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Bayesian Image-on-Scalar Regression with a
Spatial Global-Local Spike-and-Slab Prior

Zijian Zeng ∗, Meng Li † and Marina Vannucci ‡

Abstract. In this article, we propose a novel spatial global-local spike-and-slab
selection prior for image-on-scalar regression. We consider a Bayesian hierarchical
Gaussian process model for image smoothing, that uses a flexible Inverse-Wishart
process prior to handle within-image dependency, and propose a general global-
local spatial selection prior that broadly relates to a rich class of well-studied selec-
tion priors. Unlike existing constructions, we achieve simultaneous global (i.e., at
covariate-level) and local (i.e., at pixel/voxel-level) selection by introducing partic-
ipation rate parameters that measure the probability for the individual covariates
to affect the observed images. This along with a hard-thresholding strategy leads
to dependency between selections at the two levels, introduces extra sparsity at
the local level, and allows the global selection to be informed by the local se-
lection, all in a model-based manner. We design an efficient Gibbs sampler that
allows inference for large image data. We show on simulated data that parameters
are interpretable and lead to efficient selection. Finally, we demonstrate perfor-
mance of the proposed model by using data from the Autism Brain Imaging Data
Exchange (ABIDE) study (Di Martino et al., 2014).

Keywords: Nonparametric regression, Variable selection, Spike-and-Slab prior,
Smoothing, Mean-Covariance Estimation.

1 Introduction

With the explosive growth in the amount of image data collected for various medical
research there comes an increasing interest in discovering the relation between the image
data and potential covariates measured on the same set of subjects. Image-on-scalar
regression models have drawn increasing attention for this purpose, see Worsley et al.
(2004); Zhu et al. (2014); Li et al. (2020); Zhang et al. (2020); Yu et al. (2021), among
others. These models present several challenges: spatial dependency in the image data
can be highly complex and hard to model; image data can be composed by a large
number of pixels/voxels and lead to extremely large covariance matrices with heavy
computational burden; covariates can have partial influence on the image responses,
i.e., they can affect only a few pixels/voxels in the image, making it hard to distinguish
such covariates from noisy ones.

Conventional approaches for image-on-scalar regression are based on mass univari-
ate analysis (MUA), for example by running pixel/voxel-wise independent general linear
models to generate maps for statistics of interest, and then applying methods for post-
inference (Worsley et al., 2004; Groppe et al., 2011). These methods are computationally
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efficient and have well-studied theoretical properties. However, they completely ignore
the spatial dependency within the images and are generally not optimal in regards to
statistical power (Chumbley and Friston, 2009). To address these shortcomings, recent
approaches consider the image data as realizations of functions on a given domain and
apply functional data analysis (FDA) methods that use basis expansions and spatially-
varying coefficients to account for dependency within and across images (Zhu et al.,
2014; Li et al., 2020; Yu et al., 2021). Joint uncertainty quantification for all model
parameters, however, is difficult to achieve for these methods in the frequentist litera-
ture. Here, we consider a Bayesian hierarchical Gaussian process (GP) model for image
smoothing that avoids assumptions on functional forms and that uses a flexible Inverse-
Wishart process to handle within-image dependency. This modeling structure extends
an approach proposed by Yang et al. (2016) for longitudinal data to the case of image
data.

An important aspect in image-on-scalar regression is the selection and interpretation
of influential covariates. Ideally, one may want a covariate to be influential for the whole
image. In practice, however, the covariate can only partially affect the image, i.e., being
influential only for a few pixels/voxels. We refer to the aspect of selecting whether a
covariate is influential for the images as “global”, and to the aspect of selecting which
pixels/voxels are affected by the covariate as “local”. In the Bayesian framework, a
global selection prior was proposed by Reich et al. (2010) and allows coefficients to
be non-zero constant, spatially-varying function, or zero constant. For local selection, a
common way of selecting pixels/voxels uses a two-component mixture prior, which mod-
els the spatially-varying coefficient via a latent continuous process and a binary selection
indicator process, see Smith and Fahrmeir (2007); Scheel et al. (2013); Goldsmith et al.
(2014); Li et al. (2015); Choi and Lawson (2018). Recently Kang et al. (2018) proposed
a soft-threshold Gaussian process prior that does not make use of the indicator pro-
cess but rather achieves local sparsity by thresholding. This idea can be traced back to
the earlier research of Nakajima and West (2013), who used a hard-threshold prior for
longitudinal data to introduce sparsity at each time point. Overall, none of these prior
constructions achieve simultaneous global- and local-level selection of the coefficients.
Finally, in the more general framework of function-on-scalar regression, in which we con-
sider images as 2/3-dimensional functions, Bayesian approaches employ basis functions
and functional principal component analysis to model the within-function dependency,
see for example Chen et al. (2016b); Kowal and Bourgeois (2020). Built on the basis
functions domain, this framework can be computationally more efficient. However, the
covariates’ effects are assumed on the basis functions, instead of directly on the ob-
served functions. As a consequence, selection relies on the choice of the basis functions,
especially for high-dimensional functional responses, and a two-level selection becomes
less intuitive, as the local level selection would require all basis functions to be set to 0
at some specific pixels/voxels.

We propose a spatial global-local spike-and-slab process prior for image-on-scalar
regression that broadly relates to a rich class of well-studied local selection priors. We
achieve simultaneous global and local selection by introducing participation rate param-
eters, that measure the probability for the individual covariates to affect the observed
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images, and employing hard thresholding. The proposed prior performs bi-level selec-

tion, allowing the global selection to be informed by the local selection. We design an

efficient Gibbs sampler that allows inference for large image data and use simulated data

to show that prior parameters are interpretable and lead to efficient selection. We also

demonstrate the performance of the proposed model with respect to MUA methods.

Finally, we apply our method to data from the Autism Brain Imaging Data Exchange

(ABIDE) study (Di Martino et al., 2014). Results show that modeling dependency in

the data leads to more localized selection.

The rest of the paper is organized as follows. In section 2, we introduce the proposed

method, the prior construction and the sampler procedure. In Section 3, we conduct

simulations and compare the proposed approach with widely used MUA methods. In

Section 4, we apply the method to image data from the ABIDE study.

2 Methods

2.1 Bayesian Image-on-Scalar Regression

Suppose n images Yi(·) are observed on a K-dimensional common domain S ⊆ RK , each

associated with a q-dimensional covariate vector xi = (xi1, . . . , xiq)
T , for i = 1, . . . , n.

We begin with a Bayesian hierarchical model for image responses and scalar covariates

Yi(s) = Zi(s) + εi,s, εi,s
i.i.d∼ N

(
0, σ2

ε

)
, s ∈ S (2.1)

Zi(·) ∼ GP (µi(·),Σ (·, ·)) , µi(·) = β0(·) +

q∑
j=1

xijβj(·), i = 1, . . . n, (2.2)

where the noise-free mean surface of Yi(·), Zi(·), is modeled by a Gaussian process

(GP) with covariate-dependent, subject-specific mean µi(·) and a common covariance

surface Σ(·, ·) for all images, β0(·) is the intercept coefficient image and {βj(·)}qj=1

are the coefficient images linking covariates xi with µi(·). Here we assume Gaussian

errors εi,s ∼ N
(
0, σ2

ε

)
independently across both location s and subject i, with σ2

ε ∼
Inverse-Gamma(aε, bε). Throughout this article, we assume S to be a compact set.

Equations (2.1)-(2.2) define a Bayesian hierarchical model for image data. This

model has considerable virtues: it enables simultaneous smoothing of individual obser-

vations and borrowing of information across observations, while being flexible through

Bayes nonparametrics and interpretable. It has been widely used to analyze functional

data. For example, in the case of longitudinal data (i.e., K = 1), Yang et al. (2016)

focus on a mean-covariance structure in the absence of covariates, with a common mean

function, Liu et al. (2020) study conditional quantiles of Yi(·) by altering the Gaussian

error to asymmetric Laplace, and Shamshoian et al. (2020) consider a sparse Bayesian

infinite factor model for Zi(·).
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2.2 Spatial Global-Local Spike-and-Slab Prior

We are interested in performing selection at both image and location (pixel/voxel)
levels, while estimating the model coefficients and the covariance structure. We achieve
this via a novel spatial global-local spike-and-slab (SGLSS) prior for the coefficient
images {βj(·)}qj=1. Here, selection at the global level represents the covariate selection,
as eliminating a covariate would zero out the entire coefficient image, while the local
level refers to individual locations (pixels/voxels) in the coefficient image. The proposed
SGLSS prior is a three-component process consisting of a continuous process, a local-
level discrete selection process, and a global-level indicator:

βj(·) = β̃j(·)× τj(·)× I (πj ≥ d) ,

= [τj(·)I (πj ≥ d)] β̃j(·) + [1− τj(·)I (πj ≥ d)] δ0,
(2.3)

with δ0 a point mass distribution at 0, β̃j(·) the continuous process, τj(·) the discrete
local selection process and I(πj ≥ d) the global indicator. Construction (2.3) is com-

pleted by choosing priors for β̃j(·), τj(·), and πj . The high dimensionality of image data
poses substantial challenges to computational efficiency, particularly for Markov Chain
Monte Carlo methods. To achieve computational scalability, we adopt the following
prior setting that exploits conjugacy:

β̃j(s)|τj(s) ∼ τj(s)N
(
µ0j(s), σ

2
0j(s)

)
+ (1− τj(s))δ0, s ∈ S

τj(s)|πj ∼ Bernoulli (πj) ,

πj ∼ Beta(aπ, bπ).

(2.4)

The SGLSS prior for βj(·) with the specification of Equation (2.4) can be re-written
into a classic spike-and-slab prior as

βj(s)|τj(s), πj ∼ [τj(s)I (πj ≥ d)]N
(
µ0j(s), σ

2
0j(s)

)
+ [1− τj(s)I (πj ≥ d)] δ0,

τj(s)|πj ∼ Bernoulli (πj) ,

πj ∼ Beta(aπ, bπ).

As for the intercept image β0(s), we fix τ0(s)I(π0 ≥ d) = 1 for all s ∈ S since this
term is typically always included in the model. The proposed SGLSS prior construction
has rich connections with a wide range of existing priors, as we point out in the section
below.

