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ABSTRACT

As a key component of the transformer architecture, the self-attention mechanism
is known for its capability to perform token selection, which can often signifi-
cantly enhance model performance. However, when and how self-attention can be
trained to perform effective token selection remains poorly understood in theory.
In this paper, we study the problem of using a single self-attention layer to learn
random walks on circles. We theoretically demonstrate that, after training with
gradient descent, the self-attention layer can successfully learn the Markov prop-
erty of the random walk, and achieve optimal next-token prediction accuracy by
focusing on the correct parent token. In addition, we also study the performance
of a single self-attention layer in learning relatively simpler “deterministic walks”
on circles. Surprisingly, in this case, our findings indicate that the self-attention
model trained with gradient descent consistently yields next-token prediction ac-
curacy no better than a random guess. This counter-intuitive observation that self-
attention can learn random walks but struggles with deterministic walks reveals
a potential issue in self-attention: when there are multiple highly informative to-
kens, self-attention may fail to properly utilize any of them.

1 INTRODUCTION

In recent years, transformers (Vaswani et al.,[2017) have revolutionized many fields such as natural
language processing, and have rapidly emerged as a key component in state-of-the-art deep learning
models due to their ability to capture complex dependencies in data. At the heart of transformers
lies the self-attention mechanism, which allows the model to assign different weights or importance
to each input token based on its relevance to the context or task at hand. This process of assigning
weights to tokens based on their “importance” can be seen as a form of token selection, since it
determines which tokens contribute more significantly to the model’s prediction. However, the
exact mechanisms behind token selection and how it impacts model performance are still not well
understood.

A line of recent works has studied token selection of the self-attention mechanism from different
perspectives. [Tarzanagh et al.|(2023));/Ataee Tarzanagh et al.|(2023)) propose an equivalence between
the optimization dynamic of one self-attention layer and an SVM problem and prove the global
convergence under certain assumptions. |Li et al.| (2024a) shows that when training a self-attention
layer, the priority in token selection is determined by a directed graph extracted from the training
data. [Wang et al.[(2024) demonstrates that transformer models can learn the sparse token selection
task effectively while fully connected networks fail in the worst case. |Li et al.| (2024b) shows that
a self-attention layer can be trained to perform proper token selection so that the model acts as a
one-nearest neighbor classifier in context.

Several more recent works have also studied the performance of transformers in learning sequential
data generated from Markov models or Bayesian network models. In these studies, token selection
is also the key, as an ideal self-attention layer should properly select the token(s) that is/are the
"parent(s)’ of the token to be predicted. Specifically, [ Makkuva et al.| (2024) characterizes the loss
landscape of a single-layer transformer and demonstrates the existence of global minima and bad
local minima in learning Markovian data with vocabularies of size two. [lldiz et al.|(2024) shows the
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connection between a context-conditioned Markov chain and the self-attention mechanism. [Nichani
et al.| (2024) studies the mechanism through which transformer models encode a specific causal
structure in their representations for in-context learnine.
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(a) Task 1: random walk (b) Task 2: deterministic walk

Figure 1: Illustration of the tasks on learning random walks and deterministic walks. The first task
involves a random walk along circular paths, where each step has an equal chance of moving clock-
wise or counterclockwise, as illustrated in (a). The second task involves a deterministic movement
along circular paths, with the rule of always moving counterclockwise, as illustrated in (b).

In this paper, we introduce two simple case studies on how transformers learn sequential data.
Specifically, we train a one-layer transformer model to predict sequences generated by “random
walks” and “deterministic walks” on circles (see Figure [I] for an illustration). With a precise anal-
ysis on the training dynamics of gradient descent, we surprisingly find that the performance of the
transformer on these two tasks can be drastically different.

The main contributions of this paper are summarized as follows:

* We theoretically demonstrate that, a one-layer transformer can be trained by gradient descent to
optimally predict the next location of a random walk (illustrated in Figure[I(a)). In addition, our
analysis also precisely reveals that the self-attention can be trained to select the correct token (the
‘parent’ token), and make prediction based on it. Our analysis sheds light on how the self-attention
mechanism can adapt to sequential data patterns with proper token selection.

* We also show that, when learning to predict deterministic walks (illustrated in Figure [I(b)), the
training of the same one-layer transformer model with any loss function and any step size will
always fail, resulting in a transformer model whose performance is no better than a random guess.
This result highlights a potential limitation of self-attention: when all tokens are equally ‘infor-
mative’, the self-attention mechanism may fail to utilize any of them.

» Simulations demonstrate that our theoretical characterization of one-layer transformers is accu-
rate. Even when the trainable parameters of the transformer are initialized with Gaussian random
values that do not satisfy our theoretical assumptions, we observe that the transformer struggles to
learn deterministic walks, which aligns with our theory. Furthermore, motivated by our theories
and explanations, we construct two simple question answering tasks in natural language process-
ing (NLP) and successfully predict the performance of transformers on these tasks. This confirms
the validity of our theory and highlights the insights provided by our study.

2 PROBLEM SETUP

In this section, we present our problem formulations, including the construction of the next-token
prediction tasks we focus on, the transformer architecture with one self-attention layer, and the
training algorithm.

2.1 RANDOM AND DETERMINISTIC WALKS ON CIRCLES

We study the procedures of random and deterministic walks on circles. Specifically, consider K
nodes (possible locations) that are arranged on a circle so that each node has two neighbors. Without
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Figure 2: Visualization of two transition matrices II; and Iy for Task [1| and Task @ In I1,, the
white block represents 0.5, and the black block represents 0. In I, the white block represents 1,
and the black block represents 0.

loss of generality, we suppose that the nodes are assigned with node IDs 1,2, ..., K in a clockwise
manner. A ‘walk’ on the circle refers to the process where a ‘walker’ moves step-by-step among the
nodes of the circle. At each step, the walker moves to a neighboring node of its current position. In
this way, a walk of length N generates a sequence of ‘states’ sy, ... sy, where s; € [K] denotes the
location (node ID) of the walker at the ¢-th step.

With such sequential data generated by random or deterministic walks, we can consider the problem
of predicting the location of the walker (sx) based on the historical locations sy, ...sy—1. Specif-
ically, for i € [N — 1], we denote by z; = es, € RX the one-hot embedding of s;, and denote
y = sy. Our goal is then to train a model to predict y based on ®1,...,ZTN_1.

As mentioned in the introduction, we consider two walks, which we call “random walk™ and “de-
terministic walk” respectively for simplicity. In the following, we give their detailed definitions and
discuss some basic properties respectively.

Random walk. In the case of random walk, starting from a random location, the walker randomly
decides to move clockwise or counterclockwise at each step. For any integers s, we define (s) i as
the integer satisfying (s)x € [K] and s = (s)x (mod K'). With this definition, the probabilistic
model is defined as follows.

Task 1 (Random Walk). Suppose that 1, ..., xx_1,y are generated as follows:

1. Draw s; ~ Unif([K]).
2. Fori=2,...,N,sample s; = (s;_1 — 1) ors; = (s;_1 + 1) i equally likely.
3. Setx; = e;,,i € [N —1],andy = sn.

By the definition above, it is clear that the sequence x1, ..., T N_1, e, form a Markov chain, and
P(y|x1,...,zn—1) = P(y|xn_1). Moreover, the transition matrix of the Markov model is

I = (r}))kxe, where n) = 1/2-1{i = j — 1(mod K)} +1/2- 1{i = j + 1(mod K)}.

An visualization of II; is given in Figure The Markov property indicates that the optimal
predictor of y is given by

OPT T
Taskl(mla B mN—l) = H1 TN-1,
and the optimal prediction accuracy any predictor can achieve is OPTrae1 = 1/2.

Deterministic walk. In the case of deterministic walk, starting from a random location, the walker
deterministically moves counterclockwise at each step. The corresponding probabilistic model is
defined as follows.

Task 2 (Deterministic Walk). Suppose that 1, ...,xx_1,y are generated as follows:

1. Draw s; ~ Unif([K]).

2. Fori=2,...,N,sets; = (s;—1 — 1)k
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3. Setx; = e;,,i €[N —1],andy = sn.

The only randomness in the case of deterministic walk is the initial state. Moreover, the transition
matrix of the deterministic walk is

I, = (7)) kxx, where 7\ = 1{i = j — 1(mod K)}.

An visualization of IT is given in Figure[2(b)] It is natural that the prediction of y in deterministic
walk is relatively easy compared with the case of random walk. In fact, as long as one of the
historical locations is known, there should exist a perfect predictor of y:

Forany i € [N — 1], fOht(®:) = (II] )V ~‘@; = e, with probability 1.

Therefore, the optimal prediction accuracy any predictor can achieve is OPTragk0 = 1.

2.2 TRANSFORMER ARCHITECTURE

We consider learning the prediction tasks in random and deterministic walks introduced in the pre-
vious section with a simple one-layer transformer model. By naturally treating the one-hot vectors
xi,...,TN—1 as tokens, then the task to predict the next position y is exactly a problem of next
token prediction.

Define the data matrix X = [x1,@2,...,Zny-1,0] € REXN  We also consider a positional
embedding matrix P = [py,pa,...,pn] € RM*N where M is the embedding dimension with

M = Q(N3/2) and p; € RM is defined as

[ (T gy (2 [ Mim T
p; = |sin M1 ,sin M1 ,...,sin M1

fori = 1,2,...,N. The positional embeddings above are inspired by the fact that (p;, p;) = 0
for all ¢ # j, which significantly helps to simplify our theoretical analysis (see Lemma [F.3]in the

appendix). Then, we define the matrix X by concatenating the input matrix X and the position
matrix P as

F_ {X} _ {xl Lo - EN_1 0] — [F1, @, ..., Fn] € RUSHMXN,

P pP1 P2 -+ PN-1 PN

We consider a single-layer transformer model to make a prediction on a given input matrix X. The
transformer is defined as follows:

fo(X) = VXS(X Way), Q.1
where V' € REXE W ¢ RETM)X(K+M) are the trainable parameter matrices, S : RY —
RY is the softmax function defined by [S(z)]; = —=2E) _ and § = (V, W) denotes the

> jo1exp(z;)’
collection of all the trainable parameters. In this definition, we consider a reparameterization where
we use a single matrix W to denote the product of the commonly considered key and query matrices
in practice (Vaswani et al.| 2017). Such kind of reparameterizations is commonly considered in
theoretical studies of transformer models (Jelassi et al., 2022; [Tian et al.,|2023a; Huang et al., 2024;
Zhang et al.|[2024; |Nichani et al., [2024; L1 et al., 2024a; Wang et al., [2024; [Ildiz et al., [2024)).

