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ABSTRACT

Large-scale instance-level training data is scarce, so models are typically trained
on domain-specific datasets. Yet in real-world retrieval, they must handle diverse
domains, making generalization to unseen data critical. We introduce ELViS, an
image-to-image similarity model that generalizes effectively to unseen domains.
Unlike conventional approaches, our model operates in similarity space rather
than representation space, promoting cross-domain transfer. It leverages local
descriptor correspondences, refines their similarities through an optimal transport
step with data-dependent gains that suppress uninformative descriptors, and ag-
gregates strong correspondences via a voting process into an image-level similar-
ity. This design injects strong inductive biases, yielding a simple, efficient, and
interpretable model. To assess generalization, we compile a benchmark of eight
datasets spanning landmarks, artworks, products, and multi-domain collections,
and evaluate ELViS as a re-ranking method. Our experiments show that ELViS
outperforms competing methods by a large margin in out-of-domain scenarios
and on average, while requiring only a fraction of their computational cost.

1 INTRODUCTION
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Figure 1: Performance vs. time. Average perfor-
mance across 8 datasets and multiple domains for
fixed numbers of re-ranked images indicated with
text labels. All models are trained on the land-
marks domain (GLDv2). Runtime is estimated
from model latencies reported in Table 4.

Instance-level image retrieval aims to iden-
tify all images of a specific object, whether
a landmark, toy, painting, or product, within
a large image database. The best perform-
ing approaches rely on local descriptors (Cao
et al., 2020; Tan et al., 2021; Lee et al., 2022;
Zhu et al., 2023; Suma et al., 2024; Xiao
et al., 2025), typically incorporating a pair-
wise image-to-image similarity model to refine
a shortlist of the most similar images. This
shortlist is initially retrieved using global im-
age descriptors, often derived from foundation
models (Oquab et al., 2024; Zhai et al., 2023;
Radford et al., 2021).

Generalization to unseen domains is essential
for two reasons: (i) it is inherent to retrieval,
since training and test instances are disjoint,
and (ii) collecting large instance-level training
sets across diverse domains is hard. Neverthe-
less, most methods remain confined to single-domain evaluation. Models trained on landmarks or
product pairs are typically tested on benchmarks from the same domain, leaving it unclear to what
extent they overfit and limiting their applicability in broader, real-world scenarios.

In this work, we challenge this paradigm by studying retrieval from a single-source domain gen-
eralization perspective, a setting mostly explored in classification (Csurka et al., 2022). We argue
that in the era of foundation models, trained across diverse domains, using them off-the-shelf for
both global and local descriptors is a promising strategy for cross-domain performance. Building on
this, we focus on learning image-to-image similarity models for retrieval re-ranking that operate on
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sets of local descriptors extracted from foundation models. Our approach builds on recent findings
that a learnable similarity model (Suma et al., 2024) trained on frozen DINOv2 (Oquab et al., 2024)
features generalizes well across domains (Kordopatis-Zilos et al., 2025), despite being trained only
on landmarks and not specifically designed for generalization.

We propose an Efficient Local Visual Similarity model, called ELViS, which operates on patterns
of local descriptor similarity, i.e. correspondence patterns, rather than on descriptors of visual ap-
pearance. This enables a more general and transferable image-level similarity measure, which is
similar to observations in classical computer vision work (Shechtman & Irani, 2007). The local
descriptor similarity matrix is refined using optimal transport (OT) with data-dependent gains that
discard uninformative descriptors, followed by a learnable counting step that emphasizes strong
correspondences. Notably, ELViS is conceptually simpler than existing methods, free of black-box
modules, and built from a sequence of intuitive and interpretable steps. The architecture carries a
strong inductive bias; each design choice introduces explicit priors on how to infer global similarity
from local similarities. It is significantly more efficient and generalizes significantly better than prior
approaches (Tan et al., 2021; Shao et al., 2023; Suma et al., 2024), see Figure 1, which rely on heavy
black-box transformer architectures lacking priors and interpretability.

To evaluate instance-level image retrieval under domain generalization, we introduce a benchmark-
ing protocol that unifies 8 existing datasets across diverse domains: landmarks (ROP+1M, GLDv2),
household items (SOP), retail products (Product1M, RP2K), artworks (MET), and multi-domain sets
(ILIAS, INSTRE). Benchmarks are grouped into in-domain and out-of-domain test sets depending
on the training domain. To our knowledge, this is the first work to conduct such an extensive evalua-
tion of single-source domain generalization in instance-level retrieval. Our evaluation confirms that
similarity-based models generalize better than descriptor-based ones, which tend to overfit the train-
ing domain and excel only on seen distributions. With its learnable voting process and explicit mech-
anisms against overfitting, ELViS achieves even stronger generalization across unseen domains.

In summary, we introduce ELViS, a novel similarity-based re-ranking model that a) operates di-
rectly on sets of local-descriptor similarities via a novel OT formulation, b) is composed of simple,
lightweight components, and c) provides a high degree of interpretability at multiple stages of the
pipeline. We evaluate ELViS on eight diverse instance-level benchmarks and show that, in addition
to being substantially faster, it delivers large performance gains on out-of-domain datasets while
matching the performance of much heavier models on the training domain.

2 RELATED WORK

Image retrieval re-ranking. Among retrieval re-ranking methods, one line of research focuses on
query expansion (Arandjelović & Zisserman, 2012; Radenović et al., 2019; Shao et al., 2023; Gordo
et al., 2020), primarily using global descriptors. Another approach, which is also the focus of this
work, leverages local descriptors for improved re-ranking. In the Bag-of-Words framework (Csurka
et al., 2004) with hand-crafted descriptors (Lowe, 2004), a common strategy is to impose simple
geometric constraints (Sivic & Zisserman, 2003) or perform RANSAC-like verification (Philbin
et al., 2007). Since then, these methods have been adapted to work with local descriptors derived
from the deep network (Noh et al., 2017; Simeoni et al., 2019), ultimately surpassing their hand-
crafted predecessors.

Deep learning models have emerged as powerful alternatives to estimate image similarity based on
local descriptor sets. State-of-the-art methods such as RRT (Tan et al., 2021) and AMES (Suma
et al., 2024) match local descriptors using standard transformer-based architectures. Unlike these
models, which take descriptor vectors as input, an alternative approach is to compute local descriptor
similarities first, forming a similarity-based representation of the image pair. Early similarity-based
models are employed for video retrieval, such as ViSiL (Kordopatis-Zilos et al., 2019), which com-
putes Chamfer Similarity at both the frame and video levels and employs a 2D convolutional network
to capture temporal relationships. CVNet (Lee et al., 2022) densely computes similarities across all
local descriptors and processes them using a computationally expensive 4D convolutional network.
In contrast, R2Former (Zhu et al., 2023) builds a similarity representation from sparse sets of local
descriptors and employs a deep transformer architecture for similarity estimation. ELViS is also a
similarity-based model, but it is significantly simpler, faster, and more intuitive, while promoting
better generalization to unseen domains.
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In the context of fine-grained sketch retrieval, Chowdhury et al. (2022) employ optimal transport
to aggregate local region descriptors. In contrast to their formulation, which incorporates Lagrange
multipliers for cross-modal matching, we adopt entropy-regularized OT and devise a fully differen-
tiable counting mechanism, particularly effective for cross-domain generalization.

