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ABSTRACT

This paper explores the application of neural differential equations (NDEs) to
model the multi-scale dynamics of financial systems, with a focus on high-
frequency trading, regime-switching asset prices, and portfolio optimization. We
propose a novel framework that integrates stochastic volatility and hierarchical ar-
chitectures to capture both short-term fluctuations and long-term trends. e demon-
strate the effectiveness of NDEs in predicting prices, identifying regime transi-
tions, and optimizing portfolios across multiple time scales. The framework is
compared with traditional methods such as GARCH and LSTMs, showing supe-
rior performance in terms of predictive accuracy, computational efficiency, and
risk-adjusted returns. The results highlight the potential of NDEs for real-time
applications in financial markets, offering a scalable and interpretable solution for
modeling complex systems.

1 INTRODUCTION AND LITERATURE REVIEW

The application of neural differential equations (NDEs) to financial modeling builds on a rich body
of work spanning machine learning, stochastic processes, and financial mathematics. Recent ad-
vances in neural ODEs (Chen et al.|[2018) have enabled the modeling of continuous-time dynamics,
making them particularly suitable for financial time series, which often exhibit multi-scale behav-
iors. Below, we review key works in this area, with a focus on cryptocurrency applications.

1.1 NEURAL DIFFERENTIAL EQUATIONS

Neural ODE:s, introduced by (Chen et al.[(2018), provide a framework for modeling continuous-time
dynamics using neural networks. This approach has been extended to stochastic differential equa-
tions (SDEs) by [Tzen & Raginsky|(2019), who demonstrated the theoretical foundations of neural
SDEs and their applicability to time series modeling. |Kidger et al.| (2020) further generalized this
framework to handle irregularly sampled data, a common feature in financial markets. In the con-
text of cryptocurrencies, |(Chen et al.| (2021} applied neural SDEs to model Bitcoin price dynamics,
demonstrating their ability to capture high-frequency volatility and regime-switching behaviors.

1.2 MULTI-SCALE MODELING IN FINANCE

Multi-scale modeling of financial markets has been extensively studied in the context of stochastic
processes and econometrics. [Fouque et al.|(2011) provided a comprehensive treatment of multi-scale
stochastic volatility models, which capture the interplay between fast and slow market dynamics.
More recently, Horvath et al.[(2021) applied deep learning to multi-scale financial data, demonstrat-
ing the effectiveness of neural networks in capturing complex dependencies across time scales. In
the cryptocurrency domain, |[Fantazzini & Zimin/(2020) explored multi-scale models for Bitcoin and
Ethereum, highlighting the importance of incorporating both short-term and long-term dynamics.
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1.3 APPLICATIONS OF NEURAL NETWORKS IN TRADITIONAL AND DECENTRALIZED
FINANCE

The use of neural networks in finance has grown significantly, with applications ranging from op-
tion pricing to portfolio optimization. Hutchinson et al.|(1994) pioneered the use of neural networks
for derivative pricing, while Sirignano & Spiliopoulos| (2018) developed deep learning models for
high-dimensional PDEs arising in financial mathematics. [Zhang et al,|(2019) applied reinforcement
learning to portfolio optimization, highlighting the potential of Al-driven approaches in finance. In
the cryptocurrency space, Jang & Lee (2021)); L1 et al.| (2024a) used neural networks to predict Bit-
coin prices, achieving state-of-the-art results by incorporating multi-scale features. Our integration
with machine learning is inspired by Jang & Lee|(2021)), Lin et al.|(2024) and |Li et al.| (2024b).

1.4 OPERATOR LEARNING AND SURROGATE MODELING

Operator learning, as introduced by |Lu et al.| (2021), provides a powerful framework for learning
mappings between function spaces, making it well-suited for financial applications such as risk
modeling and pricing. Surrogate modeling, particularly using physics-informed neural networks
(PINNs), has been explored by Raissi et al.[(2019) for solving high-dimensional PDEs, offering a
computationally efficient alternative to traditional numerical methods. In the context of cryptocur-
rencies, |Li et al| (2022) applied operator learning to model the cross-correlations between Bitcoin
and Ethereum, demonstrating its effectiveness in capturing complex dependencies.

2 METHODOLOGY

We propose a novel framework for modeling cryptocurrency portfolios using neural differential
equations (NDEs). The key innovation lies in the integration of multi-scale dynamics and stochastic
processes into a unified neural architecture. Unlike traditional methods, our approach leverages
the continuous-time modeling capabilities of NDEs to capture both short-term volatility and long-
term trends in cryptocurrency prices. Below, we describe the methodology in detail, including the
mathematical formulation, parameter tuning, and the role of machine learning/Al in improving the
framework.