Note that by the definition in (2.I)), given any input matrix X, the transformer model outputs a
K -dimensional vector. This follows the standard practice of K -class classification — for i € [K],
[fo(X)]; can be treated as a predicted “score” of the i-th class. More specifically, we can define the
prediction rule as follows.

Definition 2.1. For any predictor f(X) : RE*N — R¥ | the predicted label is given as

Pred(f(X)) := min {j € (K] [F(X)]; = max{[f(X)L-}} .

i€[K]

The definition above matches the common practice to predict the label that corresponds to the entry
in f(X) with the maximum function value. It also gives a naive way to handle ties — when f(X)
contains multiple dimensions with the same (and maximum) function value, we always predict the
dimension corresponding to the smallest label. We remark that this definition to handle ties is just
to exclude ambiguity, and the detailed rule to handle ties is not essential. Our result works for all
reasonable methods to handle ties.
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2.3 TRAINING METHOD

We consider training the transformer model defined in (2.1) by gradient descent. We consider to
minimize the loss function

L(0) =E(x 4 [ (e, fo(X))], (2.2)

where £(+) is a loss function. In terms of the specific choice of ¢(+), our analysis will cover (i) learning
the random walk defined in Taskby minimizing the log-loss £(z) = —log(z + €), which has been
considered in a series of recent works (Li et al.l [2024a; Ildiz et al., 2024; Makkuva et al., 2024}
Thrampoulidis| 2024), and also (ii) learning the deterministic walk defined in Task 2|by minimizing
any loss function £(-).

We consider gradient descent with zero initialization v = ()KXK, W) — gUEHM)x(K+M) ¢
train the model. The update rule for the parameter matrices V' and W are as follows:

VD — v® _ vy L(0®) and WEHD = W — vy L(60), (2.3)

where 1 > 0 is the learning rate and ¢ > 0 is the iteration number.

3 MAIN RESULTS

In this section, we present our main theoretical results on using a self-attention layer to learn the
random and determmlstlc walks defined in Task [I] and Task 2} In our result, we can choose any
T* = poly(n,e~1, K, N, M) as the maximum admissible number of iterations, and only consider
the training period 0 <t <T™*. This technical assumption regarding a polynomially large maximum
admissible number prevents training from becoming exponentially long and is a mild assumption
since exponentially long training is impractical.

Our main results for learning the random walk in Task [I]is given in the following theorem.

Theorem 3.1. Suppose that K is a constant even integer, and N = w(1). Further suppose that the
transformer is trained by gradient descent (2.3) to minimize the loss (2.2)) with £(z) = —log(z + ¢),
and 7, e = ©(1). Then there exists Ty = O(1), such that for all Tp < T < T*, it holds that:

1. The trained transformer achieves optimal prediction accuracy:
]P)(va)"’TaSkl [Pred(fQ(T) (X)) = y:l = OPTrask1 = =

2. The transformer converges to the optimal predictor. Suppose that (X, y) is generated by Task
Then with probability 1, it holds that
1
-o(zx)
2 VT

3. The value matrix converges to the true transition matrix in direction:

H V(D) o 20(1)-
I F VT

VOlr ||k
4. The softmax attention selects the correct token. Suppose that (X, y) is generated by Task
Then with probability 1, it holds that

foer (X ot
X
H | foer (X ||2 Task1 (X)

[S(XTWDEN)] | > 1 —exp(—Q(N)), and [S(X W DEy)], < exp(—QN))
forall j # N — 1.

In terms of the prediction, the first result in Theorem states that the transformer trained by
gradient descent for a constant number of iterations can achieve a prediction accuracy 1/2, which
matches the optimal accuracy OP Trygk1 for Task([I] The second result in Theorem [3.1] further gives
a more detailed characterization of the trained transformer, and demonstrates that the normalized
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model converges to the optimal prediction model f%:fl (X) = II] zx_1. This convergence result

strongly indicates that the transformer model learns token selection — it successfully learns to focus
on the direct parent of y, and then makes a prediction based on this direct parent.

The third and fourth results in Theorem [3.T] further back up the first two results by a precise char-
acterization on how the self-attention mechanism works in predicting random walks. Specifically,
the third result demonstrates that in direction, the value matrix V(T) converges to the ground-truth
transition matrix IT;, and the last result indicates that the softmax score assigned to the (N — 1)-th
token is close to 1, demonstrating that the attention layer can correctly select the parent token. To-
gether, these two results illustrate that the trained one-layer transformer model makes predictions by
(1) selecting the correct parent token xy_; of y by assigning a softmax weighting close to 1 to it,
and (ii) predicting y by applying a one-step transition model to _; through the linear mapping
defined by the value matrix.

We would also like to remark that Theorem [3.1] assumes that the number of nodes K on the circle
is an even integer. This assumption is to simplify our analysis and avoid tedious discussions on
whether K is even or odd. Our result should also hold for odd values of K, but some parts of the
proof may need to be changed. We believe that demonstrating the results for even K can already
clearly and convincingly demonstrate the performance of transformers in learning random walks.

The following theorem summarizes our main results on learning the deterministic walk defined in
Task [2] with a one-layer transformer model.

Theorem 3.2. Suppose that K is a constant integer, and N = rK + 1 with > 1. Further suppose
that the transformer is trained by gradient descent (2.3) to minimize the loss (2.2). Then for any loss
function ¢(-), any learning rate > 0, and any 7" > 0, it holds that

1
P(x y)~Task2 (Pred(f9<T) (X)) = y) K

Moreover, suppose that (X, y) is generated by Task Then with probability 1, for all 7' > 0, it
holds that

V(T) X 1K><K7 and [S(XTW(T)EN)]I == [S(XTW(T)EN)]N .

Theorem [3.2]shows that the prediction accuracy of the trained transformer for Task 2]is 1/K, which
is the same as the accuracy of a random guess. Moreover, the characterizations of the value matrix
V(T) and the softmax scores further demonstrate that the transformer takes average over all tokens,
and then gives the same prediction scores for all possible values of y. Notably, these results hold
for any choice of the loss function and any learning rate, indicating that this failure case of the
transformer cannot be resolved by simply adjusting these training setups.

As we have discussed in Section [2.1] Task [2 on the deterministic walk is naturally easier compared
with Task[T]on the random walk. However, Theorems [3.1]and [3.2] together lead a surprising conclu-
sion: a one-layer transformer trained by gradient descent can successfully learn to predict random
walks, but provably fails to predict deterministic walks. Here we remark that this counter-intuitive
result is due to the fact that self-attention may fail when there are multiple highly informative tokens.
We will give a detailed discussion in the next section.

4 EXPERIMENT

In this section, we present simulation results training on synthetic data to support our theoretical
analysis. We consider two cases: the first one is the zero initialization case which aligns with the
setting used in our theoretical analysis, and the second one is the random initialization case which is
more commonly used in the practical scenario. In all experiments introduced in this section, we set
the number of nodes K = 6 and the length of each sequence N = 97. We utilize the transformer
model introduced in Section [2] and utilize the gradient method to train the model. The prediction
accuracy is calculated based on 1000 test data.

Zero initialization. In this case, we set the length of the positional embedding M = 1000, the
initialization V9 = 0 i, W ® = 054 a1 (4 11> and the learning rate n = 1. The constant €
in the log-loss is set as € = 0.1. For both tasks, we generate 1000 sequences to train the model.
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Figure [3] and Figure [] illustrate the results of the experiment for Task [T] and Task [2] respectively:
Figure [3(a)] and Figure [i(a)| present the prediction accuracy; Figure [3(b) and Figure 4(b)| visualize
the value matrix V'(T) after 50 iterations; Figurem and Figure display the attention scores
attached to each token after 50 iterations. To clearly observe the results, we also provide Figure [3(d)]
that represents the part of Figure[3(c)]

We can observe that these experimental results for Task[T] provide strong support for Theorem 3.1}
Figure [3(a)] shows that the prediction accuracy is close to the optimal accuracy (50%) within con-
stant iterations. Figure %ﬁindicates that V(T) can recover the transition matrix IT; as shown in
Figure 2(a)l Figure [3(c)|presents that the (/N — 1)-th attention score is the highest and close to 1, in-
dicating that the self-attention layer is able to select the true parent token. All of these experimental
results demonstrate the performance of transformers in learning random walks.

In addition, we can find that the experimental outcomes for Task [2| match the theoretical results
stated in Theorem [3.2] We obtain an accuracy close to 0.167 from Figure which suggests
that the prediction accuracy for learning Task is approximately equal to 1/ K, far away from the
optimal accuracy (100%) and no better than a random guess. Figure indicates that V(1) is
approximately proportional to 1 . . Figure shows that the attention scores attached to all
tokens are identical, which proves that the self-attention layer cannot select any of the tokens when
learning Task[2] These experimental results for Task[2]demonstrate that the self-attention mechanism
struggles in learning deterministic walks.
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Figure 3: The results of the experiments for Task [I| with zero initialization: (a) is the test accuracy;
(b) is the visualization of V'; (c) and (d) present the average attention of the test data with x-axis
representing the position of the token and y-axis representing the attention score.
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Figure 4: The results of the experiment for Task [2] with zero initialization. (a) is the prediction
accuracy with x-axis representing the iteration and y-axis representing the accuracy. (b) is the
visualization of V. (c) is the average attention of the test data with z-axis representing the position
of the token and y-axis representing the attention score.

Random initialization. In this case, we set the length of the positional embedding M = 1000, the
initialization Vig.o), mjo) ~ N(0,0?) with ¢ = 0.01, and the learning rate n = 0.01. The constant
€ in the log-loss is set as ¢ = 0.1. For both tasks, we generate 1000 sequences to train the model.

Figure [j]illustrates the results of the experiment for Task[I]and Task [2] Figure [5(a) and Figure
show the prediction accuracy within 1000 iterations for Task [I] and Task [2] respectively. In Fig-
ure [5(b)] and Figure [5(d)] we first normalize the output of the trained transformer model to get a
K -dimensional vector, which can be regarded as the prediction distribution of K locations. The
KL-divergence between this prediction distribution and the true distribution of y|x y_1 is illustrated

in Figure [5(b)|and Figure [5(d)]
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Figure 5: The results of the synthetic experiment with random initialization: (a) and (b) correspond
to the experiment for Taskm; (c) and (d) correspond to the experiment for Task@ (a) and (c) present
the prediction accuracy. In (b) and (d), we first normalize the output of the trained transformer model
to get a K -dimensional vector, representing the prediction distribution of K locations. Then, we
display the KL-divergence between this prediction distribution and the true distribution of y|x 1
in (b) and (d).