Domain generalization. Single-source domain generalization is predominantly investigated in im-
age classification (Khosla et al., 2012; Li et al., 2017; Csurka et al., 2022). The prevailing strategies
involve synthetic data generation techniques that operate by augmenting training samples in the
image space (Volpi et al., 2018; Xu et al., 2021b;a) or representation space (Mancini et al., 2020;
Zhou et al., 2021), or by directly generating novel samples (Yue et al., 2019; Qiao et al., 2020). Lo-
cal descriptors paired with BoW also show benefits for generalization in classification (Wan et al.,
2022). The generalization ability is obtained during a training process that either starts from scratch
or consists of fine-tuning a network pretrained on ImageNet.

In tasks such as image matching (Jin et al., 2020) and 3D reconstruction (Schönberger & Frahm,
2016), where open-world performance and generalization are essential, we observe a distinct trend
compared to other computer vision tasks. Hand-crafted representations (Lowe, 2004) and matching
methods (Schönberger & Frahm, 2016) remain among the top-performing approaches. A major
shift happens with the advent of large pre-trained foundation models (An et al., 2023; Zhai et al.,
2023; Oquab et al., 2024; Radford et al., 2021). These models are exposed to vast amounts of data
during training, making it unclear whether a given test image truly belongs to an unseen domain.
Notably, keeping their representations frozen while applying hand-designed methods has proven
highly effective across diverse object types and domains (Örnek et al., 2024). While training a model
on top of frozen representations may introduce domain dependence, carefully designed approaches
have been shown to encourage generalization (Jiang et al., 2024).

3 METHOD

In this section, we introduce ELViS, an image-to-image similarity method that takes sets of local
descriptors as input. Instead of operating directly on the descriptors, our approach builds, refines,
and processes their similarity matrix, and enables a learnable and intuitive voting mechanism with
few parameters that generalizes well to unseen domains. An overview is presented in 2.

3.1 BACKGROUND

Problem formulation. The goal of an image retrieval system is to search a database D using a query
image q and retrieve the most relevant images. At its core, image retrieval depends on a pairwise
image-to-image similarity function s(q, x) ∈ R, which measures the relevance between the query q
and each database image x ∈ D, allowing for ranking based on similarity scores. We aim to learn
s by training on a source domain, typically rich in instance-level training data, and then test on a
target domain that remains unseen during training.

Local descriptors. After an initial ranking with global descriptors, state-of-the-art instance-level
retrieval methods include a second-stage pairwise reranking step using local descriptors (Suma et al.,
2024; Tan et al., 2021; Zhu et al., 2023). In ViT architectures, these local descriptors correspond
to a subset of the patch descriptors. Given an image x, the set of local descriptors is represented as
a D′ × M matrix, X = [x1 . . .xi . . .xM ], where each descriptor xi ∈ RD′

is a D′-dimensional
vector. We select the strongest M descriptors per image based on a strength score (Suma et al.,
2024). For efficiency and better task adaptation, the descriptor dimensionality is reduced from D′ to
D through a learnable linear projection. This projection is implemented as a linear layer followed
by layer normalization and ℓ2-normalization per local descriptor. The projection It is a common
component among all learnable methods we compare with in the experiments.

Image similarity. The similarity s(q, x) ∈ R between images q and x is computed as a function of
their corresponding local descriptor matrices Q,X ∈ RD×M , i.e., s(q, x) := s(Q,X). The core of
s processes the local descriptor similarity matrix S = Q⊤X ∈ RM×M . For notational clarity, we
assume the same number of descriptors per image for q and x, while the method is generic and does
not impose such a constraint.

3
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Figure 2: Detailed overview of ELViS. The similarity matrix is refined using optimal transport with
descriptor-dependent dustbin gains. The strongest local similarities per descriptor are then selected
and transformed element-wise by a learned function f , before being sum-aggregated into a scalar
global similarity. During training, a modified BCE loss with a learnable function g reshapes the
penalty curve; g is used only for training and is expandable at inference.

3.2 FROM LOCAL DESCRIPTORS TO LOCAL SIMILARITIES

The proposed approach operates in the space of descriptor similarities, in particular similarity matrix
S, whose values represent correspondences between the patches the descriptors are extracted from.
We introduce a refinement of S to generate matrix S′ that emphasizes mutually consistent strong
correspondences and discard correspondences from uninformative descriptors.

We formulate the problem as a variant of optimal transport which is efficiently solved using the
iterative Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967) allowing back-propagation through
the optimization process. More precisely, our objective 1 is to find a matrix P, that maximizes
⟨P,S⟩F subject to constraints P1M = 1M and P⊤1M = 1M , where 1M is a vector of ones
of size M , and ⟨·, ·⟩F denotes the Frobenius inner product. The solution P is seen as a refined,
double stochastic, similarity matrix. To allow distracting or uninformative, e.g. extracted from the
background, descriptors to be ignored and not participate in correspondences of the final matrix,
slack variables are introduced indicating the gain for not transporting mass for a descriptor. This
is what SuperGlue2 refers to as dustbins (Sarlin et al., 2020), i.e. the gain of assigning a descriptor
to the dustbin and not to any descriptor in the other image. It is achieved by creating augmented
(M + 1)× (M + 1) matrix Ŝ by

Ŝ =

[
S u
v⊤ ω

]
, (1)

where u,v ∈ RM contain the dustbin gains for the query and database image descriptors, respec-
tively, while ω accounts for the gain related to the total mass moved to the dustbins.

We define P as the solution to the following optimization problem:

max
P

⟨P, Ŝ⟩F + λH(P) (2)

s.t. P1M+1 = a, P⊤1M+1 = b,

where a = [1⊤
M M ]⊤ and b = [1⊤

M M ]⊤ are the marginal constraints extended to include dust-
bins. We use the entropy-regularized variant of Sinkhorn-Knopp (Cuturi, 2013), with regularization
term λ. After optimization, we drop the additional dustbin row and column and maintain the refined
similarity matrix S′ = P1:M,1:M for the following steps.

Descriptor-dependent dustbin gains. Prior work (Sarlin et al., 2020) sets dustbin gains u,v to a
fixed or learnable scalar. Instead, we predict the gain based on the descriptor itself with function
h : RD → R. The gains as given by

u = [u1 . . . ui . . . uM ] =[h(q1) . . . h(qi) . . . h(qM )] (3)
v = [v1 . . . vi . . . vM ] =[h(x1) . . . h(xi) . . . h(xM )],

1Note that we operate with a similarity matrix and not a cost matrix, therefore the maximization instead of
minimization. Similarity is seen as negative cost, or as the gain of transporting mass.

