius Emde, Mufeng Tang, Amine
M’ Charrak, Simon Frieder, Bayar Menzat, Rafal Bogacz, et al. Benchmarking predictive coding
networks—made simple. arXiv preprint arXiv:2407.01163, 2024.

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: A functional in-
terpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1):79-87,
1999.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533-536, 1986.

Tommaso Salvatori, Yuhang Song, Yujian Hong, Lei Sha, Simon Frieder, Zhenghua Xu, Rafal Bogacz,
and Thomas Lukasiewicz. Associative memories via predictive coding. In Advances in Neural
Information Processing Systems, volume 34, 2021.

Tommaso Salvatori, Yuhang Song, Thomas Lukasiewicz, Rafal Bogacz, and Zhenghua Xu. Reverse
differentiation via predictive coding. In Proc. AAAI, 2022.

Tommaso Salvatori, Ankur Mali, Christopher L Buckley, Thomas Lukasiewicz, Rajesh PN Rao, Karl
Friston, and Alexander Ororbia. Brain-inspired computational intelligence via predictive coding.
arXiv preprint arXiv:2308.07870, 2023.

Tommaso Salvatori, Yuhang Song, Beren Millidge, Zhenghua Xu, Lei Sha, Cornelius Emde, Rafal
Bogacz, and Thomas Lukasiewicz. Incremental predictive coding: A parallel and fully automatic
learning algorithm. International Conference on Learning Representations 2024, 2024.

Benjamin Scellier. Quantum equilibrium propagation: Gradient-descent training of quantum systems.
arXiv preprint arXiv:2406.00879, 2024.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

Benjamin Scellier, Maxence Ernoult, Jack Kendall, and Suhas Kumar. Energy-based learning
algorithms for analog computing: a comparative study. Advances in Neural Information Processing
Systems, 36, 2024.

Eli Sennesh, Hao Wu, and Tommaso Salvatori. Divide-and-conquer predictive coding: a structured
bayesian inference algorithm. arXiv preprint arXiv:2408.05834, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the brain do backpropa-
gation? — Exact implementation of backpropagation in predictive coding networks. In Advances
in Neural Information Processing Systems, volume 33, 2020.

11

Under review as a conference paper at ICLR 2026

Hsinyu Tsai, Stefano Ambrogio, Pritish Narayanan, Robert M. Shelby, and Geoffrey W. Burr. Recent
progress in analog memory-based accelerators for deep learning. Journal of Physics D: Applied
Physics, 51(28):283001, 2018.

James C. R. Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local Hebbian synaptic plasticity. Neural Computation, 29(5),
2017.

Logan G. Wright, Tatsuhiro Onodera, Martin M. Stein, Tianyu Wang, Darren T. Schachter, Zoey Hu,
and Peter L. McMahon. Deep physical neural networks trained with backpropagation. Nature, 601

(7894):549-555, 2022.

Nicolas Zucchet and Jodo Sacramento. Beyond backpropagation: bilevel optimization through
implicit differentiation and equilibrium propagation. Neural Computation, 34(12):2309-2346,
2022.

12

Under review as a conference paper at ICLR 2026

APPENDIX

Here we provide an explanation of the performed experiments, as well as a detailed description of all
the parameters needed to replicate the results of the paper. We also provide an ablation study that
shows the performance of the individual methods in isolation.

LLM Usage. We have used LLMs for proofreading the paper and to polish writing, for retrieval

and discovery of related work, and for low-level coding help (e.g. to help us produce the code for
individual figures).

A EXPERIMENTS SETTING
Model. We conducted experiments on four VGG-based models: VGG5, VGG7, VGG10, and

VGG15 and two ResNet-based models: ResNet-10, ResNet-18. The detailed architectures of these
models are presented in Table 4]

Table 4: Detailed architectures of base models.

VGGS5 VGG7
Channel Sizes: [128, 256, 512, 512] Channel Sizes: [128, 128, 256, 256, 512, 512]
Kernel Sizes: [3, 3, 3, 3] Kernel Sizes: [3, 3, 3, 3, 3, 3]
Strides: [1, 1, 1, 1] Strides: [1, 1,1, 1, 1, 1]
Paddings: [1, 1, 1, 0] Paddings: [1, 1, 1,0, 1, 0]
Pool window: 2 x 2 Pool window: 2 x 2
Pool stride: 2 Pool stride: 2
Linear Layers: 1 Linear Layers: 1
VGG10 VGG15
Channel Sizes: [64, [128]x3, [256]x4, 512] Channel Sizes: [64, 64, 128, 128, [256]x3, [512]x6]
Kernel Sizes: [3, 3, 3, 3, 3, 3, 3, 3, 3] Kernel Sizes: [3, 3,3, 3,3,3,3,3,3,3,3,3]
Strides: [1,1,1,1,1,1,1, 1, 1] Strides: [1,1,1,1,1,1,1,1,1, 1,1, 1, 1]
Paddings: [1,1,1,1,1,1,1, 1, 1] Paddings: [1,1,1,1,1,1,1,1,1,1, 1, 1, 1]
Pool window: 2 x 2 Pool window: 2 x 2
Pool stride: 2 Pool stride: 2
Linear Layers: 1 Linear Layers: 2
ResNet10 ResNet18
Initial Conv: 3x3, Stride 1, Channel Size 64 Initial Conv: 3x3, Stride 1, Channel Size 64
Res-Block: [1, 1, 1, 1] Res-Block: [2, 2, 2, 2]
Channel Sizes: [64, 128, 256, 512] Channel Sizes: [64, 128, 256, 512]
Strides: [1, 2, 2, 2] Strides: [1, 2, 2, 2]
Linear Layers: 1 Linear Layers: 1

Experiments. The benchmark results of above models are obtained with CIFAR10, CIFAR100 and
Tiny ImageNet. The datasets are normalized as in Table[5]

Table 5: Data normalization.