The parameter πj , which we call ‘participation rate’, has the interpretation that πj
percent of the jth coefficient image is expected to be non-zero, and can also be inter-
preted as the probability that xj has an influence on the observed images. The parameter
d defines the threshold at which we include covariate xj , i.e., if d × 100 percent of its
corresponding coefficient images are expected to be non-zero. Therefore, the threshold
parameter d controls selection at the “global” level, leading to the exclusion of those
covariates with low participation rates. Here, without a priori information, we use a
common d for all covariates. When a priori information is available, covariate-dependent
parameters dj ’s can be specified. The parameter πj , along with the hard-thresholding
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structure, introduces extra sparsity at local level, as it can be seen by calculating the
expectation of the global-local selection indicator

E [I(πj ≥ d)τj(s)] = Eπj [E [I(πj ≥ d)τj(s)] |πj ] = Eπj [I(πj ≥ d)πj ]

=

∫ 1

d

πj
1

B(aπ, bπ)
πaπ−1j (1− πj)bπ−1dπj

=
aπ

aπ + bπ
[1− FBeta(d)] = E [τj(s)] [1− FBeta(d)] , (2.5)

where FBeta(·) is the cumulative distribution function of Beta(aπ + 1, bπ). Hence, the
extra factor [1− FBeta(d)] ≤ 1 in Equation (2.5), which is strictly decreasing in d,
introduces more sparsity in the coefficient images on average from a prior perspective.
The participation rate parameter πj and the threshold parameter d ∈ [0, 1] establish a
bridge between global and local level selection, favorably endowing existing local level
selection prior with simultaneous two-level selection, allowing global selection to be
informed by the selection at the local level.

In practice, image data are typically observed at a grid of discretized locations. Given
a vector of p locations of interest ~s = (s1, ..., sp), we use Zi(~s) = (Zi(s1), ..., Zi(sp))
to denote a p-by-1 vector of the process values at location s ∈ ~s and Σ(~s, ~s) =
{Σ(s, s′); s, s′ ∈ ~s} a p-by-p matrix of the within-image covariance. We remark that
the proposed method is applicable to discretized locations in a general K-dimensional
domain, i.e., the vector ~s is not limited to integers nor needs to be equidistant.

Relationship to existing literature

The proposed SGLSS process prior broadly relates to a wide range of existing priors that
can be obtained for different choices of the parameter d and prior choices for β̃j(·) and
τj(·). In particular, for d = 1 the use of continuous priors on πj leads to I (πj ≥ 1) = 0
with probability 1, thus no covariate will be included in the model almost surely. This
degenerate SGLSS process prior results in a high-dimensional extension of the mean-
covariance smoothing model of Yang et al. (2016) for the following choice of prior

β0(·) = β̃0(·) ∼ GP
(
µ0(·), 1

c
Σ(·, ·)

)
,

extending the mean-covariance smoothing structure from one-dimensional time-series
to high-dimensional images.

When d = 0 is specified, the three-component mixture prior in Equation (2.3) de-
generates to a two-component mixture of the type

βj(·) = β̃j(·)× τj(·)× 1.

This degenerate construction naturally relates to the prior constructions used in scalar-
on-image regression, and easily accommodates spatially dependent priors on β̃j(·) and
τj(·) (Smith and Fahrmeir, 2007; Scheel et al., 2013; Goldsmith et al., 2014; Li et al.,
2015; Choi and Lawson, 2018). We note, however, that incorporating spatially-correlated
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priors for the regression coefficients within our general global-local construction poses
substantial computational challenges and a more careful interpretation of the prior
parameters. See also the Conclusion section. Thresholding priors can also be accommo-
dating. For example, by using an autoregressive process for β̃j(·) and setting the hard

threshold, τj(·) = I(β̃j(·) > dj), the prior in Nakajima and West (2013) can be obtained,

and by setting β̃j(·) = sgn (zj(·)) (|zj(·)| − λj), with threshold τj(·) = I (|zj(·)| > λj)
and zj(·) ∼ GP, the prior in Kang et al. (2018) can be obtained. Another partially
reproducible prior is the global level selection prior of Reich et al. (2010),

βj(·) = γ1j (β0 + γ2jzj(·)) , (2.6)

that sets βj(·) to a constant non-zero coefficient, a spatially varying process (β0 + zj(·))
or a zero image. Since the SGLSS prior does not distinguish various types of included
coefficient images, such as a non-zero constant versus a spatially varying process, it
cannot fully recover the prior of Reich et al. (2010). However, it can distinguish zero
images, when πj = 0 with all indicators τj(~s) = 0, and full images, when πj = 1 with
all indicators τj(~s) = 1.

We also mention the closely related bi-level selection priors for covariates with group
structure, see Stingo et al. (2011); Xu and Ghosh (2015); Chen et al. (2016a); Liquet
et al. (2017). These priors also deal with a two-level selection, but the global level is a
group of covariates and the local level is the single covariate in the group. For example,
Stingo et al. (2011) proposed a linear regression model for identifying pathways, i.e,
groups of genes, related to a particular phenotype, and a two-layer selection of path-
ways and genes. The two selection priors, however, are not linked and this leads to the
necessity of constraining the prior set of possible configurations, to avoid selection of an
empty group. Chen et al. (2016a) addressed this issue by adding an indicator correction
procedure to do post-inference for group selection. Xu and Ghosh (2015) and Liquet
et al. (2017) followed the idea of Bayesian group lasso and conducted inference based
on posterior median estimators of coefficients. Unlike these constructions, the proposed
SGLSS prior construction naturally leads to dependency between selections at the global
and local levels, via the participation rate parameter, π, therefore preventing the se-
lection of empty “groups”, i.e., covariates with no effects on the images. Furthermore,
with the bi-level selection priors, a group is selected in the regression if at least one of
its members has non-zero effect, while in the proposed SGLSS prior construction the
selection at global level is based on the probability of a covariate to affect the image, as
measured by the participation rate.

2.3 Inverse-Wishart Process prior

For the covariance surface Σ(·, ·), pre-specified parametric kernels such as the Matérn or
squared exponential kernel lack flexibility, and the possible misspecification may intro-
duce considerable bias that hampers inference. We employ a flexible process, called the
Inverse-Wishart process (IWP), to mitigate this concern. As a nonparametric general-
ization of the finite-dimensional Inverse-Wishart (IW) distribution, the IWP has been
used in time series to capture time-varying volatility and co-volatility (Philipov and
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Glickman, 2006; Gouriéroux et al., 2009; Wilson and Ghahramani, 2011; Heaukulani
and van der Wilk, 2019), and as a flexible prior for covariance kernels in functional data
analysis (Yang et al., 2016). Existing literature, such as Zhu et al. (2016); Yang et al.
(2016), often uses a one-dimensional support; we instead define an IWP for a general
K-dimensional index set S in the following sense.

Definition 1. An Inverse-Wishart process is a stochastic process Σ = (Σ(s, s′) :
(s, s′) ∈ S×S) indexed by S×S such that the random matrix Σ(~s, ~s) = ((Σ(si, sj)))i,j
possesses an Inverse-Wishart distribution for any ~s = (s1, . . . , sp) and p ∈ N with si ∈ S
for i, j = 1, . . . , p.

The matrix-valued Σ(~s, ~s) in the definition are finite-dimensional marginals evalu-
ated on ~s. An IW distribution is determined by two parameters: the degrees of freedom
and a scale matrix that is symmetric and positive semi-definite. However, we shall fol-
low the parameterization in Dawid (1981), denoted by IW(δ,Ψ(~s, ~s)) with δ a positive
integer and scale matrix Ψ(~s, ~s). This parameterization guarantees a crucial consistency
property of IW after marginalization. Let Ψ : S × S → R be a symmetric and positive
semi-definite mapping, i.e., the matrix Ψ(~s, ~s) = ((Ψ(si, sj)))i,j=1,...,p is symmetric and
positive semi-definite for any ~s = (s1, . . . , sp). By the Kolmogorov extension theorem,
there exists an IWP for integer δ > 0 and Ψ, which we denote by IWP (δ,Ψ(·, ·)); see
Lemma 2 in the Appendix of Zhu et al. (2016) for an elaborate proof when the index
set is N and Proposition 1 in Yang et al. (2016) for a related discussion. We typically
choose δ > 4 to ensure marginals of an IWP have finite second moments.

We put this IWP prior on Σ(·, ·),

Σ(·, ·) ∼ IWP (δ,Ψ(·, ·)) , (2.7)

and choose the Matérn covariance function for Ψ(·, ·),

Ψ(s, s′) = Matérn
(
||s− s′||l2 ;σ2

s , ρ, ν
)
, s, s′ ∈ S

=
σ2
s

Γ(ν)2ν−1

(√
2ν
||s− s′||l2

ρ

)ν
Kν

(√
2ν
||s− s′||l2

ρ

)
,

(2.8)

where || · ||l2 is the l2 norm. For a given vector of locations ~s, the prior leads to

Σ (~s, ~s) ∼ IW(δ,Ψ(~s, ~s)). (2.9)

In the applications reported below, we fix ν = 5/2, following Yang et al. (2016), to
have the analytical forms for both the Matérn kernel and its gradients, facilitating
computation for large covariance matrices in image data, and choose the other two
hyperparameters (σ2

s , ρ) by minimizing the mean square error between an empirical
covariance estimate, obtained as the MUA estimate, and the Matérn(σ2

s , ρ, 5/2) kernel.

2.4 Posterior Inference

We derive an efficient Gibbs sampler for the proposed hierarchical model with SGLSS
prior. Posterior sampling proceeds in three main steps as follows, with detailed deriva-
tions provided in the Supplement.
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• Update the BHM parameters {Zi(~s)}ni=1 and σ2
ε conditional on {βj(~s)}qj=1

and Σ(~s, ~s):
Evaluated on locations ~s, Equations (2.1) and (2.2) yield

Yi(~s)|Zi(~s), σ2
ε ∼ MVN(Zi(~s), σ

2
ε Ip), σ2

ε ∼ Inverse-Gamma(aε, bε),

Zi(~s)|{βj(~s)}qj=1,Σ(~s, ~s) ∼ MVN(µi(~s),Σ(~s, ~s)), µi(~s) = β0(~s) +

q∑
j=1

xijβj(~s).

