
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS UNDERSTANDING TOKEN SELECTION IN
SELF-ATTENTION: SUCCESSES AND PITFALLS IN
LEARNING RANDOM WALKS

Anonymous authors
Paper under double-blind review

ABSTRACT

As a key component of the transformer architecture, the self-attention mechanism
is known for its capability to perform token selection, which can often signifi-
cantly enhance model performance. However, when and how self-attention can be
trained to perform effective token selection remains poorly understood in theory.
In this paper, we study the problem of using a single self-attention layer to learn
random walks on circles. We theoretically demonstrate that, after training with
gradient descent, the self-attention layer can successfully learn the Markov prop-
erty of the random walk, and achieve optimal next-token prediction accuracy by
focusing on the correct parent token. In addition, we also study the performance
of a single self-attention layer in learning relatively simpler “deterministic walks”
on circles. Surprisingly, in this case, our findings indicate that the self-attention
model trained with gradient descent consistently yields next-token prediction ac-
curacy no better than a random guess. This counter-intuitive observation that self-
attention can learn random walks but struggles with deterministic walks reveals
a potential issue in self-attention: when there are multiple highly informative to-
kens, self-attention may fail to properly utilize any of them.

1 INTRODUCTION

In recent years, transformers (Vaswani et al., 2017) have revolutionized many fields such as natural
language processing, and have rapidly emerged as a key component in state-of-the-art deep learning
models due to their ability to capture complex dependencies in data. At the heart of transformers
lies the self-attention mechanism, which allows the model to assign different weights or importance
to each input token based on its relevance to the context or task at hand. This process of assigning
weights to tokens based on their “importance” can be seen as a form of token selection, since it
determines which tokens contribute more significantly to the model’s prediction. However, the
exact mechanisms behind token selection and how it impacts model performance are still not well
understood.

A line of recent works has studied token selection of the self-attention mechanism from different
perspectives. Tarzanagh et al. (2023); Ataee Tarzanagh et al. (2023) propose an equivalence between
the optimization dynamic of one self-attention layer and an SVM problem and prove the global
convergence under certain assumptions. Li et al. (2024a) shows that when training a self-attention
layer, the priority in token selection is determined by a directed graph extracted from the training
data. Wang et al. (2024) demonstrates that transformer models can learn the sparse token selection
task effectively while fully connected networks fail in the worst case. Li et al. (2024b) shows that
a self-attention layer can be trained to perform proper token selection so that the model acts as a
one-nearest neighbor classifier in context.

Several more recent works have also studied the performance of transformers in learning sequential
data generated from Markov models or Bayesian network models. In these studies, token selection
is also the key, as an ideal self-attention layer should properly select the token(s) that is/are the
’parent(s)’ of the token to be predicted. Specifically, Makkuva et al. (2024) characterizes the loss
landscape of a single-layer transformer and demonstrates the existence of global minima and bad
local minima in learning Markovian data with vocabularies of size two. Ildiz et al. (2024) shows the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

connection between a context-conditioned Markov chain and the self-attention mechanism. Nichani
et al. (2024) studies the mechanism through which transformer models encode a specific causal
structure in their representations for in-context learning.

(a) Task 1: random walk (b) Task 2: deterministic walk

Figure 1: Illustration of the tasks on learning random walks and deterministic walks. The first task
involves a random walk along circular paths, where each step has an equal chance of moving clock-
wise or counterclockwise, as illustrated in (a). The second task involves a deterministic movement
along circular paths, with the rule of always moving counterclockwise, as illustrated in (b).

In this paper, we introduce two simple case studies on how transformers learn sequential data.
Specifically, we train a one-layer transformer model to predict sequences generated by “random
walks” and “deterministic walks” on circles (see Figure 1 for an illustration). With a precise anal-
ysis on the training dynamics of gradient descent, we surprisingly find that the performance of the
transformer on these two tasks can be drastically different.

The main contributions of this paper are summarized as follows:

• We theoretically demonstrate that, a one-layer transformer can be trained by gradient descent to
optimally predict the next location of a random walk (illustrated in Figure 1(a)). In addition, our
analysis also precisely reveals that the self-attention can be trained to select the correct token (the
‘parent’ token), and make prediction based on it. Our analysis sheds light on how the self-attention
mechanism can adapt to sequential data patterns with proper token selection.

• We also show that, when learning to predict deterministic walks (illustrated in Figure 1(b)), the
training of the same one-layer transformer model with any loss function and any step size will
always fail, resulting in a transformer model whose performance is no better than a random guess.
This result highlights a potential limitation of self-attention: when all tokens are equally ‘infor-
mative’, the self-attention mechanism may fail to utilize any of them.

• Simulations demonstrate that our theoretical characterization of one-layer transformers is accu-
rate. Even when the trainable parameters of the transformer are initialized with Gaussian random
values that do not satisfy our theoretical assumptions, we observe that the transformer struggles to
learn deterministic walks, which aligns with our theory. Furthermore, motivated by our theories
and explanations, we construct two simple question answering tasks in natural language process-
ing (NLP) and successfully predict the performance of transformers on these tasks. This confirms
the validity of our theory and highlights the insights provided by our study.

2 PROBLEM SETUP

In this section, we present our problem formulations, including the construction of the next-token
prediction tasks we focus on, the transformer architecture with one self-attention layer, and the
training algorithm.

2.1 RANDOM AND DETERMINISTIC WALKS ON CIRCLES

We study the procedures of random and deterministic walks on circles. Specifically, consider K
nodes (possible locations) that are arranged on a circle so that each node has two neighbors. Without

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Π1 (b) Π2

Figure 2: Visualization of two transition matrices Π1 and Π2 for Task 1 and Task 2. In Π1, the
white block represents 0.5, and the black block represents 0. In Π2, the white block represents 1,
and the black block represents 0.

loss of generality, we suppose that the nodes are assigned with node IDs 1, 2, . . . ,K in a clockwise
manner. A ‘walk’ on the circle refers to the process where a ‘walker’ moves step-by-step among the
nodes of the circle. At each step, the walker moves to a neighboring node of its current position. In
this way, a walk of length N generates a sequence of ‘states’ s1, . . . sN , where si ∈ [K] denotes the
location (node ID) of the walker at the i-th step.

With such sequential data generated by random or deterministic walks, we can consider the problem
of predicting the location of the walker (sN) based on the historical locations s1, . . . sN−1. Specif-
ically, for i ∈ [N − 1], we denote by xi = esi ∈ RK the one-hot embedding of si, and denote
y = sN . Our goal is then to train a model to predict y based on x1, . . . ,xN−1.

As mentioned in the introduction, we consider two walks, which we call “random walk” and “de-
terministic walk” respectively for simplicity. In the following, we give their detailed definitions and
discuss some basic properties respectively.

Random walk. In the case of random walk, starting from a random location, the walker randomly
decides to move clockwise or counterclockwise at each step. For any integers s, we define ⟨s⟩K as
the integer satisfying ⟨s⟩K ∈ [K] and s ≡ ⟨s⟩K (mod K). With this definition, the probabilistic
model is defined as follows.
Task 1 (Random Walk). Suppose that x1, . . . ,xN−1, y are generated as follows:

1. Draw s1 ∼ Unif([K]).

2. For i = 2, . . . , N , sample si = ⟨si−1 − 1⟩K or si = ⟨si−1 + 1⟩K equally likely.

3. Set xi = esi , i ∈ [N − 1], and y = sN .

By the definition above, it is clear that the sequence x1, . . . ,xN−1, ey form a Markov chain, and
P(y|x1, . . . ,xN−1) = P(y|xN−1). Moreover, the transition matrix of the Markov model is

Π1 = (π
(1)
ij)K×K , where π

(1)
i,j = 1/2 · 1{i ≡ j − 1(mod K)}+ 1/2 · 1{i ≡ j + 1(mod K)}.

An visualization of Π1 is given in Figure 2(a). The Markov property indicates that the optimal
predictor of y is given by

fOPT
Task1(x1, . . . ,xN−1) = Π⊤

1 xN−1,

and the optimal prediction accuracy any predictor can achieve is OPTTask1 = 1/2.

Deterministic walk. In the case of deterministic walk, starting from a random location, the walker
deterministically moves counterclockwise at each step. The corresponding probabilistic model is
defined as follows.
Task 2 (Deterministic Walk). Suppose that x1, . . . ,xN−1, y are generated as follows:

1. Draw s1 ∼ Unif([K]).

2. For i = 2, . . . , N , set si = ⟨si−1 − 1⟩K .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3. Set xi = esi , i ∈ [N − 1], and y = sN .

The only randomness in the case of deterministic walk is the initial state. Moreover, the transition
matrix of the deterministic walk is

Π2 = (π
(2)
ij)K×K , where π

(2)
i,j = 1{i ≡ j − 1(mod K)}.

An visualization of Π2 is given in Figure 2(b). It is natural that the prediction of y in deterministic
walk is relatively easy compared with the case of random walk. In fact, as long as one of the
historical locations is known, there should exist a perfect predictor of y:

For any i ∈ [N − 1], fOPT
Task2,i(xi) = (Π⊤

2)
N−ixi = ey with probability 1.

Therefore, the optimal prediction accuracy any predictor can achieve is OPTTask2 = 1.

2.2 TRANSFORMER ARCHITECTURE

We consider learning the prediction tasks in random and deterministic walks introduced in the pre-
vious section with a simple one-layer transformer model. By naturally treating the one-hot vectors
x1, . . . ,xN−1 as tokens, then the task to predict the next position y is exactly a problem of next
token prediction.

Define the data matrix X = [x1,x2, . . . ,xN−1, 0] ∈ RK×N . We also consider a positional
embedding matrix P = [p1,p2, . . . ,pN] ∈ RM×N , where M is the embedding dimension with
M = Ω(N3/2) and pi ∈ RM is defined as

pi =

[
sin

(
iπ

M + 1

)
, sin

(
2iπ

M + 1

)
, . . . , sin

(
Miπ

M + 1

)]⊤
for i = 1, 2, . . . , N . The positional embeddings above are inspired by the fact that ⟨pi,pj⟩ = 0
for all i ̸= j, which significantly helps to simplify our theoretical analysis (see Lemma F.5 in the
appendix). Then, we define the matrix X̃ by concatenating the input matrix X and the position
matrix P as

X̃ =

[
X
P

]
=

[
x1 x2 · · · xN−1 0
p1 p2 · · · pN−1 pN

]
:= [x̃1, x̃2, . . . , x̃N] ∈ R(K+M)×N .

We consider a single-layer transformer model to make a prediction on a given input matrix X . The
transformer is defined as follows:

fθ(X) = V XS(X̃⊤Wx̃N), (2.1)

where V ∈ RK×K , W ∈ R(K+M)×(K+M) are the trainable parameter matrices, S : RN →
RN is the softmax function defined by [S(z)]i = exp(zi)∑N

j=1 exp(zj)
, and θ = (V ,W) denotes the

collection of all the trainable parameters. In this definition, we consider a reparameterization where
we use a single matrix W to denote the product of the commonly considered key and query matrices
in practice (Vaswani et al., 2017). Such kind of reparameterizations is commonly considered in
theoretical studies of transformer models (Jelassi et al., 2022; Tian et al., 2023a; Huang et al., 2024;
Zhang et al., 2024; Nichani et al., 2024; Li et al., 2024a; Wang et al., 2024; Ildiz et al., 2024).

Note that by the definition in (2.1), given any input matrix X , the transformer model outputs a
K-dimensional vector. This follows the standard practice of K-class classification – for i ∈ [K],
[fθ(X)]i can be treated as a predicted “score” of the i-th class. More specifically, we can define the
prediction rule as follows.
Definition 2.1. For any predictor f(X) : RK×N → RK , the predicted label is given as

Pred(f(X)) := min

{
j ∈ [K] : [f(X)]j = max

i∈[K]
{[f(X)]i}

}
.

The definition above matches the common practice to predict the label that corresponds to the entry
in f(X) with the maximum function value. It also gives a naive way to handle ties – when f(X)
contains multiple dimensions with the same (and maximum) function value, we always predict the
dimension corresponding to the smallest label. We remark that this definition to handle ties is just
to exclude ambiguity, and the detailed rule to handle ties is not essential. Our result works for all
reasonable methods to handle ties.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.3 TRAINING METHOD

We consider training the transformer model defined in (2.1) by gradient descent. We consider to
minimize the loss function

L(θ) = E(X,y)

[
ℓ
(
e⊤y fθ(X)

)]
, (2.2)

where ℓ(·) is a loss function. In terms of the specific choice of ℓ(·), our analysis will cover (i) learning
the random walk defined in Task 1 by minimizing the log-loss ℓ(z) = − log(z + ϵ), which has been
considered in a series of recent works (Li et al., 2024a; Ildiz et al., 2024; Makkuva et al., 2024;
Thrampoulidis, 2024), and also (ii) learning the deterministic walk defined in Task 2 by minimizing
any loss function ℓ(·).

We consider gradient descent with zero initialization V (0) = 0K×K , W (0) = 0(K+M)×(K+M) to
train the model. The update rule for the parameter matrices V and W are as follows:

V (t+1) = V (t) − η∇V L(θ(t)) and W (t+1) = W (t) − η∇WL(θ(t)), (2.3)

where η > 0 is the learning rate and t ≥ 0 is the iteration number.

3 MAIN RESULTS

In this section, we present our main theoretical results on using a self-attention layer to learn the
random and deterministic walks defined in Task 1 and Task 2. In our result, we can choose any
T ∗ = poly(η, ϵ−1,K,N,M) as the maximum admissible number of iterations, and only consider
the training period 0 ≤ t ≤ T ∗. This technical assumption regarding a polynomially large maximum
admissible number prevents training from becoming exponentially long and is a mild assumption
since exponentially long training is impractical.

Our main results for learning the random walk in Task 1 is given in the following theorem.
Theorem 3.1. Suppose that K is a constant even integer, and N = ω(1). Further suppose that the
transformer is trained by gradient descent (2.3) to minimize the loss (2.2) with ℓ(z) = − log(z+ ϵ),
and η, ϵ = Θ(1). Then there exists T0 = Θ(1), such that for all T0 ≤ T ≤ T ∗, it holds that:

1. The trained transformer achieves optimal prediction accuracy:

P(X,y)∼Task1

[
Pred(fθ(T)(X)) = y

]
= OPTTask1 =

1

2
.

2. The transformer converges to the optimal predictor. Suppose that (X, y) is generated by Task 1.
Then with probability 1, it holds that∥∥∥∥ fθ(T)(X)

∥fθ(T)(X)∥2
− fOPT

Task1(X)

∥∥∥∥
2

= O
(

1√
T

)
.