Mean (1) Std (o)

CIFAR10 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]
CIFAR100 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]
Tiny ImageNet [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

For data augmentation on CIFAR10, CIFAR100, and Tiny ImageNet training sets, we use 50%
random horizontal flipping. We also apply random cropping with different setups. For CIFAR10
and CIFAR100, images are randomly cropped to 32x32 resolution with 4-pixel padding. For Tiny
ImageNet, images are randomly cropped to 64x64 resolution images with 8-pixel padding. For
testing on those datasets, we applied only standard data normalization, without using any additional
data augmentation techniques.

13

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters search configuration.

Parameter PCNs BP
Epoch 25
Batch Size 128
Activation [leaky relu, gelu, hard tanh, relu]
@ [0.01, 0.05, 0.001, 0.005] -
B [0.0, 1.0], 0.15! -
Iry* (5e-3, 9e-1)? -
T (le-5, 3e-2)? (le-5, 3e-4)2
momentums, [0.0, 1.0], 0.1" -
weight_decay,, (1e-5, 1e-2)?
T (VGG-5) [5,6,7,8] -
T (VGG-7) [7,9,11,13] -
T (VGG-10) [10,12,14,16] .
T (VGG-15) [15,17,19,21] -
T (ResNet-10) [10,12,14,16] -
T (ResNet-18) [18,20,22,24] -

L. ¢“[a, b], ¢” denotes a sequence of values from a to b with a step size of c. 2. “(a, b)” represents a

log-uniform distribution between a and b.

Table 7: Comparison of the training times (seconds per epoch) of BP against PCNs on different architectures
with CIFAR10

Task BP PC PC+S+F iPC iPC+S
VGG5 (T=5) 1.16%002 1 56+0.01 1.55+0:01 1.94%0:01 1 gq+0.01
VGGT7 (T=17) 1.29%0:02 9 90001 2.20+0:01 2.94%+0:01 9 g5+0.01

VGG10 (T = 10) 1.90%0-01 5 g+0.02 5.06+0:02 7.00%0:05 7,01%0-03
ResNeth (T = 10) 1.75j:(].()1 5_021().[)2 5_101(].()1 7.08i{)’05 7_08j:[)A(]5
ResNetl8 (T =18) 2.78+001 14,92+001 15 77£0.08 99 14F0.05 99 14+0.01

For the optimizer and scheduler, we employ mini-batch stochastic gradient descent (SGD) with
momentum for updating = during the relaxation phase. For the learning phase, we optimize weights
W using AdamW with weight decay. The learning rate schedule follows a warmup-cosine annealing
pattern without restarts. This scheduler initiates training with a low learning rate during the warmup
period, then smoothly transitions to a cosine-shaped decay curve, preventing abrupt performance
degradation. The schedule parameters are configured as follows: the peak learning rate reaches 1.1
times the initial rate, the final learning rate settles at 0.1 times the initial rate, and the warmup phase
spans 10% of the total iteration steps.

We conduct a rigorous hyperparameter search for all models, including the baselines, based on the
search space specified in Table[f] All experiments were implemented using the PCX library, a JAX-
based framework specifically designed for predictive coding networks that provides comprehensive
benchmarking capabilities. All the experiments were conducted on NVIDIA A100/H100 GPUs,
with each trial involving a hyperparameter search using the Tree-Structured Parzen Estimator (TPE)
algorithm over 200 iterations. The results presented in Table [2| and Figure |3| are obtained using 5
different random seeds (selected from 0-4) with the optimal hyperparameter configuration. The
training process is capped at 50 epochs, with an early stopping mechanism that terminates training if
no accuracy improvement is observed for 10 consecutive epochs. To maintain consistency with the
hyperparameter search settings, we employ a two-phase learning rate schedule: during the first 25
epochs, the weight learning rate follows a warmup-cosine-annealing schedule as previously described,
after which it remains fixed at the final learning rate of the scheduler. For the results shown in
Figure [2] 5] and [6] we utilize a single random seed with the optimal hyperparameters, setting the
maximum training epochs to 50 without implementing early stopping. The weight learning rate
schedule remains identical to the aforementioned approach.

14

Under review as a conference paper at ICLR 2026

B COMPUTATIONAL COMPLEXITY

In Table[/] we present the average time required to train one epoch using BP, PC, iPC, iPC with
Spiking Precision (iPC + S) and PC with Spiking Precision and Forward Update (PC + S + F) across
various tasks on a single HI00 GPU. To eliminate the overhead associated with loading datasets
into memory, we began timing from the fifth epoch onward, calculating the average duration across
five consecutive epochs. We repeated this measurement process five times and report the mean and
standard deviation of these five experimental runs. It is worth noting that the reported times for
predictive coding suffer from an implementation bottleneck: despite the possibility of updating all
the neural activities in parallel, our library does not allow that. This largely slows down our models
when trained on deep architectures.

Results. The results in Table [/|lead to several key observations. First, our proposed methods,
PC+S+F and iPC+S, exhibit training times nearly identical to their respective baselines, PC and
iPC. This demonstrates that the proposed spiking precision and forward update mechanisms do not
introduce a significant computational overhead.

