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Abstract

We study the utility of incorporating entity type abstractions into pre-trained Transformers
and test these methods on four NLP tasks requiring different forms of logical reasoning: (1)
compositional language understanding with text-based relational reasoning (CLUTRR), (2)
abductive reasoning (ProofWriter), (3) multi-hop question answering (HotpotQA), and (4)
conversational question answering (CoQA). We propose and empirically explore three ways
to add such abstraction: (i) as additional input embeddings, (ii) as a separate sequence
to encode, and (iii) as an auxiliary prediction task for the model. Overall, our analysis
demonstrates that models with abstract entity knowledge performs better than without
it. The best abstraction aware models achieved an overall accuracy of 88.8% and 91.8%
compared to the baseline model achieving 62.9% and 89.8% on CLUTRR and ProofWriter
respectively. However, for HotpotQA and CoQA, we find that F1 scores improve by only
0.5% on average. Our results suggest that the benefit of explicit abstraction is significant in
formally defined logical reasoning settings requiring many reasoning hops, but point to the
notion that it is less beneficial for NLP tasks having less formal logical structure.

1 Introduction

Transformer language models (TLMs; Vaswani et al. 2017) have enabled rapid progress in natural language
processing (NLP). When pre-trained on large corpora (such as the web) to predict the next tokens or a
set of masked tokens from an input sequence, TLMs can capture linguistic knowledge (Peters et al., 2018;
Goldberg, 2019; Tenney et al., 2019b), and yield state-of-the-art performance on many NLP tasks with little
to no task supervision (Devlin et al., 2019; Radford et al., 2018; 2019; Brown et al., 2020). However, it is
not clear if these models can capture higher level knowledge such as reasoning skills that can be re-used in
arbitrary contexts, and in ways that leverage the compositionality of those skills (Lake & Baroni, 2018; Liška
et al., 2018), something logical reasoners can do relatively well on a smaller scale (De Raedt et al., 2007;
Fierens et al., 2015). Simple compositional tasks such as SCAN (Lake & Baroni, 2018), CLUTRR (Sinha
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et al., 2019), and ProofWritter (Clark et al., 2020; Tafjord et al., 2021) can help diagnose the compositional
generalization behavior of language models. Recent work on some of these datasets showed that TLMs still
struggle to learn reasoning strategies that can be re-used in out-of training distribution settings (Lake &
Baroni, 2018; Gontier et al., 2020).

Humans do abstraction to simplify reasoning and become very efficient. This is particularly true in mathe-
matics when manipulating variables instead of numbers. Manipulating abstract concepts allows humans to
generalize knowledge across domains. If we look at how logical reasoners operate, we find that they have
an important abstraction component (going from grounded entities to higher level concepts) before logical
reasoning can start (De Raedt et al., 2007). Going from an original text sequence to its higher-order meaning
is an important part of the NLP pipeline (part of it being entity type tagging). Similarly in mathematics,
the introduction of generic variables allows to progress in a logical reasoning process without keeping track
of every (grounded) atomic entity. Overall, this idea that we call abstraction, seems to be an important
part of logical reasoning. Recent work suggests that incorporating external knowledge about grounded en-
tities could improve language models’ abilities to reason and generalize (Ji et al., 2017; Zhang et al., 2019;
Moosavi et al., 2020; Rosset et al., 2020). However the empirical effect of incorporating generic entity types
remains unclear, especially with recent studies suggesting that pre-trained models already encode some of
that linguistic knowledge in their parameters (Hewitt & Manning, 2019; Liu et al., 2019a; Clark et al., 2019;
Tenney et al., 2019a). In this work, we study the effect of explicitly providing entity type abstraction in
addition to the original input to pre-trained Transformers.

We explore and evaluate different ways to incorporate entity type abstraction and observe that some methods
are more effective than others. To construct the abstract representation incorporated into TLMs, we leverage
entity type information given by fixed pre-trained models. This allows for automatic and reproducible data
processing. In general, our approach is the following: given an input sequence, we use an entity tagger to
label entity types in the sequence. We then use these labels to construct a copy of the original sequence in
which all entities are replaced by their corresponding entity types. This new sequence can then be used as
extra input (Sections 3.1 & 3.2) or as extra training signal to the model (Sections 3.3). In particular, we
explore three different ways to augment pre-trained Transformers with this abstract knowledge:

1. by combining token embeddings from both the original and the abstract sequence before encoding (Sec-
tion 3.1) (Figure 1a & 1b).

2. by encoding both the original and the abstract sequence and combining them before decoding the target
output (Section 3.2) (Figure 1c & 1d).

3. by adding a second language model head on top of the Transformer decoder to predict the abstract
sequence (Section 3.3) (Figure 1e).

A series of controlled experiments on two synthetic datasets show that models having access to abstract
knowledge about entity types yield better performance at inference time both when interpolating and ex-
trapolating to unseen lengths of reasoning chains. Since no (non-synthetic) natural language dataset system-
atically and explicitly requires long chains of reasoning, we used synthetic datasets in which we can control
for the degree of compositional generalization required. Nevertheless, in order to understand if the benefits
observed could also be applicable in more realistic settings, we ran a series of experiments on two question
answering datasets requiring some degrees of multi-hop reasoning. Results on these more natural language
datasets show that abstraction aware models are not significantly better than baseline models. We conclude
that these “real-world” problems do not have strong enough logical structure to benefit from the abstraction
technique and that the pre-trained weights of large language models seem to be “enough” for such natural
language tasks, confirming previous results (Goldberg, 2019; Tenney et al., 2019a). It is only when tasked
on logical problems that explicitly require reasoning depths unseen during training that abstraction becomes
significantly beneficial.

Overall our work contributions are the following:

1. we introduce and compare empirically different ways to incorporate abstraction into pre-trained TLMs.
2. we show that incorporating abstract knowledge can significantly improve compositional generalization to

unseen lengths of reasoning chains in multi-step reasoning tasks.
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3. we show that abstraction aware models may not benefit much when language is more natural and less
procedural.

We hope that our work will inspire future research in the field to look for simple inductive biases that can
complement pre-trained models in their quest to achieve logical reasoning at scale.

2 Related Work

Augmenting neural language models with knowledge about entities has been a popular method to improve
their functionality. Ji et al. (2017) trained an entity neural language model to predict sequences of entities
with an LSTM (Hochreiter & Schmidhuber, 1997). At each sampling step, they predict the next word
alongside a categorical variable indicating the current token’s entity ID. They obtained lower perplexity and
better results on co-reference resolution and entity prediction tasks than a variety of baselines. Similarly,
Rosset et al. (2020) trained a GPT2 model (Radford et al., 2019) by giving it access to entity knowledge
at the input level and as an additional pre-training loss. Their model achieved better factual correctness
on benchmarks such as LAMA (Petroni et al., 2019), and performed better than a baseline GPT2 model
in various question answering tasks. Inspired by this work and motivated by the goal of building better
reasoning language models, we instead focus on the prediction of entity types rather than entity identifiers
taken from a fixed list of entities. This allows our solution to be robust to new entities. In addition, we
explore and compare different ways to incorporate the entity knowledge in an encoder-decoder architecture.