3. The value matrix converges to the true transition matrix in direction:∥∥∥∥ V (T)

∥V (T)∥F
− Π⊤

1

∥Π⊤
1 ∥F

∥∥∥∥
F

= O
(

1√
T

)
.

4. The softmax attention selects the correct token. Suppose that (X, y) is generated by Task 1.
Then with probability 1, it holds that[

S(X̃⊤W (T)x̃N)
]
N−1

≥ 1− exp(−Ω(N)), and
[
S(X̃⊤W (T)x̃N)

]
j
≤ exp(−Ω(N))

for all j ̸= N − 1.

In terms of the prediction, the first result in Theorem 3.1 states that the transformer trained by
gradient descent for a constant number of iterations can achieve a prediction accuracy 1/2, which
matches the optimal accuracy OPTTask1 for Task 1. The second result in Theorem 3.1 further gives
a more detailed characterization of the trained transformer, and demonstrates that the normalized

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

model converges to the optimal prediction model fOPT
Task1(X) = Π⊤

1 xN−1. This convergence result
strongly indicates that the transformer model learns token selection – it successfully learns to focus
on the direct parent of y, and then makes a prediction based on this direct parent.

The third and fourth results in Theorem 3.1 further back up the first two results by a precise char-
acterization on how the self-attention mechanism works in predicting random walks. Specifically,
the third result demonstrates that in direction, the value matrix V (T) converges to the ground-truth
transition matrix Π1, and the last result indicates that the softmax score assigned to the (N − 1)-th
token is close to 1, demonstrating that the attention layer can correctly select the parent token. To-
gether, these two results illustrate that the trained one-layer transformer model makes predictions by
(i) selecting the correct parent token xN−1 of y by assigning a softmax weighting close to 1 to it,
and (ii) predicting y by applying a one-step transition model to xN−1 through the linear mapping
defined by the value matrix.

We would also like to remark that Theorem 3.1 assumes that the number of nodes K on the circle
is an even integer. This assumption is to simplify our analysis and avoid tedious discussions on
whether K is even or odd. Our result should also hold for odd values of K, but some parts of the
proof may need to be changed. We believe that demonstrating the results for even K can already
clearly and convincingly demonstrate the performance of transformers in learning random walks.

The following theorem summarizes our main results on learning the deterministic walk defined in
Task 2 with a one-layer transformer model.
Theorem 3.2. Suppose that K is a constant integer, and N = rK + 1 with r ≥ 1. Further suppose
that the transformer is trained by gradient descent (2.3) to minimize the loss (2.2). Then for any loss
function ℓ(·), any learning rate η > 0, and any T ≥ 0, it holds that

P(X,y)∼Task2

(
Pred(fθ(T)(X)) = y

)
=

1

K
.

Moreover, suppose that (X, y) is generated by Task 2. Then with probability 1, for all T ≥ 0, it
holds that

V (T) ∝ 1K×K , and
[
S(X̃⊤W (T)x̃N)

]
1
= · · · =

[
S(X̃⊤W (T)x̃N)

]
N−1

.

Theorem 3.2 shows that the prediction accuracy of the trained transformer for Task 2 is 1/K, which
is the same as the accuracy of a random guess. Moreover, the characterizations of the value matrix
V (T) and the softmax scores further demonstrate that the transformer takes average over all tokens,
and then gives the same prediction scores for all possible values of y. Notably, these results hold
for any choice of the loss function and any learning rate, indicating that this failure case of the
transformer cannot be resolved by simply adjusting these training setups.

As we have discussed in Section 2.1, Task 2 on the deterministic walk is naturally easier compared
with Task 1 on the random walk. However, Theorems 3.1 and 3.2 together lead a surprising conclu-
sion: a one-layer transformer trained by gradient descent can successfully learn to predict random
walks, but provably fails to predict deterministic walks. Here we remark that this counter-intuitive
result is due to the fact that self-attention may fail when there are multiple highly informative tokens.
We will give a detailed discussion in the next section.

4 EXPERIMENT

In this section, we present simulation results training on synthetic data to support our theoretical
analysis. We consider two cases: the first one is the zero initialization case which aligns with the
setting used in our theoretical analysis, and the second one is the random initialization case which is
more commonly used in the practical scenario. In all experiments introduced in this section, we set
the number of nodes K = 6 and the length of each sequence N = 97. We utilize the transformer
model introduced in Section 2 and utilize the gradient method to train the model. The prediction
accuracy is calculated based on 1000 test data.

Zero initialization. In this case, we set the length of the positional embedding M = 1000, the
initialization V (0) = 0K×K ,W (0) = 0(K+M)×(K+M), and the learning rate η = 1. The constant ϵ
in the log-loss is set as ϵ = 0.1. For both tasks, we generate 1000 sequences to train the model.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3 and Figure 4 illustrate the results of the experiment for Task 1 and Task 2 respectively:
Figure 3(a) and Figure 4(a) present the prediction accuracy; Figure 3(b) and Figure 4(b) visualize
the value matrix V (T) after 50 iterations; Figure 3(c) and Figure 4(c) display the attention scores
attached to each token after 50 iterations. To clearly observe the results, we also provide Figure 3(d)
that represents the part of Figure 3(c).

We can observe that these experimental results for Task 1 provide strong support for Theorem 3.1.
Figure 3(a) shows that the prediction accuracy is close to the optimal accuracy (50%) within con-
stant iterations. Figure 3(b) indicates that V (T) can recover the transition matrix Π1 as shown in
Figure 2(a). Figure 3(c) presents that the (N − 1)-th attention score is the highest and close to 1, in-
dicating that the self-attention layer is able to select the true parent token. All of these experimental
results demonstrate the performance of transformers in learning random walks.

In addition, we can find that the experimental outcomes for Task 2 match the theoretical results
stated in Theorem 3.2. We obtain an accuracy close to 0.167 from Figure 4(a), which suggests
that the prediction accuracy for learning Task 2 is approximately equal to 1/K, far away from the
optimal accuracy (100%) and no better than a random guess. Figure 4(b) indicates that V (T) is
approximately proportional to 1K×K . Figure 4(c) shows that the attention scores attached to all
tokens are identical, which proves that the self-attention layer cannot select any of the tokens when
learning Task 2. These experimental results for Task 2 demonstrate that the self-attention mechanism
struggles in learning deterministic walks.

(a) Accuracy (b) Visualization of V (T) (c) The average attention (d) Part of the attention

Figure 3: The results of the experiments for Task 1 with zero initialization: (a) is the test accuracy;
(b) is the visualization of V ; (c) and (d) present the average attention of the test data with x-axis
representing the position of the token and y-axis representing the attention score.

(a) Accuracy (b) Visualization of V (T) (c) Average attention of test data

Figure 4: The results of the experiment for Task 2 with zero initialization. (a) is the prediction
accuracy with x-axis representing the iteration and y-axis representing the accuracy. (b) is the
visualization of V . (c) is the average attention of the test data with x-axis representing the position
of the token and y-axis representing the attention score.
Random initialization. In this case, we set the length of the positional embedding M = 1000, the
initialization V

(0)
ij ,W

(0)
ij ∼ N(0, σ2) with σ = 0.01, and the learning rate η = 0.01. The constant

ϵ in the log-loss is set as ϵ = 0.1. For both tasks, we generate 1000 sequences to train the model.

Figure 5 illustrates the results of the experiment for Task 1 and Task 2. Figure 5(a) and Figure 5(c)
show the prediction accuracy within 1000 iterations for Task 1 and Task 2 respectively. In Fig-
ure 5(b) and Figure 5(d), we first normalize the output of the trained transformer model to get a
K-dimensional vector, which can be regarded as the prediction distribution of K locations. The
KL-divergence between this prediction distribution and the true distribution of y|xN−1 is illustrated
in Figure 5(b) and Figure 5(d).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Accuracy (b) KL-Divergence (c) Accuracy (d) KL-Divergence

Figure 5: The results of the synthetic experiment with random initialization: (a) and (b) correspond
to the experiment for Task 1; (c) and (d) correspond to the experiment for Task 2. (a) and (c) present
the prediction accuracy. In (b) and (d), we first normalize the output of the trained transformer model
to get a K-dimensional vector, representing the prediction distribution of K locations. Then, we
display the KL-divergence between this prediction distribution and the true distribution of y|xN−1

in (b) and (d).

Figure 5(a) clearly shows that in the experiment for Task 1, the accuracy is close to the optimal
accuracy (50%) after around 400 iterations. However, as shown in Figure 5(c), for Task 2, the
prediction accuracy cannot reach the optimal accuracy (100%) within 1000 iterations. Based on the
plots of KL-divergence, we can also see that the transformer learns the true prediction distribution
of random walks much faster than learning that of deterministic walks. Note that these results are
for training with random initialization, and hence the results do not perfectly match our theory for
zero initialization in Section 3. However, the experiment results still clearly demonstrate that Task 2
for learning deterministic walks is significantly more challenging even with random initialization.

5 SUCCESSES & PITFALLS BEYOND RANDOM/DETERMINISTIC WALKS

In Sections 3 and 4, we demonstrate that a one-layer transformer can be trained to optimally predict
random walks, but fails in the arguably easier task of predicting deterministic walks. In this section,
we provide a concise explanation for the counter-intuitive phenomenon, and discuss other learning
tasks beyond random and deterministic walks, where transformer training may also be challenging.

5.1 AN INTUITIVE EXPLANATION

Here we aim to give an intuitive explanation on why transformers fail in learning deterministic
walks. A natural starting point is to study the differences between random and deterministic walks.

Difference between random and deterministic walks. As is discussed in Section 2.1, a key differ-
ence between random and deterministic walks is that, in random walks, the optimal predictor must
rely on xN−1, which is the direct ‘parent’ of y, to make a prediction. On the other hand, in deter-
ministic walks, knowing any one of the historical locations xi, i ∈ [N − 1] can provide sufficient
information to achieve perfect prediction. In other words, in random walk, there is a unique token
that is the most ‘informative’, while in deterministic walks, all tokens are equally ‘informative’.

Motivated by the discussion above, we consider using entropy1 as a more concrete characterization
of how ‘informative’ each token is. Specifically, we take the case (K,N) = (6, 7) as an example.
Denoting by x the average over x1, . . . ,x6, we report the values of

Entropy(y|xi) = E(X,y) [− logP(y|xi)] , i = 1, . . . , 6,

Entropy(y|x) = E(X,y) [− logP(y|x)] , and Entropy(y) = E(X,y) [− logP(y)]

in Figure 6 for both random (Task 1) and deterministic (Task 2) walks. For Task 1, we can observe
that Entropy(y|x6) is significantly smaller than the others. Thus, x6 can be regarded as the most
informative token in predicting y in Task 1. However, for Task 2, the values of all Entropy(y|xi)’s
are the same and are all zero, indicating that all the tokens are perfectly informative in predicting
y. More importantly, we note that in Task 1, Entropy(y|x) is smaller than Entropy(y), which
implies that knowing x can help predicting y to a certain extent. However, in Task 2, we can see

1We clarify that entropy is not directly utilized in our proof. Nevertheless, it can provide us the tool to
clearly explain the intuition of our proof.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

that Entropy(y|x) = Entropy(y), meaning that the token average x does not provide any useful
information in predictiing y in Task 2.

Figure 6: An illustration of the values of Entropy(y), Entropy(y|x), and Entropy(y|xi) for each
token xi in both Task 1 and Task 2 under the condition that K = 6, N = 7.

Figure 6 leads to an explanation on why transformers struggle in learning deterministic walks:

At small (random) initialization, the initial softmax scores on each token are almost equal and
the initial output of the transformer is approximately V x, where x is the average over all
tokens. However, x contains no useful information that can help prediction, and hence the
transformer can never (or at least cannot efficiently) be trained to make correct predictions.

5.2 BEYOND RANDON/DETERMINISTIC WALKS: EXAMPLES IN SIMPLE NLP TASKS

In Section 5.1, we provide an intuitive explanation of why one-layer transformers can hardly learn
the simple task of deterministic walks. Here, motivated by this intuitive explanation, we discuss
other tasks which transformers may also struggle to learn.

We construct two simple tasks in natural language processing (NLP). The detailed descriptions of
these two new tasks are given as follows.

Task 3. We consider a very simple question answering task. Specifically, possible input questions
are all of the form:

Based on the list ‘apple, orange, apple, apple, orange’, which type of fruit appears most frequently?

Here, the list stated in the question can be any combination of ‘apple’ and ‘orange’ with a fixed
length of 5. Therefore, there are a total of 32 possible questions the model may see, and each of these
questions occur with probability 1/32. Ignoring punctuation marks, each input sample is assumed
to be 16 words involving the list and other words in the inquiry sentence. The correct response (the
’label’ for classification) is the fruit that appears most frequently in the list. For example, for the
question “Based on the list ‘apple, orange, apple, apple, orange’, which type of fruit appears most
frequently?”, the correct response is apple.

Task 4. We again consider a very simple question answering task with only two possible questions:

Based on the sentence ‘I prefer an apple to an orange’, which type of fruit do I prefer?
Based on the sentence ‘I prefer an orange to an apple’, which type of fruit do I prefer?

Here, each of the two questions above occurs with probability 1/2. Similar to Task 3, we ignore the
punctuation marks and the input is the 18 words in the sentence. The correct response (the ‘label’
for classification) is apple for the first question above, and orange for the second question above.

Task 3 and Task 4 above are motivated by our discussion and explanation in Section 5.1. Intuitively,
in Task 3, the average of the word embeddings x in a question can still help the model to find the
correct response. In contrast, in Task 4, we can see that the two questions give the same average of
word embeddings x, and therefore, it is impossible to give the correct response based on x. Below,
we experimentally study the capability of one-layer transformers in learning these two tasks.

Combining all the words appearing in two tasks, we attain a vocabulary with a length of 19: {‘apple’,
‘orange’, ‘Based’, ‘on’, ‘the’, ‘which’, ‘type’, ‘of’, ‘fruit’, ‘list’, ‘appears’, ‘most’, ‘frequently’,
‘sentence’, ‘I’, ‘prefer’, ‘an’, ‘to’, ‘do’}. We embed this sequence as a matrix E = [e1, e2, ..., e19] ∈
R19×19, where each word is embedded as a one-hot vector ei. Then, we know that the length of the
vocabulary K and the length of each input sequence N are set as (K,N) = (19, 17), (19, 19) for
Task 3 and Task 4 respectively.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

In the experiment for these two NLP tasks, we consider the similar transformer model as we intro-
duced in our theoretical analysis. To train the model, we consider Gaussian random initialization
V

(0)
ij ,W

(0)
ij ∼ N(0, σ2) with σ = 0.01, and we use gradient descent with learning rate η = 0.1 to

train the model. The constant ϵ in the log-loss is set as ϵ = 0.1. Both experiments are conducted on
1000 training data and 1000 test data.