In view of conjugacy, we sample

Zi(~s)|Yi(~s), {βj(~s)}qj=1,Σ(~s, ~s), σ2
ε ∼MVN (µZi , VZi) ,

with VZi =
(
σ−2ε Ip + Σ(~s, ~s)−1

)−1
and µZi = VZi

(
σ−2ε Yi(~s) + Σ(~s, ~s)−1µi(~s)

)
independently for i = 1, . . . , n, and

σ2
ε |{Yi(~s)}ni=1, {Zi(~s)}ni=1 ∼

Inverse-Gamma

(
aε +

np

2
, bε +

1

2

n∑
i=1

(Yi(~s)− Zi(~s))T (Yi(~s)− Zi(~s))

)
.

• Update the SGLSS prior parameters {βj(~s), τj(~s), πj}qj=0 conditional on

{Zi(~s)}ni=1 and Σ(~s, ~s):
In this step, we first sample the indicators {τj(~s)}qj=1 and update {πj}qj=1 to
obtain selection indicators at both global and local levels. This is achieved via a
blocked Gibbs strategy as in Reich et al. (2010) and location-wise Gibbs updates
similar to Brown et al. (1998) and Smith and Fahrmeir (2007), adapted to the
SGLSS prior.

We use a blocked Gibbs sampler with respect to each feature j ≥ 1. Denote
Z̃ij(~s) = Zi(~s) −

∑
j′ 6=j xij′βj′(~s). Equations (2.2) and (2.4) lead to a location-

wise model,

Z̃ij(s)|β̃j(s), τj(s) = 1,Σ(s, s) ∼ N(xij β̃j(s),Σ(s, s)),

β̃j(s)|τj(s) = 1 ∼ N(µ0j(s), σ
2
0j(s)),

Z̃ij(s)|τj(s) = 0,Σ(s, s) ∼ N(0,Σ(s, s)).

(2.10)

The location-wise Bayes factor can be obtained by integrating out β̃j(s),

θj(s) = ∏n
i=1 p

(
Z̃ij(s)|τj(s) = 0,Σ(s, s), πj

)
p(τj(s) = 0|πj){∫ ∏n

i=1 p
(
Z̃ij(s)|β̃j(s), τj(s) = 1,Σ(s, s), πj

)
p(β̃j(s))dβ̃j(s)

}
p(τj(s) = 1|πj)

=

1− πj
πj ×

(
σ2
0j(s)

)− 1
2 exp

{
− 1

2

(
µ2
0j(s)/σ

2
0j(s)

)}
× (ν̃j(s))

1
2 exp

{
1
2m̃

2
j (s)ν̃j(s)

} ,
(2.11)
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with

ν̃j(s) =

[
n∑
i=1

x2ij/Σ(s, s) + 1/σ2
0j(s)

]−1
,

m̃j(s) =

n∑
i=1

xijZ̃ij(s)/Σ(s, s) + µ0j(s)/σ
2
0j(s).

This Bayes factor allows us to sample local selection indicators τj(~s) and partici-
pation rates πj from the conditional posterior distributions

τj(s)|{βj′(~s)}j′ 6=j , {Zi(~s)}ni=1,Σ(~s, ~s), πj ∼ Bernoulli

(
1

1 + θj(s)

)
,

πj |τj(~s) ∼ Beta

(
aπj +

∑
s∈~s

τj(s), bπj + p−
∑
s∈~s

τj(s)

)
,

(2.12)

which also gives samples of global selection indicators I (πj ≥ d). When j = 0,
both τ0(~s) and πj are fixed at 1.

Conditional on selection indicators at the two levels, we sample the coefficient
image βj(~s) for j ≥ 0 as follows. If τj(s) × I (πj ≥ d) = 0, we set βj(s) = 0;

otherwise, using Equation (2.10) we sample β̃j(s) from

β̃j(s)|{βj′(~s)}j′ 6=j , {Zi(~s)}ni=1,Σ(~s, ~s) ∼ N(ν̃j(s)m̃j(s), ν̃j(s)),

and set βj(s) = β̃j(s). Note that the covariate xi0 = 1 when sampling the inter-
cept β0(~s). The joint update of coefficient images and selection indicators avoids
reversible jump (Savitsky et al., 2011).

• Update the IWP prior parameter Σ(~s, ~s) conditional on {Zi(~s)}ni=1 and
{βj(~s)}qj=0:

Equations (2.2) and (2.9) lead to the conditional posterior distribution,

Σ(~s, ~s)|{Zi(~s)}ni=1, {βj(~s)}
q
j=0 ∼

IW

(
n+ δ,

n∑
i=1

(Zi(~s)− µi(~s)) (Zi(~s)− µi(~s))T + Ψ(~s, ~s)

)
,

where µi(~s) = β0(~s) +
∑q
j=1 xijβj(~s).

At each iteration of the MCMC algorithm, for each covariate, the local level informs
the selection at the global level, as the local selection indicator is sampled first and used
to calculate the participation rate. The covariate is then selected if the participation
rate is greater than d. Meanwhile, at the next iteration, the participation rate serves as
the prior in the Binomial-Beta conjugate update of the local level indicators, providing
feedback from the local level at the previous iteration. At convergence, global-level
selection is done by calculating the marginal posterior probabilities of inclusion (MPPIs)
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of I(πj ≥ d). Following Barbieri and Berger (2004), we use the median probability model
and include the covariate if MPPI > 0.5, i.e., if more than half of the posterior samples
give I(πj ≥ d) = 1. Similarly, local-level selection for covariate j is determined by
thresholding the MPPIs of I(πj ≥ d)τj(s) at 0.5. Commonly used values can be specified
for the sparsity parameter d, such as d = 0.05 or d = 0.1, to induce a desired level of
sparsity. See results from the applications below and the supplementary material. Given
the selected covariates and locations, we estimate the corresponding βj(s) via posterior
means obtained from the MCMC samples. We also estimate {Zi(~s)}ni=1, σ2

ε , and Σ(~s, ~s)
via the posterior means.

We recommend setting the initial value of {βj(~s)}qj=0 at β̂MUA(~s), and the initial
value of Σ(~s, ~s) at Ψ(~s, ~s). Aside from the initial values, the sampler needs very little
tuning. We provide a python implementation where we have optimized the sampling of
Zi(·) and Σ(·, ·) by utilizing various matrix decompositions to avoid redundant matrix
inversions through equivalent formulations, and further building upon pytorch, which
allows automated efficient large matrix operations. We remark here that the independent
prior specified in Equation (2.4) allows a parallel update for the (βj(s), τj(s)) parameters
at each local pixel/voxel s ∈ S in each iteration of the MCMC, therefore reducing the
computational cost from a multivariate Gaussian, roughly O(|S|3) for the inverse of
covariance matrix, to |S| univariate Gaussian.

3 Simulation Study

In this section we conduct simulations to assess the performances of the proposed
method, which we call BHM, and perform comparisons with alternative approaches.

We set the number of covariates to q = 15 and the sample size to n = 100 and
generate image data (i.e., K = 2) from model (2.1)-(2.2) using a 30-by-30 grid, i.e.,
p = 900. We sample the coefficient images {βj(~s)}15j=1 and the intercept β0(~s) simi-

larly to Li et al. (2020). At covariate level, we induce sparsity by sampling β̃j(~s) for
j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} from a GP(0,Σβ), with Σβ specified by the Matérn kernel,

and setting the remaining βj(s) = β̃j(s) = 0,∀s ∈ ~s, j ∈ {9, 10, 11, 12, 13, 14, 15}. At
location level, we first rescale the images as

βj(~s) =
β̃j(~s) + sign(β̃j(s

′))
∣∣∣β̃j(s′)∣∣∣

2
∣∣∣β̃j(s′)∣∣∣ , s′ = argmax

s∈~s

∣∣∣β̃j(s)∣∣∣ ,
which excludes zeros introduced by randomness and then consider two different scenarios
to introduce sparsity. In the first scenario we set 10% randomly chosen elements of
β2(~s) and β7(~s) to zero, 20% randomly chosen elements of β3(~s) and β8(~s) to zero, 30%
randomly chosen elements of β4(~s) to zero and 40% randomly chosen elements of β5(~s).
The second scenario addresses a more realistic and challenging case, in which signals
are clustered and influential covariates only affect a small portion of the images, hardly
distinguishable from the noise covariates. In this case, we randomly select a square
with π percent pixels/voxels being non-zero. We consider two settings, πj ≈ 10% and
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πj ≈ 20% (j = {1, 2, 3, 4, 5, 6, 7, 8}). Figures 1,2 and 3 show some example images of
both noise-free images and coefficient images generated from the three scenarios.

Next, we generate the covariates xi,j ’s, including both continuous and discrete vari-
ables. We generate xi,j with j = 1, 2, 3, 4, 5 from N(0, 1), to obtain continuous features,
and xi,j , with j = 6, 7, 8, from Bernoulli(0.5), for the discrete features. We add noisy fea-
tures generated from N(0, 1), for j = 9, . . . , 15. Finally, we sample the noise-free mean
surface Zi(~s) from Equation (2.2) using a Matérn kernel for the covariance matrix Σ, and
the image data Yi(~s) from Equation (2.1) with εi,s sampled from N(0, 1) for i = 1, . . . , n.
Below we report results using Matérn kernels of the type Σ = Σβ =Matérn(1, 1/4, 5/2).

Z(~s) β(~s)

Figure 1: First simulated scenario: Example images of Z(~s) and β(~s), where 1st row is
generated data; 2nd row is the estimates of BHM; and 3rd row is the estimates of MUA.

.

3.1 Prior Specification

For the prior specification, we use a weakly-informative prior on the participation rate
parameters {πj}qj=1 in Equation (2.4), by setting aπ = bπ = 1. For the threshold d, we
report the results for a conventional sparsity level, d = 0.05, and then discuss sensitiv-
ity in the supplementary material. We center the slab distribution in Equation (2.4) at
{µ0j(~s)}qj=0 = 0, as commonly done with spike-and-slab priors, and set {σ2

0j(~s)}
q
j=0 = 1
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Z(~s) β(~s)

Figure 2: Second simulated scenario (π = 9%): Example images of Z(~s) and β(~s), where
1st row is generated data; 2nd row is the estimates of BHM; and 3rd row is the estimates
of MUA.