Besides entity knowledge, other types of explicit information has also been given to language models. Prior
work by Swayamdipta et al. (2018); Eriguchi et al. (2017); Nădejde et al. (2017) tried incorporating syntax
information into language models by introducing an auxiliary loss to the model. Results show that mod-
els trained to also predict syntactic information achieved stronger performances on various tasks such as
PropBank semantics and Neural Machine Translation. Inspired by this work, we also introduce an auxiliary
loss but to predict entity types, and with an application towards reasoning tasks. Also working with syntax
information, Sundararaman et al. (2019) incorporated POS tags into the input embedding of a BERT model.
Results show improved BLEU score on machine translation and higher accuracy than baselines on the GLUE
benchmark (Wang et al., 2018). Similarly, Sachan et al. (2021) augmented a pre-trained BERT model with
a syntax graph neural network in order to encode syntax trees. Their results show that the quality of the
trees are highly tied to the performance boost observed. Levine et al. (2020) trained a BERT-like model
to learn word senses. They gave their model access to WordNet supersenses at the input level and as an
additional training loss. They achieve better performance than other baselines on the SemEval Word Sense
Disambiguation task (Raganato et al., 2017). Moosavi et al. (2020) propose to improve robustness to data
biases by augmenting the training data with predicate-argument structures. They train a BERT-base model
(Devlin et al., 2019) with PropBank-style semantic role labeling (Shi & Lin, 2019) on MultiNLI (Williams
et al., 2018) and SWAG (Zellers et al., 2018) datasets. Their results show that incorporating predicate-
argument structure in the input sequence (only during training) makes the model more robust to adversarial
examples in MultiNLI. More recently, Porada et al. (2021) extended a RoBERTa model (Liu et al., 2019b)
with hypernym abstraction based on WordNet to evaluate the plausibility of events. Their model is able
to better predict human plausibility judgement than other RoBERTa baselines. Although different in
application, all these prior works leverage the general idea of explicitly giving more abstract
knowledge to language models, hence showing how flexible and generic this strategy can be.
We take a similar approach with entity types, but in the hope of improving the reasoning skills of our baseline
model.

A flurry of recent work has also examined ways to augment TLMs with entities from external knowledge bases
(Zhang et al., 2019; Peters et al., 2019; Févry et al., 2020; Verga et al., 2020). However, most of the time,
these solutions rely on external components such as knowledge graphs with pre-trained entity embeddings,
and/or an additional memory. While they often use entity linking as a way to perform co-reference resolution,
they do not incorporate higher level of abstractions such as entity types like we do here.
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Table 1: Different architectures for different abstraction strategies. X (blue) is the original sequence embedding, Xs

(green) is the embedding of the simplified sequence with entities replaced by their entity type tags, “ENC” is the T5
encoder, H (blue) is the contextualized representation of sequence X, Hs (green) is the contextualized representation
of sequence Xs, “DEC” is the T5 decoder, and Y is the target sequence to predict.

(a) emb-sum architecture (b) emb-cat architecture

(c) enc-sum architecture (d) enc-cat architecture

(e) dec-loss architecture

3 Introducing Abstraction Inductive Biases

In this section we describe five different ways to incorporate abstraction into a pre-trained encoder-decoder
model. Given an input sequence X, we use spacy named entity tagger1 to make a simplified copy Xs of the
input. This is a more generic copy of X.

We run the spacy recognizer on X to extract entity tags such as PERSON, ORG, GPE, etc... For each
entity type, we create n additional vocabulary entries (with randomly initialized embeddings) such as
[PERSON_1, . . . , PERSON_n, ORG_1, . . . , ORG_n, . . .]. Every token in X is then replaced by their (randomly
numbered) entity tag to make the simplified sequence Xs. If the same entity is present multiple times in
X, each occurrence will be replaced by the same entity tag in Xs. If no entity is found for a token in X,
the original token’s text is kept in Xs (e.g. “Bob Smith has a cat that he loves. Bob also loves Alexandra.”
would be transformed into “PERSON_11 has a cat that he loves. PERSON_11 also loves PERSON_3.”).

We select n greater than one as we believe that for some tasks it is important to differentiate between two
entities of the same type. At the same time we select n to be much smaller than the total number of entities
in the dataset, thus forcing abstraction. In particular, the hyper-parameter n is set to the smallest possible
value such that each distinct entity within the same example gets a different entity tag. This is different
for each dataset depending on the number of unique entities per example. Individual values can be seen in
Appendix A. If the same entity appears more than once in a single example, it will get the same tag every
time within that example. Since we re-use the same finite set of entity tags across all examples, each entity
tag will be used for different entity tokens, thus after seeing many examples, entity tags of the same type
will likely have a similar embedding. We discuss some result highlighting this phenomenon in Appendix B.

In order to better understand the influence of having multiple tags for the same entity type, we also ran
experiments in which we set n = 1, thus forcing all entities of the same type to be mapped to the same
embedding. However we noticed both more variance and weaker performance of our models, so the rest of
this work will focus on the n > 1 setting described above. Results can be seen in Appendix C.

In the following subsections, we describe different strategies to incorporate Xs into an encoder-decoder
Transformer model.

3.1 Abstraction as an additional embedding

Our first strategy is to combine Xs with X at the embedding level. To do that, we construct Xs to be of the
same length of X. If a spacy entity spans over multiple tokens (e.g. [“Alex”, “andra”, “Smith” “is”, “the”,
“wife”, “of ”, “Bob”]), we copy its entity tag at each sub-token positions (e.g. [“PERSON_3”, “PERSON_3”,

1https://spacy.io/models/en
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“PERSON_3”, “is”, “the”, “wife”, “of ”, “PERSON_11”]). For each token within both sequences we either
sum (emb-sum experiments) or concatenate (emb-cat experiments) their respective token embeddings.

sum. In emb-sum experiments (Figure 1a), if tokens do not have entity tags associated with them, we ignore
their embedding to avoid summing the same embedding twice for non-entity tokens. We only sum embeddings
of tokens that do have an abstract tag associated with them. This is to ensure that we only modify pre-
trained embeddings that correspond to entity tokens. This is done by masking out the tokens in Xs that are
the same in X. The input given to the model’s encoder is then emb(X) + mask × emb(Xs) + positional with
emb() being the embedding matrix, mask defined as the X ̸= Xs binary tensor, and positional being the
regular Transformer positional embedding. This resembles the setting used by Rosset et al. (2020), however
their knowledge-aware embedding comes from a sequence of entities from a dictionary lookup, rather than
a sequence of entity types from a pre-trained tagger. The advantage of our method is that it is robust to
unseen entities of the same type.

concat. In emb-cat experiments (Figure 1b), if tokens do not have an entity tag associated with them, we
replace their embedding with a generic (learnable) “<grounded>” token embedding. This ensures that all
non-entity token embeddings gets modified in the same way compared to entity tokens. We eventually resize
the concatenated embeddings with a learnable matrix W1 ∈ R2e×e with e being the model’s embedding size.
The input given to the model’s encoder is then [emb(X); emb(Xs)] · W1 + positional with emb() being the
embedding matrix, [; ] defined as the concatenation operator, and positional being the regular Transformer
positional embedding. In this setup the model has 2e2 + e more parameters.

3.2 Abstraction as an additional sequence to encode

Our second strategy is to combine Xs with X at the encoding level. To do that, we again construct Xs to be
of the same length of X. Similarly as above, if a spacy entity spans over multiple tokens, we copy its entity
tag at each sub-token positions. We then encode both X and Xs with the same encoder weights to have
two contextualized encodings: H and Hs respectively. For each token within both sequences we either sum
(enc-sum experiments) or concatenate (enc-cat experiments) their respective contextualized encodings.

sum. For enc-sum experiments (Figure 1c), the input given to the model’s decoder becomes H +Hs. Unlike
in Section 3.1, in these experiments we do not mask any position because the encodings are contextualized
over the entire sequence. All token representations were influenced by all other tokens because of the
Transformer encoder attention mask. Thus even non-entity token representations were influenced by entity
tokens.

concat. For enc-cat experiments (Figure 1d), we introduce a learnable matrix W2 ∈ R2d×d with d being
the model’s encoding size in order to resize the concatenated encodings, similarly to Section 3.1. The input
given to the model’s decoder is then [H; Hs] · W2 with [; ] defined as the concatenation operator. In this
setup the model has 2d2 more parameters.