Figure [5(a)] clearly shows that in the experiment for Task [I] the accuracy is close to the optimal
accuracy (50%) after around 400 iterations. However, as shown in Figure for Task 2] the
prediction accuracy cannot reach the optimal accuracy (100%) within 1000 iterations. Based on the
plots of KL-divergence, we can also see that the transformer learns the true prediction distribution
of random walks much faster than learning that of deterministic walks. Note that these results are
for training with random initialization, and hence the results do not perfectly match our theory for
zero initialization in Section@ However, the experiment results still clearly demonstrate that Task|Z|
for learning deterministic walks is significantly more challenging even with random initialization.

5 SUCCESSES & PITFALLS BEYOND RANDOM/DETERMINISTIC WALKS

In Sections[3|and @} we demonstrate that a one-layer transformer can be trained to optimally predict
random walks, but fails in the arguably easier task of predicting deterministic walks. In this section,
we provide a concise explanation for the counter-intuitive phenomenon, and discuss other learning
tasks beyond random and deterministic walks, where transformer training may also be challenging.

5.1 AN INTUITIVE EXPLANATION

Here we aim to give an intuitive explanation on why transformers fail in learning deterministic
walks. A natural starting point is to study the differences between random and deterministic walks.

Difference between random and deterministic walks. As is discussed in Section[21] a key differ-
ence between random and deterministic walks is that, in random walks, the optimal predictor must
rely on @ _1, which is the direct ‘parent’ of y, to make a prediction. On the other hand, in deter-
ministic walks, knowing any one of the historical locations x;, i € [N — 1] can provide sufficient
information to achieve perfect prediction. In other words, in random walk, there is a unique token
that is the most ‘informative’, while in deterministic walks, all tokens are equally ‘informative’.

Motivated by the discussion above, we consider using entropyﬂ as a more concrete characterization
of how ‘informative’ each token is. Specifically, we take the case (K, N) = (6,7) as an example.
Denoting by @ the average over 1, . .., g, we report the values of

EntrOPY(y|mi) = E(Xﬂ/) [_ lOgP(yL’I},L)] ;L= 1a SRR) 6a
Entropy (y|Z) = E(x y) [~ log P(y[®)] , and Entropy(y) = E(x ) [~ log P(y)]

in Figure [6] for both random (Task[T) and deterministic (Task [2)) walks. For Task [T} we can observe
that Entropy (y|x¢) is significantly smaller than the others. Thus, x¢ can be regarded as the most
informative token in predicting y in Task[I] However, for Task[2] the values of all Entropy (y|x;)’s
are the same and are all zero, indicating that all the tokens are perfectly informative in predicting
y. More importantly, we note that in Task |1, Entropy(y|®) is smaller than Entropy(y), which
implies that knowing Z can help predicting y to a certain extent. However, in Task 2] we can see

"We clarify that entropy is not directly utilized in our proof. Nevertheless, it can provide us the tool to
clearly explain the intuition of our proof.
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that Entropy (y|Z) = Entropy(y), meaning that the foken average T does not provide any useful
information in predictiing y in Task

x1 x2 X3 x4 x5 x6 y

Entropy(y|x;) | Entropy(y|x,) | Entropy(y|x;) | Entropy(y|x,) | Entropy(y|xs) | Entropy(v|xs) | Entropy(y) | Entropy(y|X)

Task 1 1.098 1.098 1.095 1.082 1.040 0.693 1.792 1.558

Task 2 0 0 0 0 0 0 1.792 1.792

Figure 6: An illustration of the values of Entropy(y), Entropy(y|Z), and Entropy(y|z;) for each
token @; in both Task [[]and Task [2Junder the condition that K = 6, N = 7.

Figure[6]leads to an explanation on why transformers struggle in learning deterministic walks:

At small (random) initialization, the initial softmax scores on each token are almost equal and
the initial output of the transformer is approximately V'@, where T is the average over all
tokens. However, © contains no useful information that can help prediction, and hence the
transformer can never (or at least cannot efficiently) be trained to make correct predictions.

5.2 BEYOND RANDON/DETERMINISTIC WALKS: EXAMPLES IN SIMPLE NLP TASKS

In Section[5.1] we provide an intuitive explanation of why one-layer transformers can hardly learn
the simple task of deterministic walks. Here, motivated by this intuitive explanation, we discuss
other tasks which transformers may also struggle to learn.

We construct two simple tasks in natural language processing (NLP). The detailed descriptions of
these two new tasks are given as follows.

Task 3. We consider a very simple question answering task. Specifically, possible input questions
are all of the form:

Based on the list ‘apple, orange, apple, apple, orange’, which type of fruit appears most frequently?

Here, the list stated in the question can be any combination of ‘apple’ and ‘orange’ with a fixed
length of 5. Therefore, there are a total of 32 possible questions the model may see, and each of these
questions occur with probability 1/32. Ignoring punctuation marks, each input sample is assumed
to be 16 words involving the list and other words in the inquiry sentence. The correct response (the
’label’ for classification) is the fruit that appears most frequently in the list. For example, for the
question “Based on the list ‘apple, orange, apple, apple, orange’, which type of fruit appears most
frequently?”, the correct response is apple.

Task 4. We again consider a very simple question answering task with only two possible questions:

Based on the sentence ‘I prefer an apple to an orange’, which type of fruit do I prefer?
Based on the sentence ‘I prefer an orange to an apple’, which type of fruit do I prefer?

Here, each of the two questions above occurs with probability 1/2. Similar to Task 3, we ignore the
punctuation marks and the input is the 18 words in the sentence. The correct response (the ‘label’
for classification) is apple for the first question above, and orange for the second question above.

Task 3 and Task 4 above are motivated by our discussion and explanation in Section[5.1] Intuitively,
in Task 3, the average of the word embeddings @ in a question can still help the model to find the
correct response. In contrast, in Task 4, we can see that the two questions give the same average of
word embeddings , and therefore, it is impossible to give the correct response based on . Below,
we experimentally study the capability of one-layer transformers in learning these two tasks.

Combining all the words appearing in two tasks, we attain a vocabulary with a length of 19: {‘apple’,
‘orange’, ‘Based’, ‘on’, ‘the’, ‘which’, ‘type’, ‘of’, ‘fruit’, ‘list’, ‘appears’, ‘most’, ‘frequently’,
‘sentence’, ‘T’, ‘prefer’, ‘an’, ‘to’, ‘do’}. We embed this sequence as a matrix E = [eq, es, ..., €19] €
R19%19 where each word is embedded as a one-hot vector e;. Then, we know that the length of the
vocabulary K and the length of each input sequence N are set as (K, N) = (19,17), (19, 19) for
Task 3 and Task 4 respectively.
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In the experiment for these two NLP tasks, we consider the similar transformer model as we intro-
duced in our theoretical analysis. To train the model, we consider Gaussian random initialization
Vig.o), WL-(JQ) ~ N(0,0%) with 0 = 0.01, and we use gradient descent with learning rate n = 0.1 to
train the model. The constant € in the log-loss is set as € = 0.1. Both experiments are conducted on
1000 training data and 1000 test data.

Accuracy KLDivergence Accuracy KLDivergence
200

12
10

¢
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® ) % 100 o B o © % B ] % w £y % 160 ] B @ ) % 150
aaaaaaaaaaaaaaa

(a) Accuracy (b) KL-Divergence (c) Accuracy (d) KL-Divergence

Figure 7: The results of the experiment for Task 3 and Task 4: (a) and (b) correspond to the experi-
ment for Task 3; (c) and (d) correspond to the experiment for Task 4.

Figure [7] shows the experiment results for Task 3 and Task 4. Figure [7(a)] and Figure present
the test accuracy. In Figure [7(b) and Figure[7(d)} we first normalize the output of the trained trans-
former model to get a K-dimensional vector, representing the prediction distribution of K words.
Then, we report the KL-divergence between this prediction distribution and the true distribution
of y|x1, Ta, ...,z in Figure and Figure The experiment results show a clear differ-
ence between the performances of the transformer model in the two tasks. In Task 3, the trained
transformer model can successfully approach the optimal accuracy (100%) within 100 iterations.
However, in Task 4, the test accuracy always remains around 50%, which is the accuracy of a ran-
dom guess.

Comparing these two NLP tasks, we observe that in Task 3, no single word can determine the
answer; instead, we must combine all five words in the list to solve the question. In contrast, in Task
4, the single word in the 8th or 11th position can uniquely determine the answer. Thus, Task 4 can
be naturally considered a ’simpler’ task and easier to learn. However, the experiment results show
a counter-intuitive phenomenon that the transformer fails to learn the relatively ‘simple’ Task 4 but
can learn the relatively ‘difficult’ Task 3. This phenomenon can also be explained by our discussion
in Section 5.1} the self-attention mechanism struggles in the case that there are multiple highly
informative tokens but the average of them is not informative.

The experiment results for these simple but intuitive NLP tasks demonstrate that our theories and
explanations for random and deterministic walks can guide the construction of various other learning
tasks and predict the performance of a transformer model in these tasks. This confirms the validity
of our theories and explanations, and highlights the insights provided by our study.

6 CONCLUSION

This paper studies the self-attention mechanism via a random walk and a deterministic walk, where
we consider a transformer with a single self-attention layer. It can be demonstrated that the self-
attention layer can learn random walks well by effectively selecting the correct parent token and
obtaining the optimal next-token prediction accuracy. However, when learning the simpler deter-
ministic task, the self-attention layer fails to select any token; instead, the self-attention layer assigns
the same attention score to all the tokens. As a result, the trained transformer shows no improvement
over a random guess. We thus discover that multiple informative tokens may hinder the performance
of the self-attention mechanism by failing to select any specific token.

This work performs two specific cases studies on learning random and deterministic walks with
one-layer transformers. While the conclusions of these case studies provide valuable insights, it is
important to extend the results and study the performance of deeper transformer architectures, which
may require more advanced theoretical tools. Moreover, extending the finding to more complicated
learning tasks, such as random sequences generated by Bayesian networks, is also an important
future work direction.

10
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A  ADDITIONAL RELATED WORK

In this section, we give an overview of some additional related works.

Next-token prediction. [Thrampoulidis| (2024) explores the implicit bias of next-token prediction
employing a related SVM formulation. |Lu et al. demonstrates that transformers fail to solve
the Partially Observable Markov Decision Processes problem (POMDP) even with sufficient data.
observes a phenomenon of next-token prediction in LLM that each layer contributes
equally to enhancing the prediction accuracy. studies the SGD training dynamics
of a transformer with one self-attention layer and one decoder layer for next-token prediction, re-
stricted to some specific assumptions like no positional encoding, long input sequences, and the fact
that the decoder layer learns faster than the self-attention layer.