.

(see supplementary material for a sensitivity analysis). As previously discussed, we de-
rive empirical estimates of the Matérn parameters (σ2

s , ρ) in Equation (2.8) by mini-
mizing the mean square error between the sample covariance estimate and the Matérn
kernel. This provides a prior with the closest kernel to the empirical covariance matrix
by Frobenius norm and prevents singularity issues caused by n < p. We set δ = 5 for
the IWP prior in Equation (2.7), following Yang et al. (2016). Finally, we set a weakly-
informative Inverse-Gamma prior on the noise variance σ2

ε,s by setting aε = bε = 1.

3.2 Results

All results we report were obtained by running MCMC chains with 2000 iterations
and 500 burn-in. A single chain took around 8 minutes to run on a 6-core 2.6GHz
Intel(R) core i7 CPU. For each chain, convergence was assessed by inspecting the MCMC
traces, and more formally using the Geweke test (Geweke, 1992) to check for signs of
non-convergence of the individual parameters. As an example, the z-scores from the
Geweke test were 0.9603 for {τj(~s)}15j=1 and 1.0581 for {πj}15j=1, clearly indicating that
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Z(~s) β(~s)

Figure 3: Second simulated scenario (π ≈ 18.8%): Example images of Z(~s) and β(~s),
where 1st row is generated data; 2nd row is the estimates of BHM; and 3rd row is the
estimates of MUA.

.

the MCMC chains were run for a sufficient number of iterations.

We evaluated performance for variable selection and parameter estimation. For vari-
able selection, we calculated

F1 = 2 · Precision · Recall

Precision + Recall
, Precision =

TP

TP + FP
, Recall =

TP

TP + FN
.

For parameter estimation, we evaluated performances by calculating mean squared er-
rors (MSEs) as

MSE =
1

|A|
∑
a∈A

(F (a)− F̂ (a))2,

where F (·) and F̂ (·) represent the true and estimated parameters, respectively, and
a represents the vector of the related indices and/or locations, e.g. i = 1, ..., n; j =

1, ..., q; s, s′ ∈ ~s. We report the accumulated MSE of all coefficient images {βj(~s)}15j=0

as a summary measure of performance.
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We first showcase inference from our BHM model on one simulated data set and

then perform comparisons on 50 replicated data sets. Figures 1,2 and 3 show estimates

from BHM of the example images for one data set from each of the three simulated

scenarios. The MUA estimates are also shown, for comparison. Results show that the

coefficient images estimates can capture the pixel-level information relatively well, even

with the location-wise independent priors (2.3)-(2.4) for spatially-dependent coefficient

images.

Tables 1 reports precision, recall and F1 scores for both global and local selections

and Table 2 reports the MSEs for the parameters of interests. The proposed method

performs well at the global level selection, leading to precision, recall and F1 scores

all relatively high. At the local level selection, some differences are noted among the

different simulated scenarios, in particular in the second scenario with the sparser case

π = 9%, as in this scenario influential covariates are closer to noisy ones. Also, results

vary with the covariates’ types, with coefficient images for discrete covariates being

challenging for local selection, as shown by the lower recalls and F1 scores. The MSEs of

all parameters of interests are relatively small, demonstrating that BHM can estimate

those parameters relatively well. Results for BHM with d = 0.01 and d = 0.1 are

reported in the supplementary material. As expected, as d increases, precision tends to

increase and recall tends to decrease. However, when there exists a ‘good separation’

between the influential and noisy covariates, like in the first scenario and the second

scenario with π = 18.8%, good performances overall can be observed for different choices

of d.

Table 1: BHM (d = 0.05): Global-local selection for a representative dataset

First simulated scenario
Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

Precision 1 1 0.901 0.973 0.985 0.981 1 0.949 0.958
Recall 1 0.821 1 0.983 0.917 0.944 0.742 0.823 0.769

F1 scores 1 0.902 0.948 0.978 0.950 0.962 0.852 0.882 0.854

Second simulated scenario (π = 9%)
Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

Precision 1 0.743 0.673 0.714 0.551 − 0.505 0.276 −
Recall 0.75 1 0.432 0.617 0.728 0 0.568 0.840 0

F1 scores 0.857 0.853 0.526 0.662 0.628 − 0.535 0.416 −
Second simulated scenario (π ≈ 18.8%)

Global Local
τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

Precision 1 0.806 0.923 0.858 0.753 0.890 0.839 0.793 0.480
Recall 1 0.663 0.355 0.609 0.959 0.769 0.615 0.840 0.852

F1 scores 1 0.727 0.513 0.713 0.844 0.825 0.710 0.816 0.614
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Table 2: BHM (d = 0.05): MSEs for a representative dataset

MSE

Scenarios {Zi(~s)}100i=1 Σ(~s, ~s) {βj(~s)}15j=0 σ2
ε

First 0.1816 0.0143 0.0308 0.0015
Second (π = 9%) 0.1428 0.0113 0.0345 0.0014

Second (π ≈ 18.8%) 0.1639 0.0102 0.0363 0.0025

3.3 Performance comparisons

Next, we simulate 50 replicated data sets, according to the same settings described
above, and compare the performance of BHM with MUA methods. MUA approaches
fit independent linear regressions at each location s, to estimate coefficient images, and
rely on post-inference to do variable selection and smoothing. For global selection, we
first use Simes test (Simes, 1986) to convert multiple p-values at each location to one
single p-value for the whole coefficient image, and then control the False Discovery Rate
(FDR) at 0.05 for the 15 coefficient images. We implement three different FDR control
procedures, the Benjamini–Hochberg (BH) procedure (Benjamini and Hochberg, 1995),
the Benjamini–Yekutieli (BY) procedure (Benjamini and Yekutieli, 2001), both imple-
mented in R via the function ‘p.adjust ’, and another Benjamini-Hochberg procedure
described in Strimmer (2008), implemented in the R package ‘fdrtool ’, which estimates
the proportion of null features from data. We denote the third procedure by MUA
(SBH). Local level selection is achieved by applying these three procedures to control
the FDR at 0.05 for each coefficient image.

Table 3 reports precision, recall and F1 scores for both global-level selection and
local-level selection, averaged over 50 replicates from the first scenario, for MUA (BH),
MUA (BY), MUA (SBH) and BHM with SGLSS prior and d = 0.05. For the global level
selection, all the methods achieve similarly high values for all three metrics, indicating
that the influential covariates can potentially be well distinguished from the noisy ones.
For the local level selection, we observe BHM (d = 0.05) and MUA (SBH) have similar
performance with respect to the continuous covariates, τ1,2,3,4,5(~s). Meanwhile, when
it comes to the discrete covariates τ6,7,8(~s), BHM (d = 0.05) achieves higher averaged
F1 scores than the other methods, due to a relatively better balance between precision
and recall. As for the other MUA approaches, MUA (BH) and MUA (BY) have higher
precision but much lower recall, leading to lower F1 scores, especially for the discrete
covariates.

Table 4 reports the three metrics for the second scenario with two settings, π = 9%
and π ≈ 18.8%. As noted above, this scenario is more challenging since influential
covariates are closer to the noisy ones, especially for the sparser case π = 9%. However,
results are relatively consistent with the previous setting. For the global level selection,
all methods achieve comparably high metrics. We notice some precision-recall trade-offs,
while high F1 scores result from a relative balance between precision and recall. For the
local level selection, BHM (d = 0.05) obtains similarly high F1 scores as MUA (SBH) and
MUA (BH) on the continuous covariates, and higher F1 scores on the discrete covariates.
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Although the precision of BHM(d = 0.05) is not as high as the other methods, its recall
is relatively higher, leading to comparable F1 scores. At the same time, although MUA
(BY) has the lowest F1 scores, it has the highest precision in both settings.

Table 5 report the MSEs for the parameters of interest and their standard errors
(SE). The MUA estimators are best linear unbiased estimators (BLUE) at each location,

and indeed lead to relatively accurate estimates for the coefficient images {βj(~s)}15j=0.
Meanwhile, the proposed BHM with SGLSS prior can return comparably good estimates
since the global level indicators can exclude noisy covariates, leading to zero errors when
global-level selection is done correctly. In addition, given its hierarchical structure, BHM
also produces estimates for noise-free mean surface {Zi(~s)}100i=1 and covariance surface
Σ(~s, ~s), which are shown to be relatively accurate.

Table 3: First simulated scenario: Global and local selection for 50 replicates
Averaged Precision

Methods Global Local
τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.05) 0.944 1 0.937 0.949 0.962 0.952 1 0.953 0.931
MUA (SBH) 0.964 1 0.963 0.952 0.954 0.947 1 0.982 0.968
MUA (BH) 0.993 1 0.996 0.988 0.985 0.979 1 0.993 0.988
MUA (BY) 1 1 0.999 0.998 0.998 0.996 1 0.999 0.999

Averaged Recall
Methods Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)
BHM (d = 0.05) 1 0.970 0.954 0.920 0.885 0.865 0.764 0.752 0.690

MUA (SBH) 0.992 0.957 0.936 0.900 0.871 0.846 0.522 0.506 0.422
MUA (BH) 0.982 0.817 0.806 0.811 0.790 0.782 0.257 0.291 0.253
MUA (BY) 0.948 0.656 0.628 0.654 0.632 0.622 0.069 0.080 0.070

Averaged F1 scores
Methods Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)
BHM (d = 0.05) 0.970 0.983 0.943 0.932 0.919 0.903 0.837 0.814 0.771

MUA (SBH) 0.977 0.975 0.947 0.921 0.906 0.888 0.642 0.622 0.555
MUA (BH) 0.987 0.892 0.884 0.884 0.868 0.862 0.379 0.440 0.386
MUA (BY) 0.972 0.775 0.755 0.775 0.751 0.749 0.145 0.154 0.143