3.3 Abstraction as an auxiliary task

Our third strategy is to incorporate Xs into the model with an additional cross entropy loss (dec-loss
experiments). The model will now be tasked to predict both the target output Y as well as the abstracted
input Xs. To do that, we introduce a second language model head Wabs ∈ Rd×vocab (with d being the model’s
decoder size) on top of the model’s decoder, initialized to have the same weights than the original language
model head Wlm, and fine-tuned during training with a second cross-entropy loss. The final model’s loss is
then the average between the two cross entropy losses:

0.5 ∗ 1
|Xs|

|Xs|∑
i=0

P (Xs)i ∗ log(softmax(Hdec · Wabs))i

+0.5 ∗ 1
|Y |

|Y |∑
j=0

P (Y )j ∗ log(softmax(Hdec · Wlm))j ,
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with Hdec being the output tensor of the model’s decoder. Note that Xs and Y have different lengths
(|Xs| and |Y | respectively), which is why we differentiate indices between the two sums. By sharing the
decoder weights (except for the additional language model head), we make sure that most of the network
parameters are influenced by the additional cross-entropy loss. This acts as a regularizer and forces the
model to “know” about entity types within its original parameters. In this setup, the model has d ∗ vocab
more parameters. Figure 1e illustrates this strategy. While not in the scope of our initial experiments, we
evaluated the performance of this model to predict abstract sequences with its additional language model
head. Curious readers can refer to Appendix B for more details.

4 Experiments

In this section we describe the experiments we ran on various datasets. We start with the CLUTRR bench-
mark (Sinha et al., 2019) in Section 4.1 as controlled experiments in which we know how much compositional
generalisation is required. We then test our models on the ProofWriter (Clark et al., 2020; Tafjord et al.,
2021) dataset in Section 4.2. This allows to verify if entity type abstraction is beneficial in formally defined
logical reasoning environments with simple language. We next report experiments on the multi-hop question
answering task HotpotQA (Yang et al., 2018) in Section 4.3. This allows to test if entity type abstraction is
beneficial in two-hop question answering settings with more natural language which is by nature more noisy.
Eventually, we also report results on the conversational question answering task CoQA (Reddy et al., 2019)
in Section 4.4. This allows to test if entity type abstraction is beneficial in conversational settings in which
the entity being discussed may be originally introduced much earlier in the conversation, thus requiring some
entity linking before answering.

For all experiments we trained one model for each of the 5 different strategies presented in Section 3,
in addition to a baseline model fine-tuned without any abstraction knowledge. We used the AllenNLP
library (Gardner et al., 2017) with the HuggingFace transformers library (Wolf et al., 2019) PyTorch
implementation of T5-small with 16-bit floating point precision. Each experiment was run on tesla V100
32gb GPUs with early stopping and a patience of 10 epochs on the validation set (defined as a 10% split
of the training set). We report all hyper-parameters and library versions in Appendix A for reproducibility
purposes.

4.1 Compositional generalization with CLUTRR

Although synthetic, CLUTRR is used because it allows for controlled experiments in which we can clearly
measure both interpolation and extrapolation performance of our model. We generated 390, 000 examples
that were roughly split 77/23 between training and testing. Each example consists of a unique (non-cyclic)
family graph. The goal of this task is to infer the type of edge (family relation) between two nodes (two
entities) that are the further apart in the input graph. The bigger the graph, the more hops are required
to infer the missing edge. We express each family graph, along with its question and answer in text using a
simple “[e_1] is the [rel] of [e_2]” template. Some examples of input/output sequence pairs can be seen in
Appendix D.

We evaluate the generated answer accuracy. The answer is defined as the first sentence in the generated
sequence. Since all answers during training were expressed using a simple template, we inverse this template
to extract the (ê1, r̂el, ê2) triple from the generated answer. If the extraction fails, we consider the generated
answer wrong. We then compare the extracted triple to the ground truth provided by the CLUTRR dataset.
If the reference solution is (e1, rel, e2), we accept both (e1, rel, e2) and (e2, inv_rel, e1) as valid solutions,
with inv_rel being the inverse relation of rel. For instance, the inverse relation of “father” can be “son” or
“daughter”, we accept both.

4.1.1 Testing Compositional generalization

We carefully divided train and test sets to force the model to generalize to both unseen graph sizes (i.e.:
unseen reasoning depth) and unseen (e1, rel, e2) triples. Specifically, the training set is made of graphs with
2, 4 and 6 relations between 3, 5 and 7 entities respectively, while the test set is made of graphs with up to

6



Table 2: Prediction accuracy on CLUTRR test set for all difficulty levels. Models have been trained on levels 2, 4,
6 with only 9.58% of all the (e1, rel, e2) triples present in the test set. Per-level performance is colored in shades of
green for better visualisation. The red boxed area indicates test problems at depths unseen during training.

CLUTRR 2 3 4 5 6 7 8 9 10 avg.
no abstraction 100% 84.4% 64.8% 61.5% 54.2% 56.6% 45.5% 42.6% 56.8% 62.9%(±0.18)
emb-sum 100% 85.3% 74.6% 59.3% 64.3% 67.7% 65.1% 58.9% 68.4% 71.5%(±0.13)
emb-cat 94.6% 60.0% 35.6% 42.0% 40.2% 74.3% 78.2% 77.9% 80.6 64.8%(±0.21)
enc-sum 100% 94.8% 86.9% 89.9% 85.6% 87.2% 85.1% 84.3% 85.5% 88.8%(±0.05)
enc-cat 100% 86.1% 72.6% 70.2% 66.7% 69.1% 63.8% 61.9% 74.0% 73.8%(±0.12)
dec-loss 100% 74.7% 64.9% 59.3% 56.2% 61.3% 52.8% 47.8% 61.3% 64.2%(±0.15)

10 relations between 11 entities. In addition, all possible entities and relations are seen during training but
only 9.58% of (e1, rel, e2) triples from the test set are also in the training set. This small overlap makes the
test set harder than originally designed and allows to analyse the compositional generalization capacity of
our model.

We fine-tuned a T5-small model on 300, 000 training examples of levels 2, 4 and 6 and evaluate the model
on 9 test sets of 10, 000 examples each for all levels from 2 to 10. The level is defined as the number of
edges (relations) in the graph. The higher the level is, the bigger the graph is, the further apart the two
entities to link are, and the greater the number of hops required to answer the query is. Specifically, we test
levels 2, 4 and 6 for compositional generalization, levels 3 and 5 for interpolation, and levels 7, 8, 9 and 10
for extrapolation.

4.1.2 Results

Table 2 shows answer accuracy on each test set level for models trained with n = 20 tokens per entity type.
As mentioned in Section 3, this helps keeping track of “who’s who” in the abstracted sequence, which is
important for solving a task such as CLUTRR. We see that the best model (enc-sum) strongly outperforms
all other models with an average score of 88.8% compared to 62.9% for the baseline.

sum -vs- concatenation. We can see that for both the embedding strategies (emb-cat & emb-sum) and the
encoding strategies (enc-cat & enc-sum), summing representations together yields better performance than
feeding their concatenation through a linear layer. One hypothesis is that in the emb-cat model, all pre-
trained embeddings are modified by either a entity type token embedding or the “<grounded>” embedding,
whereas the emb-sum model keeps most of its pre-trained embeddings unchanged. This result also suggests
that sometimes, simpler methods are more effective.

embedding -vs- encoding. From Table 2 we also see that, on average, processing the abstract sequence
through the encoder yields better performance than only processing it through the token embedder. This is
expected as more layers of the Transformer can process the abstracted sequence.

learning the abstraction. In the last line of Table 2 the abstraction is given as output to the model.
This experiment tests if learning how to abstract along-side the original task helps the model. We can see
that learning to predict the abstract sequence can indeed help generalize as the average score increases from
62.9% for the baseline to 64.2% for the dec-loss model. However it is not the most effective method in this
case. We believe this is because we test longer reasoning lengths (up to 10 steps), making the input sequence
much longer than what is seen during training (up to 6 steps). This is because in CLUTRR, to make long
reasoning chains the input family story gets longer. This penalizes the dec-loss model since it is designed
to generate the abstracted version of the input, regardless of its length.

Overall, we can see that abstraction-aware models can all extrapolate better than the baseline model, sug-
gesting that entity abstraction does help pre-trained Transformers to compositionally generalize. To verify
that this is not just a feature of the CLUTRR dataset, we perform the same analysis on another synthetic
dataset in the next section.
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Table 3: Prediction accuracy on different slices of the ProofWriter D5 test set for all our models and the originally
reported numbers by Clark et al. (2020). Models have been trained on depth D0, D1, D2. Models are trained in
the “open-world” assumption (OWA), except for the original Clark et al. (2020) model which was trained in the
“closed-world” assumption (CWA). Per-depth performance is colored in shades of green for better visualisation. The
red boxed area indicates test problems at depths unseen during training.