Training dynamics of transformers. Mahankali et al.| (2023)); [Zhang et al.| (2024) investigate the
training dynamics of in-context learning in transformers with a single self-attention layer trained

through gradient flow on linear regression tasks. [Huang et al.| (2024)) solves in-context linear regres-
sion with the orthogonal input data by gradient descent on a single softmax attention layer.
(2022) demonstrates that the position-position block of a single attention layer in a vision trans-
former can encode spatial structure by dealing with a binary classification task. [T1ian et al.| (2023b))
delves into the training process of transformers with multi-layers by analyzing the dynamics of the
MLP layers. Bietti et al.[ (2024) analyzes a synthetic in-context learning task and emphasizes the sig-
nificance of weight matrices as associative memories. shows incremental learning
dynamics in transformers with diagonal attention matrices.

B INFORMAL PROOF SKETCHES OF THE MAIN RESULTS

In this section, we discuss the training dynamics of the transformer model in learning Task [I] and
Task [2| These characterizations of training dynamics also serve as informal proof sketches of The-
orems [3.1] and 3-2] The proofs follow our discussion in Section [5] about the fact that in Task [T}
the ‘direct parent’ of y is more ‘informative’ than the other tokens. On the other hand, in Task [2]
for deterministic walks, all tokens are perfectly and equally informative, but their average is not
informative at all.

Training dynamics in learning random walks. We consider the training procedure of a one-layer
transformer in learning Task [T} Recall that we train the transformer model with gradient descent
starting from zero initialization. We can characterize the first three gradient steps as follows:

Step 1. After the first gradient descent step, it can be shown that V(1) is a symmetric matrix whose
largest entries appear exactly on the locations of the non-zero entries of IT; (see Lemma[D.2]
and Lemmaﬁin the appendix). W (1) is still a zero matrix due to the fact that V(9 = 0.

Step 2. With the same analysis as in Step 1, we can also show that V() is a symmetric matrix
whose largest entries appear exactly on the locations of the non-zero entries of II,. More-
over, based on the result on V(1) it can be further shown that w (@ s updated so that
higher softmax weightings will be put upon «_; (see Lemma[D.6]in the appendix).

Step 3. The higher weighting on «_; by W2 further encourages V') to be updated towards
IT, in direction. And the result in Step 2 on V' (?) continues to encourage W ) to continue
placing a high weighting on 1 (see Lemma[D.8]in the appendix).

12
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From the three gradient descent steps listed above, it is clear that V' (*) will converge to the direction
of IIy, and W ®) will consistently place a high weighting on the most *informative’ token ay_1.
This is our key intuition for proving Theorem and in our formal proof, we use an induction to
characterize the whole training procedure.

Training dynamics in learning deterministic walks. We can also consider the training dynamics
in learning deterministic walks. Starting from zero initialization, we can easily verify the following
two initial gradient steps:

Step 1. Since the initial softmax Weightings on all tokens are the same, V() is essentially trained
based on the averaged token T = N T ZL 1 L. Importantly, by definition we see that
T is a constant vector that does not depend on the random initial location.

It can then be shown that all entries in V(1) are equal (see Lemma in the appendix).
W () s still a zero matrix due to the fact that V' (9) = 0.

Step 2. With the same analysis as Step 1, we can show that all entries in V' (?) are equal. Moreover,

due to the fact that the tokens are ‘equally informative’, it can be further shown that W (?)
is updated so that the softmax weightings on all tokens @1, . .., y_; remain equal.

The above two steps clearly match our discussion in Section [5] on the reason transformers fail to
learn the deterministic walk: the deterministic walk is such a task, that each individual token can
grant perfect prediction, but the average of the tokens provides no useful information. We can then
inductively show that throughout training, the value matrix V() is always proportional to the all-one
matrix, and the softmax weights on all tokens are always the same.

C GRADIENT DESCENT

Recall that the perturbed population loss is
L(0) = E[¢(0)] = E[~log(e, fo(X) +¢)] = E[-log(e, VXS(X Wzy) +€)].

We can compute the gradients as follows.
Lemma C.1. The gradients regarding V' and W are

Vv l(0) = TVX3+ eyZS:cl,

1 0 (Zi:_l Siwgz] — 00 Siwi 0L S‘fET) Vieypy

Vwl() = ————a -
W= vRs T o (25 spia] - LY, Spi DX Sia] ) Veypl

where S = S(ETWEN), and S; is the i-th element of S.

Proof of Lemma|C.1] For V', we have

Ty i(6) = 1 De] VXS
v e} fo(X) +e ov
1 TxT
T VXSte ©°
1 N-1
- - . )
T e VXS+te ey;&x"
For W, we have
1 de, VXS(X Wz
VWK(Q):_ - . €y ( ZL'N)
e, fo(X) + e oW

13



Under review as a conference paper at ICLR 2025

1 -
_ XS (X TWaEN)XTV e,@l
76;;‘/)(3_’_6 S'(X Wzn)X ' Viexy
1 i TixTyTe &7
N-1 N-1 N-1
—vxss | S e S gy SE 0 Vi)
EJVXS—FG Zi:l Sipi:B;r*Zi:l Szpzzlz_l Sl.’B;r vEN
L -[0 (i Smia] = Siwy - 30, Siw] >VTeyp}]
ey VXSte [0 (DL Sl — XL, Sipi- i, Siwl )V Te,pl
where we use the fact that S'(X'Way) = [diag(S) — SST] and diag(S) :=
S
S
O
Sn
To simplify the notation, we denote
1 0 (N Simx] - S Y Siwl )V e,pl
vwg(e) S ETE - N1 lT N N1 TZ T T
e, VXS+e [0 (3.1 Sipix; =), 1Sipi-> ,—, Siz; )V eypy
1 0 A
=~vxsTe b B .
and W = | Wit Wal e Wiy € REXE Wy € REXM, Wy, € RMXK, and Way €
=Wy, Wi 11 s 12 s 21 , a 22

RM*M By (C.1), we know that WS) =0xxx and WQ(? =0y xx forallt > 1.

By the definition of the transition matrix, we can write the transition matrices of Task[I] and Task 2]
as I, = %HO + %HJ and II, = I1,, where

0 1
10
m=| 1! 0

D TASK 1: RANDOM WALK

In this section, we consider the case of the random walk. We assume that the transition matrix is
IT = II,, which means y is generated by the transition probability IT{ ;. The following lemma
presents the result of the first iteration.

Lemma D.1. If IT = I1,, it holds that

N-1

v = 6]\7K Z Y~ and W = Ok 420y x (5 +21) -

=1

Proof of Lemma By Lemma|[C.I] we have
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N—-1

1 T\N—
= _eNK Z(Hl)
i=1
N—1

1 —i
T eNK z_; I

where the first equation is by the initialization of V(©) and W (), the second equation is by the
sampling method, the third equation is by E[z;x ] = £Ig fori € [N — 1] since @; is uniformly
distributed in E, and the last equation is by IT; = IT{ . Thus, by the update, we can get

VO = VO B[V i(0©))

Since V(@ = 0x « x and WO = 05 ar)x (54 11), we can get E[V i £(0)] = 0 ar)x (kc410)-
Thus,
W(l) = W(O) — nE[wa(g(O))} = 0(K+M)><(K+M)~
O

In Lemma Lemma and Lemma all the index p of matrices and vectors represent p/,
where p = p’ (mod K) and 1 < p’ < K. And, these three lemmas provide some properties of
V),

Lemma D.2. If IT = IT;, then it holds that V(1) is a symmetric matrix and [V(l)]i’j = [V(l)}i,gi,j.

Proof of Lemma|[D.2] We use induction to prove that for any R € N and i,j € [K], II¥ is a
symmetric matrix and [IIf¥]; ; = [II{]; 2;_;. The results are obvious at R = 1. Suppose that the

results hold for HR We aim to prove the results hold for HR“. Since HR+1 HR IT;, we have
[T, = ([HR} ij—1+ M j01) = 5 (i1 + [T§]i11,5). Thus, we can get that

1
[+, = 5 (i + (17 41)
1
= 5 (i + [0 )
= [,
and
1
[HR_H} i = b} ( HR ij—-171 Hl] 7J+1)
1
=3 ([ I 21 + [TI5);, 2i—j—1)
= [ 2,
which completes the induction. By Lemma L we know V(1) = N ZN ! HN ‘. Thus, V(1)
also has those properties. O

Lemma D.3. If IT = II; and K is even, then [V (V] 5 = [|[V V|| s

Proof of Lemma|D.3] By Lemma|D.2] we know that there are only K/2 + 1 different values in IT}
for all t € N. Denote that a§t) = [IT{]4,j41 for j € {0,1,..., K/2}. We are going to prove that
ag%_l) + ag%) > a§-2k_1) + ag»%) fork € Nand j € {0,1,..., K/2}. We use induction to prove
that for k£ € N,

a1V >l D forly < lyand el = 0forl € N;

agk) < a§2k—1) and agf)l — 0forl € N.
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When k = 1, we have
a{") = 0.5, and a{") = 0 for j # 1;
a(() = 0.5, a§2) = 0.25, and a§» ) =0 for j £0,2.

We can easily check that the results hold for k¥ = 1. Suppose that the results hold for & = k. Then,
we consider the condition of k = k&’ + 1. First, we can get that fort € Nand j € {0,1,..., K/2},

1
1
aftD = [ = 5 ([Hﬁ]l,j + [ jy2) = B} ( 2+ a§?_1> 7

where a( ) agt) and a(;,)/Q 1= a(;()/2 ,- Then, we can getthatfor¢ € Nand j € {0,1,...,K/2},
1 1
t+42 t+1 t+1 t+1 t+1 t+1
a§ ):7<( )+ 51)> <( )+2a( )+a§ 2)>, D.1)

¢ t 0t t t ¢
where a'") =l o'} = (", §<)/2+1 = a(K)/2 ,»and ag()/2+2 = ag()/Q ,- Thus, by (D-T)), we have

QCF D _ (2k'—1) (K —1) | (2K'-1)\ _
Qg =1 ( Ay o '+ 2ay +ag o ) =0,
(2k'+2) (2k") @K) | (2K)) _
Ggy_y 4(2z3+2211+ 2l+1)_0'
And, we have

L2E+D) er+1) 1/ @1 (2k'—1) | (2K'—1)
(g1 = — G941 —1(253 + 209", " +agy, )

1/ -y (2k'—1) | (2K'—1)
_Z(a21—1 +2a51, T Fayig )

1/ @r—1) | @r-1) (2K—1)  (2k'—1)
1 ( Qg3 ~ Tag_y " — Gy " Ty )
0

where the inequality is by the induction and a(t)1 = agt), a(I?/QH = ag?/z 1> agé)/zﬁ = a%)/z 9

This implies that aélk +1) >a (% +1) for I1 < ly. Then, we also have

a(2k +2) _ = ( (2k'+1) + 2a(2k/+1)> < a§2k/+1).