4 Real Data Application

We demonstrate the proposed model using the Autism Brain Imaging Data Exchange
(ABIDE) study of Di Martino et al. (2014). The study collected resting-state fMRI
data from 17 experiment sites including 1112 subjects, with the aim of improving the
understanding of neurophysiological mechanisms. For each subject, rs-fMRI data were
recorded over time, along with the subject’s information such as age, gender, intelligence
quotient, etc. To aid computations, we reduced the image size by summarizing the fMRI
data to voxel-level imaging statistics and then considered individual brain networks in-
stead of the whole brain image. Following He et al. (2019) and Zhang et al. (2020),
we used the pipeline of Cameron et al. (2013) to preprocess the data and then con-
siderded a parcellation of the brain as defined by the Automated Anatomical Labeling
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Table 4: Second simulated scenario: Global and local selection for 50 replicates
Averaged Precision (π = 9%)

Methods Global Local
τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.05) 0.919 0.708 0.754 0.671 0.726 0.762 0.484 0.386 0.454
MUA (SBH) 0.934 0.926 0.948 0.902 0.948 0.964 0.906 0.910 0.775
MUA (BH) 0.970 0.946 0.958 0.930 0.959 0.970 0.930 0.981 0.814
MUA (BY) 0.997 0.990 0.994 0.993 0.996 0.996 1 1 0.999

Averaged Precision (π ≈ 18.8%)
Methods Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)
BHM (d = 0.05) 0.926 0.824 0.830 0.823 0.831 0.829 0.686 0.689 0.652

MUA (SBH) 0.945 0.949 0.952 0.953 0.956 0.959 0.927 0.901 0.918
MUA (BH) 0.977 0.960 0.963 0.965 0.966 0.967 0.949 0.913 0.928
MUA (BY) 0.998 0.991 0.996 0.997 0.995 0.997 0.997 0.995 0.993

Averaged Recall (π = 9%)
Methods Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)
BHM (d = 0.05) 0.742 0.681 0.579 0.570 0.592 0.680 0.272 0.232 0.253

MUA (SBH) 0.755 0.677 0.569 0.568 0.598 0.699 0.071 0.079 0.107
MUA (BH) 0.690 0.672 0.571 0.559 0.589 0.691 0.061 0.074 0.101
MUA (BY) 0.600 0.514 0.395 0.439 0.424 0.530 0.013 0.023 0.042

Averaged Recall (π ≈ 18.8%)
Methods Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)
BHM (d = 0.05) 0.945 0.794 0.750 0.797 0.781 0.770 0.397 0.367 0.441

MUA (SBH) 0.870 0.760 0.697 0.762 0.743 0.73 0.153 0.161 0.175
MUA (BH) 0.818 0.738 0.682 0.748 0.730 0.712 0.131 0.148 0.147
MUA (BY) 0.732 0.553 0.532 0.586 0.589 0.530 0.033 0.053 0.039

Averaged F1 scores (π = 9%)
Methods Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)
BHM (d = 0.05) 0.812 0.718 0.705 0.670 0.716 0.754 0.450 0.387 0.412

MUA (SBH) 0.823 0.753 0.714 0.680 0.699 0.752 0.227 0.267 0.345
MUA (BH) 0.795 0.761 0.722 0.689 0.693 0.748 0.195 0.266 0.330
MUA (BY) 0.735 0.670 0.577 0.611 0.571 0.682 0.124 0.154 0.241

Averaged F1 scores (π ≈ 18.8%)
Methods Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)
BHM (d = 0.05) 0.932 0.795 0.771 0.796 0.801 0.793 0.518 0.511 0.527

MUA (SBH) 0.900 0.816 0.774 0.813 0.811 0.794 0.310 0.454 0.308
MUA (BH) 0.885 0.803 0.767 0.808 0.805 0.784 0.285 0.455 0.274
MUA (BY) 0.837 0.671 0.636 0.691 0.720 0.666 0.131 0.261 0.185

(Tzourio-mazoyer et al., 2002) to select networks. The selected networks are described
in Table 6, and are known to be associated with cognitive ability based on previous
research (van den Heuvel et al., 2009; Wu et al., 2013; Hearne et al., 2016; Hilger et al.,
2017; Zhang et al., 2020). As for the covariates, those collected in the 17 experiment
sites include diagnostic, age, gender and full-scale intelligence quotient scores (FIQ).
The FIQ scores were assessed differently across sites, including DAS-II, WASI, WISC,
WAIS, RAVENS and STANFORD scales. After removing missing values, we ended up
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Table 5: MSEs for 50 replicates
First simulated scenario

Model {Zi(~s)}100i=1 {βj(~s)}15j=0 Σ(~s, ~s)

Mean SE Mean SE Mean SE
BHM (d = 0.05) 0.180 (1.0× 10−3) 0.472 (1.13× 10−2) 0.014 (0.5× 10−3)

MUA - 0.678 (1.15× 10−2) -

Second simulated scenario (π = 9%)

Model {Zi(~s)}100i=1 {βj(~s)}15j=0 Σ(~s, ~s)

Mean SE Mean SE Mean SE
BHM (d = 0.05) 0.140 (1.9× 10−3) 0.540 (2.02× 10−2) 0.013 (0.5× 10−3)

MUA - 0.671 (0.88× 10−2) -

Second simulated scenario (π ≈ 18.8%)

Model {Zi(~s)}100i=1 {βj(~s)}15j=0 Σ(~s, ~s)

Mean SE Mean SE Mean SE
BHM (d = 0.05) 0.162 (1.4× 10−3) 0.597 (1.36× 10−2) 0.013 (0.4× 10−3)

MUA - 0.664 (0.93× 10−2) -

with 1001 subjects. We standardized the continuous variables, age and FIQ scores, to
put them on the same scale with the discrete indicators, diagnostic and gender, which
we left unchanged. We included a vector of ones as the intercept to account for those
potentially influential covariates which are not available in the study. We then applied
BHM with the SGLSS prior, separately, to the four selected networks.

Table 6: Networks of interests

Network
Number of

voxels Regions included

Visual 7946 Lingual L Lingual R Calcarine L Cuneus R

Ventral Attention 9839 Temporal Mid L Temporal Sup L Temporal Sup R -

Dorsal Attention 9600 Temporal Mid R Postcentral L Parietal Sup L -

Default Mode 7440 Temporal Mid R Frontal Med Orb R Frontal Med Orb L Occipital Mid R

We specified the threshold d at the conventional sparsity level d = 0.05. As for
the slab prior specification, we set {µ0j(~s)}qj=0 = 0 and specified {σ2

0j(~s)}
q
j=0 = 1. We

ran MCMC chains with 2000 iterations and 500 burnin. On average, the z-scores from
the Geweke test were 0.9616 for {τj(~s)}4j=1 and 1.1858 for {πj}4j=1, indicating that
the MCMC chains were run for a sufficient number of iterations. The MCMC chain
took around 35 seconds per iteration on two 20-core 2.4 GHz Intel(R) Xeon CPUs for
networks with nearly 10, 000 voxels.

Table 7 shows selection results for BHM and the MUA methods. For local level
selection, π denotes the ratio of selected voxels for MUA-based methods and the pos-
terior mean of the participation rate πj for BHM. The check marks denote whether
the covariate is selected at global level. For global level selection, all methods agree on
selecting the covariate age as influential for human cognitive ability, which makes sense
because as people age the brain naturally changes, along with its cognitive functions.
The difference is in the selection of the FIQ scores. The MUA-based methods tend
to include the FIQ in the model, while the proposed BHM (d = 0.05) considers FIQ
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to be related only to Visual network and Dorsal network. At the local level selection,
the MUA with Benjamini-Hochberg based procedures tend to select the covariates at
almost all voxels. Meanwhile, MUA with Benjamini-Yekutieli procedure tends to select
the covariates at fewer voxels than the MUA (BH) especially when it comes to the FIQ
scores. The BHM-based methods tend to have similar results as the MUA (BY) on the
selection of age. As for the selection of FIQ, however, BHM with d = 0.05 tends to select
even fewer voxels. Furthermore, when fitting the BHM model we noticed that a more
stringent threshold of d = 0.1 would exclude FIQ for all networks entirely, while a less
stringent threshold of d = 0.01 would include FIQ for all networks but only for very few
selected voxels. These results suggest that, although FIQ score may somehow be related
to brain signals, this relationship can be hard to recover in this application, possibly
because different experimental sites use different standards to measure this covariate.

Figure 4 shows the selected voxels for the covariate age by MUA (SBH) (Left), MUA
(BY) (Middle) and BHM (d = 0.05) (Right). We observe a decreasing number of voxels
selected by the methods, and similar local selective results between MUA (BY) and
BHM (0.05), both of which tend to have a more sparse selection with selected voxels
mainly in the central portions of the regions in the functional networks. Table 8 reports
the ratios of region included in the local selection, showing consistent selection results
for BHM. We note that the final selection is determined by the posterior summary, i.e.
the median rule, based on the posterior samples, while the threshold I(π ≥ d) takes
effect at each iteration. Hence, although the global indicator can guarantee π ≥ d at each
iteration, the final ratios of selected voxels/pixels are not necessarily greater than d, as
it is evident from the results. We report results for BHM with d = 0.01 and d = 0.1 in
the supplementary material and note here that BHM maintains highly consistent local
selection results with different specification of d, i.e. when Ceneus R is considered to be
affected by FIQ, BHM (d = 0.01) selects 1.6% of the region and BHM (d = 0.05) selects
1.77%; when Temporal Mid R is considered to be affected by FIQ, BHM (d = 0.01)
selects 1.7% of the region and BHM (d = 0.05) selects 1.5%. These results also confirm
the previous observation that FIQ scores, converted from different standards, may not
show strong relationship to the brain regions.

5 Concluding remarks

In this article, we have extended to image data a Bayesian hierarchical Gaussian pro-
cess (GP) model that uses a flexible Inverse-Wishart process prior to handle within-
image dependency, and have proposed a novel spatial global-local spike-and-slab prior
that broadly relates to a rich class of well-studied selection priors. The proposed prior
construction achieves simultaneous global (i.e, at covariate-level) and local (i.e., at
pixel/voxel-level) selection via participation rate parameters that measure the prob-
ability for the individual covariates to affect the observed images. We have used hard-
thresholding to decide whether a covariate should be included in the model and have
shown on simulated data that parameters are interpretable and lead to efficient selec-
tion. The introduced participation rate and threshold parameters establish a bridge
between global and local level selection, allowing global selection to be informed by the
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(a) Visual Network.