ProofWriter
RoBERTa-large
Clark et al. (2020)

CWA

no abstraction
OWA

emb-sum
OWA

emb-cat
OWA

enc-sum
OWA

enc-cat
OWA

dec-loss
OWA

Overall 83.9%(±0.29) 89.8%(±0.11) 90.9%(±0.07) 90.9%(±0.09) 88.4%(±0.08) 90.1%(±0.07) 91.8%(±0.07)
D0 100.0% 99.5% 99.2% 99.5% 98.9% 99.2% 99.4%
D1 98.8% 95.6% 93.5% 95.3% 89.5% 91.8% 95.1%
D2 98.8% 87.9% 81.0% 87.1% 75.3% 83.5% 86.6%
D3 71.1% 83.7% 84.6% 85.9% 81.7% 85.2% 87.4%
D4 43.4% 77.3% 87.4% 82.2% 84.7% 84.1% 85.0%
D5 37.2% 70.0% 85.3% 74.8% 84.0% 79.6% 80.6%

4.2 Abductive Reasoning with ProofWriter

Similarly to CLUTRR, the ProofWriter dataset (Tafjord et al., 2021) is a collection of synthetic facts and
rules with derived conclusions. The goal of this task is to infer the truth value of an unknown statement
given a series of known facts and 1-hop inference rules. Each example is made of a different set of facts, rules,
and an unknown statement. The model then has to predict if the unknown statement is “True”, “False”, or
“Unknown” according to the input knowledge. Each fact and rule is expressed in simple templated language
given by a grammar. Some examples of input/output pairs can be seen in Appendix D.

The dataset also provides the required chain of inference required to arrive at the final answer. The number
of such 1-hop inference steps is considered the “depth” of the example. For instance a depth-0 (D0) example
simply requires to see if the unknown statement is present in the input list of fact or not; a depth-1 (D1)
example requires to apply one inference rule to one fact to arrive at the answer; etc... The dataset contains
examples of up to depth-5 (D5) inference chains. We test for compositional generalisation by training on
examples of up to depth 2 reasoning chains (D0, D1, D2) and testing on examples for each depth from D0
to D5.

We fine-tuned T5-small models on the official training and development set from the depth <= 2 data folder
and tested it on the test set from the depth <= 5 data folder; consisting of 70,076 training examples and
20,030 testing examples. We trained one model for each of the 5 different strategies presented in Section 3, in
addition to a baseline model fine-tuned without any abstraction knowledge. Unlike in all other experiments,
for ProofWriter examples, we did not use the generic spacy named entity tagger because it did not support
the entity types covered by ProofWriter examples. Instead, we used the real abstraction labels provided by
the grammar files2, and defined the following abstraction tokens: “PERSON”, “ATTRIBUTE”, “ANIMAL”,
“RELATION”.

Table 3 shows the prediction accuracy on different slices of the D5 test set for all our models. Although
trained on an older version of the dataset (“closed-world” assumption - CWA), we also report the original
performance by Clark et al. (2020). While not directly comparable because of the different version of
the dataset, we can still see that our T5-small experiments all extrapolate (D3-D5) better than the original
RoBERTa-large model despite having less parameters. RoBERTa-large performs better at depths seen during
training (D0-D2), which may be due to the model size being bigger (hence having greater capacity to model
questions of previously seen depths), however, without abstraction, the larger model struggles to generalize
to unseen reasoning depths, unlike our models.

Most importantly, if we compare with our “no abstraction” baseline model, Table 3 also shows that our
abstraction methods help extrapolate to unseen reasoning depths. While our baseline model performs 83.7%,
77.3%, and 70% on examples from D3, D4, D5 respectively; all other abstraction-aware models extrapolate
better, with the best overall model (dec-loss) performing 87.4%, 85%, and 80.6% on D3, D4, D5 examples
respectively.

2https://tinyurl.com/proofwritergrammars
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Table 4: Average test performance for all models on HotpotQA. Average and standard deviation computed with 3
random seeds.

HOTPOTQA ExactMatch F1 Precision Recall
no abstraction 54.7 (±0.01) 68.9 (±0.01) 72.4 (±0.01) 69.1 (±0.01)
emb-sum 54.3 (±0.01) 68.4 (±0.01) 72.0 (±0.01) 68.6 (±0.01)
emb-cat 52.6 (±0.01) 66.5 (±0.01) 69.7 (±0.01) 67.0 (±0.01)
enc-sum 54.2 (±0.01) 68.5 (±0.01) 72.0 (±0.01) 68.7 (±0.01)
enc-cat 52.9 (±0.01) 67.2 (±0.01) 71.0 (±0.01) 67.3 (±0.01)
dec-loss 55.7 (±0.02) 69.8 (±0.01) 73.3 (±0.01) 69.9 (±0.01)

We also note that, unlike in CLUTRR, in this dataset the depth of reasoning (D0-D5) is not tied to the
input length. In ProofWriter, all examples have a similar average input length, regardless of the depth of
reasoning required to predict the answer. Thus the dec-loss model is not penalized like it was the case in
CLUTRR, which result in it being the best model overall.

Overall, we achieve new state-of-the-art results on the ProofWriter dataset when trained only on examples
from D0-D2. This is suggesting that entity abstraction does help pre-trained Transformers to composi-
tionally generalize to unseen reasoning chains. One important thing to note however is that both
CLUTRR and ProofWriter sentences are relatively simple to abstract: 100% of the entities are correctly
abstracted in both datasets. In the next sections we will see if explicit abstraction is still beneficial on more
realistic but less formally defined tasks.

4.3 Multi-hop Question Answering with HotpotQA

In this section we report experiments on the multi-hop question answering (HotpotQA) dataset (Yang et al.,
2018). HotpotQA contains natural language, making it more diverse and harder to get abstraction labels
than CLUTRR. In addition, HotpotQA has 2-hop inference chains both in its training and testing data
splits, thus we are not able to test generalisation to longer reasoning chains. Nevertheless, we believe it is a
good compromise between natural language and multi-hop reasoning.

Used in the distractor setting, each example consists of a list of 10 Wikipedia paragraphs, a question that
requires the model to combine information from two paragraphs, and the answer. Since concatenating all of
the 10 paragraphs would result in a context size much larger than what regular Transformer models allowed
(512 or 1024 tokens), we instead only took the two golden paragraphs as context, plus the question. While
this beats the original purpose of retrieving the useful paragraphs, we are not interested in achieving state-
of-the art on this benchmark. We are rather interested in using it to compare the usefulness of our approach
on a more natural multi-hop question-answering setup. An example of input/output sequence pair can be
seen in Appendix D.

Because the official test set is not public, we used the official validation set as our test set to compare our
models and fine-tuned a T5-small model on 90% of the training set while keeping the remaining 10% as
our custom validation set for early stopping. We trained one model for each of the 5 different strategies
presented in Section 3, in addition to a baseline model fine-tuned without any abstraction knowledge.

Table 4 shows exact match, F1 scores, Precision and Recall on our test set. We can see from these results
that the best of our model is the abstraction-aware dec-loss model (trained to predict both the answer
and the input in its abstract form) with an F1 score of 69.8% against 68.9% for the baseline model (“no
abstraction” row). However, the baseline model is a strong candidate and the abstraction does not always
benefit the model depending on how it is incorporated. This may be due to the fact that entity abstraction
labels are harder to predict on natural language, and that entity type abstraction may not be required in
problems with little to no formal logical structure. We further discuss this in Section 6.

In an effort to contextualize these results, we note that our models performance is slightly above the “Query
Focused Extractor” (Nishida et al., 2019) performance of 53.86 Exact Match and 68.06 F1. At the time
of writing, the SOTA model on HotpotQA is the “From Easy to Hard” model (Li et al., 2022) with Exact
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Table 5: Average test performance for all models on CoQA. Average and standard deviation computed with 3 random
seeds.