21 Gg—1 2041
Therefore, we prove that the results hold at &k = k' + 1, which completes the proof. O
Lemma D.4. If IT = II;, then it holds that for all ¢t € N, [V®] = [V®]  and

VO, = (VO]

o o for i, iy, 49, k € N. Further, V() is a symmetric matrix.
11,7,1—]6 Zz,lz—k}

Proof of Lemma We use induction to prove the results. By Lemma[D.2] we can easily check
that V(1) has the properties stated in Lemma Suppose that [V] = [V®] ~ and

i,i+k
\ad = [Vv®W].  _ fori,iy, iz, k € N. For VI+1, we first have

i2,i2
t
yz () T
e, V® Z]\; 1S§t T +e

i1,42—k

Vi) — v RV (0D)] =V 4 E

Denote that TI(y) = Zf:_ol e,_je) . . which has the property that II(y) "e; = ez,_;. By the

sampling method, we know that
d
(wh L2,..., LN—-1, ey) = (H(Z/)$1» H(@/)CUQ» sy H(y)walv ey) ) (D2)
(1, T2,...,EN_1,€y) 4 (Héwl, Hémg, ce Héa:N_l,Héey) forl € N. (D.3)

Thus, we can get

y+Jj

ele, Y 1 Splejei

T (t+1) _ (t)
V ei_p=¢€; v ei_r+nk
e, VO3 1].\,[:11 Sff)mi/ +e€
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SN 1S(tm i
lej VI DDy 118(t Tyt €
[ Zf/v;fsff ()Tei—k
e] VOTI(y >25Y S+ e
- ZN 15(93; €itk Ay =i
eTV(t)ZN 'SP ay + € y—z}}

e; eyz S/t) T/e,-+k
le, VO SVohs )azl +e

= e;'—V(t)el-,;€ + nE

Ny = i}]

= e;rV(t)ei,k +nE

Hy = i}]

=e/ Ve +1E

=e/ Ve +1E

— e;rV(t+1)ei+k’
where the third equation is by and the fourth equation is by induction. And, we can get
e“eyz (t)m € —k
eTV(t Z S(t)mz/ +€

THLz ey qu\/l ) Sz(’f) T(HT)ZTilei —k
e (T1] )= VOITE o 0 sV, 4 e
N—1 o(t
ele, Y01 8w e

e, VO s ):c, +e

e, Vitle; = eiTlV(t)eil_k +nE

= eZV(t)eil_k + nE

= ei—ZV(t)eiQ,k + nE

_ T t+1
- eigv( )eiz—kv

where the second equation is by and the third equation is by induction. Therefore, we prove
that the results hold for V' (**1) which completes the proof. Further, we can get [V()]; ;1) =
[V®); ik = [V®)];11.i, which implies that V() is symmetric. O

The following two lemmas provide the properties of the weights for the second iteration.
Lemma D.5. If IT = II;, then it holds that |[V®) || ax < L + 2eK2.

Proof of Lemma|D.53] First, we have

ey ZN 1 S(l) T

VA vl _gE[Vye(0) = v 4R
ey VO ST s e, + e

Thus,
1 N-—1 T
HV(2)Hmax< V(l)‘ E NeyDiz1 T
- max 1 eTV(l) Z =1 :EZ +e max
N-1
<[Vl + wrmm ¥ L@
max N mlniyj[v(l)]i,j N =1 max
n N -1
S HN [ + :
ENK Z o %mini,j |: e ZN 1HN 1:|- - N
2,3
< —= 4 2¢K2,
- eK tee

where the second inequality is by e, Tvg, > mini7j[V(l)]i7j, and the last inequality is by
Lemma[E4] O

Lemma D.6. If IT = II; and K is even, it holds that S’ ; > S exp(Q(N)) for j # N — 1.
Further, S | > 1 — exp(—Q(N)) and S{*) < exp(—Q(N)) for j # N — 1.
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Proof of Lemma|D.6| By Lemma|C.I] we have

E[A(l)]
r N-1N-1
1 1) o1
S ORI 3p 3E LN
L \i=1 i1=1145=1
- ; N— . N—1N-1 N-1
_ T N—i’ T N—i’ T
S [T DIET SRR 35 IEES ot P
L =1 =1 i1=113=1 /=1
r N—-1 N-1
- F n ) TZHNfi/(HT)N—i:EW T
=S Nk Li; 1 1 i PN
L i=1 i'=1

—1N-1 N—-1
_El Y S el ZHMHI)N—%-pL]

’Ll 17,2 1 /=1

n N—1N-1
_ TN —ig
2| 3 3 sl

i=1 i'=

1
l N—-1N-1N-1

n T 2N —i' +ig— 211
CNBK w"l Zln pN

n N—-1N-1 0 N-1N-1N-1 o .
- <6N2K2 Do D w1, NS SN (v “2211)1}{) Prs

i=1 /=1 i1=112=14i'=1

where the second equation is by Lemma [D.1] the third equatlon is by the sampling method, the
fourth equation is by IT; = II], and the fifth equation is by the fact that all the x; is uniformly

distributed in E for i € [N — 1]. Then, Wl(z) W1(2) — NE[VwL(0™M)]12 o< 1xp},. Thus, We
also have

E[B(l)]

r/N—1 N N-1
_E <Z SUpi] (VW) Te, =Y sVpi - Y Sfl)m?(V(”)Tey> Py

=1 =1 i=1

r n N-—1 N—-1 , n N N-—1 N—1 .
- (ENQK 2 piwl 3 T ey~ e pic D wl ) I ey>p}
N

. N-1N-1 i/ ‘ N-1N-1
=E l(eNQK Z Z pix] TN~ ~ig, GNSK Zp’ Z Z x] T2V~ i'—i ) Py

i=1 /=1 i=1 /=1

g N o . Ne1N—1 N
- <€N2K2 Z Z pitr(TY 0 77) — N2 Zpi : Z Z tr(TN 1 Z)) PN,

i=1 /=1 ] i=1

where the second equation is by Lemma [D.1] the third equatlon is by the sampling method, the
fourth equation is by II; = II;, and the fifth equation is by the fact that all the x; is uniformly

distributed in E for i € [N — 1]. Since {XW@)xN}N = pL W2 py and {XW(Q)IEN} =
J

TWl(Q)pN +p; WQ(Q)pN forj € {1,2,..., N — 1}, we can obtain that

KW
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= pA Wi pn
- P S B - 160)
{pNeJVXS—i—e Py
U 1) = o)
_ I o 1) T . 1 T ()\T T
=E VXS ( Sy'papN ;S x] (V) ey> prN]
<0,

where the third equation is by p;-'—pj =0fori # j. Andfor j € {1,2,..., N — 2}, we can get

(XW@ay| [ XWay]
N—-1 j

=2} WPy + P Wi oy — 2] Wby — p] Wi by

(3)
=pa 1W(22)p1v PTW(z DN

(14) n 1 T T 1
- LJVU)XS(D Te N (pN—le‘le‘lv( e, —p/pja] V! 6y> PNPN

(#44) n (P]—l\—[pN)Q .
= : B[z VWe, - 2] Vie,]
~ max; [V, +€ N Tn-1 x; ey
(iv) n n(pr )2 N—-1 N—1
- NEN N N—i+1 T 2N—i—j
= . ]E H B _ H

max; j[V];;+e  eN2K TN-1 ; 1 TN—1 — T 2 ]
@) n n(pNpN)? Nl N-1
= NEN N+1-i AN —i—j
B ' IT; — ) tr(IT

max; ;[VV];; +e  eN2K? ; ( ) Z r(I )]
w U n(PyPN)° ) N
= : I12) — te(TTV
- maxivj[V(l)]i7j+€ eN2K?2 [ r( r( ]
) U n(phpn)® (K
T g (N—=1)+e eN2K? 2

nM?

> Q(N),

where () is by Wl(g) o 1py, (i7) is by p; pyr = 0 for i # 4', (idd) is by Lemmaand the fact
that eJV(1 XSW < max; ;[VW], 5, (iv) is by Lemmaand the sampling method, (v) is by
the fact that all the @; is uniformly distributed in E for i € [N —1], (vi) is by Lemmal|F.3] and (vii) is
by Lemma [F.3| Therefore, we have 81(311/83(2) = exp ([XVW(Q)@V} vt [XVW(2)5N] ) >
- j
exp(Q(N)) for j # N — 1. Further,
SPi=1- Y 8P >1— (N —1)exp(—QN))SY
J#EN-1
which implies that
S@ S 1 i N-1

N=1= 14 (N —1)exp(-Q(N)) exp(Q(N))+ N -1

=1—exp(—Q(N)).
Then, we have SJ@) <1- 51(\?)—1 < exp(—Q(N)) forj #N — 1. O

Then, we can get the bounds of V().
Lemma D.7. If IT = II, then it holds for ¢ > 3 that

SO s M
winV:=is 2 5

ANV e < —L 4 (£ —2) - 2eK2.
and VO e < 22 4+ (1 2) 26
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Proof of Lemma|D.7] First, we have

min[V®]; ; > min[V Y], ;

i,J i,J
" N-1
. N—i/
> min E 11
T ij |eNK 4 !
i'=1 i,j

v

N—-1
n 3 1
NK 2~ \K ~ \it1
N
n N-1 n . .
_ 2 / _ /
= NK K eNKiZ:; (Vi + 1= Vi)

n
>
~ 2eK?’

where the third inequality is by Lemma[F.4] and the last inequality is by N' > 4 K. Then, we can get
that

ney iy el
ey V-1 SV Si(t_l):ci +e

N-1 o(t—1
UHGZIZZ’:I S} )miT

7

IVl < IV [lmax +

max

max

<NVE D inax + E

min {e;"/(t—l) SN Si(tfl)wi} ]
<V |y + ——

< || max + min VT,

< ||V(t_1)Hmax + 2eK”

IV imax + (£ — 3) - 2¢ K2

Ui 2
< — t—2) 2eK
eK+( ) - 2eK7,

IN

where the third inequality is by e; Va; > min; ;[V]; ;, and the last inequality is by Lemma
]

Next, we can analyze the training dynamics over multiple iterations.