2Prior work applies Sinkhorn-Knopp on similarity matrices to establish point correspondences, while we
care about the correspondence strengths and aim to aggregate them into an image-level similarity score.
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Figure 3: Shape of the learned univariate functions f (left) and g (right). Although parame-
terized as MLPs, both functions learn well-behaved scalar transformations that effectively separate
matching and non-matching distributions. The distributions of input values are visualized separately
for positive and negative image pairs, sampled during training.

where ui and vi denote the i-th element of vector u and v, respectively. Larger dustbin gains of
ui and vi assigns higher chance for the correspondences of descriptor i to be moved to the dustbin.
We implement h as a two-layer MLP with a GELU activation function. Gain ω is a learnable
scalar. Our experiments demonstrate that using descriptor-dependent dustbin gains is essential for
the effectiveness of such a refinement step in the overall pipeline.

3.3 FROM LOCAL SIMILARITIES TO GLOBAL SIMILARITY

In this step we transform the similarity matrix S′ into a set of votes that are aggregated into a single
value representing the global similarity of the input image pair.

Strongest vote per descriptor. Given matrix S′, that contains similarities for all pairs of descriptors,
we keep the strongest similarity for each descriptor of each of the two images, acting as a vote. This
is equivalent to selecting the strongest correspondence per descriptor. Formally, this is given by

s′i = max
j∈{1,...,M}

S′
i,j , s′j = max

i∈{1,...,M}
S′
i,j , ∀i, j ∈ {1, . . . ,M}, (4)

where s′i and s′j are row- and column-wise max-pooled similarities3. Summing all similarities in
s′i and s′j jointly, for i, j = 1 . . .M , is equivalent to computing Chamfer Similarity on S′ under
the assumption of equal descriptor set cardinalities. We go one step further in the next processing
stage. It is worth noting that Chamfer Similarity after vanilla optimal transport, even without learn-
ing, already serves as a strong baseline for generalization, as confirmed by our experiments, which
motivates our choice to build on and extend this architecture.

Learnable vote strength and counting. We transform votes s′i and s′j via function f : R → R,
a real function mapping an input scalar similarity to an updated scalar similarity, i.e. vote, in [0, 1].
Function f is implemented by a two layer MLP with sigmoid at its output, which according to the
universal approximation theorem can approximate any continuous real function. Then, the image-
to-image similarity is computed by counting all votes via summation

s(q, x) =

M∑
i=1

f(s′i) +

M∑
j=1

f(s′j). (5)

This voting-based global similarity estimation is inspired by classical works in image retrieval (To-
lias & Jégou, 2014), which demonstrate that the number of strong local descriptor correspondences

3We equivalently define si and sj from max pooling in S, which is only used for visualization purposes.
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Figure 4: Visualization of the 25 strongest correspondences (votes) among si, sj (left) and s′i, s
′
j

(right) before (left) and after (right) refinement with optimal transport. Red (yellow) represents high
(low) similarity. Raw similarity values in S (left) and values in S′ after passing them through f
(right) are used. Heatmaps represent the dustbins values by evaluating h densely for all patches in
both images; bright values indicate large dustbin gain and uninformative descriptors.

is a robust indicator of image similarity. In contrast to hand-crafted weighting functions for corre-
spondence strengths, like RBF-kernel (Jégou et al., 2008) or monomial kernel (Tolias et al., 2013),
our learnable function f adaptively transforms the similarities to optimize retrieval performance. We
visualize the learned f after training in Figure 3, which noticeably differentiates from linear weight-
ing, i.e. identity function is f and the corresponding MLP would not be included in the model. Our
experiments show that using a learnable f is beneficial for generalization; excluding it makes the
descriptor projection layer responsible for obtaining appropriate correspondence strength and the
method more descriptor-dependent and domain-dependent.

Example visualization. Figure 4 shows the strongest correspondences selected from the similarity
matrices before and after refinement, i.e. from S and S′, respectively. Without refinement, many
strong correspondences are formed between background or non distinctive regions; the refinement
step suppresses these mainly due to the use of dustbin gains. The final set contains a large number
of correct object correspondences, whose strengths are meaningfully transformed by f . Summing
these strengths yields the final similarity score between the two images, making the process both
intuitive and interpretable.

3.4 TRAINING AND INFERENCE

Training. We introduce a data-adapted variant of the Binary Cross-Entropy loss (BCE) to train
ELViS with positive and negative image pairs. Standard BCE minimizes − log p for positive pairs
and − log(1−p) for negative pairs, where p = s(q, x) is the predicted similarity. In our formulation,
p is first passed through a learnable function g : R → [0, 1] before BCE is applied, yielding losses
− log g(p) and − log(1 − g(p)). This modification no longer optimizes the log-likelihood of the
predicted probability but instead the log of a transformed version of it. By reshaping the penalty
curve through g, we control which prediction errors are emphasized or downweighted. The function
g is implemented as a two-layer MLP with a sigmoid output, and its learned shape is shown in Fig-
ure 3. Empirically, g tends to be nearly piecewise-linear, with its slope changing around the region
where positive and negative pairs start to overlap more, thereby enabling differentiated penalization
of errors. Thus, training proceeds under a warped notion of similarity defined by g.

Inference and reranking with ELViS. At inference, the auxiliary function g is discarded. This
strategy parallels the use of projection heads in self-supervised learning (Chen et al., 2020; Zbontar
et al., 2021) that are expendable modules used for optimization, encouraging generalization to other
tasks. Discarding g is valid because, similar to a learnable temperature in contrastive losses (Rad-
ford et al., 2021), g scales the similarity for the loss without altering the ranking order, provided it

6
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is an increasing function. Although monotonicity is not enforced during training, we consistently
observe g to be monotonic, where it matters, in practice. Observe in Figure 3 that the non-monotonic
part occurs in the range of values where only negative pairs appear, therefore, affecting neither the
relative ranking between negative and positive pairs nor performance. Attempts to enforce mono-
tonicity explicitly, e.g. by constraining MLP weights to be non-negative as in (You et al., 2017),
slightly degrades performance and requires further exploration.

Given a ranked list of candidate images for a query, obtained for instance using a global-
representation-based retrieval method, we form query–candidate pairs and apply ELViS to compute
refined similarity scores, which are then used to re-rank the list.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the proposed method and the most related approaches on 8 datasets con-
taining annotations on instance-level, and spanning multiple domains: (i) Landmarks – ROxford
and RParis, reported jointly as ROP+1M (Philbin et al., 2007; 2008; Radenović et al., 2018), and
GLDv2 (Weyand et al., 2020); (ii) Household Items – SOP (Song et al., 2015); (iii) Retail Products
– Product1M (Zhan et al., 2021) and RP2K (Peng et al., 2020); (iv) Artworks – MET (Ypsilantis
et al., 2021); and (v) Multi-domain – ILIAS (Kordopatis-Zilos et al., 2025) and INSTRE (Wang &
Jiang, 2015). Further details are found in the Appendix A.