The table also shows that iPC is consistently slower than PC. This performance difference stems from
their distinct weight update strategies. PC first runs the inference learning for T timesteps to allow the
neural activities (x) to converge and then performs a single weight update at the end. In contrast, iPC
performs weight updates within each of the T inference steps, alongside the neural activity updates.
This approach results in T separate weight updates for every layers instead of one, is the direct cause
of its higher computational cost compared to PC.

Finally, all PC models are slower than BP, with this ratio increasing as the number of model layers
increases, mostly for the bottleneck just described. While the forward pass is computationally
identical for both BP and PC, their backward/update passes differ fundamentally. BP computes
gradients in a single backward pass. In contrast, PC perform an iterative inference process to update
neural activities by minimizing a global prediction error. This process runs for a fixed number of T.
The computational complexity of a single BP epoch is proportional to the number of layers, L. For
PC, each of the T inference steps involves computations across all layers, making their complexity
roughly proportional to TxL. Since optimal performance often requires T to be equal to or greater
than the network depth L, the computational cost for PC naturally scales more rapidly with deeper
architectures, despite this not being as much of a bottleneck as the full parallelization of the operations.
Thus, We expect predictive coding networks to maintain computational efficiency across larger model
architectures while offering substantial performance advantages when implemented on specialized
analog neuromorphic hardware.

C ABLATION STUDY

In this section, we conduct ablation studies to evaluate the individual and synergistic effects of
our proposed components. By systematically isolating each mechanism, we quantify its specific
contribution to the overall performance of the model.

C.0.1 COMPARISON OF DIFFERENT PRECISION SCHEDULES

Our central hypothesis is that mitigating the energy imbalance in deep networks requires a potent
and precisely timed signal amplification. This amplification should occur at the moment the error
information, propagating from the output layer, first arrives at a given hidden layer. To test this
hypothesis, we designed and compared several dynamic precision schedules.

Based on this perspective, in addition to Spiking Precision, we designed a Decaying Precision
schedule, which offers a slightly smoother, yet still powerful, amplification profile. The formula for
Decaying Precision is as follows:

ST ek
st — | SSwren, whenl > L —t, o
L, when! < L —t.

Here, the numerator sum serves as a normalization term that ensures that the sum of the layer-wise
precisions over time is equal to one, that is, 3", (£)~! = 1. The denominator e~* =2+ allows

15

Under review as a conference paper at ICLR 2026

Table 8: Test accuracies of the different algorithms across architectures and datasets.

Dataset Algorithm VGG5 VGG7 VGG10 VGG5BF VGG7BF VGG10BF
BP 89_4310.12 89_9110.12 92'2110.08 90_0110.15 91'3210.14 92.68*”'10
PC 87.98+011 84.62+0-10 72 754603 g7 77014 g() got0-14 76 99+043
Decaying Precision (D) ~ 87.91F0-22 81.14%019 84 87+0-19 g8 55+0.09 g oo+0-10 g1 6g+0-18
CIFAR10 Spiking Precision (S) 88.06+0-16 8216014 78,09%061 88 53F00T g6 51021 g3 17+0.07
PC+D+F 89.32%0-14 89 34+0.09 89 43018 90 37013 9] 48012 g1 46012
PC+S+F 89.45%0-18 90.08*0-21 9207%010 89.30*+0-13 9(.89*0-04 93 97+0.10
BP 66.28%923 65.36T0-15 69.35F016 §7.39+025 g7 7E01L 77 95+021
PC 60.00%019 56.80%014 4586170 1.842018 555701 50764057

Decaying Precision (D) ~ 57.76T0-33 45.05%037 55661088 66.05F0-12 51.11%0:32 53 974048
CIFAR100 (Top-1) Spiking Precision (S) 59.18%0-20 56.98+019 51561016 0,34+028 55 74%0.15 56 944037

PC+D+F 66.10F9-09 64.86F0-10 6654012 @7.56F025 7.27E0-21 9 g1+0-22
PC+S+F 66.49%0-15 §6.34%0-22 (9.08%00% §7.16+0-16 ¢7.71%0-10 72 02+012
BP 85.85F027 84.41%0-26 88 74+0.08 g9 55+0.08 g 5+0-13 92 10+0-12
PC 84.97i0'19 83.00i0'09 74.61i1'08 86.53i0'15 82.07i0'35 78.68i0'27

Decaying Precision (D) ~ 81.59%0-13 74,00%0:30 83, 13+0.74 g8 82+0.07 78 93+£0.29 g 14+0.36
CIFAR100 (Top-5) Spiking Precision (S) 84.58+0-12 8361015 78 62%0-15 8586010 g9 4F0-14 g3 44F0.21
PC+D+F 85.85F0-10 8380020 g6.10%021 89.84F017 89 74*012 91 24+0.07
PC+S+F 86.3610-11 84 53+0.15 g(g4+0.07 g9 57+0.09 g9 2+0-18 g2 70+0.10

Table 9: Test accuracies of the different algorithms on Tiny ImageNet.

Top-1 Accuracy Top-5 Accuracy
VGG15 VGGISBF VGGI5 VGGISBF
PC+S+Forward Update ~ 42.51%0-18 53,04%036 66.22+0-18 76 644023

PC 22_95i1.50 22.91i0,61 47.04i2.04 4564i0()d
Decaying Precision (D) ~ 27.29%0-24 22 05%016 54 18+0-37 45 92+0.23
Spiking Precision (S) 18.36%0-36 17.95+0:14 39 94+0.31 39 g7+0.51
PC+D+Forward Update ~ 21.95%0-20 30.83%077 45.15%0-23 56.06%9-%5

Algorithm

lower layers to receive larger weights when activated (I > L — t), thereby helping to achieve a
more balanced energy distribution during the inference phase, k is a hyperparameter that controls
the strength of this balancing effect, the search range is [1.0, 1.5, 2.0]. It also ensures that each layer
experiences a significant boost in precision precisely when the energy from the output first reaches
that layer (I = L —t). When! < L —t, we set XL = 1.