CoQA ExactMatch F1
no abstraction 66.0%(±0.001) 74.4%(±0.000)
emb-sum 65.7%(±0.002) 74.2%(±0.002)
emb-cat 63.8%(±0.001) 72.3%(±0.001)
enc-sum 65.8%(±0.001) 74.1%(±0.002)
enc-cat 65.2%(±0.002) 73.8%(±0.002)
dec-loss 66.4%(±0.001) 74.9%(±0.001)

Match of 71.89 and F1 score of 84.44. We note however that the test & training data in our setting is slightly
different, so these are not perfectly comparable results. In addition, we are more interested in evaluating the
effect of entity abstraction by comparing our model variants.

4.4 Conversational Question Answering with CoQA

Eventually, motivated by the use of a generative model, we test the same abstraction strategy in a con-
versational setting. For that, we leveraged the conversational question answering dataset CoQA (Reddy
et al., 2019). The task presented by this dataset is to understand a text passage and answer a series of
inter-connected questions in a conversation. The conversation aspect introduces follow-up questions that
forces the model to keep track of what entity is currently being referred to and to look back at previous
interactions. Examples of input/output sequence pairs can be found in Appendix D. The dataset does not
always explicitly forces multi-hop reasoning steps, but it could still happen (i.e. see the last CoQA example
of Appendix D in which the model must perform a substraction between all subjects and the ones already
mentioned). In addition, the conversational nature of this dataset often introduces a co-reference step to
be made before fetching the information from the paragraph in context. In this setting we will thus test if
abstraction can help in this multi-step information retrieval procedure.

Similarly to HotpotQA, because the official test set is not public, we used the official validation set as our
test set to compare our models and fine-tuned a T5-small model on 90% of the training set while keeping
the remaining 10% as our custom validation set for early stopping. We trained one model for each of the 5
different strategies presented in Section 3, in addition to a baseline model fine-tuned without any abstraction
knowledge.

Table 5 shows the exact match and F1 score on our test set. Although by a small margin, we can see that the
best of our model is again the abstraction aware dec-loss model (trained to predict both the answer and
the input in its abstract form) with an F1 score of 74.9% against 74.4% for the baseline (“no abstraction”
row). The baseline model is quite strong already and the benefit of abstraction is questionable in this case.
We further discuss this result in the following section. As in previous experiments, the worst performing
model is emb-cat and one of the best is the enc-sum model (after dec-loss in this case).

In an effort to contextualize these results, we note that our models performance is better than DrQA +
seq2seq with copy attention (Reddy et al., 2019) and BiDAF++ (Yatskar, 2018) with an F1 score of 67.0
and 71.6 respectively. The next closest model in the CoQA leaderboard is the FlowQA model (Huang et al.,
2019) with an F1 score of 76.3. At the time of writing, the SOTA model on CoQA is RoBERTa+AT+KD
(Ju et al., 2019) with an F1 score of 90.9. We note however that the test data in our setting is slightly
different, so these are not perfectly comparable results. In addition, we are more interested in evaluating the
effect of entity abstraction by comparing our model variants.

5 Discussion

In this section we aim to analyse further the results presented above by comparing them and measuring
some key characteristic about each datasets.
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Let’s first summarize the results from all experiments. Overall, in all datasets (except for CLUTRR) the
best model on average was the dec-loss model, which is trained to predict both the target output sequence
and the input sequence in its abstracted form. As discussed previously, we believe that the reason why the
dec-loss model did not perform as good as the other models in CLUTRR is because input sequence length
is tied to the reasoning depth required to answer the question. Indeed, a question of level n (2 ≤ n ≤ 10) will
have exactly n sentences in its input. Thus, during testing, the model must generate sequences of unseen
lengths. Previous work showed that length generalization is a common weakness of classical language models
(Murray & Chiang, 2018; Clark et al., 2020; Gontier et al., 2020; Anil et al., 2022; Press et al., 2022). Overall,
our results suggest that when input sequence length is relatively stable across all examples, the
dec-loss abstraction strategy is beneficial to multi-step reasoning tasks.

We then investigate why results on the two “natural”, less procedural tasks (HotpotQA & CoQA) do not
yield strong conclusions like in the synthetic cases of CLUTRR & ProofWriter. The first major difference
between these datasets is that CLUTRR and ProofWriter are designed explicitly to test for compositional
generalisation and reasoning extrapolation. In both datasets, the model is tested on examples of longer
reasoning chains than what is observed during training. The language vocabulary is limited and the required
reasoning depth is controlled. This is possible when working with tasks that are formally defined in a
logical reasoning setting. On the other hand, HotpotQA and CoQA are designed from human written text
(Wikipedia for Hotpot, human conversations for CoQA). This natural setting implies two things. (1) It is
harder to control the reasoning depth required: all HotpotQA examples require to combine two pieces of
information in order to answer the question. CoQA examples require to solve long co-reference resolution
chains, however the test set does not contain longer chains of reasoning. (2) The language vocabulary is more
noisy, making it harder to extract the useful information from a piece of text. These distinctions suggest
that entity type abstraction is mostly beneficial for formally defined logical tasks in which the
model must reason at unseen depths during inference time.

Table 6: Percentage of tokens being tagged as entities
and estimated F1 score of the tagger on each dataset.

Dataset Entity Tokens F1
CLUTRR 22.2% (±0.019) 100% (±0)
ProofWriter 36.0% (±0.036) 100% (±0)
HotpotQA 37.0% (±0.085) 88.5% (±0.092)
CoQA 17.7% (±0.095) 88.4% (±0.085)

A second differentiating factor between these
datasets is the quantity and quality of entity tags
provided to the model. In an effort to estimate the
influence of the tagger accuracy on our results, we
compare each dataset in terms of the amount of en-
tity tags they contain, as well as the accuracy of
these tags. The reported performance of the entity
tagger we used is 0.85 F13. To further validate this
metric, for each dataset, we estimate (i) the percent-
age of tokens tagged as entities, (ii) the correctness of the tagged entities (precision), and (iii) the amount
of correctly tagged entities out of all the entities that should have been tagged (recall). We estimate these
metrics by manual inspection of a random set of examples for each dataset and report the F1 metric in
Table 6. We can see that the percentage of tokens tagged as entities is roughly the same across datasets,
except for CoQA which has fewer entity tokens. This is likely due to the fact that a lot of entities are referred
to by co-reference in conversational QA. The average quality of entity tags for HotpotQA and CoQA is in
line with the reported 85% F1 performance of the tagger. However, we note that all entities in CLUTRR
and ProofWriter are correctly labeled. This distinction suggests that the quality of the entity tagger
can influence the benefits of performing entity type abstraction.

To further estimate this influence, we ran experiments on the CLUTRR and ProofWriter benchmarks in
which we added noise to the abstract labels, thus artificially simulating a weaker tagger. In particular, we
modified 25%, 50%, and 75% of the entities by either replacing their entity type or by deleting the tag
altogether. We report in Figure 1 the average answer accuracy of our models across extrapolation reasoning
levels of the test set for both benchmark dataset (lvl 7-10 for CLUTRR and D3-D5 for ProofWriter). Overall,
we can see that as the tagging noise increases, all models see their performance reduced and sometimes under-
performing the baseline when the performance of the tagger is too weak. For instance once the noise reaches
50% or more, all models on ProofWriter and almost all models on CLUTRR (except enc-sum & enc-cat)
become weaker than the baseline. This confirms that as the tagger accuracy decreases, the overall

3https://tinyurl.com/encoreweblg
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Figure 1: Average answer accuracy on extrapolation reasoning levels for models trained with 0%, 25%,
50% and 75% entity tagger noise on CLUTRR and ProofWriter. The baseline model (no abstraction) is
represented by a black dotted line. Previous work on ProofWriter is represented by a black solid line.

performance of the model does so to. In addition, it also shows that it is better for the model to not
have additional complications (abstraction in this case) if the additional parameters needed for that are used
on noise more than 50% of the time.

In an effort to better characterize the failure cases of our models on the more natural datasets we report in
Appendix F model predictions on various datasets. In particular, Appendix F.2 shows examples of HotpotQA
in which abstraction models answered correctly but not the baseline (no-abstraction) model and vice-versa.
Overall, we observe that many examples in HotpotQA don’t require multiple reasoning hops, which can be
an additional source of noise beside the tagging accuracy.