2.1 MATHEMATICAL FORMULATION

2.1.1 NEURAL ORDINARY DIFFERENTIAL EQUATIONS (NODES)

The core of our framework is a neural ODE, which models the continuous-time dynamics of the
cryptocurrency portfolio. Let h(t) represent the hidden state of the portfolio at time ¢, which includes
features such as prices, volumes, and volatilities. The evolution of /(t) is governed by the following
differential equation:

dh(t)

—= = fo(h(¢),t 1

2 = folh(t), ) 1)

where fy is a neural network parameterized by 6. The neural network fy is designed to capture the
complex, non-linear relationships between the portfolio features.

2.1.2 STOCHASTIC VOLATILITY MODELING

To account for the high volatility of cryptocurrency prices, we extend the neural ODE to include
stochastic volatility. Let o(t) represent the volatility at time ¢, which is modeled as a stochastic
process:

do(t) = a(d — o(t))dt + Bo(t)dW; (2)
where « and 3 are parameters controlling the mean reversion and volatility of volatility, respectively,

and W; is a Wiener process. The neural ODE is then augmented to include o (t) as an additional
state variable.
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2.1.3 MULTI-SCALE DYNAMICS

To capture multi-scale dynamics, we introduce a hierarchical architecture with multiple time scales.
Let hq(t),ha(t), and hs3(t) represent the hidden states at minute, hourly, and daily time scales, re-
spectively. The dynamics of each scale are modeled as:
dhq(t)
dt

= Joo (ha(t), I (2), 1)

= fo, (ha(t), 1)
dhs(t)

dt

PO — o (hs0), (01

where fo,, fp, and fp, are neural networks for the respective time scales. This hierarchical structure
allows the model to capture both short-term fluctuations and long-term trends.

2.2 PARAMETER DETAILS AND TUNING
For neural network architecture, we use the following parameters.

* The neural networks fy,fs,, fp, and fy, are implemented as multi-layer perceptrons
(MLPs) with 3 hidden layers and 64 units per layer.

* Activation functions: ReLU for hidden layers and tanh for the output layer to ensure smooth
dynamics.

* Input features: Prices, volumes, and volatilities of the cryptocurrencies in the portfolio.
In the stochastic volatility model, we use the following parameters:

* a:Controls the speed of mean reversion. Initialized to 0.1 and tuned using grid search.
 (: Controls the volatility of volatility. Initialized to 0.2 and tuned using grid search.

* ¢: Long-term average volatility. Estimated from historical data.

2.3  TRAINING AND OPTIMIZATION

The training process for our neural differential equation (NDE) framework is designed to ensure
robust and efficient learning. The loss function used is the mean squared error (MSE) between
the predicted and actual portfolio values, which ensures that the model minimizes prediction errors
across all time scales. For optimization, we employ the Adam optimizer with a learning rate of
0.001, which is well-suited for training deep neural networks due to its adaptive learning rate ca-
pabilities. To handle the varying granularity of the data, we use different batch sizes for each time
scale: 128 for minute-level data, 64 for hourly-level data, and 32 for daily-level data. This approach
ensures that the model can effectively capture the unique characteristics of each time scale. To pre-
vent overfitting and improve generalization, we implement early stopping, where training halts if the
validation loss does not improve for 10 consecutive epochs. For hyperparameter tuning, we utilize
Bayesian optimization to fine-tune critical parameters such as the learning rate, batch size, and net-
work architecture. Additionally, we perform a grid search over the stochastic volatility parameters «
(mean reversion speed) and [ (volatility of volatility) to identify the optimal values that best capture
the dynamics of cryptocurrency markets.

2.4 INCORPORATION OF MACHINE LEARNING

Machine learning and Al play a pivotal role in enhancing the effectiveness and scalability of our
methodology. Traditional methods, such as GARCH and LSTMs, often struggle with the high-
dimensional and irregularly sampled nature of cryptocurrency data. In contrast, neural differential
equations (NDEs) excel in handling such challenges due to their continuous-time formulation, which
naturally accommodates irregular time steps and high-frequency data. This makes NDEs highly
scalable and suitable for large-scale cryptocurrency datasets. Furthermore, the interpretability of
NDE:s is a significant advantage over discrete-time models like LSTMs. By analyzing the learned
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dynamics of the NDE, we can gain insights into the underlying factors driving cryptocurrency prices,
such as volatility regimes and cross-asset correlations. Another key benefit is the ability of NDEs to
adapt in real-time as new data arrives. This feature is particularly valuable for applications like high-
frequency trading and dynamic portfolio management, where timely updates are critical. Overall,
the integration of machine learning and Al into our framework not only improves predictive accuracy
but also enables real-time decision-making and a deeper understanding of market dynamics.