As shown in Table [§] both Decaying and Spiking Precision schedules offer improvements over the
baseline PC, particularly in deeper models like VGG10. However, a clear pattern emerges when we
analyze their effectiveness in relation to network depth. In shallower models like VGGS5 and VGG7,
the performance of Decaying Precision is comparable to that of Spiking Precision. This suggests that
when the signal path is short, a moderately amplification is sufficient.

As shown in the Tab.[9] when model depth increases to VGG15 with TinyImageNet task, a noticeable
performance gap appears, with Spiking Precision consistently outperforming Decaying Precision.
This finding strongly supports our core hypothesis: the exponential signal attenuation in deeper
networks necessitates a correspondingly sharp and powerful counteracting signal. The abrupt,
targeted amplification of Spiking Precision is more effective at preserving the integrity of the error
signal across many layers than the smoother profile of Decaying Precision. Consequently, for all
subsequent experiments reported in the main body of this paper, we exclusively utilized the superior
Spiking Precision schedule. This investigation also opens exciting avenues for future work, such as
exploring hybrid schedules that might combine the strengths of different amplification profiles.

C.0.2 ENERGY PROPAGATION WITH PRECISION

We observed that removing the decaying/spiking precision module consistently leads to performance
degradation. This effect is particularly evident in deeper models like VGG7 and VGG10, where
its absence causes a significant imbalance in the energy distribution across layers. For instance,
as shown in Figure [5} the energy proportion of the first layer in the VGG7 model with spiking
precision is approximately 10~%. Without this precision term, the proportion plummets to 10718, A

16

Under review as a conference paper at ICLR 2026

W Train Accuracy —— layer 1 —— layer3 —— layer5 —— Layer7 Layer 9
mem ValAccuracy — —— layer2 —— Layer 4 Layer_6 Layer 8 —— Layer 10
VGGS-Predictive Coding (PC) ~ 0.9933 VGG5-PC + D + F 0.9935 VGG5-PC + S +F 0.9953

o
2

o

Accuracy
°
o
g g
Each Layer (Log Scale)

o
o

A

S
L
H

_.
5
Energy o

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Epoch poch Epoch
VGG7-Predictive Coding (PC) VGG7-PC + D + F 0.9928 VGGT-PC + S + F 0.9987

o
2

10°

1074

o

A
s 5

108

10-12

_.
2
Each Layer (Log Scale)

Accuracy
°

10-16

o

°
L
H

10 05

i
5
Energy o

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Epoch Epoch Epoch

VGG10-Predictive Coding (PC) VGG10-PC + D + F VGG10-PC + S + F 0.9985
1.0- 1.0 0.9695 1.0

0.9-

o
g g

0.8-

Layer (Log Scale)

0.7-

0.6-

0.5-

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Epoch poch Epoch

Figure 5: Layer-wise Energy Distribution and Accuracy Comparison between PC and Decaying
Precision/Spiking Precision with Forward Update in VGGS5, VGG7 and VGG10 on the CIFAR10
dataset. The colored lines represent the total energy of the individual layers of the model. The vertical
lines represent the train and test accuracies of the model.

comparison of the layer-wise energy distributions (Figure[6)) confirms that our proposed precision
methods effectively rebalance energy propagation. By increasing the energy in the initial layers
by several orders of magnitude, these methods rectify the imbalance, which contributes directly to
improved model performance.

Furthermore, the degree of this energy rebalancing correlates with the performance difference between
the Decaying and Spiking Precision variants. In the VGG5 and VGG7 models, where the accuracy
gap between the two methods is minimal, the difference in their first-layer energy distributions
is also small. However, in VGG10, where Spiking Precision significantly outperforms Decaying
Precision, the energy gap is far more pronounced. Specifically, the first layer’s energy proportion
is approximately 10~!° for Decaying Precision, whereas Spiking Precision elevates it to 1074,
highlighting a clear link between balanced energy propagation and model accuracy.

C.1 FORWARD UPDATE (FU)

C.1.1 NEURAL ACTIVITY DIVERGENCY QUANTIFICATION

To quantify the neural activity divergence that Forward Update aims to solve, we conducted a new
experiment on a VGG10 model trained on CIFAR-10. We measured the Mean Squared Error between
the initial and final neural states, M SE(x}, z}), at each weight update. We then calculated the ratio
of the square root of this divergence to the energy used for the weight update in that layer. We term
this metric the "Gap Ratio". As shown in Table[I0] in the model trained without Forward Update,
the Gap Ratio in the final layer (L10) is extremely large and unstable across epochs, indicating that
the neural activity divergence completely dominates the weight update signal. This supports our
hypothesis that this divergence causes errors to accumulate in the final layers, destabilizing learning.
In contrast, the model trained with Forward Update (Table[TT)) shows a dramatically reduced and
stable Gap Ratio in the final layer.

