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Abstract

Learned representations are a central component in modern ML systems, serv-
ing a multitude of downstream tasks. When training such representations, it
is often the case that computational and statistical constraints for each down-
stream task are unknown. In this context, rigid fixed-capacity representations
can be either over or under-accommodating to the task at hand. This leads us
to ask: can we design a flexible representation that can adapt to multiple down-
stream tasks with varying computational resources? Our main contribution is

& Matryoshka Representation Learning (MRL) which encodes information at
different granularities and allows a single embedding to adapt to the computational
constraints of downstream tasks. MRL minimally modifies existing representation
learning pipelines and imposes no additional cost during inference and deployment.
MRL learns coarse-to-fine representations that are at least as accurate and rich as
independently trained low-dimensional representations. The flexibility within the
learned Matryoshka Representations offer: (a) up to 14 x smaller embedding
size for ImageNet-1K classification at the same level of accuracy; (b) up to 14 x
real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up
to 2% accuracy improvements for long-tail few-shot classification, all while being
as robust as the original representations. Finally, we show that MRL extends seam-
lessly to web-scale datasets (ImageNet, JFT) across various modalities — vision
(ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and
pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.

1 Introduction

Learned representations [55] are fundamental building blocks of real-world ML systems [62, 86].
Trained once and frozen, d-dimensional representations encode rich information and can be used
to perform multiple downstream tasks [4]. The deployment of deep representations has two steps:
(1) an expensive yet constant-cost forward pass to compute the representation [27] and (2) utilization
of the representation for downstream applications [48, 84]. Compute costs for the latter part of the
pipeline scale with the embedding dimensionality as well as the data size (/V) and label space (L).
At web-scale [15, 80] this utilization cost overshadows the feature computation cost. The rigidity in
these representations forces the use of high-dimensional embedding vectors across multiple tasks
despite the varying resource and accuracy constraints that require flexibility.

Human perception of the natural world has a naturally coarse-to-fine granularity [26, 30]. However,
perhaps due to the inductive bias of gradient-based training [79], deep learning models tend to diffuse
“information” across the entire representation vector. The desired elasticity is usually enabled in the
existing flat and fixed representations either through training multiple low-dimensional models [27],
jointly optimizing sub-networks of varying capacity [9, 95] or post-hoc compression [36, 57]. Each
of these techniques struggle to meet the requirements for adaptive large-scale deployment either
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due to training/maintenance overhead, numerous expensive forward passes through all of the data,
storage and memory cost for multiple copies of encoded data, expensive on-the-fly feature selection
or a significant drop in accuracy. By encoding coarse-to-fine-grained representations, which are as
accurate as the independently trained counterparts, we learn with minimal overhead a representation
that can be deployed adaptively at no additional cost during inference.

We introduce € Matryoshka Representation Learning (MRL) to induce flexibility in the learned
representation. MRL learns representations of varying capacities within the same high-dimensional
vector through explicit optimization of O(log(d)) lower-dimensional vectors in a nested fashion,
hence the name Matryoshka. MRL can be adapted to any existing representation pipeline and
is easily extended to many standard tasks in computer vision and natural language processing.
Figure 1 illustrates the core idea of Matryoshka Representation Learning (MRL) and the adaptive
deployment settings of the learned Matryoshka Representations.
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The Matryoshka Representations improve efficiency for large-scale classification and retrieval
without any significant loss of accuracy. While there are potentially several applications of coarse-to-
fine Matryoshka Representations, in this work we focus on two key building blocks of real-world
ML systems: large-scale classification and retrieval. For classification, we use adaptive cascades with
the variable-size representations from a model trained with MRL, significantly reducing the average
dimension of embeddings needed to achieve a particular accuracy. For example, on ImageNet-1K,
MRL + adaptive classification results in up to a 14 x smaller representation size at the same accuracy
as baselines (Section 4.2.1). Similarly, we use MRL in an adaptive retrieval system. Given a query,
we shortlist retrieval candidates using the first few dimensions of the query embedding, and then
successively use more dimensions to re-rank the retrieved set. A simple implementation of this
approach leads to 128 x theoretical (in terms of FLOPS) and 14 x wall-clock time speedups compared
to a single-shot retrieval system that uses a standard embedding vector; note that MRL’s retrieval
accuracy is comparable to that of single-shot retrieval (Section 4.3.1). Finally, as MRL explicitly
learns coarse-to-fine representation vectors, intuitively it should share more semantic information
among its various dimensions (Figure 5). This is reflected in up to 2% accuracy gains in long-tail
continual learning settings while being as robust as the original embeddings. Furthermore, due to its
coarse-to-fine grained nature, MRL can also be used as method to analyze hardness of classification
among instances and information bottlenecks.