We illustrate our methodology with an example from cryptocurrency. Consider a portfolio of three
cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), and Ripple (XRP). The hidden state h(t) in-
cludes the following features:

¢ Prices: PBTC(t), PE'TH(t)’ PXRP(t)
¢ Volumes: VBTC(t), VETH (f,), VXRP(t)
* Volatility: oy

The neural ODE for the minute-level dynamics is:

MO — fo a1 ®

where hq (t) = [PBTC (t), PETH(t)a Pxrp (t), Vere (t), Vern (t), Vxrp (t)7 O’(t)] The stochastic
volatility process is:

do(t) = 0.1(0.2 — o (t))dt + 0.20(t)dW, @)

The main contribution of our methodology are four-folds:

1. Novel Integration of Multi-Scale Dynamics: Unlike previous works that focus on single-
scale modeling, our framework explicitly incorporates multi-scale dynamics, enabling
more accurate predictions across different time horizons.

2. Stochastic Volatility in NDEs: We extend neural ODEs to include stochastic volatility, a
critical feature for modeling cryptocurrency markets. This innovation allows the model to
capture sudden price jumps and regime shifts.

3. Hierarchical Architecture: The hierarchical structure of our framework is a significant de-
parture from traditional approaches. By modeling each time scale separately and coupling
them through shared hidden states, we achieve a more robust representation of the data.

4. Application to Cryptocurrencies: While NDEs have been applied to traditional financial
markets, their application to cryptocurrencies is novel. Our framework addresses the unique
challenges of cryptocurrency data, such as high volatility and irregular sampling.

3 APPLICATION OF MULTI-SCALE MODELING USING NEURAL
DIFFERENTIAL EQUATIONS WITH MACHINE LEARNING

We have studied multi-scale modeling using neural differential equations with machine learning in
four different real-world instances. In each studied example, we compare our methodology with two
alternative methods:

* GARCH (Generalized Autoregressive Conditional Heteroskedasticity): A traditional
econometric model for volatility forecasting.

* LSTM (Long Short-Term Memory): A deep learning model commonly used for time series
prediction.

3.1 HIGH-FREQUENCY TRADING (HFT) DATA WITH MICROSTRUCTURE NOISE

In this example, we model the dynamics of high-frequency trading (HFT) data, which includes
microstructure noise such as bid-ask bounce and market frictions. The dataset consists of 100,000+
data points representing price and volume data at millisecond intervals. Prices are simulated using
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a jump-diffusion process, while volumes follow a mean-reverting process. The neural differential
equation (NDE) framework is used to model the continuous-time dynamics of the price and volume
processes, capturing both the rapid fluctuations and the underlying trends. The NDE is trained to
predict short-term price movements and reconstruct the latent.

We included features such as: 1. Price P(t) following a stochastic process with jumps (e.g., Merton
jump-diffusion model). 2. Volume V' (¢) modeled as a mean-reverting process. 3. Microstructure
noise: Add Gaussian noise to simulate bid-ask bounce and other market frictions. Therefore, the
equations becomes:

dP(t) = pP(t)dt + o P(t)dW; + J(t)dN,
AV (t) = 0(V — V(t))dt + ndW,

’ . . . . . .
where W; and W, are Wiener processes, J(t) is the jump size, and V; is a Poisson process.

Machine learning enhances this framework by enabling the NDE to learn complex, non-linear re-
lationships in the data without requiring explicit assumptions about the underlying processes. The
use of neural stochastic differential equations (SDEs) allows the model to handle the inherent noise
and randomness in HFT data, while the continuous-time formulation ensures scalability to large
datasets. Additionally, the model can be updated in real-time as new data arrives, making it suitable
for high-frequency trading applications.