Training domains. We go beyond the standard evaluation commonly adopted in instance-level re-
trieval papers, i.e. training on GLDv2 due to its large number of images and instances and evaluating
on the same domain, e.g. GLDv2 and ROP+1M. We put a focus on generalization and introduce a
protocol consisting of 8 instance-level retrieval datasets spanning diverse visual domains. Depend-
ing on which dataset is used for training the re-ranking models, we categorize the datasets into two
groups: in-domain and out-of-domain, and report the average performance separately for each. We
select two large datasets with clearly defined train/test splits as training domains: GLDv2 and SOP.
When training on GLDv2, we consider its validation set, and ROP+1M, as in-domain testing and
the remaining 6 datasets as out-of-domain. When training on SOP, we consider only its test set as
in-domain testing, while the remaining 7 datasets are treated as out-of-domain.

Evaluation Protocol. Retrieval performance is measured using mean Average Precision (mAP) on
ROP+1M and mAP@K on the rest of the datasets. We additionally report average performance
over all datasets in each group, i.e., in-domain and out-of-domain. We re-rank the top 400 retrieved
images in all experiments. As in AMES. we select the M = 600 strongest descriptors according
to a local feature detector (Noh et al., 2017; Tolias et al., 2020) trained with images from the corre-
sponding domain. We extract local descriptors with DINOv2 (Oquab et al., 2024), as in AMES, as
well as DINOv3 (Siméoni et al., 2025) and SigLIP2 (Tschannen et al., 2025).

Compared methods. We compare the performance of the proposed ELViS with the most relevant
re-ranking approaches from the literature, namely Reranking Transformer (RRT) (Tan et al., 2021),
R2Former (Zhu et al., 2023), and AMES (Suma et al., 2024). We also compare to hand-crafted
Chamfer Similarity (CS) (Barrow et al., 1977; Razavian et al., 2016) applied on S, and CS applied
after refinement with vanilla Optimal Transport (OT) that uses fixed value dustbin gains that are
equal to 1. Both these methods serve as baselines for local descriptor performance without training
a re-ranking model. Since ELViS internally performs matching, we also include established feature
matching model SuperGlue (Sarlin et al., 2020) as a baseline. We use the variant pre-trained in the
landmark domain and use the count of valid matches as re-ranking score. Retrieval using only global
representation is also evaluated, i.e., there is no use of re-ranking. We train and evaluate all methods
using the publicly available AMES repository4, and integrate the official implementations provided
by the authors of RRT5, R2Former6, and SuperGlue7.

4https://github.com/pavelsuma/ames
5https://github.com/uvavision/RerankingTransformer
6https://github.com/Jeff-Zilence/R2Former
7https://github.com/magicleap/SuperGluePretrainedNetwork
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Method ROP+1M GLDv2 ILIAS INSTRE MET Prod1M RP2K SOP-1k ID OOD avg

landmarks domain (GLDv2)

No re-ranking 57.7 27.3 9.4 65.3 61.6 24.7 39.0 33.7 42.5 38.9 39.8
Chamfer† 56.7 23.8 6.2 55.0 37.3 17.8 55.8 48.6 40.2 36.8 37.6
Chamfer+OT† 60.6 23.8 14.3 76.0 74.0 35.1 55.4 46.2 42.2 50.2 48.2
SuperGlue‡ 69.2 28.3 15.1 73.7 72.9 38.8 56.2 41.5 48.7 49.7 49.5
RRT⋆ 69.2 33.1 13.1 72.4 64.1 29.3 60.7 52.1 51.1 48.6 49.2
R2Former† 68.5 32.6 15.2 77.6 72.0 35.6 47.7 43.7 50.6 48.6 49.1
AMES⋆ 70.1 34.7 14.6 75.6 70.7 32.3 56.5 48.5 52.4 49.7 50.4
ELViS† 68.8 32.2 18.8 80.4 77.9 41.5 59.2 52.3 50.5 (-1.9) 55.0 (+4.8) 53.9 (+3.2)

household items domain (SOP)

No re-ranking 57.7 27.3 9.4 65.3 61.6 24.7 39.0 33.7 33.7 40.7 39.8
Chamfer† 46.2 15.4 6.7 63.2 45.2 24.7 50.3 50.2 50.2 35.9 37.7
Chamfer+OT† 52.3 18.6 11.7 75.9 71.6 37.5 52.7 45.8 45.8 45.7 45.7
RRT⋆ 43.4 10.8 12.2 68.4 25.5 32.2 46.9 57.1 57.1 34.2 37.1
R2Former† 55.5 23.7 12.9 73.4 59.3 32.8 42.0 51.1 51.1 42.8 43.8
AMES⋆ 55.6 17.2 12.4 72.2 44.2 36.7 51.8 56.7 56.7 41.4 43.3
ELViS† 59.7 22.9 18.6 81.1 76.7 44.1 54.2 54.9 54.9 (-2.2) 51.0 (+5.3) 51.5 (+5.8)

Table 1: Domain generalization performance (mAP). Training performed either on landmarks
(GLDv2) or household items (SOP). Results reported per dataset and as average over in-domain (ID),
out-of-domain (OOD), and all datasets (avg). Local descriptors extracted with DINOv2. Gray in-
dicates in-domain results. Green (Red) highlights gain (loss) of ELViS over the second best method.
†, ⋆ indicate similarity-based and descriptor-based models, respectively. ‡ indicates the model uses
SuperPoint local descriptors.

Method ID OOD avg

No re-ranking 51.4 60.5 58.2
Chamfer 43.4 44.5 44.2
Chamfer+OT 42.0 51.4 49.1
RRT 56.9 56.2 56.3
R2Former 57.1 63.9 62.2
AMES 59.0 62.8 61.9
ELViS 57.0 (-2.0) 67.4 (+3.5) 64.8 (+2.6)

Method ID OOD avg

No re-ranking 25.4 57.8 49.7
Chamfer 32.8 58.7 52.2
Chamfer+OT 29.3 62.3 54.1
RRT 37.5 58.4 53.2
R2Former 35.2 63.0 56.0
AMES 37.1 62.7 56.3
ELViS 36.4 (-1.1) 68.7 (+5.7) 60.6 (+4.3)

(a) DINOv3 (Siméoni et al., 2025) (b) SigLIP2 (Tschannen et al., 2025)

Table 2: Performance (mAP) comparison using local descriptors from additional foundational
models. Training performed on landmarks (GLDv2). Results reported per dataset and as averages
over in-domain (ID), out-of-domain (OOD), and all datasets (avg). Green (Red) highlights gain
(loss) of ELViS over the second best method.

4.2 RESULTS

Performance comparison. We present a performance comparison using DINOv2 and two different
training sets in Table 1 and DINOv3 and SigLIP2 and training on landmarks in Table 2. We maintain
backbone consistency between local and global similarity, i.e. the same model is used for initial
global retrieval and re-ranking with local descriptors. We identify the following key observations:

(i) ELViS achieves the best average performance overall. Across all settings, ELViS outperforms
all other methods by a significant margin, ranging from 2.6 to 5.8, compared to the second best
approach.