To further isolate the effect of Forward Update, we performed an additional ablation where FU was
applied only to the final three layers during the weight update, without any additional hyperparameter

17

Under review as a conference paper at ICLR 2026

B Train Accuracy —— Layer1l —=— Layer3 ~—+ lLayer5 —+— Layer7 Layer 9
918
91 9 I Val Accuracy —=— Layer 2 —=— Layer 4 —— Layer 6 —=— Layer 8 —— Layer 10

VGG7 - Forward Update 0.9951 VGG10 - Forward Update

10°

920 1.0
921

922 0.8
923
924
925
926
927
928 02
929

930 00
931

932

933 Figure 6: Layer-wise Energy Distribution and Accuracy of Forward Update in VGGS5, VGG7 and
934 VGG10 on the CIFAR10 dataset. The colored lines represent the total energy of the individual layers
of the model. The vertical lines represent the train and test accuracies of the model.

,J
o
o

o

Q

1073

1075

°
o

1077

Accuracy
Accuracy

<
>

-10-°

-10-11
0.2-

Ene:gy of Each Layer (Log Scale)
Energy of Each Layer (Log Scale)

10713

0.0-

935

936

7 . . .

228 Table 10: Gap Ratio on VGG10/CIFAR10 trained without Forward Update.

939 wioFU L1 12 L3 14 L5 L6 L7 L8 L9 L10 Train Acc. Test Acc.

940 Epoch5 0.0 9949 9898 97.08 10678 113.52 110.77 4689 566.52 706572 73.75 74.83

941 Epoch 15 0.0 9951 994 972 9895 10562 13244 10839 101.0 3807.9 51.86 51.9
Epoch25 0.0 9925 9794 9822 89.95 9048 11655 1132 10221 471688 6121 62.3

942 Epoch35 00 9941 9824 9697 79.12 9599 12238 1063 10407 649841 6031 60.14

943 Epoch45 0.0 9823 9794 9736 80.84 9042 11696 10826 10642 5362.02 59.87 61.42

944

945

946 Table 11: Gap Ratio on VGG10/CIFARI10 trained with Forward Update.

947 withFU L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 TrainAcc. Test Acc.

948 Epoch5 0.0 29258 11277 2242 120.89 34642 143.95 24832 100.78 5.14 88.27 85.66

949 Epoch 15 0.0 32743 132.66 26524 151.09 409.26 264.34 54512 1176 827 97.97 90.99
Epoch25 0.0 323.0 13582 2562 14977 4072 269.14 619.95 11507 9.43 99.55 92.08

950 Epoch35 0.0 32242 13805 25838 14822 41502 29298 681.21 11512 10.06 99.73 92.04

951 Epoch45 0.0 32325 13572 261.67 14945 417.04 3124 73119 11587 1054 99.83 92.22

952

953

954 tuning. The results in Table[T2] show that even this targeted application of Forward Update yields

955 significant improvements in both training stability and final accuracy compared to the baseline. This

956 reinforces that addressing the neural activity divergence in the deepest layers is a critical factor for

957 success.

958

959 Table 12: Gap Ratio on VGG10/CIFAR10 when applying Forward Update only to the last 3 layers (L8, L9,

960 L10).

961

962 L1 L2 L3 L4 LS Lé L7 L8 L9 L10 Train Acc. Test Acc.

963 Epoch 5 0.0 96.21 5722 50.78 32.03 53.59 30.16 49.77 6691 42.19 72.75 74.13

964 Epoch 15 0.0 9551 57.52 49.76 31.65 5692 3296 40.87 70.08 62.02 79.23 78.56
Epoch25 0.0 9558 59.17 46.63 16.04 91.18 34.19 39.63 73.17 67.89 81.4 80.14

965 Epoch35 0.0 9544 56.84 29.72 9.65 9443 3513 39.37 7212 70.17 80.91 79.97

966 Epoch45 0.0 9551 56.88 37.85 15.11 9349 348 3859 71.82 72.16 80.02 79.4

967

968

969 C.1.2 MODEL ROBUSTNESS ANALYSIS

970

971 Predictive Coding (PC) networks are often noted for their inherent robustness compared to networks

trained with Backpropagation[Salvatori et al| (202T). Unlike our precision-weighting mechanisms, the

18

Under review as a conference paper at ICLR 2026

Forward Update (F) method alters the core computational diagram of PC. Therefore, we conducted
experiments to investigate whether this modification adversely affects model robustness.

Our first experiment provides a fair comparison on a VGG5 model, where standard PC and our PC+F
variant achieve similar baseline accuracies on clean data. We trained both models on CIFAR-10 and
evaluated their calibration under six types of data corruption across five levels of intensity. The range
of the Adaptive Expected Calibration Error (adaECE) is reported in Table[I3] Note that to ensure a
meaningful ECE calculation, we scale the output logits before applying the softmax function. The
results indicate that our PC+F model maintains a robustness profile that is comparable to, and at
higher corruption levels, superior to that of standard PC.

Table 13: AdaECE range at different levels of corruption using VGG5.

Corruption Level PC+FU PC

[0.091665, 0.327372]

0.037817, 0.388640]

[
[0.089805, 0.349025] [0.036528, 0.406428]
0.3 [0.034430, 0.363157] [0.035065, 0.419023]
0.4 [0.021906, 0.375255] [0.029735, 0.428372]
0.5 [0.026589, 0.383087] [0.033315, 0.434768]

Furthermore, to evaluate our methods on deeper models, we compared ourPC+S+FU model against
the BP baseline on the VGG10 architecture. As shown in Table [I4] our method exhibits a robustness
profile that is highly comparable to backpropagation across all tested corruption intensities. Taken
together, these experiments demonstrate that our proposed methods not only enable the training of
deeper PCNs but do so while preserving the desirable property of model robustness.

Table 14: AdaECE range at different levels of corruption using VGG10.