Table 2 shows that the NDE framework achieves the lowest mean squared error (MSE) of 0.0012 for
minute-level predictions, outperforming both GARCH (MSE: 0.0056) and LSTM (MSE: 0.0023).
While GARCH is faster to train (60 seconds), it struggles to capture high-frequency noise, result-
ing in higher prediction errors. The LSTM performs better than GARCH but is computationally
expensive, requiring 300 seconds for training. The NDE strikes a balance between accuracy and
efficiency, with a training time of 120 seconds and an inference time of just 5 milliseconds, making
it suitable for real-time high-frequency trading applications.

3.2 MULTI-SCALE ASSET PRICE MODELING WITH REGIME SWITCHING

This example focuses on modeling asset prices across multiple time scales (e.g., seconds, minutes,
days) with regime-switching behavior. The dataset includes 100,000+ data points for asset prices
over a 1-year period, sampled at multiple frequencies. The NDE framework is extended to include
a hidden Markov model (HMM) that captures regime transitions (e.g., bull market, bear market,
sideways market). The model is trained to predict prices at different time scales and identify regime
transitions in real-time.

Machine learning plays a crucial role in this example by enabling the NDE to learn the complex
dynamics of regime-switching behavior. The integration of neural networks with HMMs allows the
model to automatically detect and adapt to changing market conditions. The hierarchical structure
of the NDE ensures that the model can capture both short-term fluctuations and long-term trends,
while the use of Bayesian optimization for hyperparameter tuning improves the model’s robustness
and accuracy.

In Table[3] the NDE framework consistently outperforms GARCH and LSTM across all time scales,
achieving the lowest MSE for minute-level (0.0015), hourly-level (0.0038), and daily-level (0.0092)
predictions. GARCH, while faster to train (70 seconds), fails to capture the complex dynamics
of regime-switching behavior, resulting in significantly higher errors. The LSTM performs better
than GARCH but is computationally expensive, requiring 350 seconds for training. The NDE’s
hierarchical architecture enables it to capture multi-scale dynamics effectively, with a training time
of 150 seconds, making it a robust choice for modeling regime-switching behaviors.

3.3 PORTFOLIO OPTIMIZATION WITH MULTI-SCALE RISK DYNAMICS

We model the dynamics of a portfolio of assets across multiple time scales to optimize risk-adjusted
returns. The dataset consists of 200,000+ data points for a portfolio of 10 assets over a 5-year period,
sampled at daily intervals. The NDE framework is used to model the joint dynamics of the portfolio
and macroeconomic factors, such as interest rates and inflation. The model is trained to optimize
portfolio weights for risk-adjusted returns, such as the Sharpe ratio.
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Machine learning enhances this framework by enabling the NDE to learn the complex relationships
between asset prices, macroeconomic factors, and portfolio risk. The use of physics-informed neural
networks (PINNs) ensures that the model incorporates domain knowledge, such as financial theory,
while the continuous-time formulation allows for real-time updates. The model’s ability to handle
high-dimensional data and irregular time steps makes it highly scalable and suitable for dynamic
portfolio management.

In Table [ the NDE framework achieves the highest Sharpe ratio of 2.15, outperforming both
GARCH (Sharpe ratio: 1.45) and LSTM (Sharpe ratio: 1.85). This indicates that the NDE-based
portfolio optimization strategy delivers superior risk-adjusted returns. While GARCH is faster to
train (90 seconds), it fails to capture the complex relationships between assets and macroeconomic
factors, resulting in suboptimal portfolio weights. The LSTM performs better than GARCH but is
computationally expensive, requiring 400 seconds for training. The NDE’s ability to handle high-
dimensional data and irregular time steps makes it highly scalable, with a training time of 180 sec-
onds and an inference time of 8 milliseconds, making it suitable for dynamic portfolio management.

3.4 MULTI-SCALE MODELING OF CRYPTOCURRENCY PORTFOLIOS

We study a cryptocurrency portfolio (e.g., Bitcoin, Ethereum, Ripple) across multiple time scales
(minute, hourly, daily). The dataset includes 190,000+ data points for each cryptocurrency, with
prices modeled as geometric Brownian motion with stochastic volatility. The NDE framework is
used to model the price and volatility dynamics of the portfolio, capturing both short-term volatility
and long-term trends. Typical input to the model is like what listed in Table|l} The input was pre-
processed in similar way as in the work of |Li et al.|(2024b). The model is trained to predict portfolio
values at different time scales and optimize portfolio weights dynamically.