Overall, we believe three factors are influencing our results on the more natural tasks: (i) the effect of
a weaker entity tagger performance as shown in Table 6 and Figure 1, (ii) the depth of reasoning being
relatively shallow and the same across training and testing sets as observed in Appendix D and F.2, (iii)
the natural and conversational language being further away from a formal language. These factors result
in “real-world” problems not having strong enough logical structure which can benefit from the abstraction
technique. It is only when tasked on more logical problems explicitly requiring reasoning depths unseen
during training that abstraction becomes significantly beneficial.

6 Conclusion

Conclusion. We presented various ways to incorporate abstract knowledge into Transformer Language
Models. Focusing on entity types, this work evaluated model performance on reasoning tasks requiring
compositional generalization and multi-hop reasoning. Overall our results demonstrate three things: (i)
incorporating abstract knowledge significantly improves reasoning and compositional generalization in both
interpolation and extrapolation when the environment is formally defined in a logical reasoning setting; (ii)
different ways to incorporate abstraction yields different performance boosts: enc-sum and dec-loss are
generally performing better than others; (iii) abstraction is not beneficial when the task at hand is more
natural, less procedural, and not requiring long reasoning chains. This last result is due to the noisy entity
tagging from “off-the-shelf” taggers, and due to the nature of the task at hand.

Limitations. One limitation of our work is that the method we present requires annotated data which is not
always available. Furthermore, this additional data processing can take time and may not scale well to larger
datasets if implemented naively. Overall, we did not find significantly longer training time for all approaches
except for the dec-loss model that was training on average 2 times longer than the other methods. The
most important factor in training time was the dataset used rather than the method used. Models trained
on natural language datasets CoQA and HotpotQA took days to train while models trained on CLUTRR
and ProofWriter took a few hours.
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Future Explorations. One hypothesis that results from our work is the following question: could pre-
training Transformer models with additional abstraction data result in stronger performance when fine-tuned
with abstraction data like we do in this work? Although we could not train from-scratch a T5 model on its
original C4 dataset (Raffel et al., 2020), we believe that augmenting C4 with abstract annotations like we do
on a smaller scale and training T5 from scratch on this augmented dataset could potentially yield a stronger
language model.

Another interesting future direction worth exploring would be the ethical benefit of incorporating explicit
abstraction into large language models. Previous work showed that pre-trained language models can have
some undesired societal biases (Henderson et al., 2018; Shwartz et al., 2020; Bender et al., 2021). Although
not explored in this work, we believe that giving abstract entity types like we do in this work could have
a positive societal impact on language models, potentially alleviating some of these biases. For instance,
through abstraction, a model can be exposed to female and male names both being “PERSON”s and that a
“PERSON” can equally be a “manager” or an “assistant” regardless of its gender. Similar exposure could
be achieved with other abstraction types such as “RELIGION”, “JOB”, “COUNTRY ”, “NATIONALITY ”,
etc... Benchmarks such as StereoSet (Nadeem et al., 2021) could be used to measure the beneficial impact
that explicit abstraction can have.
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A Hyperparameters

We used the default T5-small hyperparameters from the HuggingFace library (Wolf et al., 2019). We present
in Table 7 below the library version we used and the model hyperparameters used for all experiments.

The only difference between each dataset is the number of same-type entity tags allowed in each input
sequence n. These values were chosen to be the smallest possible number while still being able to identify
all the different entities in one sequence. For CLUTRR the maximum number of same-type entities was
20, for ProofWriter it was 10, and for HotpotQA and CoQA it was 100. This is due to the larger context
size and the diversity of natural language texts. Results on CLUTRR when n = 1 can be found below in
Appendix C.

n for CLUTRR 20
n for ProofWriter 10

n for HotpotQA 100
n for CoQA 100

AllenNLP version 2.2.0
Transformers version 4.4.2

Spacy version 2.3.5
batch size 256

16-bit floating point True
dim embedding 512

dim feedforward 2048
dim key-value 64

dropout 0.1
max length 512
#of heads 8
#of layers 6
optimizer AdamW

learning rate 1.00E-05
betas [0.9, 0.999]

epsilon 1.00E-08
gradient norm 1.0

sampler top-p
p 0.9

temperature 1.0

Table 7: Library version and model hyper-parameters.

B On the abstraction accuracy of the dec-loss model

After training the dec-loss models for each task, one question we might ask is whether the model is able
to correctly predict abstract tokens with its dedicated language model head.

After generating abstract sequences for all test sets, we measured that the model is correctly predicting
entity types 100% of the time for CLUTRR and ProofWriter, and around 70% of the time for HotpotQA
and CoQA compared to the types predicted by our “off-the-shelve” tagger.

One interesting finding though, is that the model is not consistent with entity numbers across the same
example. While it can correctly predict the type of an entity (“PERSON” vs “LOCATION”), it is almost
impossible to stay consistent with entity IDs of that type (“PERSON_11” vs “PERSON_23”). This suggests
that at inference time, the distribution of abstract tokens belonging to the same entity type is very close to
uniform, which also suggests that all these token embeddings are close to each other.
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C CLUTRR results when n = 1

To better understand the effect of the hyper-parameter n in our models, we ran additional experiments on
the CLUTRR benchmark for different values of n. When n = 20 all entities in each example gets a unique
abstract token ID. When n = 1, all entities of the same type are mapped to the same abstract token. In
order to keep track of which entity is related to which, token identity must be preserved. When n = 1, the
only way to preserve token identity is for the model to use the original (non abstracted) sequence. We report
below the average answer accuracy of our models on CLUTRR for different values of n. The average is taken
across all test levels from 2 to 10.

n = 20 n = 1
no abstraction 62.9%

emb-sum 71.5% 75.0%
emb-cat 64.8% 30.4%
enc-sum 88.8% 85.3%
enc-cat 73.8% 36.1%
dec-loss 64.2% 75.7%

Table 8: Average CLUTRR answer accuracy for models trained with n = 20 and n = 1 token per entity tag.

We can see that the emb-cat and enc-cat models perform much worse in the n = 1 setting, while the other
models are relatively similar in both settings. This suggests that concatenating representations together and
then performing a matrix multiplication to resize the representation does not keep entity identity as well as
the other methods.
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D Input - Output examples

CLUTRR.

lvl.2 input: “question : How is Anne related to Gary ? context :
Brett is Anne ’s father . Gary is a son to Brett .”

output: “answer : Anne has a brother named Gary .”

lvl.4 input:

“question: What is the family connection between Patricia
and Timothy ? context : May is the aunt of Doris . Patricia
has a daughter called Doris . Timothy is Charles ’s brother .”
May has a son called Charles .

output: “answer : Timothy is the nephew of Patricia .”

ProofWriter.

Depth-0
input:

“context : The cow is round. The cow needs the lion. The cow
needs the rabbit. The cow sees the lion. The cow visits the rabbit.
The lion is round. The rabbit is kind. The rabbit visits the tiger.
The tiger is big. The tiger is kind. The tiger sees the rabbit.
The tiger visits the rabbit. If something is kind and it visits the
rabbit then it is young. If something sees the tiger and it visits
the lion then it sees the rabbit. If something is big and young then
it sees the lion. If something visits the rabbit then the rabbit
needs the lion. If something is big then it visits the rabbit. If
something sees the tiger then it is rough. If something visits the
rabbit and it is kind then the rabbit needs the lion. If something
is rough and kind then it visits the lion. If something needs the
lion then it is big. question : The tiger visits the rabbit.”

Depth-0
output: “answer : True”

Depth-2
input:

“context : Anne is nice. Charlie is blue. Charlie is furry.
Charlie is green. Charlie is kind. Charlie is nice. Charlie is
red. Fiona is furry. Fiona is green. Harry is furry. Harry is
kind. Harry is nice. All nice people are rough. If someone is
red and furry then they are blue. Rough, kind people are furry.
If Charlie is furry then Charlie is nice. All furry people are
nice. If someone is rough then they are kind. If someone is red
and nice then they are blue. All furry people are red.
question : Harry is not blue.”