Corruption Level BP PC+S+FU

[0.039071, 0.485300]

0.039269, 0.486342]

[
0.2 [0.043376, 0.490541] [0.045973, 0.486978]
0.3 [0.043943, 0.494404] [0.047871, 0.486432]
0.4 [0.067549, 0.496167] [0.077340, 0.486966]
0.5 [0.132682, 0.499181] [0.143458, 0.486497]

C.1.3 ON THE BIOLOGICAL PLAUSIBILITY OF FORWARD UPDATE

A core motivation for using PCNs over backpropagation is their biological plausibility — particularly
their use of local learning rules and temporally local computations. The Forward Update (F) mecha-
nism, while effective, seems to introduce non-locality in time by requiring each synapse to store its
initial feedforward activity p until convergence.

However, the description of FU in our manuscript was chosen for conceptual clarity; it is not a
fundamental requirement of the method. In practice, the initial feed-forward state can be re-computed
through a temporally local and biologically plausible process. This is achieved by introducing a "free
relaxation” phase after the inference learning and before the weight update. In this phase, the label
clamp is removed, and the network settles to a new equilibrium with only the sensory input clamped,
just as in Equilibrium Propagation (Ernoult et al.| 2020) before the nudging phase.

In this setting, the network naturally converges to the state corresponding to its feed-forward predic-
tion (Frieder & Lukasiewicz,[2022). Since the weights have not yet been updated, this re-computed
state is identical to the) in our formulation. This eliminates the need for long-term storage and
resolves the concern of temporal non-locality. The primary contribution of our F method is that it
identifies and solves a critical failure mode in deep predictive coding networks: the accumulation
of errors caused by the divergence of neural activities from their initial predictions. While the
biologically plausible implementation we describe requires extra computation, future work can focus
on developing mechanisms that are both fully plausible and computationally efficient for PC.

19

Under review as a conference paper at ICLR 2026

Table 15: Test accuracies of different algorithms without BatchNorm Freeze across datasets and
architectures.

Dataset Algorithm VGGS5 VGG7 VGG10 ResNet10 ResNet18
BP 89.43+012 89 91+0.12 99 9]+0.08 9 9]+020 g3 32+0.22
PC 87.98+011 g4 2010 79 75+£6.03 g9 grE212 15 (3ET22
iPC 8551012 80.15H018 63.835088 62.34%027 91.9*151

CIFAR10 PC+Spiking Precision (S) ~ 88.06¥0-16 82.16+0-14 78.09+0:61 80.61+020 §0.07+0-2!
PC+Forward Update (F) 88.79+0:04 8743030 g7 33014 56 94+0.76 95 5(E3.12
iPC+S 89.32%+013 90.25+0.06 93 03+0.18 g2 39+0.04 9] 9gH+0.07
PC+S+F 89.450-18 90081021 92, 07+010 92 04+0:04 91,91+0.09
BP 66.2810.23 65.36i0'15 69.35i0'16 69'2310.09 71446i0‘12
PC 60.00i0'19 56.80i0’14 45.86i1'70 27'62:(:3.03 1'59:(:0.02
iPC 56.07i0'16 43'99;{:0,30 21'37:{:0,37 22'91i(‘)‘23 1'53i0A06

CIFAR100 (Top-1) PC+Spiking Precision (S) ~ 59.18%0:20 56.98+0-19 51 56+0.16 50.93%+0.20 92 g9+0.15
PC+Forward Update (F) ~ 65.34%007 64.50%0-14 61.69%079 39.89+0-90 3 4o+0.10

iPC+S 65.54F0-62 5761012 9.84+017 70.02+024 7(.38%020
PC+S+F 66.49015 66.340-22 9 8+008 (8.99+018 7() 81+0.08
BP 85.85+027 8441026 g8 74+0.08 g7 75+0.10 g9 43+0.14
PC 84.97%019 8300009 7461108 57.93%2.62 5 gg0.12
iPC 78.9]i0'23 73_23i0.30 48_35i0.79 46_4110,31 6_33i0,26

CIFAR100 (Top-5) PC+Spiking Precision (S) ~ 84.58%012 83,61+0:15 78,6240:15 77,84+0.23 53 89+0.06
PC+Forward Update (F) ~ 85.48%008 84 05%+0-07 76 73%0-92 69 484070 15 95+0.04
iPC+S 85.6610.29 84.96i0'14 88.70i0'18 88.90i0'21 90'0510420
PC+S+F 86.361011 84 53+0.15 g8 014 g8 45+0.16 g 47+0-11

C.2 ABLATION STUDY ON FORWARD UPDATE AND SPIKING PRECISION

To dissect the individual and combined contributions of our primary algorithmic modifications,
Spiking Precision (S) and Forward Update (F), we conducted a detailed ablation study, the results of
which are presented in Table [I5] This analysis systematically evaluates each component’s impact
on both standard PC and iPC across various architectures and datasets, excluding the effects of
BatchNorm Freezing to isolate the core mechanisms.

The results reveal a clear and complementary relationship between Spiking Precision and Forward
Update for standard PC. When applied in isolation, Forward Update (PC+F) significantly improves
performance on VGG-style architectures, stabilizing training and preventing the sharp accuracy
degradation seen in the baseline PC as depth increases. For instance, on CIFAR10, PC+F maintains
an accuracy of around 87% on VGG10, whereas the baseline PC drops to 72.75%. However, Forward
Update alone is insufficient for training deep residual networks; its performance on ResNet18 is only
marginally better than the baseline, failing to overcome the catastrophic failure. This suggests that
while F effectively mitigates weight update divergence, it does not solve the underlying problem of
energy imbalance in architectures with skip connections.