(b) Ventral Network.

(c) Dorsal Network.

(d) Default Network.

Figure 4: Selected voxels for covariate ‘age’, by MUA with SBH (Left), MUA with BY
(Middle) and BHM with SGLSS (d = 0.05) (Right). Figures are plotted using the R
package threeBrain by Magnotti et al. (2020)
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Table 7: Selection results for the four networks
MUA (SBH) BHM (d = 0.05)

diagnostic age gender FIQ diagnostic age gender FIQ

Visual
π(%) 0.0 100.0 0.0 100.0 0.01 77.2 0.01 9.24

if selected (X) (X) (X) (X)

Ventral
π(%) 0.0 100.0 0.0 100.0 0.01 83.6 0.01 1.38

if selected (X) (X) (X)

Dorsal
π(%) 0.0 85.8 0.0 100.0 0.01 42.9 0.01 7.77

if selected (X) (X) (X) (X)

Default
π(%) 0.0 100.0 0.0 100.0 0.01 71.6 0.01 0.78

if selected (X) (X) (X)

MUA (BH) MUA (BY)
diagnostic age gender FIQ diagnostic age gender FIQ

Visual
π(%) 0.0 98.8 0.0 92.3 0.0 83.0 0.0 32.7

if selected (X) (X) (X) (X)

Ventral
π(%) 0.0 97.1 0.0 90.6 0.0 82.2 0.0 24.7

if selected (X) (X) (X) (X)

Dorsal
π(%) 0.0 74.9 0.0 88.2 0.0 54.3 0.0 22.7

if selected (X) (X) (X) (X)

Default
π(%) 0.0 90.4 0.0 89.6 0.0 74.5 0.0 24.4

if selected (X) (X) (X) (X)

selection at the local level. This framework can be applied to more general functional
data applications.

There are several interesting future directions to extend our model. Our rationale
for choosing an independent prior on spatial coefficients βj(s) has been largely com-
putational. Our efficient Gibbs sampler takes advantage of this independent prior and
only requires to invert the |S| − by− |S| covariance matrix once for the noise-free mean
surface Z(·), roughly O(|S|3) at each Gibbs iteration. In the application to real data,
our model is able to handle relatively large datasets, with S about 10,000 voxels, and
n about 1,000 subject images. With a dependent prior, we would not be able to par-
allelize computations, which would result into having to calculate the inversion of at
most |S| − by − |S| covariance matrices for q covariates at each iteration, with roughly
a O(|S|3q) complexity at each iteration. This would have been infeasible for our appli-
cation. In addition, a construction with a dependent prior would require a more careful
interpretation of the participation rate parameters πj ’s, which measure the probabil-
ity for the individual covariates to affect the observed image under the assumption of
independence. Given these challenges, we have decided to leave the investigation of de-
pendent priors to future work. We note, however, that, even though we do not explicitly
account for dependency among the coefficients, our model borrows information across
voxels via the use of the spatial Gaussian process prior GP (µ(·),Σ(·, ·)) on Zi.

In the applications of this paper, when investigating the role of the parameter d and
the sensitivity of the results to the specification of this parameter, we found the case
d = 0 interesting. In this degenerate case the model includes all the covariates at each
iteration, to explain the observed images, and the traces of the parameters πj inform
us on the relative importance of the individual covariates. These trace plots provide an
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Table 8: Ratios of Region included within each networks

Network Methods Covariates Ratio of Region included (%)

Visual

Lingual L Lingual R Calcarine L Cuneus R

BHM(d = 0.05)
age 82.1 81.4 83.5 88.9

FIQ 5.79 7.00 3.29 1.77

MUA (SBH)
age 100 100 100 100

FIQ 100 100 100 100

MUA (BH)
age 98.9 97.4 99.4 99.7

FIQ 95.3 89.4 93.2 91.1

MUA (BY)
age 81.8 81.5 82.4 88.2

FIQ 34.2 34.7 29.1 32.9

Ventral

Temporal Mid L Temporal Sup L Temporal Sup R -

BHM(d = 0.05)
age 80.7 90.1 96.4 -

FIQ 0.0 0.0 0.0 -

MUA (SBH)
age 100 100 100 -

FIQ 100 100 100 -

MUA (BH)
age 94.5 99.7 99.8 -

FIQ 84.8 96.9 95.8 -

MUA (BY)
age 76.2 81.7 93.7 -

FIQ 18.9 29.6 31.2 -

Dorsal

Temporal Mid R Postcentral L Parietal Sup L -

BHM(d = 0.05)
age 62.9 38.6 13.8 -

FIQ 1.5 4.7 4.5 -

MUA (SBH)
age 99.9 83.8 62.7 -

FIQ 100 100 100 -

MUA (BH)
age 96.9 74.0 34.5 -

FIQ 89.6 91.7 79.1 -

MUA (BY)
age 75.8 51.6 18.0 -

FIQ 21.1 26.8 18 -

Default

Temporal Mid R Frontal Med Orb R Frontal Med Orb L Occipital Mid R

BHM(d = 0.05)
age 77.7 26.2 22.7 99.5

FIQ 0.0 0.0 0.0 0.0

MUA (SBH)
age 100 100 100 100

FIQ 100 100 100 100

MUA (BH)
age 97.6 62.0 57.7 100.0

FIQ 89.7 70.1 84.1 99.2

MUA (BY)
age 79.5 31.9 25.7 99.6

FIQ 22.7 6.2 11.1 39.6

empirical tool that might be helpful in the choice of d, particularly in cases where a
separation among the traces is observed. In the Supplementary Material we show these
plots for one of the simulated scenarios used in this paper, along with comments on how
the plots can guide the user in the choice of d. We remark, however, that this procedure
is ad-hoc and cannot be used as a general method, in particular as the behavior of
the trace plots is application-dependent and a clear separation of the traces might not
always be observed. We leave further investigation of the role and properties of the
parameter d to future work. In the absence of prior information, we recommend to view
d as conventional sparsity parameter and use standard values, i.e. d = 0.05 or d = 0.1.
Our sensitivity analyses in the simulations and real data application have shown good
performances overall for different choices of d, with highly consistent local selection
results.



Z. Zeng, M. Li and M. Vannucci 23

Finally, our proposed global-local selection prior construction can be potentially
useful for other modeling settings, such as function-on-scalar and network-on-scalar
regressions.

Supplementary Material

Supplementary Material to “Bayesian Image-on-Scalar Regression with a Spatial Global-
Local Spike-and-Slab Prior”;

Codes available to “Bayesian Image-on-Scalar Regression with a Spatial Global-Local
Spike-and-Slab Prior”, including scripts to recreate the simulated data;
Github page: https://github.com/ZijianZeng/BIoS SGLSS .
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Supplementary Material

S1. Markov Chain Monte Carlo Sampling (MCMC)

In this section, we provide the detailed derivations for the Gibbs sampler in Section 2.4.

• Update the BHM parameters {Zi(~s)}ni=1 and σ2
ε conditional on {βj(~s)}qj=0

and Σ(~s, ~s):
Evaluated on locations ~s, Equations (2.1) and (2.2) yield

Yi(~s)|Zi(~s), σ2
ε ∼ MVN(Zi(~s), σ

2
ε Ip), σ2

ε ∼ Inverse-Gamma(aε, bε),

Zi(~s)|{βj(~s)}qj=1,Σ(~s, ~s) ∼ MVN(µi(~s),Σ(~s, ~s)), µi(~s) = β0(~s) +

q∑
j=1

xijβj(~s),
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leading to a Normal Inverse-Gamma conjugacy.

With µi(~s) = β0(~s) +
∑q
j=1 xijβj(~s), we have

p(Zi(~s)|Yi(~s), {βj(~s)}qj=0 ,Σ (~s, ~s) , σ2
ε )

∝p(Yi(~s)|Zi(~s), σ2
ε )p
(
Zi(~s)| {βj(~s)}qj=0 ,Σ(~s, ~s)

)
∝ exp

{
−1

2
(Yi(~s)− Zi(~s))T σ−2ε Ip (Yi(~s)− Zi(~s))

}
exp

{
−1

2
(Zi(~s)− µi(~s))T

× Σ−1(~s, ~s) (Zi(~s)− µi(~s))
}

∝ exp

{
−1

2

[
ZTi (~s)

(
σ−2ε Ip + Σ−1(~s, ~s)

)
Zi(~s)− 2ZTi (~s)

(
σ−2ε Yi(~s)

+Σ−1(~s, ~s)µi(~s)
)]}

which gives to the posterior distribution,

Zi(~s)|Yi(~s), µi(~s),Σ(~s, ~s), σ2
ε ∼MVN (µZi(~s), VZi(~s)) ,

VZi(~s) =
(
σ−2ε Ip + Σ−1(~s, ~s)

)−1
,

µZi(~s) = VZi(~s)
(
σ−2ε Yi(~s) + Σ−1(~s, ~s)µi(~s)

)
.

The posterior distribution of the corresponding variance component is given by

p(σ2
ε |{Yi(~s)}ni=1, {Zi(~s)}ni=1) ∝

n∏
i=1

p(Yi(~s)|Zi(~s), σ2
ε )p(σ2

ε )

∝ |σ2
ε Ip|−

n
2 exp

{
−1

2

n∑
i=1

(Yi(~s)− Zi(~s))T σ−2ε Ip (Yi(~s)− Zi(~s))

}
×
(
σ−2ε

)aε+1
exp

{
−σ−2ε bε

}
∝

(
σ−2ε

)np
2 +aε+1

exp

{
−σ−2ε

[
bε +

1

2

n∑
i=1

(Yi(~s)− Zi(~s))T (Yi(~s)− Zi(~s))

]}
,

which gives

σ2
ε |{Yi(~s)}ni=1, {Zi(~s)}ni=1 ∼

InverseGamma

(
aε +

np

2
, bε +

1

2

n∑
i=1

(Yi(~s)− Zi(~s))T (Yi(~s)− Zi(~s))

)
.