(ii) ELViS excels at domain generalization. The performance gains for OOD datasets are large,
i.e. improvements over the second best method equal to 4.8 and 5.3 while training on landmarks
and household items, respectively, using DINOv2, and 3.5 and 5.7 using DINOv3 and SigLIP2,
respectively, while training on landmarks.
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Method ID OOD avg

No re-ranking 42.5 38.9 39.8
ELViS 50.5 55.0 53.9

w/o dustbin 20.2 (-30.3) 31.9 (-23.1) 29.0 (-24.0)
w/o descriptor-dependent gain 48.8 (-1.7) 52.4 (-2.6) 51.5 (-2.4)
w/o f function 50.8 (+0.3) 53.8 (-1.2) 53.1 (-0.8)
w/o g function 45.6 (-4.9) 49.5 (-5.5) 48.5 (-5.4)
w/o f, g functions 47.3 (-3.2) 48.5 (-6.5) 48.2 (-5.7)
w/o descriptor projection 48.4 (-2.1) 51.7 (-3.3) 50.8 (-3.1)

Table 3: Ablation study on method components. Average, ID, and OOD performance, when
training on landmarks. Green (Red) highlights gain (loss) over ELViS.

Models Params (K) Latency (µs)

Chamfer+OT 0 98
RRT 2232 656
R2Former 202 782
AMES 2130 952

ELViS 96 101

Table 4: Complexity of ELViS vs other methods. The number of parameters corresponds to all
learnable components of each method, including the descriptor projection which is a part of all
models. Latency corresponds to the processing of query-database-image pairs to estimate the final
similarity. The projected local descriptors and dustbin gains for database images are considered
as precomputed, stored, and given, while obtaining those of the query image does not depend on
the number of images to re-rank; therefore, it is a constant cost and is not included. Latency is
measured for a batch of 500 pairs and reported on average per pair.

(iii) ELViS provides significant gains on harder datasets. This is particularly evident in the case of
the recent ILIAS datasets, which feature a database of over 100M images. Here, the relative perfor-
mance improvement of ELViS over the second-best method is over 23% and 36% while training on
landmarks and household items, respectively.

(iv) Similarity-based models are more robust in OOD but weaker in ID. It is not just about ELViS,
but all similarity-based models seem to be top performing in OOD, but lag slightly behind in ID. For
example, ELViS performs about 1-2 mAP worse than AMES on ID. Transformer models operating
on local descriptors effectively overfit to the training domain, while similarity-based generalize due
to strong inductive biases.

(v) Hand-crafted similarity on top of strong foundational model representations is a strong baseline
for OOD. Chamfer+OT is the second best performing method across 3 out of 4 settings in OOD. This
supports our choice of extending such architecture with minimal learnable parts that significantly
boost performance without compromising speed (Figure 1) or interpretability. Note that Chamfer by
itself is not an effective re-ranking strategy, indicating the value of OT and similarity refinement.

(vi) Feature matching serves as a strong baseline for OOD generalization. ELViS outperforms
SuperGlue across all datasets except ROP+1M, where the results are comparable. Despite this, off-
the-shelf SuperGlue generalizes competitively with other re-ranking models specifically trained for
image-to-image similarity. Note that SuperGlue is trained with strong correspondence supervision
and benefits from data leakage on ROP+1M as its training set includes the 1M distractor images.

Ablations. In Table 3, we present an ablation study of the proposed approach, analyzing the con-
tribution of its internal components. Naively applying OT without dustbins (trained/tested only for
an equal number of descriptors for both images) leads to a severe performance drop because unin-
formative descriptors are not ignored. Learning a scalar gain for all descriptors, as in Sarlin et al.
(2020), degrades performance and shows the value of this contribution of ours. Interestingly, when
removing function f , with or without the presence of g, the model relies directly on input descriptors
to form vote strengths, therefore encouraging overfitting to the training domain, which improves ID
performance at the expense of OOD generalization. Function g is essential for effective training of
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Method ID OOD avg

No re-ranking 42.5 38.9 39.8
AMES 52.4 49.7 50.4
ELViS 50.5 55.0 53.9

ELViS + AMES 52.1 54.7 54.0

Table 5: Combination of ELViS and AMES.
AMES acts as the descriptor projection. Lo-
cal descriptors are processed via 5 transformer
blocks into output tokens that are subsequently
fed into ELViS in the standard way.

Training size ID OOD avg

No re-ranking 42.5 38.9 39.8

1.4K 45.9 48.5 47.9
8.1K 48.3 49.3 49.0
40K 50.1 51.8 51.3
762K 50.5 55.0 53.9

Table 6: Scalability analysis. ELViS trained on
random subsets of the default GLDv2 training
set, ranging from 0.2% to 100% (Full). Training
hyperparameters are tuned for each subset size
based on the performance on the validation set.

ELViS, and its introduction results in a noticeable boost. Lastly, we additionally evaluate the impact
of the descriptor projection as the earlier learnable layer, which gives a boost on both ID and OOD.

Complexity analysis. Table 4 presents the computational complexity of ELViS compared to the
best competitors. ELViS is the most lightweight and fastest model, containing the fewest network
parameters, i.e. about 2× fewer than R2Former and about 20× fewer than AMES and RRT. Impor-
tantly, ELViS is several times faster. As further illustrated in Figure 1, this efficiency enables ELViS
to re-rank significantly more images, yielding an additional performance boost over other methods
if we consider a fixed time budget. Notably, compared to the Chamfer+OT baseline, ELViS is as
fast, while its newly added learnable components, i.e. data-dependent dustbin gains, functions f and
g, and the descriptor projection, give a strong performance boost.

Enhancing in-domain performance. ELViS excels in unseen domains, yet it is weaker than the
SotA descriptor-based approaches in the seen domain. To investigate this gap, we devise a hybrid
model combining AMES and ELViS. We replace the standard descriptor projection with a trans-
former module following the AMES architecture. The two input descriptor sets are passed through
this transformer module, comprising several self- and cross-attention layers. The resulting trans-
former outputs are treated as refined descriptor sets for each image, which are then passed to ELViS.
We train this hybrid model end-to-end using the default ELViS parameters. Table 5 shows the com-
bination significantly boosts ID performance, with only a slight compromise in OOD. This makes
the hybrid approach a viable re-ranking option when the test-time domain is known in advance.

Training in a low-data regime. To assess the data efficiency of ELViS, we simulate limited-
data scenarios by training on random subsets of GLDv2. We evaluate models trained on 1.4k (50),
8.1k (250), and 40k (1250) images (classes), corresponding to roughly 0.2%, 1%, and 5% of the
default training set. As shown in Table 6, ELViS demonstrates strong generalization even in low-data
regimes. With only 1.4k images, ELViS already outperforms the global baseline with a substantial
margin on average. Furthermore, we observe distinct scaling behaviors for ID and OOD, i.e. while
ID performance saturates relatively early, OOD performance continues to improve. This suggests
that smaller datasets are sufficient for in-domain retrieval, whereas learning robust, transferable
similarity patterns requires larger-scale training. Finally, despite our best efforts to effectively train
AMES on the same training sets, the final models does not improve global descriptor performance,
highlighting the data efficiency of ELViS.