Conversely, Spiking Precision alone (PC+S) offers a substantial improvement on ResNet models,
preventing the complete collapse of training. On ResNet18 with CIFAR10, it achieves an accuracy of
80.07%, a dramatic recovery from the baseline’s 15.63%. This confirms its crucial role in rebalancing
energy and ensuring a viable error signal reaches the early layers in models with skip-connections.
However, on its own, it does not elevate performance to the level of backpropagation.

The true strength of our approach is demonstrated when both components are combined. The PC+S+F
model consistently achieves performance on par with, and occasionally exceeding, backpropaga-
tion across all tested architectures, including the challenging ResNet18. This powerful synergy
underscores that both mechanisms are essential: Spiking Precision addresses the signal propagation
problem, while Forward Update addresses the update stability problem.

Interestingly, for iPC, the addition of Spiking Precision alone (iPC+S) is sufficient to achieve state-
of-the-art performance, rivaling both BP and the fully-equipped PC+S+F. This indicates that the
incremental nature of iPC, where weights are updated at every inference timestep, inherently prevents
the large divergence between forward neural state and backward neural states that Forward Update
is designed to correct. With its continuous adaptation, iPC only requires the energy rebalancing
provided by Spiking Precision to successfully train deep architectures.

20

Under review as a conference paper at ICLR 2026

C.3 BATCHNORM FREEZING (BF)

C.3.1 ISOLATING THE SOURCE OF INSTABILITY: BATCH STATISTICS VS. AFFINE
PARAMETERS

To isolate the precise source of instability when applying BatchNorm (BN) to Predictive Coding
Networks (PCNs), we sought to determine whether the problem stems from the learnable affine
parameters (7, 3) or from the iterative updating of batch statistics (15, 0%) during the inference
phase. While the affine parameters can be a source of overfitting in standard training, we hypothesized
that the unique, multi-step inference process of PCNs creates a different challenge: the repeated
processing of a single mini-batch causes the batch statistics themselves to overfit, destabilizing the
network dynamics. Our BatchNorm Freezing (BF) method is designed specifically to solve this issue.

To test this hypothesis, we conducted an ablation study on the VGG10-CIFARI10 task. The results
presented in Table [I6] provide clear evidence for our claim. Removing the affine parameters from
standard BN still had a negligible effect on the performance degradation (24.31% and 24.28%),
indicating that these parameters are not the source of the problem. In contrast, freezing the statistics
during inference improved performance over the without batch normalization baseline. This confirms
that the iterative updates to batch statistics are the primary cause of instability and that our proposed
BF method is an effective solution.

Table 16: Ablation study on different BatchNorm strategies (VGG10-CIFAR10).

Method Test Accuracy (%)
Without BN 92.07 £0.10
Standard BN 24.31 £ 4.51

BN without affine 24.28 + 3.19

BF without affine 93.18 + 0.06
BF 93.27 £ 0.10

C.3.2 ABLATION STUDY ON BATCHNORM FREEZING

R Without BF mEE With BF
8P pC iPC Spiking Precision (S) Forward Update (F) iPC+S PCHS+F

10089939@;513;?%1"’8?3193?%23 7980062 28501 ofBE29551 837 5120110 mwgw 8373038050503 %0W8%0 9%48%008 8737828430807
I 2550

62 76,22 80.15 8218 7
9.85
= 23 353 83 gz 34
21 90
]S‘%] 'BB i‘“

o 4 5 G a0 ad a® A m Q ® 5 G a0 ad a® 5 B (O P 5 G a0 ad a® H G a0
00 ¥ (& (o \‘0@« g J*é\qs P @ (O & s xeﬂ o (& g s\e‘\q(& e ng P (& 0&« e 58 e 2 (& O ng N
w /¢ N &7 o & S

2
z
&
S

< 2

0

Y o 4
& ng S o \\\\

Spiking Precision (5) Forward Upgate () wess. sessir
eeelsné“”%g%;m“ 67,06 6773 7202 71.3070.90

50, 673967, 7”5’”91459 65,3464 m
z 5 63 o oo scades0 $9:386.98 56.24 53 6i48430sLe0 6. 55 76 58923 55 45 55 3469.98 68
Z60 57 50.76 ass 5% 74106 50s
45, 41 51 39, 5?77
2112
22 91 2292
3.42
*;92; L. 013 [| 42

q(jcﬁ e (’@“ x“ x% e &o 00@ \“ & @ (’@“ o Q\ e 00@ 00 P m@\‘{p‘\‘(}@“ TN 40‘9 00@ \“ e (jo \‘(0‘ (}@0 x“ x%
e @ e

CIFAR100

e K

Figure 7: Test accuracies of different algorithms on the CIFAR10/100 datasets across models of
varying depths, comparing different methods with and without BatchNorm freezing.

Our investigation reveals that BatchNorm Freezing (B F) significantly enhances model performance
when combined with our precision module and forward update mechanism. As illustrated in Figure[7}
the integration of BF with our proposed methods (PC' + S + F) consistently improved accuracy
across all model depths and both CIFAR10 and CIFAR100 datasets. Specifically, the PC' + S + F
configuration with B F' achieved peak performance of 93.27% on CIFAR10, 72.02% on CIFAR100
with the VGG10 architecture and 71.3% on CIFAR100 with the ResNet10 architecture, outperforming
even the BP baseline. In contrast, when BF was applied to standard PC' or only with forward
Update, we observed performance degradation rather than improvement in most cases, the effect
of BF' was inconsistent and unpredictable across different network depths. These results suggest
that the synergy between our proposed components is crucial—B F' appears to stabilize the training
dynamics specifically when used in conjunction with both our energy balancing mechanisms and

21

Under review as a conference paper at ICLR 2026

forward update. This interaction allows deeper networks to maintain stable gradients throughout the
training process, resulting in more robust optimization and ultimately higher classification accuracy.