Depth-2
output: “answer : False”

HotpotQA.

input:

“question : Which magazine was started first Arthur’s Magazine or
First for Women ? context : Arthur’s Magazine (1844-1846) was an
American literary periodical published in Philadelphia in the 19th
century. Edited by T.S. Arthur, it featured work by Edgar A. Poe,
J.H. Ingraham, Sarah Josepha Hale, and others. In May 1846 it was
merged into “Godey’s Lady’s Book”. First for Women is a woman’s
magazine published by Bauer Media Group in the USA. The magazine
was started in 1989. It is based in Englewood Cliffs, New Jersey.
In 2011 the circulation of the magazine was 1,310,696 copies.”

output: “answer : Arthur’s Magazine”
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CoQA.

context:

“context : The Vatican Apostolic Library, more commonly called
the Vatican Library or simply the Vat, is the library of the
Holy See, located in Vatican City. Formally established in 1475,
although it is much older, it is one of the oldest libraries in
the world and contains one of the most significant collections
of historical texts. It has 75,000 codices from throughout
history, as well as 1.1 million printed books, which include some
8,500 incunabula. The Vatican Library is a research library for
history, law, philosophy, science and theology. The Vatican Library
is open to anyone who can document their qualifications and research
needs.” [...] “Only a handful of volumes survive from this
period, though some are very significant.”

input: context above + “question : When was the Vat formally opened?”
output: “answer : It was formally established in 1475.”

input:
context above + “question : When was the Vat formally opened? answer :
It was formally established in 1475. question : what is the library
for? answer : research. question : for what subjects?”

output: “answer : history, and law.”

input:

context above + “question : When was the Vat formally opened? answer :
It was formally established in 1475. question : what is the library
for? answer : research. question : for what subjects? answer :
history, and law. question : what else ?”

output: “philosophy, science and theology.”
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E GeoQuery Results

In this section we report results of our different models on the GeoQuery (Zelle & Mooney, 1996) benchmark.
In particular, we use two versions described by Shaw et al. (2021), focusing on compositional generalization: a
train/test split based on query length and a train/test split based on Target Maximum Compound Divergence
(TMCD). Each train and test set contains 440 examples.

We trained our models on both of these splits and evaluated the exact match of the predicted output of our
models. Below are our average results based on 3 random seeds:

LENGTH split TMCD split
no-abstraction 24.24% (+- 0.001) 36.06% (+- 0.001)
emb-sum 27.05% (+- 0.000) 34.47% (+- 0.001)
emb-cat 15.91% (+- 0.002) 18.56% (+- 0.001)
enc-sum 18.64% (+- 0.002) 35.08% (+- 0.001)
enc-cat 17.50% (+- 0.000) 27.58% (+- 0.001)
dec-loss 24.09% (+- 0.000) 30.38% (+- 0.001)

We can see that for the length split, one abstraction model performs better than the baseline (no-abstraction),
but on the TMCD split, models with abstraction are not better than the baseline. However, we believe this
dataset may not be a good candidate to showcase if abstraction is useful for 2 reasons:

First, all examples in the dataset have a few number of entities (2 maximum):

entities per example examples percentage of the dataset
0 207 23.5%
1 667 75.8%
2 6 0.7%

Total 880 100%

This makes each abstract input very similar to the original input. Thus the abstract sequence provides very
little information to the model.

Second, the dataset as a whole contains a few number of entities. 12% of tokens per input are tagged as
entities. This is a relatively small number compared to the other datasets as we can see below.

Fraction of tokens per input in each dataset identified as entities by spacy NER:

Data avg (+-std)
CLUTRR 0.22 (+- 0.019)
Proofwriter 0.36 (+- 0.036)
HotpotQA 0.37 (+- 0.085)
CoQA 0.18 (+- 0.095)
Geoquery 0.12 (+- 0.080)

We can say from these results that in order for the abstraction technique to be useful, the dataset must
contain at least more than 2 entities per input sequence.
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F Prediction examples

F.1 CLUTRR

In this section we present output examples of our models on the CLUTRR level 3 test set.

Table 9: CLUTRR test set level 3 output examples. Correct answers are in green and wrong answers are in
red for better visibility.

input no
abstraction emb-sum emb-cat enc-sum enc-cat dec-loss

Jonathan is the father of
Anne . Anne is a aunt to
Stephanie . Stephanie is
the daughter of Veronica .
How is Veronica related
to Jonathan ?

Jonathan
is
Veronica
’s father

Jonathan
is
Veronica
’s father

Jonathan
is
Veronica
’s uncle

Jonathan
is
Veronica
’s father

Jonathan
is
Veronica
’s father

Jonathan
is
Veronica
’s father

Stephanie is the
granddaughter of
Jonathan . Bryant is
Stephanie ’s father . Eric
is a son of Bryant . How
are Jonathan and Eric
related to each other ?

Eric is the
grandson
of Jonathan

Eric is
Jonathan
’s grand-
son

Eric is
Jonathan
’s grand-
son

Eric is
Jonathan
’s grand-
son

Eric is
Jonathan
’s grand-
son

Eric is
Jonathan
’s grand-
son

Joyce has a daughter
called Stephanie . Betty
is a grandmother to
Stephanie . Paul has a
wife who is Joyce . For
Paul , who is Betty ?

Betty is
Paul ’s
mother-
in-law

Betty is
Paul ’s
mother-
in-law

Betty is
Paul ’s
aunt

Betty is
Paul ’s
mother-
in-law

Betty is
Paul ’s
mother-
in-law

Betty is
Paul ’s
mother-
in-law

Bryant is a son of
Jonathan . Jonathan
is the husband of Betty .
Craig is a son of Bryant .
Who is Craig from the
point of relation of Betty ?

Craig is
Betty
’s son

Betty
has a
grandson
who is
Craig

Craig is
Betty ’s
grandson

Betty
has a
grandson
who is
Craig

Craig is
Betty
’s son

Craig is
the son-
in-law
of Betty

Stephanie is a
granddaughter to Betty .
Anne is Bryant ’s sister .
Bryant is a brother of
Stephanie . Who is Anne
from the point of relation
of Betty ?

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

score 4/5 5/5 3/5 5/5 4/5 4/5
score on lvl.3 test set
reported in Table 2 84.4% 85.3% 60.0% 94.8% 86.1% 74.7%

Out of these 5 examples, the emb-cat model makes 2 mistakes (line1 & line3), the no-abstraction, enc-cat,
dec-loss models make 1 mistake (line4) and the emb-sum and enc-sum models make 0 mistake.

The emb-cat model mistakes (line1 & line3) are due to the prediction of uncle/aunt relations instead of
father/mother-in-law respectively. It is interesting to note that these relations are similar in the sense that
they all link one generation to the one just above.

It is also interesting to note that the example in which the no-abstraction, enc-cat and dec-loss models
fail (line4), the emb-cat model on the other hand answers correctly. In this specific example the correct
relationship is “grandson” which links one generation to 2 generations below, however the mistakes made by
the failing models only link one generation to 1 below (son, son, son-in-law).
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F.2 HotpotQA

In this section we present HotpotQA examples in which all our abstraction models correctly answered the
question but not the baseline (no abstraction) model.

--------------------
Question: Are both Elko Regional Airport and Gerald R. Ford International Airport

located in Michigan?
facts : [

"Elko Regional Airport (IATA: EKO, ICAO: KEKO, FAA LID: EKO) , formerly Elko
Municipal Airport, is a mile west of downtown Elko, in Elko County, Nevada.",

"Gerald R. Ford International Airport (IATA: GRR, ICAO: KGRR, FAA LID: GRR)
is a commercial airport in Cascade Township approximately 13 mi southeast
of Grand Rapids, Michigan. The facility is owned by the Kent County Board of
Commissioners and managed by an independent authority. The Federal
Aviation Administration (FAA) National Plan of Integrated Airport Systems for
2017–2021 categorized it as a small hub primary commercial service facility."]