(a) Accuracy (b) KL-Divergence (c) Accuracy (d) KL-Divergence

Figure 7: The results of the experiment for Task 3 and Task 4: (a) and (b) correspond to the experi-
ment for Task 3; (c) and (d) correspond to the experiment for Task 4.

Figure 7 shows the experiment results for Task 3 and Task 4. Figure 7(a) and Figure 7(c) present
the test accuracy. In Figure 7(b) and Figure 7(d), we first normalize the output of the trained trans-
former model to get a K-dimensional vector, representing the prediction distribution of K words.
Then, we report the KL-divergence between this prediction distribution and the true distribution
of y|x1,x2, ...,xN−1 in Figure 7(b) and Figure 7(d). The experiment results show a clear differ-
ence between the performances of the transformer model in the two tasks. In Task 3, the trained
transformer model can successfully approach the optimal accuracy (100%) within 100 iterations.
However, in Task 4, the test accuracy always remains around 50%, which is the accuracy of a ran-
dom guess.

Comparing these two NLP tasks, we observe that in Task 3, no single word can determine the
answer; instead, we must combine all five words in the list to solve the question. In contrast, in Task
4, the single word in the 8th or 11th position can uniquely determine the answer. Thus, Task 4 can
be naturally considered a ’simpler’ task and easier to learn. However, the experiment results show
a counter-intuitive phenomenon that the transformer fails to learn the relatively ‘simple’ Task 4 but
can learn the relatively ‘difficult’ Task 3. This phenomenon can also be explained by our discussion
in Section 5.1: the self-attention mechanism struggles in the case that there are multiple highly
informative tokens but the average of them is not informative.

The experiment results for these simple but intuitive NLP tasks demonstrate that our theories and
explanations for random and deterministic walks can guide the construction of various other learning
tasks and predict the performance of a transformer model in these tasks. This confirms the validity
of our theories and explanations, and highlights the insights provided by our study.

6 CONCLUSION

This paper studies the self-attention mechanism via a random walk and a deterministic walk, where
we consider a transformer with a single self-attention layer. It can be demonstrated that the self-
attention layer can learn random walks well by effectively selecting the correct parent token and
obtaining the optimal next-token prediction accuracy. However, when learning the simpler deter-
ministic task, the self-attention layer fails to select any token; instead, the self-attention layer assigns
the same attention score to all the tokens. As a result, the trained transformer shows no improvement
over a random guess. We thus discover that multiple informative tokens may hinder the performance
of the self-attention mechanism by failing to select any specific token.

This work performs two specific cases studies on learning random and deterministic walks with
one-layer transformers. While the conclusions of these case studies provide valuable insights, it is
important to extend the results and study the performance of deeper transformer architectures, which
may require more advanced theoretical tools. Moreover, extending the finding to more complicated
learning tasks, such as random sequences generated by Bayesian networks, is also an important
future work direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe, Samy Bengio, Enric Boix-Adsera, Etai Littwin, and Joshua Susskind. Transform-
ers learn through gradual rank increase. Advances in Neural Information Processing Systems, 36,
2024.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token se-
lection in attention mechanism. Advances in Neural Information Processing Systems, 36:48314–
48362, 2023.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36,
2024.

Hangfeng He and Weijie J Su. A law of next-token prediction in large language models. arXiv
preprint arXiv:2408.13442, 2024.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In Forty-first
International Conference on Machine Learning, 2024.

M Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, and Samet Oymak. From self-
attention to markov models: Unveiling the dynamics of generative transformers. arXiv preprint
arXiv:2402.13512, 2024.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Yingcong Li, Yixiao Huang, Muhammed E Ildiz, Ankit Singh Rawat, and Samet Oymak. Mechanics
of next token prediction with self-attention. In International Conference on Artificial Intelligence
and Statistics, pp. 685–693. PMLR, 2024a.

Zihao Li, Yuan Cao, Cheng Gao, Yihan He, Han Liu, Klusowkski Jason, Jianqing Fan, and Mengdi
Wang. One-layer transformer provably learns one-nearest neighbor in context. In Advances in
Neural Information Processing Systems, 2024b.

Chenhao Lu, Ruizhe Shi, Yuyao Liu, Kaizhe Hu, Simon S Du, and Huazhe Xu. Rethinking trans-
formers in solving pomdps. arXiv preprint arXiv:2405.17358, 2024.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji Kim,
and Michael Gastpar. Attention with markov: A framework for principled analysis of transformers
via markov chains. arXiv preprint arXiv:2402.04161, 2024.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers
as support vector machines. arXiv preprint arXiv:2308.16898, 2023.

Christos Thrampoulidis. Implicit bias of next-token prediction. arXiv preprint arXiv:2402.18551,
2024.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding train-
ing dynamics and token composition in 1-layer transformer. Advances in Neural Information
Processing Systems, 36:71911–71947, 2023a.

Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. Joma: Demystifying mul-
tilayer transformers via joint dynamics of mlp and attention. arXiv preprint arXiv:2310.00535,
2023b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D Lee. Transformers provably learn sparse token
selection while fully-connected nets cannot. arXiv preprint arXiv:2406.06893, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

A ADDITIONAL RELATED WORK

In this section, we give an overview of some additional related works.

Next-token prediction. Thrampoulidis (2024) explores the implicit bias of next-token prediction
employing a related SVM formulation. Lu et al. (2024) demonstrates that transformers fail to solve
the Partially Observable Markov Decision Processes problem (POMDP) even with sufficient data.
He & Su (2024) observes a phenomenon of next-token prediction in LLM that each layer contributes
equally to enhancing the prediction accuracy. Tian et al. (2023a) studies the SGD training dynamics
of a transformer with one self-attention layer and one decoder layer for next-token prediction, re-
stricted to some specific assumptions like no positional encoding, long input sequences, and the fact
that the decoder layer learns faster than the self-attention layer.

Training dynamics of transformers. Mahankali et al. (2023); Zhang et al. (2024) investigate the
training dynamics of in-context learning in transformers with a single self-attention layer trained
through gradient flow on linear regression tasks. Huang et al. (2024) solves in-context linear regres-
sion with the orthogonal input data by gradient descent on a single softmax attention layer. Jelassi
et al. (2022) demonstrates that the position-position block of a single attention layer in a vision trans-
former can encode spatial structure by dealing with a binary classification task. Tian et al. (2023b)
delves into the training process of transformers with multi-layers by analyzing the dynamics of the
MLP layers. Bietti et al. (2024) analyzes a synthetic in-context learning task and emphasizes the sig-
nificance of weight matrices as associative memories. Abbe et al. (2024) shows incremental learning
dynamics in transformers with diagonal attention matrices.

B INFORMAL PROOF SKETCHES OF THE MAIN RESULTS

In this section, we discuss the training dynamics of the transformer model in learning Task 1 and
Task 2. These characterizations of training dynamics also serve as informal proof sketches of The-
orems 3.1 and 3.2. The proofs follow our discussion in Section 5 about the fact that in Task 1,
the ‘direct parent’ of y is more ‘informative’ than the other tokens. On the other hand, in Task 2
for deterministic walks, all tokens are perfectly and equally informative, but their average is not
informative at all.

Training dynamics in learning random walks. We consider the training procedure of a one-layer
transformer in learning Task 1. Recall that we train the transformer model with gradient descent
starting from zero initialization. We can characterize the first three gradient steps as follows:

Step 1. After the first gradient descent step, it can be shown that V (1) is a symmetric matrix whose
largest entries appear exactly on the locations of the non-zero entries of Π2 (see Lemma D.2
and Lemma D.3 in the appendix). W (1) is still a zero matrix due to the fact that V (0) = 0.

Step 2. With the same analysis as in Step 1, we can also show that V (2) is a symmetric matrix
whose largest entries appear exactly on the locations of the non-zero entries of Π2. More-
over, based on the result on V (1), it can be further shown that W (2) is updated so that
higher softmax weightings will be put upon xN−1 (see Lemma D.6 in the appendix).

Step 3. The higher weighting on xN−1 by W (2) further encourages V (3) to be updated towards
Π2 in direction. And the result in Step 2 on V (2) continues to encourage W (3) to continue
placing a high weighting on xN−1 (see Lemma D.8 in the appendix).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

From the three gradient descent steps listed above, it is clear that V (t) will converge to the direction
of Π2, and W (t) will consistently place a high weighting on the most ’informative’ token xN−1.
This is our key intuition for proving Theorem 3.1, and in our formal proof, we use an induction to
characterize the whole training procedure.

Training dynamics in learning deterministic walks. We can also consider the training dynamics
in learning deterministic walks. Starting from zero initialization, we can easily verify the following
two initial gradient steps:

Step 1. Since the initial softmax weightings on all tokens are the same, V (t) is essentially trained
based on the averaged token x = 1

N−1

∑N−1
i=1 xi. Importantly, by definition we see that

x is a constant vector that does not depend on the random initial location.

It can then be shown that all entries in V (1) are equal (see Lemma E.1 in the appendix).
W (1) is still a zero matrix due to the fact that V (0) = 0.

Step 2. With the same analysis as Step 1, we can show that all entries in V (2) are equal. Moreover,
due to the fact that the tokens are ‘equally informative’, it can be further shown that W (2)

is updated so that the softmax weightings on all tokens x1, . . . ,xN−1 remain equal.

The above two steps clearly match our discussion in Section 5 on the reason transformers fail to
learn the deterministic walk: the deterministic walk is such a task, that each individual token can
grant perfect prediction, but the average of the tokens provides no useful information. We can then
inductively show that throughout training, the value matrix V (t) is always proportional to the all-one
matrix, and the softmax weights on all tokens are always the same.

C GRADIENT DESCENT

Recall that the perturbed population loss is

L(θ) = E[ℓ(θ)] = E[− log(e⊤y fθ(X) + ϵ)] = E[− log(e⊤y V XS(X̃⊤Wx̃N) + ϵ)].

We can compute the gradients as follows.

Lemma C.1. The gradients regarding V and W are

∇V ℓ(θ) = − 1

e⊤y V XS + ϵ
· ey

N−1∑
i=1

Six
⊤
i ,

∇W ℓ(θ) = − 1

e⊤y V XS + ϵ
·

0
(∑N−1

i=1 Sixix
⊤
i −

∑N−1
i=1 Sixi ·

∑N−1
i=1 Six

⊤
i

)
V ⊤eyp

⊤
N

0
(∑N−1

i=1 Sipix
⊤
i −

∑N
i=1 Sipi ·

∑N−1
i=1 Six

⊤
i

)
V ⊤eyp

⊤
N

 ,

where S = S(X̃⊤Wx̃N), and Si is the i-th element of S.

Proof of Lemma C.1. For V , we have

∇V ℓ(θ) = − 1

e⊤y fθ(X) + ϵ
·
∂e⊤y V XS

∂V

= − 1

e⊤y V XS + ϵ
· eyS⊤X⊤

= − 1

e⊤y V XS + ϵ
· ey

N−1∑
i=1

Six
⊤
i .

For W , we have

∇W ℓ(θ) = − 1

e⊤y fθ(X) + ϵ
·
∂e⊤y V XS(X̃⊤Wx̃N)

∂W

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

= − 1

e⊤y V XS + ϵ
· X̃S ′(X̃⊤Wx̃N)X⊤V ⊤eyx̃

⊤
N

= − 1

e⊤y V XS + ϵ
· X̃[diag(S)− SS⊤]X⊤V ⊤eyx̃

⊤
N

= − 1

e⊤y V XS + ϵ
·
[∑N−1

i=1 Sixix
⊤
i −

∑N−1
i=1 Sixi ·

∑N−1
i=1 Six

⊤
i∑N

i=1 Sipix
⊤
i −

∑N
i=1 Sipi ·

∑N−1
i=1 Six

⊤
i

]
·
[
0 V ⊤eyp

⊤
N

]
= − 1

e⊤y V XS + ϵ
·
[

0 (
∑N−1

i=1 Sixix
⊤
i −

∑N−1
i=1 Sixi ·

∑N−1
i=1 Six

⊤
i)V

⊤eyp
⊤
N

0 (
∑N−1

i=1 Sipix
⊤
i −

∑N
i=1 Sipi ·

∑N−1
i=1 Six

⊤
i)V

⊤eyp
⊤
N

]
,

where we use the fact that S ′(X̃⊤Wx̃N) = [diag(S) − SS⊤] and diag(S) :=
S1

S2

. . .
SN

.

To simplify the notation, we denote

∇W ℓ(θ) = − 1

e⊤y V XS + ϵ
·
[

0 (
∑N−1

i=1 Sixix
⊤
i −

∑N−1
i=1 Sixi ·

∑N−1
i=1 Six

⊤
i)V

⊤eyp
⊤
N

0 (
∑N−1

i=1 Sipix
⊤
i −

∑N
i=1 Sipi ·

∑N−1
i=1 Six

⊤
i)V

⊤eyp
⊤
N

]
:= − 1

e⊤y V XS + ϵ
·
[

0 A
0 B

]
, (C.1)

and W =

[
W11 W12

W21 W22

]
, where W11 ∈ RK×K , W12 ∈ RK×M , W21 ∈ RM×K , and W22 ∈

RM×M . By (C.1), we know that W (t)
11 = 0K×K and W

(t)
21 = 0M×K for all t ≥ 1.

By the definition of the transition matrix, we can write the transition matrices of Task 1 and Task 2
as Π1 = 1

2Π0 +
1
2Π

⊤
0 and Π2 = Π0, where

Π0 =

0 1
1 0

1 0
.

1 0

 .

D TASK 1: RANDOM WALK

In this section, we consider the case of the random walk. We assume that the transition matrix is
Π = Π1, which means y is generated by the transition probability Π⊤

1 xN−1. The following lemma
presents the result of the first iteration.

Lemma D.1. If Π = Π1, it holds that

V (1) =
η

ϵNK

N−1∑
i=1

ΠN−i
1 and W (1) = 0(K+M)×(K+M).