The effect of BF on iPC-based models is more nuanced. While it improves performance on shallower
architectures, a slight performance degradation is observed in deeper models. This discrepancy can
be attributed to the nature of iPC’s update rule. Because iPC updates weights and neural activities
simultaneously, updating BN’s running statistics requires an additional, separate weight update
step. This modification alters the computational graph compared to the baseline model (without BF)
that was used for the hyperparameter search, which could explain the suboptimal performance in
more complex architectures.

D HYPERPARAMETER ANALYSIS

D.1 HYPERPARAMETER IMPORTANCE

To assess the sensitivity of our approach to different hyperparameters, we conducted a hyperparameter
importance analysis using a functional ANOVA (fANOVA) based method. This score quantifies
the contribution of each hyperparameter to the final optimal validation accuracy. The results for
CIFAR-10 on various architectures are summarized in Tables [I7] The analysis shows that while
the learning rate (Ir,,) is consistently the most critical parameter, our new parameters (like «/k in
Precision) are not overly sensitive and show stable influence across settings, indicating a desirable
robustness in our proposed methods.

Table 17: Hyperparameter Importance Scores (%) on CIFAR-10.

Arch. Method Activation T alk Iry 17T momentum, weight_decay,,
BP 0.94 - - - 98.99 - 0.07
PC 5.96 1.00 - 77.29 1098 3.51 1.26
VGBS ipc 220 115 - 153 8875 1.83 3.25
iPC+S 0.85 052 022 113 94.02 0.31 2.94
PC+S+F 1.68 1.63 0.53 6.64 80.44 8.19 0.89
BP 25.94 - - - 61.56 - 12.49
VGG7 PC 15.65 0.57 - 54.54 23.56 4.35 1.33
iPC 1.68 1.63 - 6.64 80.44 8.19 0.89
iPC+S 1.68 1.63 0.89 6.64 80.44 8.19 0.89
S+F 3.30 0.28 4.13 1029 54.20 1.80 25.99
BP 9.69 - - - 87.86 - 2.45
PC 48.10 5.62 - 4.02 16.15 25.32 0.79
VGG10 iPC 0.08 0.48 - 34.55 58.50 4.73 1.66
iPC+S 4.85 1.80 1.72 15.15 67.61 5.64 3.22
S+F 4.84 1.55 2.08 9.80 77.14 2.16 2.43

D.2 HYPERPARAMETER TRANSFERABILITY

To evaluate if hyperparameter searching is required for each setting, we conducted two sets of
experiments to evaluate hyperparameter transferability.

* Across Datasets: We took the optimal hyperparameters found on CIFAR-10 and applied them to
CIFAR-100, and vice versa, for the VGG7 architecture.

* Across Architectures: We took the optimal hyperparameters from VGG5 and VGG7 and applied
them to the VGG10 model on CIFAR-10. Since the hyperparameter T needs to be larger than the
number of layers, the T we used in these experiments is max (10, Toptimai)-

The results, presented in Table [I8]and [T9] suggest that while optimal performance requires dedicated
tuning, the hyperparameters show a reasonable degree of transferability, especially for our proposed
methods. This indicates they are not pathologically sensitive to the specific dataset or architecture.

22

Under review as a conference paper at ICLR 2026

Table 18: Test Accuracies from Hyperparameters (HPs) Transfer Across Datasets on VGG7.

Method On CIFAR-10 On CIFAR-100

Optimal CIFAR-10 HPs ~ Optimal CIFAR-100 HPs | Optimal CIFAR-100 HPs ~ Optimal CIFAR-10 HPs
BP 89.91+0-12 88.75+0-07 65.36%0-15 65.23%0-24
PC 84.62%0-10 78.38+0-17 56.80%0-14 51.65%0-28
S+F 90.08%0-21 89.54%0-09 66.34%0-22 63.66%0-06
iPC 80.15+0-18 74.35+0-90 43.99%0-30 37.26%0-07
iPC+S 90.25+0-:06 90.14%0-20 65.76+0-12 61.56+"56

Table 19: Test Accuracies from Hyperparameters (HPs) Transfer Across Architectures (on CIFAR-10).

Method | VGG10 with Optimal HPs ~ VGG10 with VGG7 HPs VGG10 with VGG5 HPs

BP 92.21+0-08 90.70%0-14 90.67+0-22
PC 72.75%6.03 79.20%0-19 49.66%0-54
S+F 92.07+0-10 88.95+0-18 90.67+0-11
iPC 63.83i0‘33 72.30i()‘55 73.78i0'15
iPC+S 93.03+0-18 90.60%0-60 92.29+0-13

23

	Introduction
	Related Works
	Background
	Methods
	Algorithmic Contributions
	Experiments

	Structural Contributions

	Experiments
	Conclusion
	Reproducibility Statement
	Experiments Setting
	Computational Complexity
	Ablation Study
	Comparison of different Precision Schedules
	Energy Propagation with Precision

	Forward Update (FU)
	Neural activity divergency quantification
	Model Robustness Analysis
	On the Biological Plausibility of Forward Update

	Ablation study on Forward Update and Spiking precision
	BatchNorm Freezing (BF)
	Isolating the Source of Instability: Batch Statistics vs. Affine Parameters
	Ablation study on batchnorm Freezing

	Hyperparameter Analysis
	Hyperparameter Importance
	Hyperparameter Transferability