5 CONCLUSION

We introduce ELViS, a lightweight and highly effective image-to-image similarity model that
achieves state-of-the-art re-ranking performance across multiple instance-level retrieval bench-
marks. As a similarity-based model, ELViS benefits from strong inductive biases, enabling better
generalization to unseen domains compared to descriptor-based approaches. Moreover, ELViS is
composed of a sequence of intuitive processing steps. By avoiding deep stacks of generic neural
blocks, it offers not only high efficiency, processing nearly an order of magnitude more images
than the second-best model across all datasets in the same amount of time, but also improved inter-
pretability of its predictions.
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Bingyi Cao, André Araujo, and Jack Sim. Unifying deep local and global features for image search. In ECCV,
2020. 1

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for con-
trastive learning of visual representations. In ICML, 2020. 6

Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Viswanatha Reddy Gajjala, Aneeshan Sain, Tao Xiang, and
Yi-Zhe Song. Partially does it: Towards scene-level FG-SBIR with partial input. In CVPR, 2022. 3

Gabriela Csurka, Timothy M Hospedales, Mathieu Salzmann, and Tatiana Tommasi. Domain generalization.
In Visual Domain Adaptation in the Deep Learning Era. 2022. 1, 3

Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Katharina Willamowski, and Cédric Bray. Visual
categorization with bags of keypoints. In ECCVW, 2004. 2

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NIPS, 2013. 4

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers. In
ICLR, 2024. 15

Albert Gordo, Filip Radenovic, and Tamara L. Berg. Attention-based query expansion learning. In ECCV,
2020. 2

Herve Jégou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and weak geometric consistency
for large scale image search. In ECCV, 2008. 6

Hanwen Jiang, Arjun Karpur, Bingyi Cao, Qixing Huang, and André Araujo. OmniGlue: Generalizable feature
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Appendix

dataset train set validation set test set domain evaluation
metricqueries database queries database

GLDv2 755K 379 762K 750 762K landmark mAP@100
SOP 48.9K 1K 10.6K 1K 60.5K household mAP@100
ROxford – – – 70 5K+1M landmark mAP
RParis – – – 70 6.3K+1M landmark mAP
Product1M – – – 6.2K 38.7K retail mAP@100
RP2K – – – 10.9K 10.9K retail mAP@100
MET – – – 1K 397K artwork mAP@100
INSTRE – – – 1.2K 27K multi mAP@100
ILIAS – – – 1K 100M multi mAP@1K

Table G: Dataset statistics and metrics used. For each dataset, we use the most commonly used
metric. Train and validation set statistics are reported only for the two training datasets that are used
in this work.

A DATASET DETAILS

We evaluate the proposed method and the closest related approaches on eight datasets containing
instance-level or fine-grained recognition annotations. These datasets span multiple domains listed
below. Examples of each are visualized in Figure E.

Landmarks. The ROxford (Philbin et al., 2007; Radenović et al., 2018), RParis (Philbin et al.,
2008; Radenović et al., 2018), and Google Landmarks dataset v2 (GLDv2) (Weyand et al., 2020)
are designed for instance-level retrieval and recognition. GLDv2 contains a training/test split. As
usual, we evaluate the medium and hard settings of ROxford and RParis datasets together with 1M
accompanying distractor images, denoted as ROP+1M.

Household Items. Stanford Online Products (SOP) (Song et al., 2015) is an instance-level dataset of
furniture and electric appliance images sourced from eBay. It has been widely used for fine-grained
image classification and contains a training/test split. For evaluation on SOP, we sample 1k test
images that serve as queries. The entire test set is used for database. The training images are further
divided into a training set and a validation set in an 80%-20% split.

Retail Products. Product1M (Zhan et al., 2021) and RP2K (Peng et al., 2020) are datasets contain-
ing a large variety of retail products, e.g. cosmetics and grocery store items. The former was made
for instance-level retrieval, while RP2K originally targeted fine-grained image classification. We
adopt its repurposed version from (Ypsilantis et al., 2023), tailored for retrieval.

Artworks. The MET (Ypsilantis et al., 2021) dataset depicts artworks from the Metropolitan Mu-
seum of Art in New York and is designed for instance-level recognition. To adapt the benchmark for
retrieval, we keep only one positive image per query that is guaranteed to have visual overlap with
it.

Multi-domain datasets. Instance-Level Image retrieval At Scale (ILIAS) (Kordopatis-Zilos et al.,
2025) and INSTance-level visual object REtrieval and REcognition (INSTRE) (Wang & Jiang, 2015)
datasets are designed for instance-level retrieval and include images from various domains, e.g.
landmarks, products, and art.

B IMPLEMENTATION DETAILS

We follow the standard practice of training image-to-image similarity models with local descrip-
tors (Tan et al., 2021; Suma et al., 2024). All the learnable parameters of ELViS are trained with
binary cross-entropy loss, where the ground truth label of the image pair denotes whether the two
images are positive, i.e. depict the same object instance, or not. We apply balanced sampling so the
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(a) ROxford (b) RParis (c) GLDv2

(d) SOP-1k (e) Product1M (f) RP2K

(g) MET (h) INSTRE (i) ILIAS

Figure E: Benchmark Examples. Three random samples are shown for each of the 9 datasets. All
images are resized to a square aspect ratio for better visualization.

network sees the same number of both labels per batch. We mine challenging pairs by exploiting
the most similar images as indicated by a given global descriptor representation.

Our model consists of a function f implemented as an MLP with a hidden dimensionality of 16,
and a function g, also an MLP, with a dimensionality set to 64. For the refinement step, we set
λ to 0.1 and initialize ω with 1. We run 10 iterations of the Sinkhorn-Knopp algorithm, which is
a trade-off that balances the model speed and performance. For the dustbin function h, we retain
the input dimensionality D for the hidden layer. Local descriptors are extracted from the DINOv2-
Base model with registers (Oquab et al., 2024; Darcet et al., 2024), DINOv3-Large model (Siméoni
et al., 2025), and SigLIP2-So400m@512 (Tschannen et al., 2025). The same models also provide
the global descriptor to generate the respective ranked lists of images per query for reranking. The
dimensionality after reduction is set to D = 128.

We train our model for 10 epochs, sampling triplets of anchors, positives, and negatives as described
in (Suma et al., 2024). We use a batch size of 200 triplets and a variable number of local descriptors
per image, sampled within the [100, 400]. The network is trained using the AdamW (Loshchilov
& Hutter, 2019) optimizer with a learning rate of 5 · 10−4 and a cosine learning rate schedule with
warmup. We follow the same training strategy for both GLDv2 and SOP, with the exception of the
learning rate and number of epochs on the SOP dataset, which are set to 1 · 10−3 and 30 for ELViS,
and 5 · 10−4 and 45 for the compared models, respectively.