We make the following key contributions:

1. We introduce €3 Matryoshka Representation Learning (MRL) to obtain flexible representa-
tions (Matryoshka Representations) for adaptive deployment (Section 3).

2. Up to 14 x faster yet accurate large-scale classification and retrieval using MRL (Section 4).

3. Seamless adaptation of MRL across modalities (vision - ResNet & ViT, vision + language -
ALIGN, language - BERT) and to web-scale data (ImageNet-1K/4K, JFT-300M and ALIGN data).

4. Further analysis of MRL’s representations in the context of other downstream tasks (Section 5).



2 Related Work

Representation Learning. Large-scale datasets like ImageNet [16, 71] and JFT [80] enabled
the learning of general purpose representations for computer vision [4, 93]. These representations
are typically learned through supervised and un/self-supervised learning paradigms. Supervised
pretraining [27, 49, 77] casts representation learning as a multi-class/label classification problem,
while un/self-supervised learning learns representation via proxy tasks like instance classification [92]
and reconstruction [29, 60]. Recent advances [12, 28] in contrastive learning [25] enabled learning
from web-scale data [2 1] that powers large-capacity cross-modal models [ 18, 44, 67, 96]. Similarly,
natural language applications are built [38] on large language models [8] that are pretrained [64, 70]
in a un/self-supervised fashion with masked language modelling [19] or autoregressive training [66].

& Matryoshka Representation Learning (MRL) is complementary to all these setups and can be
adapted with minimal overhead (Section 3). MRL equips representations with multifidelity at no
additional cost which enables adaptive deployment based on the data and task (Section 4).

Efficient Classification and Retrieval. Efficiency in classification and retrieval during inference
can be studied with respect to the high yet constant deep featurization costs or the search cost which
scales with the size of the label space and data. Efficient neural networks address the first issue
through a variety of algorithms [24, 52] and design choices [37, 51, 82]. However, with a strong
featurizer, most of the issues with scale are due to the linear dependence on number of labels (L), size
of the data (/V) and representation size (d), stressing RAM, disk and processor all at the same time.

The sub-linear complexity dependence on number of labels has been well studied in context of
compute [3, 41, 65] and memory [20] using Approximate Nearest Neighbor Search (ANNS) [59] or
leveraging the underlying hierarchy [17, 53]. In case of the representation size, often dimensionality
reduction [72, 83], hashing techniques [14, 50, 73] and feature selection [61] help in alleviating
selective aspects of the O(d) scaling at a cost of significant drops in accuracy. Lastly, most real-world
search systems [ 1, 15] are often powered by large-scale embedding based retrieval [10, 62] that
scales in cost with the ever increasing web-data. While categorization [84, 94] clusters similar things
together, it is imperative to be equipped with retrieval capabilities that can bring forward every
instance [7]. Approximate Nearest Neighbor Search (ANNS) [40] makes it feasible with efficient
indexing [14] and traversal [5, 6] to present the users with the most similar documents/images from
the database for a requested query. Widely adopted HNSW [59] (O(dlog(NN))) is as accurate as
exact retrieval (O(dN)) at the cost of a graph-based index overhead for RAM and disk [42].

MRL tackles the linear dependence on embedding size, d, by learning multifidelity
Matryoshka Representations. Lower-dimensional Matryoshka Representations are as accu-
rate as independently trained counterparts without the multiple expensive forward passes.
Matryoshka Representations provide an intermediate abstraction between high-dimensional vec-
tors and their efficient ANNS indices through the adaptive embeddings nested within the original
representation vector (Section 4). All other aforementioned efficiency techniques are complementary
and can be readily applied to the learned Matryoshka Representations obtained from MRL.