Lemma D.8. Assume that IT = II; and K is an even integer. For 2 < ¢ < T, it holds that Sj(é)_l >
1 — exp(—Q(N)) and V() = BOTI; + V@ where H‘Aﬂﬂ < +®. Here, B > /nt — 2L
and v < 2L 4 2(¢ — 1)eK 2N exp(—Q(N)).

Proof of Lemma|D.8] We use induction to prove the results that
2
®) > _ N
B = Vit — =,
2
7 < =14 2(t = 1)eKN exp(—Q(N)),
€

[X’W%‘N} - [X’W(%NL > Q(N),

N—-1
S > 1— exp(—Q(N)).

By Lemma [D.5]and Lemma [D.6] it can be easily checked that the results hold for ¢ = 2. Suppose
that the results hold for V') and S(*). We aim to prove that the results hold for ¢ + 1.

For V(1) we can get

VD — v O _ E[vy (0]
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). T
_ V(t) + 77E y Z Sz :;cz
eTV(t) Z x;+ €
=v® L E 775N 1€y$; 1 E ney ZfiIQ Si(t)x;r
e, VO S, + e e VO Y s + ¢
Then, we have
. t
E USJ(V)_leyx]T\ffl L . [E [e T H
i > N—1
e;;rV(t) Zij\;ll Si(t):m +e€ 1,2 HV(t) [[max + € ! e
N[l — exp(—Q(N))] ) 1
— ﬂ(t) + fy(t) + € 2
- n
“ 480 + L 1 2eK? 4 2te 2N exp(—Q(N)) + €]

n
>_
BEICERS-9)

where the first inequality is by e;V(t)azi < [V ® || max. the second inequality is by induction, and
the third inequality is by the assumption of €. And, we have

E neéy ZN ? S(t
e, V( t)z (t)azlJre

(D.4)

< nexp(=9
- man[V( ) i

i

< 2eK?exp(—Q(N)) - N, (D.5)

max

where the first inequality is by induction and e; v, > min; ; [V(t)]L ;j» and the second inequality
is by Lemma|D.7} Thus, we can get that

t
775](\7) 1ey$—1\r/ 1

(t+1) > g 4 9
B >p TV EN 1 )wﬂre

E

1,2
n
4
26 + L
2
e l L

2/nt

2y
2V R T
2n
K

where the second inequality is by (D.4), and the third inequality is by induction and the fact that
T+ 4,7 is monotonically increasing for x> % — =L And,

20+ 2
neyz t) x]
e, V® Zf\ill Si(t)a:i +e
< AW 4 2eK2N exp(—Q(N))

> B+

nt+1)—

Hi+D) < A0 4 ||g

max

2
< eTZ + 2teK2N exp(—Q(N)),

where the second inequality is by (D.3)), and the third inequality is by induction.

Next, we consider S+, Recall that
AWM

W(t""l) W(t) E
12 0 e, VXS +e

B®
] and WY = wl) + E[ }

e, VXS +e
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where
AWM = (Z S(t):c :c V(t) Nz:
=1 1=1
N-1 N
B® = (Z S pix; (V)T Z

i=1

N—
i)

V(t) ) p;'\—,.

=1 -1
We also have [fW(t)iN] = p Wpy and {XW(t)a:N] = $TW1(2)p +pTW( 'py for
je{1,2,...,N — 1}. Then, for j = N, we have

(t)

MZ

TB(t)pN
e, V® ZN ! t)scl +e
Zz’l\ill S7i(t)wz—'rv(t)ey
e, V©® DORTE SV, + e

PAWi T py = ph W)

py +nE

= pyWy)py — nMSYE

< PNW2(2 DN-
Forj € {1,2,...,N — 2}, we have
ijA(t)pN
e, V® SV SV, + e
] Ve, — 212 1 S(t) Tvie,
e, V® Zf\ill Si(t)wi +e

T () A7s® IV [[imax
<1: W12p +n S 7m1n”[v()]”

] Wi py = &) W py +1E

=] Wpy + vV MS\E [

< 2] W)pn + 1V M exp(—Q(N)) <2K + 4(t—f7)ezK4) |
where the first inequality is by ] Va1 = [V ax, and the second inequality is by induc-
tion and Lemma[D.7} And,
p/ BYpy
e;v(t) Zf\:l Sz'(t)%' +€
2/ Ve, — V'8 TV@)ey}

P, Wi py = p] Widpy +1E

e, V©® SN S(t)wl +e

IV lmax
mini,j [V(t)}iﬂ'

=p Wy py +1MSE

< p] Wiy +nMS"

4t —2)e? K4
< p] Wiy py + M exp(—Q(N)) (2K + ()6> :

n

where the first inequality is by e; V®xyn_ 1 = |[V® | ax and the second inequality is by induc-
tion and Lemma|D.7] For j = N — 1, we have

m]Tv 1A(t)pN
eTV (t) ZN 1S(t).’137;—|-€
xl, Ve, - SN 1S(t) Tvite ]

1
Ty 1VV1(H )pN = fBJTV_lwg)PN +nE

io=1

e, V©® SV ):cl +e€
N=2 o(t)
> S( zl Ve,

7,21

eTV(t ZN ! Si(t)a:,; + €

=2 WS py + 0V MSY |E [

>zl W py + nVME l

22



Under review as a conference paper at ICLR 2025

(t) (t)
: Yol ]
Z:cN 1W2pN mln”[V( )]7,]

4(t — 2)e2 K4
>zl Wy — nVMN exp(—Q(N)) <2K + (77)6> ,

where the second inequality is by eTV(t):c N-1 = [|[V®||;max, and the third inequality is by induc-
tion and Lemma[D.7] And,

py_1BYpy
e, V©® ZN ! S(t)aci +e
zy Ve, - Zﬁzl Sz‘(t)w;rv(t)ey]
e, V©® SV SV, +e
_ ZN—Q 31(75) Tvie,
eTV(t) SV SV, +e

SN 2SNV fina
min; ; [V( )i s

1
PN W py = D Widpn +1E

= ph_ Widpn +MSY |E

> ph_ Wiy pn + nME

> ph_ Wit pn — M
T () 4(t — 2)e2 K4
> pn_1Way' PN — nMN exp(=Q(N)) | 2K + — )

where the second inequality is by e?;rV(t)a:N,l = ||V®|| max. and the third inequality is by induc-
tion and Lemma|D.7] Therefore, we can get that for j # N — 1,

[XVW(HU:EN} _ [X:W(Hl)i]v} 4
j

1 1 1 1
=z} W4 Vpy + o Wiy oy — 2] WiV py — p] Wi py

N-1

> 33;\—771W1(§)PN +P; 1W(2)pN -, W1(2)p N — D; sz PN
4(t — 2)e2 K+
— 4nM N exp(—Q(N)) <2K + H)
n
= [fW(t)iN}
> Q(N),

- [fW(t)iNL — exp(—Q(N))

where the last inequality is by induction. Thus, Sj(\fﬂ) /S;Hl) > exp((N)) for j # N — 1, which

implies that S](\fﬂ) > 1 — exp(—Q(N)). Therefore, we prove that the results hold for ¢ 4+ 1, which
completes the proof. O

The next two lemmas show the convergence rates of V() /||V(T)|| - and fyr (X)/|| for (X)]|2.
Lemma D.9. Assume that IT = II; and K is an even integer. For Q(ne 2K ~2) < T < T*, it

holds that
e - el <o (7))
IVOlr T ey~ \VT
Proof of Lemma By Lemma|[D.8] we can get that
H V(D 119 _ AOIL + V™ Iy
VOe (0] el ||V(T)HF (RRSYIF
T) 1 v
H( @) )Hl iza
VOl e IVEOle|
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For the first part, we have

| g
(VD p  [TLr

- ‘ BT, + VO

SO, |

BOIL || + |V D[
IV ©Ol|r

BT 4 [V 5
- K~
- @5@) + K~(T)
(1) 21 4 2TeK3 N exp(—Q(N))

= @ (VT — 6272) + 2?’7 + 2T eK3N exp(—Q(N))

1
<o(—),
<o (%)
where (7) is by ||II1||r = V2K /2, and (i) is by Lemma- For the second part, we have

—~
.
=

VD p
|8 + V)| p
VO r
T B | + VO 5
(2 K~
- @5@) + K~

Z) % +2TeK3N exp(—Q(N))
T VK (T — 20) 4 21 4 9T K3N exp(—Q(N))

1
<o(—),
<o (%)
where (7) is by ||II1||F = V2K /2, and (i) is by Lemma- Therefore, we can obtain that

1
)
F VT
Lemma D.10. Assume that IT = II; and K is an even integer. For Q(ne 2K ~2) < T < T*, it

holds that
1
co(h)
2 vT

Proof of Lemma|D.10} The output with § = 0T is fyr) (X) = V(T)XS(/)ZTW(T%N) _
v Zf\:ll Si(T)a:i. Then, we can get that

V()
VoI, =

—~

H v(T) H1T
IVO|p T |F

T
- zn_1

H foer (X
I

f9<T) H2

foer (X
—z
H||f9<T> X
(6<T>H1 n ‘7<T)) SN sy,
= —Mzy_
[V s sPe e
2 2
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BDSy,
v w7

-1 HlmN—l

2 2
+ B YN P8 + VO N S
TS aren
= 2 2
For the first part, we have
T
BOSy, 1|z
) N1 o(T) 1TN-1
Vi doim1 S
2 2
(T) (T)
={{1- N_1 Tﬂ SN_1~ N1 o(T Mzy-_
rom sl o sl )

A exp(—a(V)]
S <1 R0 4 /R Ty ,

3 ( (VT = 22) [1 - exp(—Q(N)] ) V2
<O

b (VT — 22) + VK (2% + 2TeK2N exp(—QU(N))) | 2

VE (2L 4 2TeK2N exp(—Q(N)))
VNT + 2TeK2N exp(—Q(N))

ol )

where the first inequality is by Lemma|D.8] the second inequality is by Lemma[D.8|and || TT; x|, =
v/2/2, and the third inequality is by Lemma For the second part, we have

B N 28 a + VO TN s,
E

2 2
[ 2 5w,

sy s
s
exp(=QN)) [V D || inax + VEF™®)
V2 (1)

< exp(—=QN)) (F + 2TeK?) + VK (f—g + 2TeK?N exp(—Q(N)))

(VT = 3)
1

<O|—=

<o (%)
where the second inequality is by Lemmaand |ITT,2;||2 = v/2/2, and the third inequality is by
Lemma|[D.8] Therefore, we can obtain that