• Update the SGLSS prior parameters {βj(~s), τj(~s), πj}qj=0 conditional on

{Zi(~s)}ni=1 and Σ(~s, ~s):
In this step, we first sample the indicators {τj(~s)}qj=1 and update {πj}qj=1 to
obtain selection indicators at both global and local levels. This is achieved via a
blocked Gibbs strategy and has the Beta Binomial conjugacy when integrating
out β̃j(~s).
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Using the blocked Gibbs sampler with respect to each feature j, we have Z̃ij(~s) =

Zi(~s) −
∑
j′ 6=j xij′βj′(~s). Furthermore, we denote z̃ijs = Z̃ij(s), β̃js = β̃j(s),

µ0js = µ0j(s), σ
2
0js = σ2

0j(s), σ
2
s = Σ(s, s), s ∈ ~s and z̃·js = {z̃ijs}ni=1 for short,

where s is one location in the vector of locations ~s.

Based on Equation (2.11), we calculate the marginal posterior probability of

τj(s) = 1 by integrating out β̃js,

p (τj(s) = 1|z̃·js) =

∫
p
(
τj(s) = 1, β̃js|z̃·js

)
dβ̃js

p
(
τj(s) = 0, β̃js = 0|z̃·js

)
+
∫
p
(
τj(s) = 1, β̃js|z̃·js

)
dβ̃js

.

Substituting

∫
p
(
τj(s) = 1, β̃js|z̃·js

)
dβ̃js =

1

p (z̃·js)

∫
p
(
z̃·js|τj(s) = 1, β̃js

)
p
(
β̃js

)
p(τj(s) = 1|πj)dβ̃js

and

p
(
τj(s) = 0, β̃js = 0|z̃·js

)
=

1

p (z̃·js)
p
(
z̃·js|τj(s) = 0, β̃js = 0

)
p(τj(s) = 0|πj)

yields

p (τj(s) = 1|z̃·js)

=

∫
p
(
z̃·js|τj(s) = 1, β̃js

)
p
(
β̃js

)
dβ̃js × πj

p
(
z̃·js|τj(s) = 0, β̃js = 0

)
× (1− πj) +

∫
p
(
z̃·js|τj(s) = 1, β̃js

)
p
(
β̃js

)
dβ̃js × πj

.

For p
(
z̃·js|τj(s) = 0, β̃js = 0

)
, we have

p
(
z̃·js|τj(s) = 0, β̃js = 0

)
=
(
2πσ2

s

)−n2 exp

{
−1

2

(
n∑
i=1

z̃2ijs/σ
2
s

)}
︸ ︷︷ ︸

common factor (CF)

.
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For
∫
p
(
z̃·js|τj(s) = 1, β̃js

)
p
(
β̃js

)
dβ̃js, we have

∫ (
2πσ2

s

)−n2 exp

{
−1

2

n∑
i=1

(
z̃ijs − xij β̃js

)2
/σ2

s

}(
2πσ2

0js

)− 1
2 exp

{
−1

2

(
β̃js − µ0js

)2
/σ2

0js

}
dβ̃js

=
(
2πσ2

s

)−n2 (2πσ2
0js

)− 1
2

∫
exp

{
−1

2

[
β̃2
js

(
n∑
i=1

x2ij/σ
2
s

)
− 2β̃js

(
n∑
i=1

xij z̃ijs/σ
2
s

)

+
n∑
i=1

z̃2ijs/σ
2
s

]
− 1

2
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This gives the posterior distribution for τj(s) as a Bernoulli distribution, and leads
to the Beta distribution for πj by counting the τj(~s) samples

πj |τj(~s) ∼ Beta

(
aπj +

∑
s∈~s

τj(s), bπj + p−
∑
s∈~s

τj(s)

)
,

as written in Equation (2.12).

Conditional on selection indicators at the two levels, we sample the coefficient
image βj(~s) as summarized in Section 2.4.

• Update the IWP prior parameter Σ(~s, ~s) conditional on {Zi(~s)}ni=1 and
{βj(~s)}qj=0:
This is a Gibbs step from Multivariate Normal Inverse Wishart conjugacy. We
have

p
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which gives the Inverse Wishart distribution

Σ(~s, ~s)|{Zi(~s)}ni=1, {βj(~s)}
q
j=0,Ψ(~s, ~s) ∼

IW

(
n+ δ,

n∑
i=1

(Zi(~s)− µi(~s)) (Zi(~s)− µi(~s))T + Ψ(~s, ~s)

)
.

with, again, µi(s) = β0(~s) +
∑q
j=1 xijβj(s).

S2. Simulation results with d = 0.01 and d = 0.1

Tables 9 and 11 report precision, recall and F1 scores for both global and local selec-
tions for our method with d = 0.01, 0.05 and d = 0.1. Clearly, a lower d tends to include
more covariates, potentially selecting noisy covariates. On the contrary, a higher d tends
to exclude more covariates, potentially selecting out influential covariates. Correspond-
ingly, we can observe that as d increases, precision tends to increase and recall tends
to decrease especially in the more challenging second simulated scenario. In addition,
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when there exists a ‘good separation’ between the influential and noisy covariates, like
in the first scenario and the second scenario with π ≈ 18.8%, good performances overall
can be observed for different choices of d. This is also reflected in the MSE estimates of
the model parameters shown in Tables 10 and 12.

Table 9: First simulated scenario: Global-local selection for a representative dataset

Precision
Thresholds Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.01) 0.727 1 0.901 0.973 0.991 0.977 1 0.954 0.946
BHM (d = 0.05) 1 1 0.901 0.973 0.985 0.981 1 0.949 0.958
BHM (d = 0.1) 1 1 0.901 0.978 0.99 0.977 1 0.955 0.961

Recall
Thresholds Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.01) 1 0.830 1 0.983 0.906 0.943 0.717 0.802 0.772
BHM (d = 0.05) 1 0.821 1 0.983 0.917 0.944 0.742 0.823 0.769
BHM (d = 0.1) 1 0.828 1 0.983 0.919 0.941 0.748 0.809 0.785

F1 scores
Thresholds Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.01) 0.842 0.907 0.948 0.978 0.947 0.959 0.835 0.872 0.850
BHM (d = 0.05) 1 0.902 0.948 0.978 0.950 0.962 0.852 0.882 0.854
BHM (d = 0.1) 1 0.906 0.948 0.981 0.953 0.958 0.856 0.876 0.864

Table 10: First simulated scenario: MSEs for a representative dataset

MSE

Thresholds {Zi(~s)}100i=1 Σ(~s, ~s) {βj(~s)}15j=0 σ2
ε

BHM (d = 0.01) 0.2051 0.0154 0.0432 0.0048
BHM (d = 0.05) 0.1816 0.0143 0.0308 0.0015
BHM (d = 0.1) 0.1803 0.0141 0.0304 0.0014

S3. Trace plots for the choice of d

As pointed out in the paper, the sparsity parameter d has the interpretation that covari-
ates affecting more than d percent of the images are included in the model. The challenge
in specifying d is to distinguish the low values of the participation parameters πj ’s cor-
responding to the noisy covariates from those of the partially influential covariates, i.e.,
those covariates that affect a small number of voxels/pixels. To better understand the
role of the sparsity parameter d, we found helpful to look the MCMC trace plots of
{πj}15j=1 for the specification d = 0. In this degenerate case we have I(πj ≥ 0) = 1 for
all j and the model includes all the covariates at each iteration to explain the observed
images.
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Table 11: Second simulated scenario: Global-local selection for a representative dataset

Precision (π = 9%)
Thresholds Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.01) 0.700 0.777 0.618 0.716 0.592 0.793 0.506 0.279 −
BHM (d = 0.05) 1 0.743 0.673 0.714 0.551 − 0.505 0.276 −
BHM (d = 0.1) 1 0.777 − − 0.608 − 0.505 0.293 −

Precision (π ≈ 18.8%)
Thresholds Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.01) 0.8 0.796 0.873 0.897 0.737 0.876 0.836 0.837 0.483
BHM (d = 0.05) 1 0.806 0.923 0.858 0.753 0.890 0.839 0.793 0.480
BHM (d = 0.1) 1 0.781 − 0.887 0.76 0.88 0.852 0.797 0.497

Recall (π = 9%)
Thresholds Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.01) 0.875 0.988 0.420 0.654 0.753 0.284 0.556 0.840 0
BHM (d = 0.05) 0.75 1 0.432 0.617 0.728 0 0.568 0.840 0
BHM (d = 0.1) 0.5 0.988 0 0 0.728 0 0.605 0.840 0

Recall (π ≈ 18.8%)
Thresholds Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.01) 1 0.692 0.367 0.568 0.947 0.751 0.544 0.852 0.852
BHM (d = 0.05) 1 0.663 0.355 0.609 0.959 0.769 0.615 0.840 0.852
BHM (d = 0.1) 0.875 0.633 0 0.604 0.935 0.781 0.580 0.834 0.888

F1 scores (π = 9%)
Thresholds Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.01) 0.778 0.870 0.500 0.684 0.663 0.418 0.529 0.418 −
BHM (d = 0.05) 0.857 0.853 0.526 0.662 0.628 − 0.535 0.416 −
BHM (d = 0.1) 0.667 0.870 − − 0.663 − 0.551 0.435 −

F1 scores (π ≈ 18.8%)
Thresholds Global Local

τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

BHM (d = 0.01) 0.889 0.741 0.517 0.696 0.829 0.809 0.659 0.845 0.617
BHM (d = 0.05) 1 0.727 0.513 0.713 0.844 0.825 0.710 0.816 0.614
BHM (d = 0.1) 0.933 0.699 − 0.718 0.838 0.828 0.690 0.815 0.637

Figure 5 (a) shows these traces for a representative simulated case from setting
1. In this figure, traces corresponding to fully non-zero image coefficients (influential
covariates) are in red, those for partially influential covariates are in blue and those
for the noisy covariates are in black. We observe a clear separation between the three
types of traces. In particular, we have π ∈ [0, 0.2] for the noisy covariates, π ∈ [0.6, 0.9]
for the partially influential covariates and π ≈ 1 for the covariates affecting the whole
images. This plot suggests that values of d lower than .6 can be good choices, as they
separate noisy covariates from the fully and partially influential ones. Clearly, smaller
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Table 12: Second simulated scenario: MSEs for a representative dataset