Several works in efficient neural network literature [9, 88, 95] aim at packing neural networks of
varying capacity within the same larger network. However, the weights for each progressively smaller
network can be different and often require distinct forward passes to isolate the final representations.
This is detrimental for adaptive inference due to the need for re-encoding the entire retrieval database
with expensive sub-net forward passes of varying capacities. Finally, ordered representations proposed
by Rippel et al. [69] use nested dropout in the context of autoencoders to learn nested representations.
MRL differentiates itself in formulation by optimizing only for O(log(d)) nesting dimensions instead
of O(d). Despite this, MRL diffuses information to intermediate dimensions interpolating between
the optimized Matryoshka Representation sizes accurately (Figure 5); making web-scale feasible.

3 & Matryoshka Representation Learning

For d € N, consider a set M C [d] of representation sizes. For a datapoint z in the input do-
main X, our goal is to learn a d-dimensional representation vector z € R?. For every m € M,
Matryoshka Representation Learning (MRL) enables each of the first m dimensions of the em-
bedding vector, 2;.,, € R™ to be independently capable of being a transferable and general purpose



representation of the datapoint . We obtain z using a deep neural network F(-;0r): X — RY
parameterized by learnable weights 0, i.e., z ;== F(x; 0 ). The multi-granularity is captured through
the set of the chosen dimensions M, that contains less than log(d) elements, i.e., | M| < [log(d)|.
The usual set M consists of consistent halving until the representation size hits a low information
bottleneck. We discuss the design choices in Section 4 for each of the representation learning settings.

For the ease of exposition, we present the formulation for fully supervised representation learning
via multi-class classification. Matryoshka Representation Learning modifies the typical setting
to become a multi-scale representation learning problem on the same task. For example, we train
ResNet50 [27] on ImageNet-1K [71] which embeds a 224 x 224 pixel image into a d = 2048
representation vector and then passed through a linear classifier to make a prediction, § among the
L = 1000 labels. For MRL, we choose M = {8, 16, ...,1024, 2048} as the nesting dimensions.

Suppose we are given a labelled dataset D = {(x1,v1),...,(xN,yn)} Where z; € X is an input
point and y; € [L] is the label of x; for all ¢ € [N]. MRL optimizes the multi-class classification loss
for each of the nested dimension m € M using standard empirical risk minimization using a separate
linear classifier, parameterized by W (™) e REX™ Al the losses are aggregated after scaling with
their relative importance (c¢,,, > 0),,, . v respectively. That is, we solve

min S S e £ (WO F ()i i) | ()
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where £: R x [L] — Ry is the multi-class softmax cross-entropy loss function. This is a standard
optimization problem that can be solved using sub-gradient descent methods. We set all the impor-
tance scales, ¢,, = 1 for all m € M; see Section 5 for ablations. Lastly, despite only optimizing
for O(log(d)) nested dimensions, MRL results in accurate representations, that interpolate, for
dimensions that fall between the chosen granularity of the representations (Section 4.2).

We call this formulation as Matryoshka Representation Learning (MRL). A natural way to make
this efficient is through weight-tying across all the linear classifiers, i.e., by defining W) = W ..,
for a set of common weights W € R¥*?_ This would reduce the memory cost due to the linear
classifiers by almost half, which would be crucial in cases of extremely large output spaces [84, 94].
This variant is called Efficient Matryoshka Representation Learning (MRL-E). Refer to Alg 1
and Alg 2 in Appendix A for the building blocks of Matryoshka Representation Learning (MRL).

Adaptation to Learning Frameworks. MRL can be adapted seamlessly to most representation
learning frameworks at web-scale with minimal modifications (Section 4.1). For example, MRL’s
adaptation to masked language modelling reduces to MRL-E due to the weight-tying between the
input embedding matrix and the linear classifier. For contrastive learning, both in context of vision &
vision + language, MRL is applied to both the embeddings that are being contrasted with each other.
The presence of normalization on the representation needs to be handled independently for each of
the nesting dimension for best results (see Appendix C for more details).

4 Applications

In this section, we discuss Matryoshka Representation Learning (MRL) for a diverse set of ap-
plications along with an extensive evaluation of the learned multifidelity representations. Further,
we showcase the downstream applications of the learned Matryoshka Representations for flexible
large-scale deployment through (a) Adaptive Classification (AC) and (b) Adaptive Retrieval (AR).