Answer : no
baseline: yes
embsum : no
embcat : no
encsum : no
enccat : no
decloss : no
--------------------

This is a yes/no question with many acronyms and entities. The abstraction can be beneficial here in order
to simplify the context.

--------------------
Question: What act for Innocent Records achieved Platinum sales and shares its name

with a primary color in the RGB color model?
facts : [

"Blue is the colour between violet and green on the spectrum of visible light.
Human eyes perceive blue when observing light with a wavelength between 450 and
495 nanometres. Blues with a higher frequency and thus a shorter wavelength appear
more violet, while those with a lower frequency and a longer wavelength gradually
appear more green. Pure blue, in the middle, has a wavelength of 470 nanometres.
In painting and traditional colour theory, blue is one of the three primary colours
of pigments, along with red and yellow, which can be mixed to form a wide gamut
of colours. Red and blue mixed together form violet, blue and yellow together
form green. Blue is also a primary colour in the RGB colour model, used to create
all the colours on the screen of a television or computer monitor.",

"Innocent Records was a pop record label created to cater to for EMI’s Virgin Records
more pop oriented acts. Following the success of the Spice Girls, Virgin Records
decided to delve into the pop market. In doing so they poached Hugh Goldsmith from
RCA Records (famous for steering Take That’s initial flagging sales, to a multi-
platinum act). They let him launch his own Virgin Records offshoot. His first
signing was Billie Piper, followed by Martine McCutcheon, along with several dance
acts Todd Terry to name one. The label continued to thrive well into the mid-2000s
with Atomic Kitten and Blue achieving Platinum sales."]

Answer : Blue
baseline: Atomic Kitten
embsum : Blue
embcat : Blue
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encsum : Blue
enccat : Blue
decloss : Blue
--------------------

This is a question with long paragraphs in the context, abstracting entities could help simplify the context
to better answer the question. Nevertheless, note that if we assume the model already knows that blue is a
color (or that Atomic Kitten is not a color), then the second paragraph is enough to answer the question.

--------------------
Question: William Cammisano was part of which Mafia family?
facts : [

"William "Willie Rat" Dominick Cammisano Sr. (April 26, 1914 – January 26, 1995) was
a Kansas City, Missouri, mobster and enforcer for Nicholas Civella\’s Kansas
City crime family.",

"The Kansas City Crime Family, also known as Civella crime family (pronounced ] ),
is a Mafia family based in Kansas City, Missouri."]

Answer : Kansas City crime family
baseline: Nicholas Civella
embsum : Kansas City Crime Family
embcat : Kansas City Crime Family
encsum : Kansas City Crime Family
enccat : Kansas City Crime Family
decloss : Kansas City Crime Family
--------------------

Here the baseline model predicted the owner of the mafia family, which is also used to refer to the mafia
group according to the second paragraph. Note again, the question can be answered with the first paragraph.

--------------------
Question: Who is older out of Bob Saget, the American comedian, and Indian director

S. Shankar?
facts : [

"Shankar Shanmugam (born 17 August 1963), credited mononymously as Shankar, is an
Indian film director and producer who predominantly works in Tamil cinema. He was
identified by S. A. Chandrasekhar. Recognized for directing high budget films, he
is also a pioneer of vigilante movies in Tamil. He made his directorial debut in
"Gentleman" (1993) produced by K. T. Kunjumon, for which he was awarded the Filmfare
Best Director Award and the Tamil Nadu State Film Award for Best Director. He is the
highest paid film-maker in India among his contemporaries.",

"Robert Lane "Bob" Saget (born May 17, 1956) is an American stand-up comedian, actor,
and television host. His television roles include Danny Tanner on the ABC sitcom
"Full House" (1987–95) and its Netflix sequel "Fuller House", and hosting
"America\’s Funniest Home Videos" from 1989 to 1997. Saget is also known for his
adult-oriented stand-up routine. He also provided the voice of the future Ted Mosby
on the CBS sitcom "How I Met Your Mother" from 2005 to 2014."]

Answer : Robert Lane "Bob" Saget
baseline: Ted Mosby
embsum : Robert Lane
embcat : Robert Lane " Bob " Saget
encsum : Robert Lane
enccat : Robert Lane " Bob " Saget
decloss : Robert Lane " Bob " Saget
--------------------
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This question asks to compare two different entities of the same type. The baseline model answers with a
person’s name but not the correct one. Since there are lots of entities in this example, abstraction can be
beneficial to simplify the context and select the correct person in the end.

Next, we present HotpotQA examples in which all our abstraction models incorrectly answered the question
but not the baseline (no abstraction) model.

--------------------
Question: What city does Paul Clyne and David Soares have in common?
facts : [

"Paul Clyne was the District Attorney of Albany County, New York from January 2001
through December 2004. A graduate of Albany Law School, he spent about 14 years as
an assistant district attorney, before he was tapped by local politicians to replace
the retiring District Attorney, Sol Greenberg. He was defeated for re-election by
David Soares, first in the Democratic Party primary election in September 2004, and
then in the general election in November 2004, in which he ran on an independent
line. After a stint teaching at the New York Prosecutors Institute, he went into
private practice as a criminal defense attorney in 2007, with an office in Albany,
New York.",

"P. David Soares (born October 26, 1969, Brava, Cape Verde) is the Albany County,
N.Y. District Attorney. He is a Democrat."]

Answer : New York
baseline: New York
embsum : Albany
embcat : Albany
encsum : Albany
enccat : Albany
decloss : Albany
--------------------

In this example the abstraction models all answered ‘Albany’, which is also a valid answer. In fact, the
question asks for a city and not a state. In addition, the second paragraph doesn’t mention New York City,
so Albany should probably have been the correct answer.

--------------------
Question: what producer of The Real Housewives of Orange County also hosts

"Watch What Happens Live with Andy Cohen"?
facts : [

"Andrew Joseph "Andy" Cohen (born June 2, 1968) is an American talk show and radio
host, author and producer. Cohen hosts the Bravo nightly series "Watch What Happens
Live with Andy Cohen". He is the first openly gay host of an American late-night
talk show. After being head of development at Bravo for more than 10 years, Cohen
resigned in November 2013. He continues to serve as an executive producer of "The
Real Housewives" franchise.",

"The eleventh season of "The Real Housewives of Orange County", an American reality
television series, is broadcast on Bravo. It aired June 20, 2016, until November 21,
2016, and is primarily filmed in Orange County, California. Its executive producers
are Adam Karpel, Alex Baskin, Douglas Ross, Gregory Stewart, Scott Dunlop,
Stephanie Boyriven and Andy Cohen."]

Answer : Andy Cohen
baseline: Andy Cohen
embsum : Adam Karpel
embcat : Adam Karpel
encsum : Adam Karpel
enccat : Adam Karpel
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decloss : Adam Cohen
--------------------

In this example the abstraction models all answer with the first entity listed as being a producer of The
Real Housewives, eventhough it is not the person who hosts What Happens Live. Note that this example
contains the answer in the question, which may be confusing the abstraction models.

--------------------
Question: What Actor whose birth name was Charles Dennis Buchinsky, was part of the

Leslie Nielsen comedy?
facts : [

"Charles Bronson (born Charles Dennis Buchinsky; Lithuanian: "Karolis Dionyzas
Bučinskis" ; November 3, 1921 – August 30, 2003) was an American actor.",

"Allan A. Goldstein (born May 23, 1949) is an American film director and
screenwriter, perhaps best known for directing the Charles Bronson vehicle and
the Leslie Nielsen comedy".]

Answer : Charles Bronson
baseline: Charles Bronson
embsum : Allan A. Goldstein
embcat : Allan A. Goldstein
encsum : Allan A. Goldstein
enccat : Allan A. Goldstein
decloss : Allan A. Goldstein
--------------------

In this example the answer can be answered directly from the first paragraph since we are asking for the
name of the actor born ‘Charles Denis Buchinsky’. Here the abstraction models all answered with the person
from the second paragraph. This is probably due to the fact that a two hop question, starting with entity
‘Charles Dennis Buchinsky’, and asking for a person would first link the first and second paragraph with the
entity ‘Charles Bronson’, and then answer with the entity ‘Allan A. Goldstein’.
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