Machine learning is integral to this example, as it enables the NDE to capture the high volatility
and non-stationary behaviors of cryptocurrency markets. The use of neural stochastic differential
equations (SDEs) allows the model to handle sudden price jumps and regime shifts, while the hi-
erarchical structure ensures that the model can capture multi-scale dynamics. The model’s ability
to adapt in real-time makes it suitable for high-frequency trading and dynamic risk management in
cryptocurrency markets. We use neural ordinary differential equations (NODEs) to model the price
and volatility dynamics of the cryptocurrency portfolio. The NODE is defined same as Eq. |1} where
h(t) represents the hidden state of the portfolio (e.g., prices, volumes, and volatilities), and fj is
a neural network parameterized by 6. The NODE is trained to minimize the mean squared error
(MSE) between predicted and actual portfolio values.

According to the summary of average performances of NODE, GARCH and LSTM as shown in
Table[5] the NODE achieves the lowest MSE across all time scales, demonstrating its superior ability
to capture multi-scale dynamics. While GARCH is faster to train, it performs poorly on minute-level
data due to its inability to handle high-frequency noise. The LSTM performs well on minute-level
data but struggles with long-term dependencies, resulting in higher errors at daily intervals. This is
similar to what observed by |Li et al.|(2024b) in their work. We further improved from the framework
proposed by |Li et al.| (2024b).

The results highlight the advantages of NODEs for modeling cryptocurrency portfolios. Unlike
GARCH, which assumes a specific parametric form, NODEs can learn complex, non-linear dynam-
ics directly from data. Compared to LSTMs, NODEs are more interpretable and computationally
efficient, particularly for long-term predictions. However, NODEs require careful tuning of hyper-
parameters and may struggle with extremely noisy data. Future work could explore hybrid models
that combine NODEs with traditional econometric methods to further improve performance.

4 CONCLUSION AND FUTURE RESEARCH DIRECTION

In this paper, we presented a neural differential equation (NDE) framework for modeling multi-scale
financial dynamics, including high-frequency trading, regime-switching asset prices, and portfolio
optimization. Using synthetic datasets, we demonstrated that NDEs outperform traditional meth-
ods like GARCH and LSTMs in terms of predictive accuracy, computational efficiency, and risk-
adjusted returns. Future work could explore the integration of additional domain knowledge, such
as macroeconomic factors, to further enhance the model’s performance.
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Table 1: Input of 10 minutes data for cryptocurrency valuation

Timestamp BTC ETH XRP BTC Vol- | ETH Vol- | XRP Vol- | Portfolio
Price Price Price ume ume ume Value

10/1/23 0:00 26950 1675 0.52 1200 8500 2500000 1000000
10/1/23 0:01 26952 1674.8 0.519 1250 8400 2550000 1001523.45
10/1/23 0:02 26948.5 1675.3 0.521 1180 8600 2450000 998476.89
10/1/23 0:03 26951 1675.1 0.52 1220 8550 2520000 1003120.67
10/1/23 0:04 26953.5 1674.9 0.518 1300 8300 2600000 999187.23
10/1/23 0:05 26955 1675.5 0.522 1350 8700 2650000 1004567.12
10/1/23 0:06 26957 1675.7 0.523 1400 8800 2700000 1006123.78
10/1/23 0:07 26958.5 1675.9 0.524 1450 8900 2750000 1007456.34
10/1/23 0:08 26960 1676.1 0.525 1500 9000 2800000 1008923.56
10/1/23 0:09 26962 1676.3 0.526 1550 9100 2850000 1010456.89

Table 2: High-Frequency Trading (HFT) Data with Microstructure Noise

Model MSE (Minute) | Training Time (s) | Inference Time (ms)
NDE 0.0012 120 5

GARCH | 0.0056 60 2

LSTM 0.0023 300 10

Table 3: Multi-Scale Asset Price Modeling with Regime Switching

Model MSE (Minute) | MSE (Hourly) | MSE (Daily) | Training Time (s)
NDE 0.0015 0.0038 0.0092 150
GARCH | 0.0062 0.0135 0.0268 70
LSTM 0.0028 0.0071 0.0163 350
Table 4: Portfolio Optimization with Multi-Scale Risk Dynamics

Model Sharpe Ratio | Training Time (s) | Inference Time (ms)

NDE 2.15 180 8

GARCH | 1.45 90 3

LSTM 1.85 400 15

Table 5: Result Comparision Among NODE, GARCH and LSTM

Model MSE MSE MSE Training
(Minute) (Hourly) (Daily) Time (s)
NODE 0.0012 0.0035 0.0087 121
GARCH | 0.0056 0.0123 0.0254 59
LSTM 0.0023 0.0067 0.0156 297
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