4.1 Representation Learning

We adapt Matryoshka Representation Learning (MRL) to various representation learning setups
(a) Supervised learning for vision: ResNet50 [27] on ImageNet-1K [71] and ViT-B/16 [22] on
JFT-300M [&0], (b) Contrastive learning for vision + language: ALIGN model with ViT-B/16 vision
encoder and BERT language encoder on ALIGN data [44] and (c) Masked language modelling:
BERT [19] on English Wikipedia and BooksCorpus [97]. Please refer to Appendices B and C for
details regarding the model architectures, datasets and training specifics.

We do not search for best hyper-parameters for all MRL experiments but use the same hyper-
parameters as the independently trained baselines. ResNet50 outputs a 2048-dimensional repre-
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Figure 2: ImageNet-1K linear classification ac- Figure 3: ImageNet-1K 1-NN accuracy of
curacy of ResNet50 models. MRL is as accurate  ResNet50 models measuring the representation
as the independently trained FF models for every quality for downstream task. MRL outperforms
representation size. all the baselines across all representation sizes.

sentation while ViT-B/16 and BERT-Base output 768-dimensional embeddings for each data point.
We use M = {8, 16, 32, 64, 128,256, 512, 1024, 2048} and M = {12, 24, 48,96, 192, 384, 768} as
the explicitly optimized nested dimensions respectively. Lastly, we extensively compare the MRL
and MRL-E models to independently trained low-dimensional (fixed feature) representations (FF),
dimensionality reduction (SVD), sub-net method (slimmable networks [95]) and randomly selected
features of the highest capacity FF model.

In section 4.2, we evaluate the quality and capacity of the learned representations through linear
classification/probe (LP) and 1-nearest neighbour (1-NN) accuracy. Experiments show that MRL
models remove the dependence on | M| resource-intensive independently trained models for the
coarse-to-fine representations while being as accurate. Lastly, we show that despite optimizing only
for | M| dimensions, MRL models diffuse the information, in an interpolative fashion, across all the
d dimensions providing the finest granularity required for adaptive deployment.

4.2 Classification

Figure 2 compares the linear classification accuracy of ResNet50 models trained and evaluated
on ImageNet-1K. ResNet50-MRL model is at least as accurate as each FF model at every rep-
resentation size in M while MRL-E is within 1% starting from 16-dim. Similarly, Figure 3
showcases the comparison of learned representation quality through 1-NN accuracy on ImageNet-1K
(trainset with 1.3M samples as the database and validation set with 50K samples as the queries).
Matryoshka Representations are up to 2% more accurate than their fixed-feature counterparts for
the lower-dimensions while being as accurate elsewhere. 1-NN accuracy is an excellent proxy, at no
additional training cost, to gauge the utility of learned representations in the downstream tasks.

We also evaluate the quality of the representations from training ViT-B/16 on JFT-300M alongside the
ViT-B/16 vision encoder of the ALIGN model — two web-scale setups. Due to the expensive nature of
these experiments, we only train the highest capacity fixed feature model and choose random features
for evaluation in lower-dimensions. Web-scale is a compelling setting for MRL due to its relatively
inexpensive training overhead while providing multifidelity representations for downstream tasks.
Figure 4, evaluated with 1-NN on ImageNet-1K, shows that all the MRL models for JFT and ALIGN
are highly accurate while providing an excellent cost-vs-accuracy trade-off at lower-dimensions.
These experiments show that MRL seamlessly scales to large-scale models and web-scale datasets
while providing the otherwise prohibitively expensive multi-granularity in the process. We also
have similar observations when pretraining BERT; please see Appendix D.2 for more details. Our
experiments also show that post-hoc compression (SVD), linear probe on random features, and
sub-net style slimmable networks drastically lose accuracy compared to MRL as the representation
size decreases. Finally, Figure 5 shows that, while MRL explicitly optimizes O(log(d)) nested
representations — removing the O(d) dependence [69] —, the coarse-to-fine grained information is
interpolated across all d dimensions providing highest flexibility for adaptive deployment.