Proof of Lemma D.1. By Lemma C.1, we have

E[∇V ℓ(θ(0))] = − 1

ϵN

N−1∑
i=1

E[eyx⊤
i]

= − 1

ϵN

N−1∑
i=1

E[(Π⊤)N−ixix
⊤
i]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

= − 1

ϵNK

N−1∑
i=1

(Π⊤
1)

N−i

= − 1

ϵNK

N−1∑
i=1

ΠN−i
1

where the first equation is by the initialization of V (0) and W (0), the second equation is by the
sampling method, the third equation is by E[xix

⊤
i] =

1
K IK for i ∈ [N − 1] since xi is uniformly

distributed in E, and the last equation is by Π1 = Π⊤
1 . Thus, by the update, we can get

V (1) = V (0) − ηE[∇V ℓ(θ(0))]

=
η

ϵNK

N−1∑
i=1

ΠN−i
1 .

Since V (0) = 0K×K and W (0) = 0(K+M)×(K+M), we can get E[∇W ℓ(θ(0))] = 0(K+M)×(K+M).
Thus,

W (1) = W (0) − ηE[∇W ℓ(θ(0))] = 0(K+M)×(K+M).

In Lemma D.2, Lemma D.3, and Lemma D.4, all the index p of matrices and vectors represent p′,
where p ≡ p′ (mod K) and 1 ≤ p′ ≤ K. And, these three lemmas provide some properties of
V (t).
Lemma D.2. If Π = Π1, then it holds that V (1) is a symmetric matrix and [V (1)]i,j = [V (1)]i,2i−j .

Proof of Lemma D.2. We use induction to prove that for any R ∈ N and i, j ∈ [K], ΠR
1 is a

symmetric matrix and [ΠR
1]i,j = [ΠR

1]i,2i−j . The results are obvious at R = 1. Suppose that the
results hold for ΠR

1 . We aim to prove the results hold for ΠR+1
1 . Since ΠR+1

1 = ΠR
1 ·Π1, we have

[ΠR+1
1]i,j =

1
2

(
[ΠR

1]i,j−1 + [ΠR
1]i,j+1

)
= 1

2

(
[ΠR

1]i−1,j + [ΠR
1]i+1,j

)
. Thus, we can get that

[ΠR+1
1]i,j =

1

2

(
[ΠR

1]i,j−1 + [ΠR
1]i,j+1

)
=

1

2

(
[ΠR

1]j−1,i + [ΠR
1]j+1,i

)
= [ΠR+1

1]j,i,

and

[ΠR+1
1]i,j =

1

2

(
[ΠR

1]i,j−1 + [ΠR
1]i,j+1

)
=

1

2

(
[ΠR

1]i,2i−j+1 + [ΠR
1]i,2i−j−1

)
= [ΠR+1

1]i,2i−j ,

which completes the induction. By Lemma D.1, we know V (1) = η
ϵNK

∑N−1
i=1 ΠN−i

1 . Thus, V (1)

also has those properties.

Lemma D.3. If Π = Π1 and K is even, then [V (1)]1,2 = ∥V (1)∥max.

Proof of Lemma D.3. By Lemma D.2, we know that there are only K/2+ 1 different values in Πt
1

for all t ∈ N. Denote that a(t)j = [Πt
1]1,j+1 for j ∈ {0, 1, . . . ,K/2}. We are going to prove that

a
(2k−1)
1 + a

(2k)
1 ≥ a

(2k−1)
j + a

(2k)
j for k ∈ N and j ∈ {0, 1, . . . ,K/2}. We use induction to prove

that for k ∈ N,

a
(2k−1)
2l1−1 ≥ a

(2k−1)
2l2−1 for l1 < l2 and a

(2k−1)
2l = 0 for l ∈ N;

a
(2k)
2l ≤ a

(2k−1)
1 and a

(2k)
2l−1 = 0 for l ∈ N.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

When k = 1, we have

a
(1)
1 = 0.5, and a

(1)
j = 0 for j ̸= 1;

a
(2)
0 = 0.5, a

(2)
2 = 0.25, and a

(2)
j = 0 for j ̸= 0, 2.

We can easily check that the results hold for k = 1. Suppose that the results hold for k = k′. Then,
we consider the condition of k = k′ + 1. First, we can get that for t ∈ N and j ∈ {0, 1, . . . ,K/2},

a
(t+1)
j = [Πt+1

1]1,j+1 =
1

2

(
[Πt

1]1,j + [Πt
1]1,j+2

)
=

1

2

(
a
(t)
j−1 + a

(t)
j+1

)
,

where a(t)−1 = a
(t)
1 and a

(t)
K/2+1 = a

(t)
K/2−1. Then, we can get that for t ∈ N and j ∈ {0, 1, . . . ,K/2},

a
(t+2)
j =

1

2

(
a
(t+1)
j−1 + a

(t+1)
j+1

)
=

1

4

(
a
(t+1)
j−2 + 2a

(t+1)
j + a

(t+1)
j+2

)
, (D.1)

where a(t)−2 = a
(t)
2 , a(t)−1 = a

(t)
1 , a(t)K/2+1 = a

(t)
K/2−1, and a

(t)
K/2+2 = a

(t)
K/2−2. Thus, by (D.1), we have

a
(2k′+1)
2l =

1

4

(
a
(2k′−1)
2l−2 + 2a

(2k′−1)
2l + a

(2k′−1)
2l+2

)
= 0,

a
(2k′+2)
2l−1 =

1

4

(
a
(2k′)
2l−3 + 2a

(2k′)
2l−1 + a

(2k′)
2l+1

)
= 0.

And, we have

a
(2k′+1)
2l−1 − a

(2k′+1)
2l+1 =

1

4

(
a
(2k′−1)
2l−3 + 2a

(2k′−1)
2l−1 + a

(2k′−1)
2l+1

)
− 1

4

(
a
(2k′−1)
2l−1 + 2a

(2k′−1)
2l+1 + a

(2k′−1)
2l+3

)
=

1

4

(
a
(2k′−1)
2l−3 + a

(2k′−1)
2l−1 − a

(2k′−1)
2l+1 − a

(2k′−1)
2l+3

)
≥ 0,

where the inequality is by the induction and a
(t)
−1 = a

(t)
1 , a(t)K/2+1 = a

(t)
K/2−1, a(t)K/2+2 = a

(t)
K/2−2.

This implies that a(2k
′+1)

2l1−1 ≥ a
(2k′+1)
2l2−1 for l1 < l2. Then, we also have

a
(2k′+2)
2l =

1

2

(
a
(2k′+1)
2l−1 + 2a

(2k′+1)
2l+1

)
≤ a

(2k′+1)
1 .

Therefore, we prove that the results hold at k = k′ + 1, which completes the proof.

Lemma D.4. If Π = Π1, then it holds that for all t ∈ N,
[
V (t)

]
i,i−k

=
[
V (t)

]
i,i+k

and[
V (t)

]
i1,i1−k

=
[
V (t)

]
i2,i2−k

for i, i1, i2, k ∈ N. Further, V (t) is a symmetric matrix.

Proof of Lemma D.4. We use induction to prove the results. By Lemma D.2, we can easily check
that V (1) has the properties stated in Lemma D.4. Suppose that

[
V (t)

]
i,i−k

=
[
V (t)

]
i,i+k

and[
V (t)

]
i1,i2−k

=
[
V (t)

]
i2,i2−k

for i, i1, i2, k ∈ N. For V (t+1), we first have

V (t+1) = V (t) − ηE[∇V ℓ(θ(t))] = V (t) + ηE

[
ey
∑N−1

i=1 S(t)
i x⊤

i

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]
.

Denote that Π(y) =
∑K−1

j=0 ey−je
⊤
y+j which has the property that Π(y)⊤ei = e2y−i. By the

sampling method, we know that

(x1,x2, . . . ,xN−1, ey)
d
= (Π(y)x1,Π(y)x2, . . . ,Π(y)xN−1, ey) , (D.2)

(x1,x2, . . . ,xN−1, ey)
d
=
(
Πl

0x1,Π
l
0x2, . . . ,Π

l
0xN−1,Π

l
0ey
)

for l ∈ N. (D.3)

Thus, we can get

e⊤i V
(t+1)ei−k = e⊤i V

(t)ei−k + ηE

[
e⊤i ey

∑N−1
i′=1 S(t)

i′ x⊤
i′ ei−k

e⊤y V
(t)
∑N−1

i′=1 S(t)
i′ xi′ + ϵ

]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

= e⊤i V
(t)ei−k + ηE

[∑N−1
i′=1 S(t)

i′ x⊤
i′ ei−k

e⊤y V
(t)
∑N−1

i′=1 S(t)
i′ xi′ + ϵ

· 1{y = i}

]

= e⊤i V
(t)ei−k + ηE

[∑N−1
i′=1 S(t)

i′ x⊤
i′Π(y)⊤ei−k

e⊤y V
(t)Π(y)

∑N−1
i′=1 S(t)

i′ xi′ + ϵ
· 1{y = i}

]

= e⊤i V
(t)ei+k + ηE

[∑N−1
i′=1 S(t)

i′ x⊤
i′ ei+k

e⊤y V
(t)
∑N−1

i′=1 S(t)
i′ xi′ + ϵ

· 1{y = i}

]

= e⊤i V
(t)ei+k + ηE

[
e⊤i ey

∑N−1
i′=1 S(t)

i′ x⊤
i′ ei+k

e⊤y V
(t)
∑N−1

i′=1 S(t)
i′ xi′ + ϵ

]
= e⊤i V

(t+1)ei+k,

where the third equation is by (D.2) and the fourth equation is by induction. And, we can get

e⊤i1V
(t+1)ei1−k = e⊤i1V

(t)ei1−k + ηE

[
e⊤i1ey

∑N−1
i′=1 S(t)

i′ x⊤
i′ ei1−k

e⊤y V
(t)
∑N−1

i′=1 S(t)
i′ xi′ + ϵ

]

= e⊤i1V
(t)ei1−k + ηE

[
e⊤i1Π

i2−i1
0 ey

∑N−1
i′=1 S(t)

i′ x⊤
i′ (Π

⊤
0)

i2−i1ei1−k

e⊤y (Π
⊤
0)

i2−i1V (t)Πi2−i1
0

∑N−1
i′=1 S(t)

i′ xi′ + ϵ

]

= e⊤i2V
(t)ei2−k + ηE

[
e⊤i2ey

∑N−1
i′=1 S(t)

i′ x⊤
i′ ei2−k

e⊤y V
(t)
∑N−1

i′=1 S(t)
i′ xi′ + ϵ

]
= e⊤i2V

(t+1)ei2−k,

where the second equation is by (D.3) and the third equation is by induction. Therefore, we prove
that the results hold for V (t+1), which completes the proof. Further, we can get [V (t)]i,i+k =

[V (t)]i,i−k = [V (t)]i+k,i, which implies that V (t) is symmetric.

The following two lemmas provide the properties of the weights for the second iteration.

Lemma D.5. If Π = Π1, then it holds that ∥V (2)∥max ≤ η
ϵK + 2ϵK2.

Proof of Lemma D.5. First, we have

V (2) = V (1) − ηE[∇V ℓ(θ(1))] = V (1) + ηE

[
ey
∑N−1

i=1 S(1)
i x⊤

i

e⊤y V
(1)
∑N−1

i=1 S(1)
i xi + ϵ

]
.

Thus,

∥V (2)∥max ≤
∥∥∥V (1)

∥∥∥
max

+

∥∥∥∥∥ηE
[

1
N ey

∑N−1
i=1 x⊤

i

1
N e⊤y V

(1)
∑N−1

i=1 xi + ϵ

]∥∥∥∥∥
max

≤
∥∥∥V (1)

∥∥∥
max

+
η

N−1
N mini,j [V (1)]i,j

·

∥∥∥∥∥E
[
1

N
ey

N−1∑
i=1

x⊤
i

]∥∥∥∥∥
max

≤

∥∥∥∥∥ η

ϵNK

N−1∑
i=1

ΠN−i
1

∥∥∥∥∥
max

+
η

N−1
N mini,j

[
η

ϵNK

∑N−1
i=1 ΠN−i

1

]
i,j

· N − 1

N

≤ η

ϵK
+ 2ϵK2,

where the second inequality is by e⊤y V
(1)xi ≥ mini,j [V

(1)]i,j , and the last inequality is by
Lemma F.4.

Lemma D.6. If Π = Π1 and K is even, it holds that S(2)
N−1 ≥ S(2)

j exp(Ω(N)) for j ̸= N − 1.

Further, S(2)
N−1 ≥ 1− exp(−Ω(N)) and S(2)

j ≤ exp(−Ω(N)) for j ̸= N − 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof of Lemma D.6. By Lemma C.1, we have

E[A(1)]

= E

[(
N−1∑
i=1

S(1)
i xix

⊤
i (V

(1))⊤ey −
N−1∑
i1=1

N−1∑
i2=1

S(1)
i1

S(1)
i2

xi1x
⊤
i2(V

(1))⊤ey

)
p⊤
N

]

= E

[(
η

ϵN2K

N−1∑
i=1

xix
⊤
i

N−1∑
i′=1

ΠN−i′

1 ey −
η

ϵN3K

N−1∑
i1=1

N−1∑
i2=1

xi1x
⊤
i2

N−1∑
i′=1

ΠN−i′

1 ey

)
p⊤
N

]

= E

[
η

ϵN2K

N−1∑
i=1

xix
⊤
i

N−1∑
i′=1

ΠN−i′

1 (Π⊤
1)

N−ixi · p⊤
N

]

− E

[
η

ϵN3K

N−1∑
i1=1

N−1∑
i2=1

xi1x
⊤
i1Π

i2−i1
1

N−1∑
i′=1

ΠN−i′

1 (Π⊤
1)

N−i1xi1 · p⊤
N

]

= E

[
η

ϵN2K

N−1∑
i=1

N−1∑
i′=1

xix
⊤
i Π

2N−i′−i
1 xi · p⊤

N

]

− E

[
η

ϵN3K

N−1∑
i1=1

N−1∑
i2=1

N−1∑
i′=1

xi1x
⊤
i1Π

2N−i′+i2−2i1
1 xi1 · p⊤

N

]

=

(
η

ϵN2K2

N−1∑
i=1

N−1∑
i′=1

tr(Π2N−i′−i
1)1K − η

ϵN3K2

N−1∑
i1=1

N−1∑
i2=1

N−1∑
i′=1

tr(Π2N−i′+i2−2i1
1)1K

)
p⊤
N ,

where the second equation is by Lemma D.1, the third equation is by the sampling method, the
fourth equation is by Π1 = Π⊤

1 , and the fifth equation is by the fact that all the xi is uniformly
distributed in E for i ∈ [N − 1]. Then, W (2)

12 = W
(1)
12 − ηE[∇W ℓ(θ(1))]12 ∝ 1Kp⊤

N . Thus, We
also have

E[B(1)]