For local descriptor extraction, images are resized according to their longer side. We use 770 for
DINOv2 and 768 for DINOv3 and SigLIP2 to ensure divisibility by the ViT patch size. The out-
put patch tokens by the backbones are then processed by a local feature detector, which assigns an
importance weight to each token. Tokens with the highest weights are selected as local descriptors.
Following AMES, we adopt its training strategy and network architecture for the local feature de-
tector, training a different model for each backbone and training set. The dimensionality D′ of the
output local descriptors is 768 for DINOv2, 1024 for DINOv3, and 1152 for SigLIP2.

SuperGlue is evaluated using the default parameters of its pre-trained outdoor model, with the num-
ber of SuperPoint keypoints capped at 600 for consistency with other methods. Input images are
resized such that the longer side is 1024 pixels, which ensures that typically-sized images produce
enough keypoints while remaining comparable to the resolution used for other methods.

It is common practice to ensemble retrieval performance from global and local descriptors (Zhu
et al., 2023; Suma et al., 2024). However, we found this was not necessary for our method to achieve
its best performance. In all our experimental results, we report the following for each method:
global+local for AMES, R2Former, and SuperGlue, and local-only for RRT, Chamfer, and ELViS.
For AMES and SuperGlue the ensembling parameter is tuned on the in-domain validation set, while

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Method Alps California Gobi Desert Amazon Toshka Lakes

R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100

AnyLoc 40.7 70.8 92.0 48.7 75.0 91.6 28.7 57.0 81.7 38.6 63.8 86.2 63.7 84.5 96.3
EarthLoc 53.9 71.9 87.2 55.9 74.6 91.6 46.8 65.0 82.9 45.6 66.6 82.4 67.6 80.3 91.9

No-reranking 35.7 65.6 91.1 50.1 78.2 93.9 26.2 53.3 84.0 31.4 61.1 83.9 52.4 78.1 94.9
AMES 44.0 74.5 93.7 57.4 83.0 95.7 36.0 64.7 87.0 40.4 69.2 87.8 61.5 85.4 96.8
ELViS 55.1 80.0 94.6 62.0 82.7 94.7 49.7 71.2 86.9 54.4 76.2 89.0 77.0 90.9 97.6

Table H: Generalization to extreme domain shifts. Benchmark devised for Astronaut Photography
Localization (APL) through retrieval (Berton et al., 2024). Performance is measured in Recall@k
(R@k). APL comprises five datasets covering different geographical areas of extreme visual envi-
ronments. Top: reference methods AnyLoc (Keetha et al., 2023) (DINOv2) and EarthLoc (Berton
et al., 2024) baseline (ResNet50). Bottom: Re-ranking 400 images on top of a DINOv3 backbone.
Bold indicates the best performance.

λ ID OOD avg

0.01 46.4 47.7 47.4
0.1 50.5 55.0 53.9
0.5 50.7 52.1 51.7
1.0 48.9 48.2 48.4
learnable 51.2 54.9 54.0

iterations ID OOD avg

1 50.5 53.4 52.7
3 51.2 54.6 53.7
5 51.0 54.4 53.6
10 50.5 55.0 53.9
20 51.2 55.0 54.1

Table I: Ablation study of the OT hyperparmeters. Models are trained on the Landmarks (GLDv2)
domain. We report average performance over the in-domain (ID), out-of-domain (OOD), and all
benchmarks (avg). We assess the impact of the regularization parameter λ and the number of OT
iterations, varying one hyperparameter at a time while keeping all others at their default values.

for R2Former, it is fixed to an equal weight (0.5) for local and global similarity. We do not enforce a
consistent setup across all methods, as no single ensembling scheme yields the best results in every
setting; instead, we use the ensembling strategy proposed by the original works.

C ROBUSTNESS TO EXTREME DOMAIN SHIFTS

We evaluate robustness on the Astronaut Photography Localization (APL) benchmark (Berton et al.,
2024). Although the downstream application is localization, the benchmark is formulated as a stan-
dard image retrieval task evaluated via Recall@k. The query images are handheld photographs taken
by astronauts, while the database consists of nadir satellite imagery. The goal is to retrieve, for each
astronaut photograph query, the corresponding satellite image depicting the same location within the
top k ranks. The benchmark includes five datasets representing extreme visual environments with
distinct scientific importance, such as flood monitoring or disaster response.

Table H compares the performance of ELViS and AMES, both using the DINOv3 descriptors and
re-ranking 400 images. For reference, we also report performance of two task-specific approaches:
(i) AnyLoc (Keetha et al., 2023) a Visual Place Recognition (VPR), and (ii) the specialist Earth-
Loc (Berton et al., 2024) trained for the task. ELViS demonstrates high effectiveness compared
with other methods. Moreover, it outperforms AMES and surpasses the top results reported in the
original paper.

D ABLATION OF OT HYPERPARAMETERS

Table I reports the performance of ELViS under different values of the regularization parameter λ
and different numbers of OT iterations. For each configuration, we train a new ELViS model from
scratch. The results confirm that increasing the number of OT refinement iterations yields a slightly
better performance. Conversely, setting λ to values either higher or lower than the default value
(λ = 0.1) leads to a substantial performance drop, while making λ learnable does not provide any
noticeable improvement on average. Using different hyperparameters during training and testing
degrades performance considerably and was thus omitted from the results.
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Figure F: Average precision per query. Each marker corresponds to the AP of a single query
evaluated on different test datasets using DINOv2 as a representation model. x-axis: performance
using ELViS trained on SOP dataset. y-axis: performance using ELViS trained on GLDv2 dataset.
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Figure G: Average precision per query. Each marker corresponds to the AP of a single query
evaluated on INSTRE using DINOv2 as a representation model. y-axis: performance using ELViS
trained on SOP dataset. x-axis: performance of the global descriptor without any re-ranking.

E DETAILED PERFORMANCE ANALYSIS

In Figure F, we compare the performance on per query basis for ELViS trained in two different
domains. What we observe is justified by the train-test domain gaps. In particular, performance on
household items is better when training on household items than on landmarks (left plot) and vice
versa (middle plot). On INSTRE, which includes a small number of landmarks and household items
among a large variety of objects, the best performing model varies a lot across queries.