1
o)
2 VT

2

IN

2

forr) (X)

EELASER iaP AN, § (LIPS
[for (X2~ 17N

E DETERMINISTIC WALK

In this section, we consider the case of the deterministic walk. We assume that the transition matrix
is IT = II,. The following lemma shows the results of the first iteration.
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Lemma E.1. If IT = I, then it holds that
v =

NK (K+M)x (K+M)-

Proof of Lemma By LemmalC.1] we have

E[Vye(0©)] = ——~ 3 Ele,z]]

where the first equation is by the initialization of V'(°) and W (), the second equation is by the
sampling method, the third equation is by E[z;z ] = £Ix fori € [N — 1] since @; is uniformly
distributed in E, and the last equation is by Lemma[F2] Thus, by the update, we can get

v =y _ nE[VVE(H(O))] = WIKXK'

Since V(O = 0 x and W = 0 g4 11 (11 21)> We can get E[Vw £(0)] = 0z ar)x (54 M)-
Thus,

WO = WO — pE[Vwl(0)] = 0k ar)x (5101)-

The following lemma states the results of the second iteration.
Lemma E.2. If IT = I, then it holds that

@ _ (_nr nerN 1
v <€NK * m«?K +eN?K ) RO

w® — n*r? T
12 = L ONK + ENSK EPN

- 2
w _ nr . nr T
22 nriNK + e2N3K ; p nriN + 62N3pN Py

Proof of Lemma By Lemma|C.1] we have

1
MWy = _ . 1, T
E[Vyl(6'))] = -E e, VIOXSW ye eyESz mz‘|
N-1
1
= Eley; ]
+6N Pt
N-1
_ E[( sz
T2t eN? +e2N2 ; ; |
2K 4+ e2N2K
__$1
2K 4+ 2N2K KRG
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where the second equation is by Lemma@ the third equatlon is by the sampling method, the fourth
equation is by E[z;x; | = I fori € [N — 1] since @; is uniformly distributed in E, and the last
equation is by Lemma[F2] Thus we can get

VE =vl —gE[Vy(0W)]

nr 1 n nerN
eNK KT 02K+ eN2K

1kxk.
By Lemma|C.1} we have

r/N-—1 —1N-1
E[AV] =E (Z SP el (VIV)T Z S sVsVa;,a T(V“>>Tey> Py
L =1

’Ll 122 1

B nr N-1 N—-1N-1
_ o T T
- <€N2K D i L - N3K 22 w“w”lK) o

=1 11=11i3=1

r nr N-—1 —1N-1
=E <6N2K, Ti— eN3KZ w“)”N]

i=1 i1=11i3=1

2
nr nre(N —1)
- <6N2K1K T TNSK LK) PN
777"
= NBKleN,

where the second equation is by Lemma[E.T] and the fourth equation is by the fact that all the x; is
uniformly distributed in E. We also have

N N-1
E[B (Z SVpix] (V) Te, = SMpi- > Sfl)wiT(V(”)Tey> Py
=1 1=1

[( NQKZI% w1k — N3szl Z$T1K> PN]
g N
- <€N2K 2 pi- N3K Z“)

i=1

- <6N3K 2P eN3pN> Py

where the second equation is by Lemmal[E.T} Thus, we can get that

W1(22) = Wl(Ql) - W]E[wa(e(l))]u

_ " CAW
_E[eJV(l)XS(l)—ke A ]

2
n nr T
= . 1
N PN
- 77 r? pT
nr2NK + e2N3K L,
and
W(z) Wz( — nE[Vw (™M) 22
n (1)
leTV(l)XS( B ]
_ n . T
- <6N3szz 3pN>pN
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nr T
<77r2NK +e2N3K Z pi— nriN + 62N3PN> Py-

Next, we can analyze the gradient descent dynamics over multiple iterations.
Lemma E.3. If IT = II,, then for any ¢ > 0 and any sequence of learning rates {7, }, it holds that

V(t) X ]-K><Ka and Sl(t) = Sét) == 81(5)71

Proof of Lemma|E.3] We use induction to prove that for some scalar agt),agt),ag),af),

it holds that for t > 20 VO = oW1 W = oP1xpl, and W) =

(a;) Z —1 pz — afl ) p N) Pr - By Lemma L we know that the hypothesis holds for ¢ = 2. Sup-

pose that the hypothesis holds for ¢ = ¢'. We aim to prove that the hypothesis holds for ¢t = ¢’ + 1.
We have

W(z )P + D W(z )PN
W1(2 )P + P;W2(2 )PN
XWzy = :
w—l\rf—lwl(g)pN +pN—1W2(§/)PN
L p]TVW2(; )pN
[ o plpy +of p/ plepN
0‘5 )prN + Oé;(), )Pz P2PAPN
= . (E.1)
ag )pr + Oég /)PN \PN-1PNDN
I ol (pkpw)?
Since p{p1 = paps = -+ = pypn. we have [XWEy])y = [XWEEy], = -+ =
[EW“/)%N}N,L Thus, we can get that SY = 82“ ) ... S(t ) = s(*"). Then, we have

’ 1 _ ’
EN = — . E () T
]E[va(e )] — ]E le;v(t/) ):S(t,) + € ey : Sl w’L ‘|

1
=-FE . “ey * Jx]
[agt )S(t/)(N Z

—|— €
(t') N-—-1
= - Ele,; ]
sV N 1) + € &
S(t/) N—-1

of s (N = 1) + ¢ =

st Py T\N
= " (t’) (HQ) o
a; 'sWI(N-1)K +eK =
sty

7 1K K
sEN 1K + ek

where the second equation is by the induction, the fourth equation is by the sampling method,
the fifth uation is by the fact that «; is uniformly distributed in E, and the last equation is by

Lemma F.2| Thus, we can get V(#'+1) = (') _ (tl)E[va(Q(t,))] x 1« i We also have

—1N-1
(ZS xix; V(t) ey —ZZS”S T T ZZ(V(t)) > 1

7,1 122 1

[A(t)
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N 1IN-1
—F ( (t") ( t)zwalK (t) Zm“w 1K> L
11=112=1
1N-1
—F ( () o( t)zx (t)s(t 22%1)?1\’]
11=115=1
o SN -1 eGP 12 Y o
= K 1K_ K ]-K pNa

where the second equation is by the induction, and the fourth equation is by the fact that all the x;
is uniformly distributed in E. And,

N-1 N N-1
E[B(t/)] =E [(Z S(t pix (V(t )) e, — ZSi(t )pi . Z Sl_(t )w?(V(t’))Tey> p}
i=1 i=1

i=1

, N—-1 , N N—-1
=" l(““(” TTSTPRCIRGNS W 1K> Py

=1 =1 =1

( [ Zp RC ))2(N—1)Zpi> X

where the second equation is by the induction. Therefore, we can get

Wit = W) B[V (09)))12
€

Jr
eN?2
, )t (N — 1 ) (@2 (N — 1)2
— 1T n ay “s( ) o (sY)%( ) Lol
ay 1gpn + %4_6( K K KPN

and

Was TV = W) — nE[Vw £(0))]2
N—-1
=" pi—apn | P} + ——E[B")]
j T+ e
=1 eN?2
’ N_l /
- (< 'S bl )pN) ok

i=1

N
+m~2+6< ”Zl’—a (s)2(N 1)21%)1)%

eN?
<(t+1)2pz af Vp )p}

Therefore, by induction, we can conclude that for all ¢ > 2, V() = alt)l KxK> W(é) = ay g KPN>

and W2(2) = (ag)zilillpi —ozfl)pN) py-  Similar to (EI), we have [XW(t):cN]l =
[(XWOZy]y = = [XWOZy]y_1, which implies that S = S{ = ... = S O

F AUXILIARY LEMMAS

In this section, we present some auxiliary lemmas. The following lemma provides the bound of
some combinatorial numbers.
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Lemma F.1. For all n € N, it holds that
<2n) < 22n and (2n+ 1) < 22n+l
n 2n + 1 n V2n+3
Proof of Lemma For n € N, we have
2n an  (2n—1)N
—o92n \ET )%
n (2n)!!

W o1 2k—1
=211

k=1
V2 —1V2k—1
< 22n .
1};[1 V2k —1v2k +1
V2 —1
_ 22n
U o
2277,
V41
We also have
n+1Y\ _ g2n+1 | (2n+ 1!
n (2n +2)!

n+1
:22n+1'H 2k —1

ok
ey "lif V2k —1V2k — 1

ek —Tvak+ 1

n+1 \/7

2k —1
— 221’L+1 X H
k=1

L k1
22n+1
T V2n+3

The following lemma states the properties of I1j.
Lemma F.2. TI} = I, TIoIT] = I, and Y, TIE = Txx .

Proof of Lemma|F2] In this proof, the index ¢ larger than K represents i — K. For Iy, only
[[Io];+1,; = 1 for i € [K] and other elements are 0. We can get that for IIf, only [TI§]; 1 = 1
for i € [K] and other elements are 0. By this observation, we can derive that ITX = Iy and

Zle I} = 1 k. Also, we have TT] = TIX ™!, so we can get TI TT] = IT = Ig. O

The following two lemmas show some properties of I1;.
Lemma F.3. Assume that R = rK + [ with r € N and [ € N. For the case that K is even and [ is
odd,

1 R
? tr(Hl ) = O
For the case that K is even and [ is odd,

1 9
—tr(TIF) < = )
7 ) < 2+ 7=

For the case that K is odd,
2

VR+1

1 1
gtr(ﬂf) <zt
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Proof of Lemma By Lemma|F.2] we know that

1, if P=rK withr € N;
K tr(lly) = {0, otherwise. E1D
Then, we can get
1 1
= () = (T + 1)) ™)
R
1 R\ r—ok
= ot (X (i)
k=0
R
1 R
=38 Z (k ik |2k—135 (F.2)
k=0

where the last equation is by (F.IJ.