= E

[(
N−1∑
i=1

S(1)
i pix

⊤
i (V

(1))⊤ey −
N∑
i=1

S(1)
i pi ·

N−1∑
i=1

S(1)
i x⊤

i (V
(1))⊤ey

)
p⊤
N

]

= E

[(
η

ϵN2K

N−1∑
i=1

pix
⊤
i

N−1∑
i′=1

ΠN−i′

1 ey −
η

ϵN3K

N∑
i=1

pi ·
N−1∑
i=1

x⊤
i

N−1∑
i′=1

ΠN−i′

1 ey

)
p⊤
N

]

= E

[
η

ϵN2K

N−1∑
i=1

pix
⊤
i

N−1∑
i′=1

ΠN−i′

1 (Π⊤
1)

N−ixi · p⊤
N

]

− E

[
η

ϵN3K

N∑
i=1

pi ·
N−1∑
i=1

x⊤
i

N−1∑
i′=1

ΠN−i′

1 (Π⊤
1)

N−ixi · p⊤
N

]

= E

[(
η

ϵN2K

N−1∑
i=1

N−1∑
i′=1

pix
⊤
i Π

2N−i′−i
1 xi −

η

ϵN3K

N∑
i=1

pi ·
N−1∑
i=1

N−1∑
i′=1

x⊤
i Π

2N−i′−i
1 xi

)
p⊤
N

]

=

(
η

ϵN2K2

N−1∑
i=1

N−1∑
i′=1

pi tr(Π
2N−i′−i
1)− η

ϵN3K2

N∑
i=1

pi ·
N−1∑
i=1

N−1∑
i′=1

tr(Π2N−i′−i
1)

)
p⊤
N ,

where the second equation is by Lemma D.1, the third equation is by the sampling method, the
fourth equation is by Π1 = Π⊤

1 , and the fifth equation is by the fact that all the xi is uniformly
distributed in E for i ∈ [N − 1]. Since

[
X̃W (2)x̃N

]
N

= p⊤
NW

(2)
22 pN and

[
X̃W (2)x̃N

]
j
=

x⊤
j W

(2)
12 pN + p⊤

j W
(2)
22 pN for j ∈ {1, 2, . . . , N − 1}, we can obtain that[

X̃W (2)x̃N

]
N

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

= p⊤
NW

(2)
22 pN

= E
[
p⊤
N

η

e⊤y V XS + ϵ
B(1)pN

]

= E

[
η

e⊤y V XS + ϵ

(
−S(1)

N p⊤
NpN ·

N−1∑
i=1

S(1)
i x⊤

i (V
(1))⊤ey

)
p⊤
NpN

]
< 0,

where the third equation is by p⊤
i pj = 0 for i ̸= j. And for j ∈ {1, 2, . . . , N − 2}, we can get[

X̃W (2)x̃N

]
N−1

−
[
X̃W (2)x̃N

]
j

= x⊤
N−1W

(2)
12 pN + p⊤

N−1W
(2)
22 pN − x⊤

j W
(2)
12 pN − p⊤

j W
(2)
22 pN

(i)
= p⊤

N−1W
(2)
22 pN − p⊤

j W
(2)
22 pN

(ii)
= E

[
η

e⊤y V
(1)XS(1) + ϵ

· 1

N

(
p⊤
N−1pN−1x

⊤
N−1V

(1)ey − p⊤
j pjx

⊤
j V

(1)ey

)
p⊤
NpN

]
(iii)

≥ η

maxi,j [V (1)]i,j + ϵ
· (p

⊤
NpN)2

N
E
[
x⊤
N−1V

(1)ey − x⊤
j V

(1)ey

]
(iv)
=

η

maxi,j [V (1)]i,j + ϵ
· η(p

⊤
NpN)2

ϵN2K
E

[
x⊤
N−1

N−1∑
i=1

ΠN−i+1
1 xN−1 − x⊤

j

N−1∑
i=1

Π2N−i−j
1 xj

]
(v)
=

η

maxi,j [V (1)]i,j + ϵ
· η(p

⊤
NpN)2

ϵN2K2

[
N−1∑
i=1

tr(ΠN+1−i
1)−

N−1∑
i=1

tr(Π2N−i−j
1)

]
(vi)

≥ η

maxi,j [V (1)]i,j + ϵ
· η(p

⊤
NpN)2

ϵN2K2

[
tr(Π2

1)− tr(ΠN+1
1)

]
(vii)

≥ η
η

ϵNK · (N − 1) + ϵ
· η(p

⊤
NpN)2

ϵN2K2

(
K

2
− 2− K√

N + 2

)
≥ Ω

(
ηM2

N2

)
≥ Ω(N),

where (i) is by W
(2)
12 ∝ 1Kp⊤

N , (ii) is by p⊤
i pi′ = 0 for i ̸= i′, (iii) is by Lemma D.3 and the fact

that e⊤y V
(1)XS(1) ≤ maxi,j [V

(1)]i,j , (iv) is by Lemma D.1 and the sampling method, (v) is by
the fact that all the xi is uniformly distributed in E for i ∈ [N−1], (vi) is by Lemma F.3, and (vii) is

by Lemma F.3. Therefore, we have S(2)
N−1/S

(2)
j = exp

([
X̃W (2)x̃N

]
N−1

−
[
X̃W (2)x̃N

]
j

)
≥

exp(Ω(N)) for j ̸= N − 1. Further,

S(2)
N−1 = 1−

∑
j ̸=N−1

S(2)
j ≥ 1− (N − 1) exp(−Ω(N))S(2)

N−1,

which implies that

S(2)
N−1 ≥ 1

1 + (N − 1) exp(−Ω(N))
= 1− N − 1

exp(Ω(N)) +N − 1
= 1− exp(−Ω(N)).

Then, we have S(2)
j ≤ 1− S(2)

N−1 ≤ exp(−Ω(N)) for j ̸= N − 1.

Then, we can get the bounds of V (t).
Lemma D.7. If Π = Π1, then it holds for t ≥ 3 that

min
i,j

[V (t)]i,j ≥
η

2ϵK2
and ∥V (t)∥max ≤ η

ϵK
+ (t− 2) · 2ϵK2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof of Lemma D.7. First, we have

min
i,j

[V (t)]i,j ≥ min
i,j

[V (1)]i,j

≥ min
i,j

[
η

ϵNK

N−1∑
i′=1

ΠN−i′

1

]
i,j

≥ η

ϵNK

N−1∑
i′=1

(
1

K
− 1√

i′ + 1

)

≥ η

ϵNK

N − 1

K
− η

ϵNK

N∑
i′=2

2(
√
i′ + 1−

√
i′)

≥ η

2ϵK2
,

where the third inequality is by Lemma F.4, and the last inequality is by N > 4K. Then, we can get
that

∥V (t)∥max ≤ ∥V (t−1)∥max +

∥∥∥∥∥E
[

ηey
∑N−1

i=1 S(t−1)
i x⊤

i

e⊤y V
(t−1)

∑N−1
i=1 S(t−1)

i xi + ϵ

]∥∥∥∥∥
max

≤ ∥V (t−1)∥max + E

 η
∥∥∥ey∑N−1

i=1 S(t−1)
i x⊤

i

∥∥∥
max

min
[
e⊤y V

(t−1)
∑N−1

i=1 S(t−1)
i xi

]

≤ ∥V (t−1)∥max +
η

mini,j [V (t−1)]i,j

≤ ∥V (t−1)∥max + 2ϵK2

≤ ∥V (2)∥max + (t− 3) · 2ϵK2

≤ η

ϵK
+ (t− 2) · 2ϵK2,

where the third inequality is by e⊤y V xi ≥ mini,j [V]i,j , and the last inequality is by Lemma D.5.

Next, we can analyze the training dynamics over multiple iterations.

Lemma D.8. Assume that Π = Π1 and K is an even integer. For 2 ≤ t ≤ T ∗, it holds that S(t)
N−1 ≥

1 − exp(−Ω(N)) and V (t) = β(t)Π1 + Ṽ (t) where
∥∥∥Ṽ (t)

∥∥∥
max

≤ γ(t). Here, β(t) ≥
√
ηt − 2η

ϵK

and γ(t) ≤ 2η
ϵK + 2(t− 1)ϵK2N exp(−Ω(N)).

Proof of Lemma D.8. We use induction to prove the results that

β(t) ≥
√
ηt− 2η

ϵK
,

γ(t) ≤ 2η

ϵK
+ 2(t− 1)ϵK2N exp(−Ω(N)),[

X̃W (t)x̃N

]
N−1

−
[
X̃W (t)x̃N

]
j
≥ Ω(N),

S(t)
N−1 ≥ 1− exp(−Ω(N)).

By Lemma D.5 and Lemma D.6, it can be easily checked that the results hold for t = 2. Suppose
that the results hold for V (t) and S(t). We aim to prove that the results hold for t+ 1.

For V (t+1), we can get

V (t+1) = V (t) − ηE[∇V ℓ(θ(t))]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

= V (t) + ηE

[
ey
∑N−1

i=1 S(t)
i x⊤

i

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

= V (t) + E

[
ηS(t)

N−1eyx
⊤
N−1

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]
+ E

[
ηey

∑N−2
i=1 S(t)

i x⊤
i

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]
.

Then, we have[
E

[
ηS(t)

N−1eyx
⊤
N−1

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]]
1,2

≥
ηS(t)

N−1

∥V (t)∥max + ϵ
·
[
E
[
eyx

⊤
N−1

]]
1,2

≥ η[1− exp(−Ω(N))]

β(t) + γ(t) + ϵ
· 1
2

≥ η

4
[
β(t) + η

ϵK + 2ϵK2 + 2tϵK2N exp(−Ω(N)) + ϵ
]

≥ η

4
(
β(t) + 2η

ϵK

) , (D.4)

where the first inequality is by e⊤y V
(t)xi ≤ ∥V (t)∥max, the second inequality is by induction, and

the third inequality is by the assumption of ϵ. And, we have∥∥∥∥∥E
[

ηey
∑N−2

i=1 S(t)
i x⊤

i

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]∥∥∥∥∥
max

≤ η exp(−Ω(N))

mini,j [V (t)]i,j
·

∥∥∥∥∥E
[
N−2∑
i=1

eyx
⊤
i

]∥∥∥∥∥
max

≤ 2ϵK2 exp(−Ω(N)) ·N, (D.5)

where the first inequality is by induction and e⊤y V
(t)xi ≥ mini,j [V

(t)]i,j , and the second inequality
is by Lemma D.7. Thus, we can get that

β(t+1) ≥ β(t) + 2

[
E

[
ηS(t)

N−1eyx
⊤
N−1

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]]
1,2

≥ β(t) +
η

2β(t) + 4η
ϵK

≥
√
ηt− 2η

ϵK
+

η

2
√
ηt

≥
√
ηt− 2η

ϵK
+

√
η

√
t+ 1 +

√
t

=
√
η(t+ 1)− 2η

ϵK

where the second inequality is by (D.4), and the third inequality is by induction and the fact that
x+ η

2x+ 4η
ϵK

is monotonically increasing for x ≥
√
η√
2
− 2η

ϵK . And,

γ(t+1) ≤ γ(t) +

∥∥∥∥∥E
[

ηey
∑N−2

i=1 S(t)
i x⊤

i

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]∥∥∥∥∥
max

≤ γ(t) + 2ϵK2N exp(−Ω(N))

≤ 2η

ϵK
+ 2tϵK2N exp(−Ω(N)),

where the second inequality is by (D.5), and the third inequality is by induction.

Next, we consider S(t+1). Recall that

W
(t+1)
12 = W

(t)
12 + ηE

[
A(t)

e⊤y V XS + ϵ

]
and W

(t+1)
22 = W

(t)
22 + ηE

[
B(t)

e⊤y V XS + ϵ

]
,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where

A(t) =

(
N−1∑
i=1

S(t)
i xix

⊤
i (V

(t))⊤ey −
N−1∑
i1=1

N−1∑
i2=1

S(t)
i1

S(t)
i2

xi1x
⊤
i2(V

(t))⊤ey

)
p⊤
N ,

B(t) =

(
N−1∑
i=1

S(t)
i pix

⊤
i (V

(t))⊤ey −
N∑
i=1

S(t)
i pi ·

N−1∑
i=1

S(t)
i x⊤

i (V
(t))⊤ey

)
p⊤
N .

We also have
[
X̃W (t)x̃N

]
N

= p⊤
NW

(t)
22 pN and

[
X̃W (t)x̃N

]
j
= x⊤

j W
(t)
12 pN +p⊤

j W
(t)
22 pN for

j ∈ {1, 2, . . . , N − 1}. Then, for j = N , we have

p⊤
NW

(t+1)
22 pN = p⊤

NW
(t)
22 pN + ηE

[
p⊤
NB(t)pN

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

= p⊤
NW

(t)
22 pN − ηMS(t)

N E

[∑N−1
i=1 S(t)

i x⊤
i V

(t)ey

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]
≤ p⊤

NW
(t)
22 pN .