80
N 370 angeitiit-laan
X < AT o L2 i
60 > LIy % an
o . ® w 8y
2 ¢« 7/ 5 60 1
3 R —o— JFT MRL 3 o ~¥:- ViT-ALIGN
240 4 ALIGN MRL & Sy ~®- VITJFT
S = ¢ ~# - RN50-IN1K
% gt / —¥- JFTMRL-E = 50 ', V¥ ViT-ALIGN-Int
< S/ e-. JFT Rand. - ) ® ViTJFT-Int
7 —+. ALIGN Rand. ; B RN50-INIK-Int
Y an v
v O 0 > 0 o0 D N W
oo R P P P R ARG RN G
Representation Size Representation Size

Figure 4: ImageNet-1K 1-NN accuracy for  Figure 5: Despite optimizing MRL only for
ViT-B/16 models trained on JFT-300M & as  O(log(d)) dimensions for ResNet50 and ViT-
part of ALIGN. MRL scales seamlessly to ~ B/16 models; the accuracy in the intermediate
web-scale with minimal training overhead. dimensions shows interpolating behaviour.

4.2.1 Adaptive Classification

The flexibility and coarse-to-fine granularity within Matryoshka Representations allows model
cascades [85] for Adaptive Classification (AC) [26]. Unlike standard model cascades [90], MRL does
not require multiple expensive neural network forward passes. To perform AC with an MRL trained
model, we learn thresholds on the maximum softmax probability [3 1] for each nested classifier on
a holdout validation set. We then use these thresholds to decide when to transition to the higher
dimensional representation (e.g 8 — 16 — 32) of the MRL model. Appendix D.1 discusses the
implementation and learning of thresholds for cascades used for adaptive classification in detail.

Figure 6 shows the comparison between cascaded MRL representations (MRL—AC) and indepen-
dently trained fixed feature (FF) models on ImageNet-1K with ResNet50. We computed the expected
representation size for MRL—AC based on the final dimensionality used in the cascade. We observed
that MRL—AC was as accurate, 76.30%, as a 512-dimensional FF model but required an expected
dimensionality of ~ 37 while being only 0.8% lower than the 2048-dimensional FF baseline. Note
that all MRL—-AC models are significantly more accurate than the FF baselines at comparable repre-
sentation sizes. MRL-AC uses up to ~ 14 x smaller representation size for the same accuracy which
affords computational efficiency as the label space grows [84]. Lastly, our results with MRL-AC
indicate that instances and classes vary in difficulty which we analyze in Section 5 and Appendix J.

4.3 Retrieval

Nearest neighbour search with learned representations powers a plethora of retrieval and search appli-
cations [15, 86, 11, 62]. In this section, we discuss the image retrieval performance of the pretrained
ResNet50 models (Section 4.1) on two large-scale datasets ImageNet-1K [71] and ImageNet-4K.
ImageNet-1K has a database size of ~1.3M and a query set of 50K samples uniformly spanning
1000 classes. We also introduce ImageNet-4K which has a database size of ~4.2M and query set of
~200K samples uniformly spanning 4202 classes (see Appendix B for details). A single forward pass
on ResNet50 costs 4 GFLOPs while exact retrieval costs 2.6 GFLOPs per query for ImageNet-1K.
Although retrieval overhead is 40% of the total cost, retrieval cost grows linearly with the size of
the database. ImageNet-4K presents a retrieval benchmark where the exact search cost becomes
the computational bottleneck (8.6 GFLOPs per query). In both these settings, the memory and disk
usage are also often bottlenecked by the large databases. However, in most real-world applications
exact search, O(dN), is replaced with an approximate nearest neighbor search (ANNS) method like
HNSW [59], O(dlog(N)), with minimal accuracy drop at the cost of additional memory overhead.

The goal of image retrieval is to find images that belong to the same class as the query using
representations obtained from a pretrained model. In this section, we compare retrieval performance
using mean Average Precision @ 10 (mAP@10) which comprehensively captures the setup of
relevant image retrieval at scale. We measure the cost per query using exact search in MFLOPs.
All embeddings are unit normalized and retrieved using the L2 distance metric. Lastly, we report



) LT P —— o5
;\;\ [ ) e O 14x smaller
g O« — = = ientatipn size 960
376 ® s
@®
<75 2 o
< ® MRL-AC L9 ;
) FF : | =+ Slim. Net
F 74 45 T /
—— FF 2048 ; Plhmany Rand. FS
40 - £
16 32 64 128 . 256. 512 @ o ) K> \q‘p rﬁ)b (0,\'1, &b‘ Q&b
(Expected) Representation Size N