MSE (π = 9%)

Thresholds {Zi(~s)}100i=1 Σ(~s, ~s) {βj(~s)}15j=0 σ2
ε

BHM (d = 0.01) 0.1680 0.0119 0.0470 0.0045
BHM (d = 0.05) 0.1428 0.0113 0.0345 0.0014
BHM (d = 0.1) 0.1294 0.0125 0.0334 0.0009

MSE (π ≈ 18.8%)

Thresholds {Zi(~s)}100i=1 Σ(~s, ~s) {βj(~s)}15j=0 σ2
ε

BHM (d = 0.01) 0.1814 0.0114 0.0465 0.0049
BHM (d = 0.05) 0.1639 0.0102 0.0363 0.0025
BHM (d = 0.1) 0.1597 0.0099 0.0360 0.0020

values of d, as those we use in the paper and the sensitivity analysis above, are preferred,
as they induce sparsity, excluding covariates effecting very low portions of the images
and including those effecting larger portions. As further evidence, in Figure 6 we show
MCMC traces obtained by fitting our model for a grid of values d ∈ [0.1, 0.9]. These
figures confirm that the model is relatively insensitive to a range of choices d ∈ [0.1, 0.6]
and support the selection of a reasonably small d, which separates the traces. On the
contrary, when the choice of d is too large, i.e., d ≥ 0.7, the covariates get in and out
from the model, introducing large fluctuations in several of the traces.

As a word of caution, we remark that the trace plots we show here are meant to
provide an empirical tool that might be helpful in the choice of d, particularly in cases
where a separation among the traces is observed. However, this procedure is ad-hoc
and cannot be used as a general method, in particular as the behavior of the trace
plots is application-dependent and a clear separation of the traces might not always be
observed. In such cases, and in the absence of prior information, we recommend to view
d as conventional sparsity parameter and use standard values, i.e. d = 0.05 or d = 0.1.

S4. Sensitivity analysis for slab variance σ2
0

In addition to the hard-threshold d, the influential model parameters are the means

{µ0j(~s)}15j=0 and variance parameters
{
σ2
0j(~s)

}15
j=0

of the slab prior distributions. As

seen in Equation (2.11), the slab prior is involved in the calculation of the Bayes fac-
tors, therefore informing the local selection. Conventional specifications use slab normal
distributions with means 0 and variance parameters in the range σ2

0 ∈ [1, 100]. We
compare the performances of different σ2

0 using the first simulated scenario used in the
paper, and fixed d = 0.05.

Tables 13 and 14 report the averaged precisions, recalls and F1 scores for both
global and local selection and MSEs for parameters of interest calculated over the 50
replicates. We observe that the proposed method shows consistent good performances
at the global level selection, achieving similarly high values in precision, recall and F1
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Figure 5: Trace plots of {πj}15j=1 for d = 0. Traces corresponding to fully non-zero image

coefficients (influential covariates) are in red, those for partially influential covariates
are in blue and those for the noisy covariates are in black.

scores, with all prior specifications. At the local level, results show a trade-off between
precision and recall, in that larger prior variances tend to achieve higher precisions but
lower recalls. As for parameter estimation, the MSEs of the parameters of interests are
relatively similar for different slab prior specifications, showing the estimations are not
very sensitive to the slab prior specification.

S5. Read Data Application with d = 0.01 and d = 0.1

Table 15 and 16 report selection results for d = 0.01, 0.05 and 0.1, along with results from
MUA (BY) as a comparison. We observe that, as expected, a more stringent threshold
of d = 0.1 would exclude FIQ for all networks entirely and a less stringent threshold of
d = 0.01 would include FIQ for all networks but only very few voxels selected. Without
over-interpreting the results, we remark that at the local selection level the ratios of
region included are relatively consistent when the covariates are included, i.e. for Cuneus
R, for both d = 0.01 and d = 0.05, the ratio is around 1.7%.
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(a) d = 0.1 (b) d = 0.2 (c) d = 0.3

(d) d = 0.4 (e) d = 0.5 (f) d = 0.6

(g) d = 0.7 (h) d = 0.8 (i) d = 0.9

Figure 6: Trace plots of {πj}15j=1 for a grid of d ∈ [0, 1]. Traces corresponding to fully non-

zero image coefficients (influential covariates) are in red, those for partially influential
covariates are in blue and those for the noisy covariates are in black.
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Table 13: Global and local selection for the sensitivity analysis - 50 replicates

Averaged Precision
Slab Global Local(

µ0(~s), σ2
0(~s)

)
τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

(0, 1) 0.944 1 0.937 0.949 0.962 0.952 1 0.953 0.931
(0, 10) 0.998 1 0.986 0.976 0.975 0.969 1 0.982 0.964
(0, 100) 1 1 0.990 0.984 0.985 0.981 1 0.989 0.979

Averaged Recall
Slab Global Local(

µ0(~s), σ2
0(~s)

)
τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

(0, 1) 1 0.970 0.954 0.920 0.885 0.865 0.764 0.752 0.690
(0, 10) 1 0.928 0.904 0.875 0.846 0.822 0.583 0.589 0.529
(0, 100) 1 0.884 0.857 0.830 0.800 0.777 0.439 0.451 0.393

Averaged F1 scores
Slab Global Local(

µ0(~s), σ2
0(~s)

)
τ1(~s) τ2(~s) τ3(~s) τ4(~s) τ5(~s) τ6(~s) τ7(~s) τ8(~s)

(0, 1) 0.970 0.983 0.943 0.932 0.919 0.903 0.837 0.814 0.771
(0, 10) 0.999 0.959 0.940 0.920 0.901 0.885 0.703 0.711 0.662
(0, 100) 1 0.933 0.913 0.895 0.875 0.859 0.570 0.592 0.536

Table 14: MSEs for sensitivity analysis - 50 replicates

MSEs

Slab {Zi(~s)}100i=1 {βj(~s)}15j=0 Σ(~s, ~s)(
µ0(~s), σ2

0(~s)
)

Mean SE Mean SE Mean SE
(0, 1) 0.180 (1.0× 10−3) 0.472 (1.13× 10−2) 0.014 (0.5× 10−3)
(0, 10) 0.183 (0.5× 10−3) 0.547 (1.23× 10−2) 0.014 (0.5× 10−3)
(0, 100) 0.179 (0.4× 10−3) 0.678 (1.15× 10−2) 0.014 (0.5× 10−3)
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Table 15: Selection results for the four networks
BHM (d = 0.01) BHM (d = 0.05)

diagnostic age gender FIQ diagnostic age gender FIQ

Visual
π(%) 0.01 77.1 0.01 9.22 0.01 77.2 0.01 9.24

if selected (X) (X) (X) (X)

Ventral
π(%) 0.01 82.8 0.01 2.68 0.01 83.6 0.01 1.38

if selected (X) (X) (X)

Dorsal
π(%) 0.01 43.1 0.01 8.02 0.01 42.9 0.01 7.77

if selected (X) (X) (X) (X)

Default
π(%) 0.01 71.4 0.01 1.67 0.01 71.6 0.01 0.78

if selected (X) (X) (X)

BHM (d = 0.1) MUA (BY)
diagnostic age gender FIQ diagnostic age gender FIQ

Visual
π(%) 0.01 81.6 0.01 6.33 0.0 83.0 0.0 32.7

if selected (X) (X) (X)

Ventral
π(%) 0.01 83.5 0.01 1.29 0.0 82.2 0.0 24.7

if selected (X) (X) (X)

Dorsal
π(%) 0.01 44.5 0.01 5.70 0.0 54.3 0.0 22.7

if selected (X) (X) (X)

Default
π(%) 0.01 71.6 0.01 0.78 0.0 74.5 0.0 24.4

if selected (X) (X) (X)
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Table 16: Ratios of Region included within each networks

Network Methods Covariates Ratio of Region included (%)

Visual

Lingual L Lingual R Calcarine L Cuneus R

BHM(d = 0.01)
age 82.0 81.6 83.5 88.6

FIQ 5.6 6.8 3.4 1.6

BHM(d = 0.05)
age 82.1 81.4 83.5 88.9

FIQ 5.79 7.00 3.29 1.77

BHM(d = 0.1)
age 87.4 85.8 89.2 92.6

FIQ 0.0 0.0 0.0 0.0

MUA (BY)
age 81.8 81.5 82.4 88.2

FIQ 34.2 34.7 29.1 32.9

Ventral

Temporal Mid L Temporal Sup L Temporal Sup R -

BHM(d = 0.01)
age 79.8 88.8 95.9 -

FIQ 0.7 1.2 0.2 -

BHM(d = 0.05)
age 80.7 90.1 96.4 -

FIQ 0.0 0.0 0.0 -

BHM(d = 0.1)
age 80.7 90.0 96.5 -

FIQ 0.0 0.0 0.0 -

MUA (BY)
age 76.2 81.7 93.7 -

FIQ 18.9 29.6 31.2 -

Dorsal

Temporal Mid R Postcentral L Parietal Sup L -

BHM(d = 0.01)
age 63.2 38.8 13.7 -

FIQ 1.7 5.3 4.7 -

BHM(d = 0.05)
age 62.9 38.6 13.8 -

FIQ 1.5 4.7 4.5 -

BHM(d = 0.1)
age 65.0 41.2 14.2 -

FIQ 0.0 0.0 0.0 -

MUA (BY)
age 75.8 51.6 18.0 -

FIQ 21.1 26.8 18 -

Default

Temporal Mid R Frontal Med Orb R Frontal Med Orb L Occipital Mid R

BHM(d = 0.01)
age 77.7 26.0 22.8 99.5

FIQ 0.1 0 0.0 0.4

BHM(d = 0.05)
age 77.7 26.2 22.7 99.5

FIQ 0.0 0.0 0.0 0.0

BHM(d = 0.1)
age 77.6 26.4 22.8 99.5

FIQ 0.0 0.0 0.0 0.0

MUA (BY)
age 79.5 31.9 25.7 99.6

FIQ 22.7 6.2 11.1 39.6
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