For j ∈ {1, 2, . . . , N − 2}, we have

x⊤
j W

(t+1)
12 pN = x⊤

j W
(t)
12 pN + ηE

[
x⊤
j A

(t)pN

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

= x⊤
j W

(t)
12 pN + η

√
MS(t)

j E

[
x⊤
j V

(t)ey −
∑N−1

i2=1 S
(t)
i2

x⊤
i2
V (t)ey

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

≤ x⊤
j W

(t)
12 pN + η

√
MS(t)

j

∥V (t)∥max

mini,j [V (t)]i,j

≤ x⊤
j W

(t)
12 pN + η

√
M exp(−Ω(N))

(
2K +

4(t− 2)ϵ2K4

η

)
,

where the first inequality is by e⊤y V
(t)xN−1 = ∥V (t)∥max, and the second inequality is by induc-

tion and Lemma D.7. And,

p⊤
j W

(t+1)
22 pN = p⊤

j W
(t)
22 pN + ηE

[
p⊤
j B

(t)pN

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

= p⊤
j W

(t)
22 pN + ηMS(t)

j E

[
x⊤
j V

(t)ey −
∑N−1

i=1 S(t)
i x⊤

i V
(t)ey

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

≤ p⊤
j W

(t)
22 pN + ηMS(t)

j

∥V (t)∥max

mini,j [V (t)]i,j

≤ p⊤
j W

(t)
22 pN + ηM exp(−Ω(N))

(
2K +

4(t− 2)ϵ2K4

η

)
,

where the first inequality is by e⊤y V
(t)xN−1 = ∥V (t)∥max, and the second inequality is by induc-

tion and Lemma D.7. For j = N − 1, we have

x⊤
N−1W

(t+1)
12 pN = x⊤

N−1W
(t)
12 pN + ηE

[
x⊤
N−1A

(t)pN

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

= x⊤
N−1W

(t)
12 pN + η

√
MS(t)

N−1E

[
x⊤
N−1V

(t)ey −
∑N−1

i2=1 S
(t)
i2

x⊤
i2
V (t)ey

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

≥ x⊤
N−1W

(t)
12 pN + η

√
ME

[
−
∑N−2

i2=1 S
(t)
i2

x⊤
i2
V (t)ey

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

≥ x⊤
N−1W

(t)
12 pN − η

√
M

∑N−2
i2=1 S

(t)
i2

∥V (t)∥max

mini,j [V (t)]i,j

≥ x⊤
N−1W

(t)
12 pN − η

√
MN exp(−Ω(N))

(
2K +

4(t− 2)ϵ2K4

η

)
,

where the second inequality is by e⊤y V
(t)xN−1 = ∥V (t)∥max, and the third inequality is by induc-

tion and Lemma D.7. And,

p⊤
N−1W

(t+1)
22 pN = p⊤

N−1W
(t)
22 pN + ηE

[
p⊤
N−1B

(t)pN

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

= p⊤
N−1W

(t)
22 pN + ηMS(t)

N−1E

[
x⊤
N−1V

(t)ey −
∑N−1

i=1 S(t)
i x⊤

i V
(t)ey

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

≥ p⊤
N−1W

(t)
22 pN + ηME

[
−
∑N−2

i=1 S(t)
i x⊤

i V
(t)ey

e⊤y V
(t)
∑N−1

i=1 S(t)
i xi + ϵ

]

≥ p⊤
N−1W

(t)
22 pN − ηM

∑N−2
i2=1 S

(t)
i2

∥V (t)∥max

mini,j [V (t)]i,j

≥ p⊤
N−1W

(t)
22 pN − ηMN exp(−Ω(N))

(
2K +

4(t− 2)ϵ2K4

η

)
,

where the second inequality is by e⊤y V
(t)xN−1 = ∥V (t)∥max, and the third inequality is by induc-

tion and Lemma D.7. Therefore, we can get that for j ̸= N − 1,[
X̃W (t+1)x̃N

]
N−1

−
[
X̃W (t+1)x̃N

]
j

= x⊤
N−1W

(t+1)
12 pN + p⊤

N−1W
(t+1)
22 pN − x⊤

j W
(t+1)
12 pN − p⊤

j W
(t+1)
22 pN

≥ x⊤
N−1W

(t)
12 pN + p⊤

N−1W
(t)
22 pN − x⊤

j W
(t)
12 pN − p⊤

j W
(t)
22 pN

− 4ηMN exp(−Ω(N))

(
2K +

4(t− 2)ϵ2K4

η

)
=
[
X̃W (t)x̃N

]
N−1

−
[
X̃W (t)x̃N

]
j
− exp(−Ω(N))

≥ Ω(N),

where the last inequality is by induction. Thus, S(t+1)
N−1 /S(t+1)

j ≥ exp(Ω(N)) for j ̸= N − 1, which

implies that S(t+1)
N−1 ≥ 1− exp(−Ω(N)). Therefore, we prove that the results hold for t+ 1, which

completes the proof.

The next two lemmas show the convergence rates of V (T)/∥V (T)∥F and fθT (X)/∥fθT (X)∥2.

Lemma D.9. Assume that Π = Π1 and K is an even integer. For Ω(ηϵ−2K−2) ≤ T ≤ T ∗, it
holds that ∥∥∥∥ V (T)

∥V (T)∥F
− Π⊤

1

∥Π⊤
1 ∥F

∥∥∥∥
F

≤ O
(

1√
T

)
.

Proof of Lemma D.9. By Lemma D.8, we can get that∥∥∥∥ V (T)

∥V (T)∥F
− Π⊤

1

∥Π⊤
1 ∥F

∥∥∥∥
F

=

∥∥∥∥∥β(T)Π1 + Ṽ (T)

∥V (T)∥F
− Π1

∥Π1∥F

∥∥∥∥∥
F

≤
∥∥∥∥(β(T)

∥V (T)∥F
− 1

∥Π1∥F

)
Π1

∥∥∥∥
F

+

∥∥∥∥∥ Ṽ (T)

∥V (T)∥F

∥∥∥∥∥
F

.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

For the first part, we have∥∥∥∥(β(T)

∥V (T)∥F
− 1

∥Π1∥F

)
Π1

∥∥∥∥
F

=

∣∣∣∣∣ β(T)∥Π1∥F
∥β(T)Π1 + Ṽ (T)∥F

− 1

∣∣∣∣∣
≤ 1− β(T)∥Π1∥F

β(T)∥Π1∥F + ∥Ṽ (T)∥F
(i)
=

∥Ṽ (T)∥F
√
2K
2 β(T) + ∥Ṽ (T)∥F

≤ Kγ(T)

√
2K
2 β(T) +Kγ(T)

(ii)

≤
2η
ϵ + 2TϵK3N exp(−Ω(N))

√
2K
2

(√
ηT − 2η

ϵK

)
+ 2η

ϵ + 2TϵK3N exp(−Ω(N))

≤ O
(

1√
T

)
,

where (i) is by ∥Π1∥F =
√
2K/2, and (ii) is by Lemma D.8. For the second part, we have∥∥∥∥∥ Ṽ (T)

∥V (T)∥F

∥∥∥∥∥
F

=
∥Ṽ (T)∥F

∥β(T)Π1 + Ṽ (T)∥F

≤ ∥Ṽ (T)∥F
∥β(T)Π1∥F + ∥Ṽ (T)∥F

(i)

≤ Kγ(T)

√
2K
2 β(T) +Kγ(T)

(ii)

≤
2η
ϵ + 2TϵK3N exp(−Ω(N))

√
2K
2

(√
ηT − 2η

ϵK

)
+ 2η

ϵ + 2TϵK3N exp(−Ω(N))

≤ O
(

1√
T

)
,

where (i) is by ∥Π1∥F =
√
2K/2, and (ii) is by Lemma D.8. Therefore, we can obtain that∥∥∥∥ V (T)

∥V (T)∥F
− Π⊤

1

∥Π⊤
1 ∥F

∥∥∥∥
F

≤ O
(

1√
T

)
.

Lemma D.10. Assume that Π = Π1 and K is an even integer. For Ω(ηϵ−2K−2) ≤ T ≤ T ∗, it
holds that ∥∥∥∥ fθ(T)(X)

∥fθ(T)(X)∥2
−Π⊤

1 xN−1

∥∥∥∥
2

≤ O
(

1√
T

)
.

Proof of Lemma D.10. The output with θ = θ(T) is fθ(T)(X) = V (T)XS(X̃⊤W (T)x̃N) =

V (T)
∑N−1

i=1 S(T)
i xi. Then, we can get that∥∥∥∥ fθ(T)(X)

∥fθ(T)(X)∥2
−Π⊤

1 xN−1

∥∥∥∥
2

=

∥∥∥∥∥∥
(
β(T)Π1 + Ṽ (T)

)∑N−1
i=1 S(T)

i xi∥∥∥V (T)
∑N−1

i=1 S(T)
i xi

∥∥∥
2

−Π1xN−1

∥∥∥∥∥∥
2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

≤

∥∥∥∥∥∥
 β(T)S(T)

N−1∥∥∥V (T)
∑N−1

i=1 S(T)
i xi

∥∥∥
2

− 1

Π1xN−1

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥β
(T)Π1

∑N−2
i=1 S(T)

i xi + Ṽ (T)
∑N−1

i=1 S(T)
i xi∥∥∥V (T)

∑N−1
i=1 S(T)

i xi

∥∥∥
2

∥∥∥∥∥∥
2

.

For the first part, we have∥∥∥∥∥∥
 β(T)S(T)

N−1∥∥∥V (T)
∑N−1

i=1 S(T)
i xi

∥∥∥
2

− 1

Π1xN−1

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
1−

β(T)S(T)
N−1∥∥∥β(T)Π1

∑N−1
i=1 S(T)

i xi

∥∥∥
2
+
∥∥∥Ṽ (T)

∑N−1
i=1 S(T)

i xi

∥∥∥
2

Π1xN−1

∥∥∥∥∥∥
2

≤

∥∥∥∥∥
(
1− β(T)[1− exp(−Ω(N))]

√
2
2 β(T) +

√
Kγ(T)

)
Π1xN−1

∥∥∥∥∥
2

≤

(
1−

(√
ηT − 2η

ϵK

)
[1− exp(−Ω(N))](√

ηT − 2η
ϵK

)
+
√
K
(
2η
ϵK + 2TϵK2N exp(−Ω(N))

)) ·
√
2

2

≤ O

(√
K
(
2η
ϵK + 2TϵK2N exp(−Ω(N))

)
√
ηT + 2TϵK2N exp(−Ω(N))

)

≤ O
(

1√
T

)
,

where the first inequality is by Lemma D.8, the second inequality is by Lemma D.8 and ∥Π1xi∥2 =√
2/2, and the third inequality is by Lemma D.8. For the second part, we have∥∥∥∥∥∥β

(T)Π1

∑N−2
i=1 S(T)

i xi + Ṽ (T)
∑N−1

i=1 S(T)
i xi∥∥∥V (T)

∑N−1
i=1 S(T)

i xi

∥∥∥
2

∥∥∥∥∥∥
2

≤

∥∥∥β(T)Π1

∑N−2
i=1 S(T)

i xi

∥∥∥
2
+
∥∥∥Ṽ (T)

∑N−1
i=1 S(T)

i xi

∥∥∥
2∥∥∥β(T)Π1

∑N−1
i=1 S(T)

i xi

∥∥∥
2

≤ exp(−Ω(N))∥V (T)∥max +
√
Kγ(T)

√
2
2 β(T)

≤
exp(−Ω(N))

(
η
ϵK + 2TϵK2

)
+

√
K
(
2η
ϵK + 2TϵK2N exp(−Ω(N))

)
√
2
2 ·
(√

ηT − 2η
ϵK

)
≤ O

(
1√
T

)
where the second inequality is by Lemma D.8 and ∥Π1xi∥2 =

√
2/2, and the third inequality is by

Lemma D.8. Therefore, we can obtain that∥∥∥∥ fθ(T)(X)

∥fθ(T)(X)∥2
−Π⊤

1 xN−1

∥∥∥∥
2

≤ O
(

1√
T

)
.

E DETERMINISTIC WALK

In this section, we consider the case of the deterministic walk. We assume that the transition matrix
is Π = Π2. The following lemma shows the results of the first iteration.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Lemma E.1. If Π = Π2, then it holds that

V (1) =
ηr

ϵNK
1K×K and W (1) = 0(K+M)×(K+M).

Proof of Lemma E.1. By Lemma C.1, we have

E[∇V ℓ(θ(0))] = − 1

ϵN

N−1∑
i=1

E[eyx⊤
i]

= − 1

ϵN

N−1∑
i=1

E[(Π⊤
2)

N−ixix
⊤
i]

= − 1

ϵNK

N−1∑
i=1

(Π⊤
2)

N−i

= − r

ϵNK
1K×K ,

where the first equation is by the initialization of V (0) and W (0), the second equation is by the
sampling method, the third equation is by E[xix

⊤
i] =

1
K IK for i ∈ [N − 1] since xi is uniformly

distributed in E, and the last equation is by Lemma F.2. Thus, by the update, we can get

V (1) = V (0) − ηE[∇V ℓ(θ(0))] =
ηr

ϵNK
1K×K .

Since V (0) = 0K×K and W (0) = 0(K+M)×(K+M), we can get E[∇W ℓ(θ(0))] = 0(K+M)×(K+M).
Thus,

W (1) = W (0) − ηE[∇W ℓ(θ(0))] = 0(K+M)×(K+M).

The following lemma states the results of the second iteration.
Lemma E.2. If Π = Π2, then it holds that

V (2) =

(
ηr

ϵNK
+

ηϵrN

ηr2K + ϵ2N2K

)
1K×K ,

W
(2)
12 =

η2r2

ηr2NK + ϵ2N3K
1Kp⊤

N ,

W
(2)
22 =

(
η2r

ηr2NK + ϵ2N3K

N−1∑
i=1

pi −
η2r2

ηr2N + ϵ2N3
pN

)
p⊤
N .

Proof of Lemma E.2. By Lemma C.1, we have

E[∇V ℓ(θ(1))] = −E

[
1

e⊤y V
(1)XS(1) + ϵ

· ey
N−1∑
i=1

S(1)
i x⊤

i

]

= − 1
ηr2

ϵN + ϵN

N−1∑
i=1

E[eyx⊤
i]

= − ϵN

ηr2 + ϵ2N2

N−1∑
i=1

E[(Π⊤
2)

N−ixix
⊤
i]

= − ϵN

ηr2K + ϵ2N2K

N−1∑
i=1

(Π⊤
2)

N−i

= − ϵrN

ηr2K + ϵ2N2K
1K×K ,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

where the second equation is by Lemma E.1, the third equation is by the sampling method, the fourth
equation is by E[xix

⊤
i] =

1
K IK for i ∈ [N − 1] since xi is uniformly distributed in E, and the last

equation is by Lemma F.2. Thus, we can get

V (2) = V (1) − ηE[∇V ℓ(θ(1))]

=
ηr

ϵNK
1K×K +

ηϵrN

ηr2K + ϵ2N2K
1K×K .