Representation Size

Figure 6: Adaptive classification on MRL Figure 7: mAP@10 for Image Retrieval on
ResNet50 using cascades results in 14x smaller ImageNet-1K with ResNet50. MRL consistently
representation size for the same level of accuracy ~ produces better retrieval performance over the
on ImageNet-1K (~ 37 vs 512 dims for 76.3%).  baselines across all the representation sizes.

an extensive set of metrics spanning mAP@%k and P@Fk for k = {10, 25,50, 100} and real-world
wall-clock times for exact search and HNSW. See Appendices E and F for more details.

Figure 7 compares the mAP@10 performance of ResNet50 representations on ImageNet-1K across
dimensionalities for MRL, MRL-E, FF, slimmable networks along with post-hoc compression
of vectors using SVD and random feature selection. Matryoshka Representations are often the
most accurate while being up to 3% better than the FF baselines. Similar to classification, post-hoc
compression and slimmable network baselines suffer from significant drop-off in retrieval mAP@10
with < 256 dimensions. Appendix E discusses the mAP@ 10 of the same models on ImageNet-4K.

MRL models are capable of performing accurate retrieval at various granularities without the
additional expense of multiple model forward passes for the web-scale databases. FF models
also generate independent databases which become prohibitively expense to store and switch in
between. Matryoshka Representations enable adaptive retrieval (AR) which alleviates the need
to use full-capacity representations, d = 2048, for all data and downstream tasks. Lastly, all the
vector compression techniques [57, 43] used as part of the ANNS pipelines are complimentary to
Matryoshka Representations and can further improve the efficiency-vs-accuracy trade-off.

4.3.1 Adaptive Retrieval

We benchmark MRL in the adaptive retrieval setting (AR) [48]. For a given query image, we obtained
a shortlist, K = 200, of images from the database using a lower-dimensional representation, e.g.
D, = 16 followed by reranking with a higher capacity representation, e.g. D, = 2048. In real-world
scenarios where top ranking performance is the key objective, measured with mAP@Fk where k
covers a limited yet crucial real-estate, AR provides significant compute and memory gains over
single-shot retrieval with representations of fixed dimensionality. Finally, the most expensive part
of AR, as with any retrieval pipeline, is the nearest neighbour search for shortlisting. For example,
even naive re-ranking of 200 images with 2048 dimensions only costs 400 KFLOPs. While we report
exact search cost per query for all AR experiments, the shortlisting component of the pipeline can
be sped-up using ANNS (HNSW). Appendix I has a detailed discussion on compute cost for exact
search, memory overhead of HNSW indices and wall-clock times for both implementations. We note
that using HNSW with 32 neighbours for shortlisting does not decrease accuracy during retrieval.

Figure 8 showcases the compute-vs-accuracy trade-off for adaptive retrieval using
Matryoshka Representations compared to single-shot using fixed features with ResNet50
on ImageNet-1K. We observed that all AR settings lied above the Pareto frontier of single-shot
retrieval with varying representation sizes. In particular for ImageNet-1K, we show that the AR
model with D, = 16 & D, = 2048 is as accurate as single-shot retrieval with d = 2048 while being
~ 128 x more efficient in theory and ~ 14X faster in practice (compared using HNSW on the same
hardware). We show similar trends with ImageNet-4K, but note that we require D; = 64 given
the increased difficulty of the dataset. This results in ~ 32X and ~ 6x theoretical and in-practice
speedups respectively. Lastly, while K = 200 works well for our adaptive retrieval experiments, we
ablated over the shortlist size k in Appendix K.2 and found that the accuracy gains stopped after a
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Figure 8: The trade-off between mAP@10 vs MFLOPs/Query for Adaptive Retrieval (AR) on
ImageNet-1K (left) and ImageNet-4K (right). Every combination of Dy & D,. falls above the Pareto
line (orange dots) of single-shot retrieval with a fixed representation size while having configurations
that are as accurate while being up to 14 x faster in real-world deployment. Funnel retrieval is almost
as accurate as the baseline while alleviating some of the parameter choices of Adaptive Retrieval.

point, further strengthening the use-case for Matryoshka Representation Learning and adaptive
retrieval.