When K is even and [ is odd, we can directly get that

1
It tr(I{) =
by (F2).
When K is even and [ is even, we can get
1
2o tr(TT) = (Tl + T13) )
R
1 R
_ 122k

2r
(@ 1 R
Y (o)
-1 — 2 1/2
1 2 R 1 2 R
< = =
- 2R K Z <s~g+u)+23K Z Z <s§+u)

s=r+lu=l/2—K/2+1

< + ,
K VvR+1
where (%) is by Lemma L (1) is by ZkRZO (},j) = 2%, and (iii) is by Lemma

When K is odd, [ is even and r is even, we can get

1 1
= (T = (T + 1))
R
1 R R—2k
= H
e (5 ()

©1ls( R
. 232(%1)
7‘/2 11/2+K-1 1/2

e X (W)ewe XY (W)

u=l/2 s=r/2+1u=l/2—K+1

| /\
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where (i) is by Lemma | (id) is by oo (5) = 2%, and (4ii) is by Lemma

When K is odd, [ is even and r is odd, we can get

1 1
e tr(TIy) = X 9k tr((Io + I ) )
R
1 R
_ TR—2*
e (3 (1))

0 1 ¢ R
2> ()
T 2R sK+4%) 2R

s=0

21RK K+ ] >+

T ( ! )
Z 1
+1)/24+1 sK+5

s—(r

w3)

(caec
(i) me X X

+

11 (r—1)/2—11/2+K—1 r /2
<
—2RK
s=0 u=l/2 s=(r+1)/2+1u=l/2—K+1
R
+2T R 1 Rl

(@) 1
\/R +2

where (i) is by Lemma L (id) is by oo (5) = 2% and Lemma

When K is odd, [ is odd and r is even, we can get

1 R 1 T\R
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R
_ 1 R R—2k
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@) 1 R
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r—1 (K+1)/2
11 R 1 R R
o, 3 3 ()t | (a) + (s

s=r/24+1 u=(K+1)/2— K+1
(1) 1 2
K VR+2
where (i) is by Lemma L (id) is by 1o (5) = 2% and Lemma

When K is odd, [ is odd and r is odd, we can get

1 1
?tT(H{%) = 5 or (Mo + IT5)")
R
_ 1 R\ reok
_K'thr<];)<k)Ho )

2 505 (e )
— 9R K41
2R & sK + £

) L1 (T'—l)/Q—I(K-‘rl)/i‘rK—l R
—2RK sK +u

s=0 u=(K+1)/2
11 ’“i (Ki%/ ? R\, 1(R
2R K sK +u 28R\ R/2
s=(r—1)/2+1u=(K+Il)/2—K+1
(Z) 1 . 1
K VR+1
where (7) is by Lemma (i) is by Z,Ij:o (}k?’) =2 and Lemma
Lemma F.4. Assume that R > K and K is even. For the case that R is even,
1], :Oforodd('—z');

2
[HR]ZJ*K \/T

for even (j — 1).

For the case that R is even,
2

2
o > - - ——
[ 1]1,]—K /R+1

[Hf]ij = 0 foreven (j — i).

for odd (j — 7);

Proof of Lemma First, we can get that

[y, o [0+ 119) 7], .

R
1 R—2k
1 ( o
k=0

R

= or Z( >1{K|R—2k—]+z}

Next, we consider two cases and assume that R = rK + [. We can easily observe that

N)

4,9

K/2—1

§<5)> > (3}_22) for s < R/2;
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K/2—1
K (R R
- > > .
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33

(F.3)

(F4)

(F5)



Under review as a conference paper at ICLR 2025

Condition 1: R is even. We can directly get by (F3) that [ITf], ;= 0forodd (j—i). When (j —1)
is even, we have

R
o], = QLR > (5) {K|R -2k — j +1i}

=0
R
1 2 R R
> __ 2 _
2 are 2 (1) 2 ()
S22
~“ K JVR+1

where the first inequality is by and (F.5), and the second inequality is by Lemma[F.1]

Condition 2: R is odd. We can directly get by (E3) that [I1{'] ; = 0foreven (j —i). When (j —1)
is old, we have

R
[mf], . = oR > (i) {K|R 2k —j+i}

o +
12 (&K R R 2 (R
T2RK 2 \s- K im0 J TR R ) |~ 5\ Ry
5—0 S 7 + 2 / /
R
1 2 R 2 (R
> 2 _ =
> g 2 (1)~ o (aye)
>2_ 2
~ K VR+T1
where the first inequality is by and (E3), and the second inequality is by Lemma[F.1] O

The following lemma shows the basic property of the positional embedding.

Lemma F.5. Assume that

; = |sin i sin 2im sin Mim !
b= M+1)’ M+1)'" M+1

for ¢ € [M]. It holds that

pr _ % for il = ig;
b 0 for le 75 iQ.

Proof of Lemma When iy # 4o and i1 + i are even, we have
M jirm o
T . 1 . 2
Pi,pPi, = j;sm (M—l— 1) sin <M—|— 1>
M .. ..
= Z sin Jam sin Jo2m
2P\ M 11 M1
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M ) ) ) )
1 _ _
=7 Z [exp (iﬂé\lé[ +Zij> + exp (—iﬂ-é\l/[ _’_Zij)

—ex iwil T, —ex —iwil T,
P+ 1/ P\ a1/
1 exp(im(ip —iz)) —1 1 exp(—im(iy —i2)) —1

4 exp (1773&1_’_1%) -1 4 exp (—17r1]t1+?) -1
1 exp(im(iy +i2)) —1 1 exp(—im(i; +1i2)) —1

4 exp (iﬂi&jjf)*l 4 exp( 17r’1\1/;:f>71

where the third equation is by sm( ) = M , and the last inequality is by exp(ink) = 1

for even k. When i1 # i5 and i1 + io are odd, wle have

T . Jjim . Jiam
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M .. ..
= sin Jam sin Jo2m
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1 i —1i i — i
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1 exp(im(in +142)) =1 1 exp(—im(in +i2)) — 1
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1 1 1
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+ 1 1 n 1
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where the third equation is by sin(z) = w, the fifth inequality is by exp(itk) = —
for odd k, and the last equation is by exp(w) T+ oo w) 7 = —1. When i; = i3, we have

M ..
T ) Jim o\ . Jiom
pilpi?:;SHl(M 1)sm<M+1>
M .. ..
= Zsin Jnm sin o2
= M+1 M+1
1 i1 — i i —i
. 11— . 11— 12 .
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2 M1 M+ 17

M+l 1Y [ ( 11 + 1 > ( .41+ )]
= 1 exp | 1 7 ) texp|—1m
j=0

1

M+1 1 exp(in(ip +12)) —

2 4 exp (iw—“*”) —1 4 exp (—i7r“+i2> -1

1 exp(—im(iy +i2)) —1

M1 M1
M1
=—
where the third equation is by sin(x) = w, and the last inequality is by exp(irk) = 1
for even k. [

G ADDITIONAL EXPERIMENTS

G.1 ADDITIONAL EXPERIMENTS ON RANDOM/DETERMINISTIC WALKS

In this subsection, we provide additional experiments on synthetic data for Task [T) and Task 2] with
(K,N) = (20,101). We consider the transformer model introduced in Section ith the length of
the position embedding M = 1000. To train the model, we utilize gradient descent starting with zero
initialization, where the learning rate 7 = 1 and the constant € in the log-loss is set as ¢ = 0.1. And,
we run the gradient descent algorithm for T = 50 training epochs. Figure [8]and Figure [J]illustrate
the experiments for Task [T] and Task [2] respectively. These experimental results match Theorem [3.1]
and Theorem 3.2} which also strongly supports our theoretical results.

Token Seletion Token Seletion

03

Softmax
Sotmax

E) E]

ieration 0.00 Position Positon.

(a) Accuracy (b) Visualization of v (c) The average attention (d) Part of the attention

Figure 8: The results of the experiment on Taskmwith (K,N) = (20,101): (a) is the test accuracy;
(b) is the visualization of V'(7); (c) and (d) present the average attention of the test data with x-axis
representing the position of the token and y-axis representing the attention score.

Accuracy Token Seletion

175 0.0200

1.50 00175
00150
00125

0.0100

Softmax

0.75 00075
0.50 00050

0.0025

00000

(a) Accuracy (b) Visualization of V() (c) Average attention of test data

Figure 9: The results of the experiment on Task 2] with K = 20, N = 101. (a) is the prediction
accuracy with z-axis representing the iteration and y-axis representing the accuracy. (b) is the
visualization of V. (c) is the average attention of the test data with z-axis representing the position
of the token and y-axis representing the attention score.
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Figure 10: The results of the experiment conducted using a more complicated transformer for Task
3 and Task 4: (a) and (b) correspond to the experiment for Task 3; (c) and (d) correspond to the
experiment for Task 4.

G.2 ADDITIONAL EXPERIMENTS ON THE QUESTION ANSWERING TASKS IN SECTION[3.2]

Here, we conduct some additional experiments for Task 3 and Task 4 discussed in Section [5.2} ex-
tending the single-layer transformer model to a more complicated model by adding a fully connected
layer with ReLU activation to the transformer model. The new model has the form

fo(X) = A -ReLU (VXSoftmax (EZT W%N» , (G.1)

where A € REXm v ¢ RmxE W ¢ REFM)X(K+M) gre the trainable parameter matrices,
and m is the number of neurons in the fully connected layer. For Task 3 and Task 4, the length of
the vocabulary K and the length of each input sequence N are set as (K, N) = (19,17),(19,19)
respectively. In addition, we set the positional embedding M = 1000 and the number of neurons

m = 19. To train the model, we consider the Gaussian random initialization AE?), Vig.o), Wi(;)) ~
N(0,0?) with ¢ = 0.01, and use gradient descent with learning rate 7 = 0.1. The constant ¢ in the
log-loss is set as € = 0.1. Both experiments are conducted on 1024 training data and 1024 test data.

Here, most of the settings remain the same as in the previous experiments in Section [5.2]

Figure [I0] shows the experiment results using the more complicated transformer in (G.I) to learn
Task 3 and Task 4. In Figure [[0(a)] and Figure [[0(c)] we present the test accuracy achieved by the
transformer model in learning Task 3 and Task 4 respectively. In Figure [T0(b)] and Figure [TO(d)]
we first normalize the output of the trained transformer model to get a K -dimensional vector, rep-
resenting the prediction distribution of K words. Then, we report the KL-divergence between this
prediction distribution and the true distribution of y|@1, @2, ..., £ y_1. The experiment results show
a clear difference between the performances of the transformer model in the two tasks. In Task 3,
the trained transformer model can successfully approach the optimal accuracy (100%) within 100
iterations. However, in Task 4, the test accuracy always remains around 50%, which is the accuracy
of a random guess.

Despite using a more complicated transformer model with an additional feedforward layer of non-
linearities compared to the one considered in our theoretical analysis and previous experiments, the
experimental results are still similar to those reported in Section[5.2] These results demonstrate that
more complex transformer models may still struggle with the relatively ’simple’ Task 4 but excel
at the relatively ’difficult’ Task 3. This indicates that our findings can be applied to cases involving
additional nonlinearities, implying their applicability to more complex and general conditions.
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