By Lemma C.1, we have

E[A(1)] = E

[(
N−1∑
i=1

S(1)
i xix

⊤
i (V

(1))⊤ey −
N−1∑
i1=1

N−1∑
i2=1

S(1)
i1

S(1)
i2

xi1x
⊤
i2(V

(1))⊤ey

)
p⊤
N

]

= E

[(
ηr

ϵN2K

N−1∑
i=1

xix
⊤
i 1K − ηr

ϵN3K

N−1∑
i1=1

N−1∑
i2=1

xi1x
⊤
i21K

)
p⊤
N

]

= E

[(
ηr

ϵN2K

N−1∑
i=1

xi −
ηr

ϵN3K

N−1∑
i1=1

N−1∑
i2=1

xi1

)
p⊤
N

]

=

(
ηr2

ϵN2K
1K − ηr2(N − 1)

ϵN3K
1K

)
p⊤
N

=
ηr2

ϵN3K
1Kp⊤

N ,

where the second equation is by Lemma E.1, and the fourth equation is by the fact that all the xi is
uniformly distributed in E. We also have

E[B(1)] = E

[(
N−1∑
i=1

S(1)
i pix

⊤
i (V

(1))⊤ey −
N∑
i=1

S(1)
i pi ·

N−1∑
i=1

S(1)
i x⊤

i (V
(1))⊤ey

)
p⊤
N

]

= E

[(
ηr

ϵN2K

N−1∑
i=1

pix
⊤
i 1K − ηr

ϵN3K

N∑
i=1

pi ·
N−1∑
i=1

x⊤
i 1K

)
p⊤
N

]

=

(
ηr

ϵN2K

N−1∑
i=1

pi −
ηr(N − 1)

ϵN3K

N∑
i=1

pi

)
p⊤
N

=

(
ηr

ϵN3K

N−1∑
i=1

pi −
ηr2

ϵN3
pN

)
p⊤
N ,

where the second equation is by Lemma E.1. Thus, we can get that

W
(2)
12 = W

(1)
12 − ηE[∇W ℓ(θ(1))]12

= E

[
η

e⊤y V
(1)XS(1) + ϵ

·A(1)

]

=
η

ηr2

ϵN2 + ϵ
· ηr2

ϵN3K
1Kp⊤

N

=
η2r2

ηr2NK + ϵ2N3K
1Kp⊤

N ,

and

W
(2)
22 = W

(1)
22 − ηE[∇W ℓ(θ(1))]22

= E

[
η

e⊤y V
(1)XS(1) + ϵ

·B(1)

]

=
η

ηr2

ϵN2 + ϵ
·

(
ηr

ϵN3K

N−1∑
i=1

pi −
ηr2

ϵN3
pN

)
p⊤
N

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

=

(
η2r

ηr2NK + ϵ2N3K

N−1∑
i=1

pi −
η2r2

ηr2N + ϵ2N3
pN

)
p⊤
N .

Next, we can analyze the gradient descent dynamics over multiple iterations.
Lemma E.3. If Π = Π2, then for any t ≥ 0 and any sequence of learning rates {ηt}, it holds that

V (t) ∝ 1K×K , and S(t)
1 = S(t)

2 = · · · = S(t)
N−1.

Proof of Lemma E.3. We use induction to prove that for some scalar α
(t)
1 , α

(t)
2 , α

(t)
3 , α

(t)
4 ,

it holds that for t ≥ 2, V (t) = α
(t)
1 1K×K , W

(t)
12 = α

(t)
2 1Kp⊤

N , and W
(t)
22 =(

α
(t)
3

∑N−1
i=1 pi − α

(t)
4 pN

)
p⊤
N . By Lemma E.2, we know that the hypothesis holds for t = 2. Sup-

pose that the hypothesis holds for t = t′. We aim to prove that the hypothesis holds for t = t′ + 1.
We have

X̃W (t′)x̃N =

x⊤
1 W

(t′)
12 pN + p⊤

1 W
(t′)
22 pN

x⊤
2 W

(t′)
12 pN + p⊤

2 W
(t′)
22 pN

...
x⊤
N−1W

(t′)
12 pN + p⊤

N−1W
(t′)
22 pN

p⊤
NW

(t′)
22 pN

=

α
(t′)
2 p⊤

NpN + α
(t′)
3 p⊤

1 p1p
⊤
NpN

α
(t′)
2 p⊤

NpN + α
(t′)
3 p⊤

2 p2p
⊤
NpN

...
α
(t′)
2 p⊤

NpN + α
(t′)
3 p⊤

N−1pN−1p
⊤
NpN

−α
(t′)
4 (p⊤

NpN)2

 . (E.1)

Since p⊤
1 p1 = p⊤

2 p2 = · · · = p⊤
NpN , we have [X̃W (t′)x̃N]1 = [X̃W (t′)x̃N]2 = · · · =

[X̃W (t′)x̃N]N−1. Thus, we can get that S(t′)
1 = S(t′)

2 = · · · = S(t′)
N−1 := s(t

′). Then, we have

E[∇V ℓ(θ(t
′))] = −E

[
1

e⊤y V
(t′)XS(t′) + ϵ

· ey
N−1∑
i=1

S(t′)
i x⊤

i

]

= −E

[
1

α
(t′)
1 s(t′)(N − 1) + ϵ

· ey
N−1∑
i=1

s(t
′)x⊤

i

]

= − s(t
′)

α
(t′)
1 s(t′)(N − 1) + ϵ

N−1∑
i=1

E[eyx⊤
i]

= − s(t
′)

α
(t′)
1 s(t′)(N − 1) + ϵ

N−1∑
i=1

E[(Π⊤
2)

N−ixix
⊤
i]

= − s(t
′)

α
(t′)
1 s(t′)(N − 1)K + ϵK

N−1∑
i=1

(Π⊤
2)

N−i

= − s(t
′)r

α
(t′)
1 s(t′)(N − 1)K + ϵK

1K×K ,

where the second equation is by the induction, the fourth equation is by the sampling method,
the fifth equation is by the fact that xi is uniformly distributed in E, and the last equation is by
Lemma F.2. Thus, we can get V (t′+1) = V (t′) − η(t

′)E[∇V ℓ(θ(t
′))] ∝ 1K×K . We also have

E[A(t′)] = E

[(
N−1∑
i=1

S(t′)
i xix

⊤
i (V

(t′))⊤ey −
N−1∑
i1=1

N−1∑
i2=1

S(t′)
i1

S(t′)
i2

xi1x
⊤
i2(V

(t′))⊤ey

)
p⊤
N

]

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

= E

[(
α
(t′)
1 s(t

′)
N−1∑
i=1

xix
⊤
i 1K − α

(t′)
1 (s(t

′))2
N−1∑
i1=1

N−1∑
i2=1

xi1x
⊤
i21K

)
p⊤
N

]

= E

[(
α
(t′)
1 s(t

′)
N−1∑
i=1

xi − α
(t′)
1 (s(t

′))2
N−1∑
i1=1

N−1∑
i2=1

xi1

)
p⊤
N

]

=

(
α
(t′)
1 s(t

′)(N − 1)

K
1K − α

(t′)
1 (s(t

′))2(N − 1)2

K
1K

)
p⊤
N ,

where the second equation is by the induction, and the fourth equation is by the fact that all the xi

is uniformly distributed in E. And,

E[B(t′)] = E

[(
N−1∑
i=1

S(t′)
i pix

⊤
i (V

(t′))⊤ey −
N∑
i=1

S(t′)
i pi ·

N−1∑
i=1

S(t′)
i x⊤

i (V
(t′))⊤ey

)
p⊤
N

]

= E

[(
α
(t′)
1 s(t

′)
N−1∑
i=1

pix
⊤
i 1K − α

(t′)
1 (s(t

′))2
N∑
i=1

pi ·
N−1∑
i=1

x⊤
i 1K

)
p⊤
N

]

=

(
α
(t′)
1 s(t

′)
N−1∑
i=1

pi − α
(t′)
1 (s(t

′))2(N − 1)

N∑
i=1

pi

)
p⊤
N ,

where the second equation is by the induction. Therefore, we can get

W
(t′+1)
12 = W

(t′)
12 − ηE[∇W ℓ(θ(t

′))]12

= α
(t′)
2 1Kp⊤

N +
η

ηr2

ϵN2 + ϵ
E[A(t′)]

= α
(t′)
2 1Kp⊤

N +
η

ηr2

ϵN2 + ϵ

(
α
(t′)
1 s(t

′)(N − 1)

K
− α

(t′)
1 (s(t

′))2(N − 1)2

K

)
1Kp⊤

N

:= α
(t′+1)
2 1Kp⊤

N ,

and

W
(t′+1)
22 = W

(t′)
22 − ηE[∇W ℓ(θ(t

′))]22

=

(
α
(t′)
3

N−1∑
i=1

pi − α
(t′)
4 pN

)
p⊤
N +

η
ηr2

ϵN2 + ϵ
E[B(t′)]

=

(
α
(t′)
3

N−1∑
i=1

pi − α
(t′)
4 pN

)
p⊤
N

+
η

ηr2

ϵN2 + ϵ

(
α
(t′)
1 s(t

′)
N−1∑
i=1

pi − α
(t′)
1 (s(t

′))2(N − 1)

N∑
i=1

pi

)
p⊤
N

:=

(
α
(t′+1)
3

N−1∑
i=1

pi − α
(t′+1)
4 pN

)
p⊤
N .

Therefore, by induction, we can conclude that for all t ≥ 2, V (t) = α
(t)
1 1K×K , W (t)

12 = α
(t)
2 1Kp⊤

N ,

and W
(t)
22 =

(
α
(t)
3

∑N−1
i=1 pi − α

(t)
4 pN

)
p⊤
N . Similar to (E.1), we have [X̃W (t)x̃N]1 =

[X̃W (t)x̃N]2 = · · · = [X̃W (t)x̃N]N−1, which implies that S(t)
1 = S(t)

2 = · · · = S(t)
N−1.

F AUXILIARY LEMMAS

In this section, we present some auxiliary lemmas. The following lemma provides the bound of
some combinatorial numbers.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Lemma F.1. For all n ∈ N, it holds that(
2n

n

)
<

22n√
2n+ 1

and
(
2n+ 1

n

)
<

22n+1

√
2n+ 3

.

Proof of Lemma F.1. For n ∈ N, we have(
2n

n

)
= 22n · (2n− 1)!!

(2n)!!

= 22n ·
n∏

k=1

2k − 1

2k

< 22n ·
n∏

k=1

√
2k − 1

√
2k − 1√

2k − 1
√
2k + 1

= 22n ·
n∏

k=1

√
2k − 1√
2k + 1

=
22n√
2n+ 1

.

We also have (
2n+ 1

n

)
= 22n+1 · (2n+ 1)!!

(2n+ 2)!!

= 22n+1 ·
n+1∏
k=1

2k − 1

2k

< 22n+1 ·
n+1∏
k=1

√
2k − 1

√
2k − 1√

2k − 1
√
2k + 1

= 22n+1 ·
n+1∏
k=1

√
2k − 1√
2k + 1

=
22n+1

√
2n+ 3

.

The following lemma states the properties of Π0.

Lemma F.2. ΠK
0 = IK , Π0Π

⊤
0 = IK , and

∑K
k=1 Π

k
0 = 1K×K .

Proof of Lemma F.2. In this proof, the index i larger than K represents i − K. For Π0, only
[Π0]i+1,i = 1 for i ∈ [K] and other elements are 0. We can get that for Πk

0 , only [Πk
0]i+k,i = 1

for i ∈ [K] and other elements are 0. By this observation, we can derive that ΠK
0 = IK and∑K

k=1 Π
k
0 = 1K×K . Also, we have Π⊤

0 = ΠK−1
0 , so we can get Π0Π

⊤
0 = ΠK

0 = IK .

The following two lemmas show some properties of Π1.
Lemma F.3. Assume that R = rK + l with r ∈ N and l ∈ N. For the case that K is even and l is
odd,

1

K
tr(ΠR

1) = 0.

For the case that K is even and l is odd,
1

K
tr(ΠR

1) <
2

K
+

1√
R+ 1

.

For the case that K is odd,
1

K
tr(ΠR

1) <
1

K
+

2√
R+ 1

.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Proof of Lemma F.3. By Lemma F.2, we know that

1

K
tr(ΠP

0) =

{
1, if P = rK with r ∈ N;
0, otherwise.

(F.1)

Then, we can get
1

K
tr(ΠR

1) =
1

K · 2R
tr((Π0 +Π⊤

0)
R)

=
1

K · 2R
tr

(
R∑

k=0

(
R

k

)
ΠR−2k

0

)

=
1

2R

R∑
k=0

(
R

k

)
1{K|2k−l}, (F.2)

where the last equation is by (F.1).

When K is even and l is odd, we can directly get that
1

K
tr(ΠR

1) = 0

by (F.2).

When K is even and l is even, we can get
1

K
tr(ΠR

1) =
1

K · 2R
tr((Π0 +Π⊤

0)
R)

=
1

K · 2R
tr

(
R∑

k=0

(
R

k

)
ΠR−2k

0

)
(i)
=

1

2R

2r∑
s=0

(
R

s · K
2 + l

2

)

≤ 1

2R
2

K

r−1∑
s=0

l/2+K/2−1∑
u=l/2

(
R

s · K
2 + u

)
+

1

2R
2

K

2r∑
s=r+1

l/2∑
u=l/2−K/2+1

(
R

s · K
2 + u

)

+
1

2R

(
R

R/2

)
(ii)

≤ 1

2R
2

K

(
2R −

(
R

R/2

))
+

1

2R

(
R

R/2

)
=

2

K
+

1

2R
K − 2

K

(
R

R/2

)
(iii)
<

2

K
+

1√
R+ 1

,

where (i) is by Lemma F.2, (ii) is by
∑R

k=0

(
R
k

)
= 2R, and (iii) is by Lemma F.1.

When K is odd, l is even and r is even, we can get
1

K
tr(ΠR

1) =
1

K · 2R
tr((Π0 +Π⊤

0)
R)

=
1

K · 2R
tr

(
R∑

k=0

(
R

k

)
ΠR−2k

0

)
(i)
=

1

2R

r∑
s=0

(
R

sK + l
2

)

≤ 1

2R
1

K

r/2−1∑
s=0

l/2+K−1∑
u=l/2

(
R

sK + u

)
+

1

2R
1

K

r∑
s=r/2+1

l/2∑
u=l/2−K+1

(
R

sK + u

)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

+
1

2R

(
R

R/2

)
(ii)

≤ 1

2R
1

K

(
2R −

(
R

R/2

))
+

1

2R

(
R

R/2

)
=

1

K
+

1

2R
K − 1

K

(
R

R/2

)
(iii)
<

1

K
+

1√
R+ 1

,

where (i) is by Lemma F.2, (ii) is by
∑R

k=0

(
R
k

)
= 2R, and (iii) is by Lemma F.1.

When K is odd, l is even and r is odd, we can get

1

K
tr(ΠR

1) =
1

K · 2R
tr((Π0 +Π⊤

0)
R)

=
1

K · 2R
tr

(
R∑

k=0

(
R

k

)
ΠR−2k

0

)
(i)
=

1

2R

r∑
s=0

(
R

sK + l
2

)

=
1

2R

(r−1)/2−1∑
s=0

(
R

sK + l
2

)
+

1

2R

r∑
s=(r+1)/2+1

(
R

sK + l
2

)

+
1

2R

[(
R

r−1
2 K + l

2

)
+

(
R

r+1
2 K + l

2

)]

≤ 1

2R
1

K

(r−1)/2−1∑
s=0

l/2+K−1∑
u=l/2

(
R

sK + u

)
+

1

2R
1

K

r∑
s=(r+1)/2+1

l/2∑
u=l/2−K+1

(
R

sK + u

)

+
1

2R

[(
R

R−1
2

)
+

(
R

R+1
2

)]
(ii)
<

1

K
+

2√
R+ 2

,

where (i) is by Lemma F.2, (ii) is by
∑R

k=0

(
R
k

)
= 2R and Lemma F.1.