Even with adaptive retrieval, it is hard to determine the choice of Dy & D,.. In order to alleviate this
issue to an extent, we propose Funnel Retrieval, a consistent cascade for adaptive retrieval. Funnel
thins out the initial shortlist by a repeated re-ranking and shortlisting with a series of increasing
capacity representations. Funnel halves the shortlist size and doubles the representation size at
every step of re-ranking. For example on ImageNet-1K, a funnel with the shortlist progression of
200 — 100 — 50 — 25 — 10 with the cascade of 16 — 32 — 64 — 128 — 256 — 2048
representation sizes within Matryoshka Representation is as accurate as the single-shot 2048-dim
retrieval while being ~ 128x more efficient theoretically (see Appendix F for more results). All
these results showcase the potential of MRL and AR for large-scale multi-stage search systems [15].

S Further Analysis and Ablations

Robustness. We evaluate the robustness of the MRL models trained on ImageNet-1K on out-of-
domain datasets, ImageNetV2/R/A/Sketch [68, 32, 33, 89], and compare them to the FF baselines.
Table 17 in Appendix H demonstrates that Matryoshka Representations for classification are at
least as robust as the original representation while improving the performance on ImageNet-A by
0.6% — a 20% relative improvement. We also study the robustness in the context of retrieval by using
ImageNetV2 as the query set for ImageNet-1K database. Table 9 in Appendix E shows that MRL
models have more robust retrieval compared to the FF baselines by having up to 3% higher mAP@ 10
performance. This observation also suggests the need for further investigation into robustness using
nearest neighbour based classification and retrieval instead of the standard linear probing setup. We
also find that the zero-shot robustness of ALIGN-MRL (Table 18 in Appendix H) agrees with the
observations made by Wortsman et al. [91]. Lastly, Table 6 in Appendix D.2 shows that MRL also
improves the cosine similarity span between positive and random image-text pairs.

Few-shot and Long-tail Learning. We exhaustively evaluated few-shot learning on MRL models
using nearest class mean [74]. Table 15 in Appendix G shows that that representations learned
through MRL perform comparably to FF representations across varying shots and number of classes.

Matryoshka Representations realize a unique pattern while evaluating on FLUID [87], a long-tail
sequential learning framework. We observed that MRL provides up to 2% accuracy higher on novel
classes in the tail of the distribution, without sacrificing accuracy on other classes (Table 16 in
Appendix G). Additionally we find the accuracy between low-dimensional and high-dimensional
representations is marginal for pretrain classes. We hypothesize that the higher-dimensional represen-
tations are required to differentiate the classes when few training examples of each are known. This
results provides further evidence that different tasks require varying capacity based on their difficulty.

Disagreement across Dimensions. The information packing in Matryoshka Representations
often results in gradual increase of accuracy with increase in capacity. However, we observed that
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Figure 9: Grad-CAM [75] progression of predictions in MRL model across 8,16, 32 and 2048
dimensions. (a) 8-dimensional representation confuses due to presence of other relevant objects (with
a larger field of view) in the scene and predicts “shower cap” ; (b) 8-dim model confuses within
the same super-class of “boa” ; (c) 8 and 16-dim models incorrectly focus on the eyes of the doll
("sunglasses") and not the "sweatshirt" which is correctly in focus at higher dimensions; MRL fails
gracefully in these scenarios and shows potential use cases of disagreement across dimensions.

this trend was not ubiquitous and certain instances and classes were more accurate when evaluated
with lower-dimensions (Figure 12 in Appendix J). With perfect routing of instances to appropriate
dimension, MRL can gain up to 4.6% classification accuracy. At the same time, the low-dimensional
models are less accurate either due to confusion within the same superclass [23] of the ImageNet
hierarchy or presence of multiple objects of interest. Figure 9 showcases 2 such examples for 8-
dimensional representation. These results along with Appendix J put forward the potential for MRL
to be a systematic framework for analyzing the utility and efficiency of information bottlenecks.