In Figure G, we show the improvement of ELViS re-ranking over global descriptor retrieval, demon-
strated on per-query basis. For the majority of queries, the model improves the ranking, while the
cases where it performs poorly are few and marginally impacted.
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Method ROxford RParis GLDv2 ILIAS INSTRE MET Prod1M RP2K SOP-1k ID OOD avg

DINOv2 descriptors (Oquab et al., 2024)

No re-ranking 47.3 67.9 27.3 9.4 65.3 61.6 24.7 39.0 33.7 42.5 38.9 39.8
Chamfer 43.0 54.8 23.8 6.2 55.0 37.3 17.8 55.8 48.6 40.2 36.8 37.6
Chamfer+OT 55.6 65.5 23.8 14.3 76.0 74.0 35.1 55.4 46.2 42.2 50.2 48.2
RRT 64.1±0.6 74.4±0.0 33.1±0.2 13.1±0.6 72.4±1.1 64.1±0.7 29.3±1.7 60.7±0.9 52.1±0.6 51.1±0.3 48.6±0.9 49.2±0.8

R2Former 63.7±0.2 73.4±0.1 32.6±0.0 15.2±0.1 77.6±0.1 72.0±0.3 35.6±0.3 47.7±0.6 43.7±0.1 50.6±0.1 48.6±0.2 49.1±0.2

AMES 65.6±0.5 74.6±0.1 34.7±0.3 14.6±0.2 75.6±0.3 70.7±0.9 32.3±2.5 56.5±1.1 48.5±0.5 52.4±0.3 49.7±0.9 50.4±0.7

ELViS 64.3±0.3 73.3±0.2 32.2±0.0 18.8±0.1 80.4±0.2 76.5±0.4 41.5±0.3 59.2±1.0 52.3±0.2 50.5±0.1 55.0±0.2 53.9±0.3

DINOv3 descriptors (Siméoni et al., 2025)

No re-ranking 64.2 78.1 31.7 26.5 88.2 77.2 64.9 61.6 44.5 51.4 60.5 58.2
Chamfer 55.1 70.1 24.2 6.5 71.3 48.6 34.1 62.7 43.8 43.4 44.5 44.2
Chamfer+OT 56.4 67.7 21.9 12.3 86.7 63.0 48.8 57.4 40.5 42.0 51.4 49.1
RRT 72.3±1.1 81.6±0.2 36.9±0.1 25.8±1.8 84.0±1.5 58.3±3.5 50.6±2.9 62.0±1.8 56.1±0.3 56.9±0.4 56.2±2.0 56.3±1.6

R2Former 73.4±0.1 82.0±0.2 36.5±0.1 34.3±0.3 92.3±0.1 79.3±0.5 62.9±0.4 63.0±0.1 51.4±0.1 57.1±0.1 63.9±0.3 62.2±0.2

AMES 75.6±0.3 83.2±0.2 38.6±0.2 32.4±0.8 89.6±0.1 72.8±0.4 61.1±0.1 65.3±0.1 55.7±0.9 59.0±0.2 62.8±0.5 61.9±0.3

ELViS 73.0±0.0 81.2±0.1 37.0±0.0 41.2±0.0 93.4±0.1 81.0±0.2 63.9±0.1 68.1±0.1 57.0±0.2 57.0±0.0 67.4±0.1 64.8±0.1

SigLIP2 descriptors (Tschannen et al., 2025)

No re-ranking 17.3 47.8 18.3 22.4 89.8 61.7 70.2 40.6 62.2 25.4 57.8 49.7
Chamfer 23.0 59.1 24.6 22.9 83.7 57.3 67.1 52.9 68.3 32.8 58.7 52.2
Chamfer+OT 23.0 54.9 19.7 28.3 90.0 69.0 69.3 50.2 67.3 29.3 62.3 54.1
RRT 28.3±0.3 62.0±0.0 29.8±0.1 24.9±2.5 82.9±1.6 59.2±5.0 65.3±2.8 48.4±2.0 69.7±0.7 37.5±0.1 58.4±2.5 53.2±1.9

R2Former 25.7±0.4 59.8±0.1 27.7±0.4 31.3±1.0 90.4±1.3 69.4±1.0 70.5±1.3 47.8±1.5 68.4±1.1 35.2±0.3 63.0±1.1 56.0±1.0

AMES 27.7±1.2 61.1±0.7 29.9±0.4 30.4±1.2 89.0±1.0 65.9±0.5 72.5±0.6 48.2±1.0 70.1±1.6 37.1±0.7 62.7±1.0 56.3±0.9

ELViS 27.8±0.0 61.5±0.1 28.1±0.0 41.3±0.2 93.5±0.1 76.2±0.4 73.4±0.1 55.9±0.2 72.1±0.0 36.4±0.1 68.7±0.1 60.6±0.1

Table J: mAP mean and standard deviation for training on Landmarks. Three different back-
bones used as a representation model.

Method ROxford RParis GLDv2 ILIAS INSTRE MET Prod1M RP2K SOP-1k ID OOD avg

No re-ranking 47.3 67.9 27.3 9.4 65.3 61.6 24.7 39.0 33.7 33.7 40.7 39.8
Chamfer 29.7 62.6 15.4 6.7 63.2 45.2 24.7 50.3 50.2 50.2 35.9 37.7
Chamfer+OT 43.7 60.8 18.6 11.7 75.9 71.6 37.5 52.7 45.8 45.8 45.7 45.7
RRT 28.2±1.7 58.7±1.3 10.8±1.1 12.2±1.5 68.4±1.8 25.5±2.8 32.2±1.8 46.9±3.9 57.1±0.3 57.1±0.3 34.2±2.0 37.1±1.5

R2Former 43.4±1.0 67.5±0.3 23.7±0.5 12.9±0.3 73.4±0.4 59.3±0.7 32.8±1.9 42.0±0.7 51.1±0.3 51.1±0.3 42.8±0.7 43.8±0.7

AMES 46.2±1.0 65.1±1.5 17.2±1.1 12.4±0.5 72.2±1.0 44.2±1.8 36.7±1.9 51.8±2.5 56.7±0.6 56.7±0.6 41.4±1.5 43.3±1.2

ELViS 50.5±0.6 68.9±0.1 22.9±0.3 18.6±0.0 81.1±0.2 76.7±0.3 44.1±0.1 54.2±0.9 54.9±0.1 54.9±0.1 51.0±0.3 51.5±0.2

Table K: mAP mean and standard deviation for training on Household Items. DINOv2 used as
a representation model.

F DETAILED QUANTITATIVE RESULTS

In Tables J and Tables K, we provide the mean and standard deviation across all runs. For every
setting, we train three models using a different seed each time. These tables partly repeat information
provided in the main paper, but are meant to complement the ones from the main paper with the std
and the detailed per dataset performance for DINOv3 and SigLIP.

G ADDITIONAL QUALITATIVE EXAMPLES

In Figure H, we present additional visual examples of correspondences for positive image pairs from
various domains, and in Figure I, the corresponding similarity matrices. Note that an initial similarity
matrix with many large values does not necessarily result in many large values after refinement and
vote strength transformation. This is due to the optimal transport optimization that jointly processes
all similarities and requires some kind of mutual compatibility in the final result.

H LLM USAGE IN THIS PAPER

An LLM was used to correct and improve some already written parts of the paper, i.e. in the form
of an advanced grammar/syntax checker, and for polishing the phrasing. An LLM was never used
to generate text from scratch.
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Figure H: Visualization of strong correspondences before (left) and after (right) refinement with
optimal transport.
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Figure I: Visualization of similarity matrices before (left) and after (right) refinement with optimal
transport with individual values passed through function f . A subset of 100 descriptors is used.
These examples correspond to the ones of Figure H.
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