When K is odd, l is odd and r is even, we can get

1

K
tr(ΠR

1) =
1

K · 2R
tr((Π0 +Π⊤

0)
R)

=
1

K · 2R
tr

(
R∑

k=0

(
R

k

)
ΠR−2k

0

)
(i)
=

1

2R

r−1∑
s=0

(
R

sK + K+l
2

)

=
1

2R

(r−2)/2−1∑
s=0

(
R

sK + K+l
2

)
+

1

2R

r−1∑
r/2+1

(
R

sK + K+l
2

)

+
1

2R

[(
R

r−2
2 K + K+l

2

)
+

(
R

r
2K + K+l

2

)]

≤ 1

2R
1

K

(r−2)/2−1∑
s=0

(K+l)/2+K−1∑
u=(K+l)/2

(
R

sK + u

)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

+
1

2R
1

K

r−1∑
s=r/2+1

(K+l)/2∑
u=(K+l)/2−K+1

(
R

sK + u

)
+

1

2R

[(
R

R−1
2

)
+

(
R

R+1
2

)]
(ii)
<

1

K
+

2√
R+ 2

,

where (i) is by Lemma F.2, (ii) is by
∑R

k=0

(
R
k

)
= 2R and Lemma F.1.

When K is odd, l is odd and r is odd, we can get
1

K
tr(ΠR

1) =
1

K · 2R
tr((Π0 +Π⊤

0)
R)

=
1

K · 2R
tr

(
R∑

k=0

(
R

k

)
ΠR−2k

0

)
(i)
=

1

2R

r−1∑
s=0

(
R

sK + K+l
2

)

≤ 1

2R
1

K

(r−1)/2−1∑
s=0

(K+l)/2+K−1∑
u=(K+l)/2

(
R

sK + u

)

+
1

2R
1

K

r−1∑
s=(r−1)/2+1

(K+l)/2∑
u=(K+l)/2−K+1

(
R

sK + u

)
+

1

2R

(
R

R/2

)
(ii)
<

1

K
+

1√
R+ 1

,

where (i) is by Lemma F.2, (ii) is by
∑R

k=0

(
R
k

)
= 2R and Lemma F.1.

Lemma F.4. Assume that R ≥ K and K is even. For the case that R is even,[
ΠR

1

]
i,j

= 0 for odd (j − i);[
ΠR

1

]
i,j

≥ 2

K
− 2√

R+ 1
for even (j − i).

For the case that R is even, [
ΠR

1

]
i,j

≥ 2

K
− 2√

R+ 1
for odd (j − i);[

ΠR
1

]
i,j

= 0 for even (j − i).

Proof of Lemma F.4. First, we can get that[
ΠR

1

]
i,j

=
1

2R
[
(Π0 +Π⊤

0)
R
]
i,j

=
1

2R

(R∑
k=0

(
R

k

)
ΠR−2k

0

)R

i,j

=
1

2R

R∑
k=0

(
R

k

)
1{K|R− 2k − j + i}. (F.3)

Next, we consider two cases and assume that R = rK + l. We can easily observe that

K

2

(
R

s

)
≥

K/2−1∑
i=0

(
R

s− i

)
for s ≤ R/2; (F.4)

K

2

(
R

s

)
≥

K/2−1∑
i=0

(
R

s+ i

)
for s ≥ R/2. (F.5)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Condition 1: R is even. We can directly get by (F.3) that
[
ΠR

1

]
i,j

= 0 for odd (j− i). When (j− i)

is even, we have

[
ΠR

1

]
i,j

=
1

2R

R∑
k=0

(
R

k

)
1{K|R− 2k − j + i}

=
1

2R

2r∑
s=0

(
R

s · K
2 + l

2 − j−i
2

)

=
1

2R
2

K

(
2r∑
s=0

K

2

(
R

s · K
2 + l

2 − j−i
2

)
+K

(
R

R/2

))
− 2

2R

(
R

R/2

)

≥ 1

2R
2

K

R∑
s=0

(
R

s

)
− 2

2R

(
R

R/2

)
≥ 2

K
− 2√

R+ 1
,

where the first inequality is by (F.4) and (F.5), and the second inequality is by Lemma F.1.

Condition 2: R is odd. We can directly get by (F.3) that
[
ΠR

1

]
i,j

= 0 for even (j− i). When (j− i)

is old, we have

[
ΠR

1

]
i,j

=
1

2R

R∑
k=0

(
R

k

)
1{K|R− 2k − j + i}

=
1

2R

2r∑
s=0

(
R

s · K
2 + l−(j−i)

2

)

=
1

2R
2

K

(
2r∑
s=0

K

2

(
R

s · K
2 + l−(j−i)

2

)
+K

(
R

R/2

))
− 2

2R

(
R

R/2

)

≥ 1

2R
2

K

R∑
s=0

(
R

s

)
− 2

2R

(
R

R/2

)
≥ 2

K
− 2√

R+ 1
,

where the first inequality is by (F.4) and (F.5), and the second inequality is by Lemma F.1.

The following lemma shows the basic property of the positional embedding.

Lemma F.5. Assume that

pi =

[
sin

(
iπ

M + 1

)
, sin

(
2iπ

M + 1

)
, . . . , sin

(
Miπ

M + 1

)]⊤
for i ∈ [M]. It holds that

p⊤
i1pi2 =

{
M+1

2 for i1 = i2;

0 for i1 ̸= i2.

Proof of Lemma F.5. When i1 ̸= i2 and i1 + i2 are even, we have

p⊤
i1pi2 =

M∑
j=1

sin

(
ji1π

M + 1

)
sin

(
ji2π

M + 1

)

=

M∑
j=0

sin

(
ji1π

M + 1

)
sin

(
ji2π

M + 1

)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

=
1

4

M∑
j=0

[
exp

(
iπ

i1 − i2
M + 1

j

)
+ exp

(
−iπ

i1 − i2
M + 1

j

)

− exp

(
iπ

i1 + i2
M + 1

j

)
− exp

(
−iπ

i1 + i2
M + 1

j

)]
=

1

4
· exp (iπ(i1 − i2))− 1

exp
(
iπ i1−i2

M+1

)
− 1

+
1

4
· exp (−iπ(i1 − i2))− 1

exp
(
−iπ i1−i2

M+1

)
− 1

− 1

4
· exp (iπ(i1 + i2))− 1

exp
(
iπ i1+i2

M+1

)
− 1

− 1

4
· exp (−iπ(i1 + i2))− 1

exp
(
−iπ i1+i2

M+1

)
− 1

= 0,

where the third equation is by sin(x) = exp(ix)−exp(−ix)
2i , and the last inequality is by exp(iπk) = 1

for even k. When i1 ̸= i2 and i1 + i2 are odd, we have

p⊤
i1pi2 =

M∑
j=1

sin

(
ji1π

M + 1

)
sin

(
ji2π

M + 1

)

=

M∑
j=0

sin

(
ji1π

M + 1

)
sin

(
ji2π

M + 1

)

=
1

4

M∑
j=0

[
exp

(
iπ

i1 − i2
M + 1

j

)
+ exp

(
−iπ

i1 − i2
M + 1

j

)

− exp

(
iπ

i1 + i2
M + 1

j

)
− exp

(
−iπ

i1 + i2
M + 1

j

)]
=

1

4
· exp (iπ(i1 − i2))− 1

exp
(
iπ i1−i2

M+1

)
− 1

+
1

4
· exp (−iπ(i1 − i2))− 1

exp
(
−iπ i1−i2

M+1

)
− 1

− 1

4
· exp (iπ(i1 + i2))− 1

exp
(
iπ i1+i2

M+1

)
− 1

− 1

4
· exp (−iπ(i1 + i2))− 1

exp
(
−iπ i1+i2

M+1

)
− 1

= −1

2

 1

exp
(
iπ i1−i2

M+1

)
− 1

+
1

exp
(
−iπ i1−i2

M+1

)
− 1

+

1

2

 1

exp
(
iπ i1+i2

M+1

)
− 1

+
1

exp
(
−iπ i1+i2

M+1

)
− 1

= 0,

where the third equation is by sin(x) = exp(ix)−exp(−ix)
2i , the fifth inequality is by exp(iπk) = −1

for odd k, and the last equation is by 1
exp(x)−1 + 1

exp(−x)−1 = −1. When i1 = i2, we have

p⊤
i1pi2 =

M∑
j=1

sin

(
ji1π

M + 1

)
sin

(
ji2π

M + 1

)

=

M∑
j=0

sin

(
ji1π

M + 1

)
sin

(
ji2π

M + 1

)

=
1

4

M∑
j=0

[
exp

(
iπ

i1 − i2
M + 1

j

)
+ exp

(
−iπ

i1 − i2
M + 1

j

)

− exp

(
iπ

i1 + i2
M + 1

j

)
− exp

(
−iπ

i1 + i2
M + 1

j

)]

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

=
M + 1

2
− 1

4

M∑
j=0

[
exp

(
iπ

i1 + i2
M + 1

j

)
+ exp

(
−iπ

i1 + i2
M + 1

j

)]
=

M + 1

2
− 1

4
· exp (iπ(i1 + i2))− 1

exp
(
iπ i1+i2

M+1

)
− 1

− 1

4
· exp (−iπ(i1 + i2))− 1

exp
(
−iπ i1+i2

M+1

)
− 1

=
M + 1

2
,

where the third equation is by sin(x) = exp(ix)−exp(−ix)
2i , and the last inequality is by exp(iπk) = 1

for even k.

G ADDITIONAL EXPERIMENTS

G.1 ADDITIONAL EXPERIMENTS ON RANDOM/DETERMINISTIC WALKS

In this subsection, we provide additional experiments on synthetic data for Task 1 and Task 2 with
(K,N) = (20, 101). We consider the transformer model introduced in Section 2 with the length of
the position embedding M = 1000. To train the model, we utilize gradient descent starting with zero
initialization, where the learning rate η = 1 and the constant ϵ in the log-loss is set as ϵ = 0.1. And,
we run the gradient descent algorithm for T = 50 training epochs. Figure 8 and Figure 9 illustrate
the experiments for Task 1 and Task 2 respectively. These experimental results match Theorem 3.1
and Theorem 3.2, which also strongly supports our theoretical results.

(a) Accuracy (b) Visualization of V (T) (c) The average attention (d) Part of the attention

Figure 8: The results of the experiment on Task 1 with (K,N) = (20, 101): (a) is the test accuracy;
(b) is the visualization of V (T); (c) and (d) present the average attention of the test data with x-axis
representing the position of the token and y-axis representing the attention score.

(a) Accuracy (b) Visualization of V (T) (c) Average attention of test data

Figure 9: The results of the experiment on Task 2 with K = 20, N = 101. (a) is the prediction
accuracy with x-axis representing the iteration and y-axis representing the accuracy. (b) is the
visualization of V . (c) is the average attention of the test data with x-axis representing the position
of the token and y-axis representing the attention score.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

(a) Accuracy (b) KL-Divergence (c) Accuracy (d) KL-Divergence

Figure 10: The results of the experiment conducted using a more complicated transformer for Task
3 and Task 4: (a) and (b) correspond to the experiment for Task 3; (c) and (d) correspond to the
experiment for Task 4.

G.2 ADDITIONAL EXPERIMENTS ON THE QUESTION ANSWERING TASKS IN SECTION 5.2

Here, we conduct some additional experiments for Task 3 and Task 4 discussed in Section 5.2, ex-
tending the single-layer transformer model to a more complicated model by adding a fully connected
layer with ReLU activation to the transformer model. The new model has the form

fθ(X) = A · ReLU
(
V XSoftmax

(
X̃⊤Wx̃N

))
, (G.1)

where A ∈ RK×m, V ∈ Rm×K , W ∈ R(K+M)×(K+M) are the trainable parameter matrices,
and m is the number of neurons in the fully connected layer. For Task 3 and Task 4, the length of
the vocabulary K and the length of each input sequence N are set as (K,N) = (19, 17), (19, 19)
respectively. In addition, we set the positional embedding M = 1000 and the number of neurons
m = 19. To train the model, we consider the Gaussian random initialization A

(0)
ij ,V

(0)
ij ,W

(0)
ij ∼

N(0, σ2) with σ = 0.01, and use gradient descent with learning rate η = 0.1. The constant ϵ in the
log-loss is set as ϵ = 0.1. Both experiments are conducted on 1024 training data and 1024 test data.
Here, most of the settings remain the same as in the previous experiments in Section 5.2.

Figure 10 shows the experiment results using the more complicated transformer in (G.1) to learn
Task 3 and Task 4. In Figure 10(a) and Figure 10(c), we present the test accuracy achieved by the
transformer model in learning Task 3 and Task 4 respectively. In Figure 10(b) and Figure 10(d),
we first normalize the output of the trained transformer model to get a K-dimensional vector, rep-
resenting the prediction distribution of K words. Then, we report the KL-divergence between this
prediction distribution and the true distribution of y|x1,x2, ...,xN−1. The experiment results show
a clear difference between the performances of the transformer model in the two tasks. In Task 3,
the trained transformer model can successfully approach the optimal accuracy (100%) within 100
iterations. However, in Task 4, the test accuracy always remains around 50%, which is the accuracy
of a random guess.

Despite using a more complicated transformer model with an additional feedforward layer of non-
linearities compared to the one considered in our theoretical analysis and previous experiments, the
experimental results are still similar to those reported in Section 5.2. These results demonstrate that
more complex transformer models may still struggle with the relatively ’simple’ Task 4 but excel
at the relatively ’difficult’ Task 3. This indicates that our findings can be applied to cases involving
additional nonlinearities, implying their applicability to more complex and general conditions.

37

	Introduction
	Problem Setup
	Random and Deterministic Walks on Circles
	Transformer Architecture
	Training Method

	Main Results
	Experiment
	Successes & Pitfalls Beyond Random/Deterministic Walks
	An Intuitive Explanation
	Beyond Randon/Deterministic Walks: Examples in Simple NLP Tasks

	Conclusion
	Additional Related Work
	Informal Proof Sketches of the Main Results
	Gradient Descent
	Task 1: Random Walk
	Deterministic Walk
	Auxiliary Lemmas
	Additional Experiments
	Additional Experiments on Random/Deterministic Walks
	Additional Experiments on the Question Answering Tasks in Section 5.2