Superclass Accuracy. As the information bottleneck becomes smaller, the overall accuracy on
fine-grained classes decreases rapidly (Figure 3). However, the drop-off is not as significant when
evaluated at a superclass level (Table 24 in Appendix J). Figure 10 presents that this phenomenon
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occurs with both MRL and FF models; MRL is more accurate across dimensions. This shows that
tight information bottlenecks while not highly accurate for fine-grained classification, do capture
required semantic information for coarser classification that could be leveraged for adaptive routing
for retrieval and classification. Mutifidelity of Matryoshka Representation naturally captures the
underlying hierarchy of the class labels with one single model. Lastly, Figure 11 showcases the
accuracy trends per superclass with MRL. The utility of additional dimensions in distinguishing
a class from others within the same superclass is evident for “garment” which has up to 11%
improvement for 8§ — 16 dimensional representation transition. We also observed that superclasses
such as “oscine (songbird)” had a clear visual distinction between the object and background and
thus predictions using 8 dimensions also led to a good inter-class separability within the superclass.

5.1 Ablations

Table 26 in Appendix K presents that Matryoshka Representations can be enabled within off-the-
shelf pretrained models with inexpensive partial finetuning thus paving a way for ubiquitous adoption
of MRL. At the same time, Table 27 in Appendix C indicates that with optimal weighting of the
nested losses we could improve accuracy of lower-dimensions representations without accuracy
loss. Tables 28 and 29 in Appendix C ablate over the choice of initial granularity and spacing of the
granularites. Table 28 reaffirms the design choice to shun extremely low dimensions that have poor
classification accuracy as initial granularity for MRL while Table 29 confirms the effectiveness of
logarthmic granularity spacing inspired from the behaviour of accuracy saturation across dimensions
over uniform. Lastly, Tables 30 and 31 in Appendix K.2 show that the retrieval performance saturates
after a certain shortlist dimension and length depending on the complexity of the dataset.

6 Discussion and Conclusions

The results in Section 5.1 reveal interesting weaknesses of MRL that would be logical directions
for future work. (1) Optimizing the weightings of the nested losses to obtain a Pareto optimal
accuracy-vs-efficiency trade-off — a potential solution could emerge from adaptive loss balancing
aspects of anytime neural networks [39]. (2) Using different losses at various fidelities aimed at
solving a specific aspect of adaptive deployment — e.g. high recall for 8-dimension and robustness
for 2048-dimension. (3) Learning a search data-structure, like differentiable k-d tree, on top of
Matryoshka Representation to enable dataset and representation aware retrieval. (4) Finally, the
joint optimization of multi-objective MRL combined with end-to-end learnable search data-structure
to have data-driven adaptive large-scale retrieval for web-scale search applications.

In conclusion, we presented & Matryoshka Representation Learning (MRL), a flexible represen-
tation learning approach that encodes information at multiple granularities in a single embedding
vector. This enables the MRL to adapt to a downstream task’s statistical complexity as well as
the available compute resources. We demonstrate that MRL can be used for large-scale adaptive
classification as well as adaptive retrieval. On standard benchmarks, MRL matches the accuracy of
the fixed-feature baseline despite using 14 x smaller representation size on average. Furthermore, the
Matryoshka Representation based adaptive shortlisting and re-ranking system ensures comparable
mAP@10 to the baseline while being 128 x cheaper in FLOPs and 14 x faster in wall-clock time.
Finally, most of the efficiency techniques for model inference and vector search are complementary

to MRL €% further assisting in deployment at the compute-extreme environments.
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
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(b) Did you describe the limitations of your work? [Yes] See Section 6

(c) Did you discuss any potential negative societal impacts of your work? [IN/A] Our work
does not have any additional negative societal impact on top of the existing impact of
representation learning. However, a study on the trade-off between representation size
and the tendency to encode biases is an interesting future direction along the lines of
existing literature [34, 35]. A part of this is already presented in Section 5.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
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plemental material and Appendix A. All the code and public models will be open
sourced.
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were chosen)? [Yes] See Section 4 and Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? We benchmarked on large-scale datasets like ImageNet-
1K, JFT-300M and ALIGN data with models like ResNet and ViT making it extremely
expensive to run things multiple times.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C and Appendix I.
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(b) Did you mention the license of the assets? All the non-proprietary datasets and
code used are public under MIT, BSD or CC licenses.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We created a new subset of ImageNet-21K for downstream evaluation of retrieval
performance at scale. See Section 4.3 and Appendix B

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]
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