

ELViS: EFFICIENT VISUAL SIMILARITY FROM LOCAL DESCRIPTORS THAT GENERALIZES ACROSS DOMAINS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Large-scale instance-level training data is scarce, so models are typically trained on domain-specific datasets. Yet in real-world retrieval, they must handle diverse domains, making generalization to unseen data critical. We introduce ELViS, an image-to-image similarity model that generalizes effectively to unseen domains. Unlike conventional approaches, our model operates in similarity space rather than representation space, promoting cross-domain transfer. It leverages local descriptor correspondences, refines their similarities through an optimal transport step with data-dependent gains that suppress uninformative descriptors, and aggregates strong correspondences via a voting process into an image-level similarity. This design injects strong inductive biases, yielding a simple, efficient, and interpretable model. To assess generalization, we compile a benchmark of eight datasets spanning landmarks, artworks, products, and multi-domain collections, and evaluate ELViS as a re-ranking method. Our experiments show that ELViS outperforms competing methods by a large margin in out-of-domain scenarios and on average, while requiring only a fraction of their computational cost.

ABSTRACT

1 INTRODUCTION

Instance-level image retrieval aims to identify all images of a specific object, whether a landmark, toy, painting, or product, within a large image database. The best performing approaches rely on local descriptors (Cao et al., 2020; Tan et al., 2021; Lee et al., 2022; Zhu et al., 2023; Suma et al., 2024; Xiao et al., 2025), typically incorporating a pairwise image-to-image similarity model to refine a shortlist of the most similar images. This shortlist is initially retrieved using global image descriptors, often derived from foundation models (Oquab et al., 2024; Zhai et al., 2023; Radford et al., 2021).

Generalization to unseen domains is essential for two reasons: (i) it is inherent to retrieval, since training and test instances are disjoint, and (ii) collecting large instance-level training sets across diverse domains is hard. Nevertheless, most methods remain confined to single-domain evaluation. Models trained on landmarks or product pairs are typically tested on benchmarks from the same domain, leaving it unclear to what extent they overfit and limiting their applicability in broader, real-world scenarios.

In this work, we challenge this paradigm by studying retrieval from a single-source domain generalization perspective, a setting mostly explored in classification (Csurka et al., 2022). We argue that in the era of foundation models, trained across diverse domains, using them off-the-shelf for both global and local descriptors is a promising strategy for cross-domain performance. Building on this, we focus on learning image-to-image similarity models for retrieval *re-ranking* that operate on



Figure 1: **Performance vs. time.** Average performance across 8 datasets and multiple domains for fixed numbers of re-ranked images indicated with text labels. All models are trained on the *landmarks* domain (GLDv2). Runtime is estimated from model latencies reported in Table 4.

sets of local descriptors extracted from foundation models. Our approach builds on recent findings that a learnable similarity model (Suma et al., 2024) trained on frozen DINOv2 (Oquab et al., 2024) features generalizes well across domains (Kordopatis-Zilos et al., 2025), despite being trained only on landmarks and not specifically designed for generalization.

We propose an **Efficient Local Visual Similarity** model, called **ELViS**, which operates on patterns of local descriptor similarity, *i.e.* correspondence patterns, rather than on descriptors of visual appearance. This enables a more general and transferable image-level similarity measure, which is similar to observations in classical computer vision work (Shechtman & Irani, 2007). The local descriptor similarity matrix is refined using optimal transport (OT) with data-dependent gains that discard uninformative descriptors, followed by a learnable counting step that emphasizes strong correspondences. Notably, ELViS is conceptually simpler than existing methods, free of black-box modules, and built from a sequence of intuitive and interpretable steps. The architecture carries a strong inductive bias; each design choice introduces explicit priors on how to infer global similarity from local similarities. It is significantly more efficient and generalizes significantly better than prior approaches (Tan et al., 2021; Shao et al., 2023; Suma et al., 2024), see Figure 1, which rely on heavy black-box transformer architectures lacking priors and interpretability.

To evaluate instance-level image retrieval under domain generalization, we introduce a benchmarking protocol that unifies 8 existing datasets across diverse domains: *landmarks* (ROP+1M, GLDv2), *household items* (SOP), *retail products* (Product1M, RP2K), *artworks* (MET), and *multi-domain sets* (ILIAS, INSTRE). Benchmarks are grouped into in-domain and out-of-domain test sets depending on the training domain. To our knowledge, this is the first work to conduct such an extensive evaluation of single-source domain generalization in instance-level retrieval. Our evaluation confirms that similarity-based models generalize better than descriptor-based ones, which tend to overfit the training domain and excel only on seen distributions. With its learnable voting process and explicit mechanisms against overfitting, ELViS achieves even stronger generalization across unseen domains.

In summary, we introduce **ELViS**, a novel *similarity-based* re-ranking model that a) operates directly on sets of local-descriptor similarities via a novel OT formulation, b) is composed of simple, lightweight components, and c) provides a high degree of interpretability at multiple stages of the pipeline. We evaluate **ELViS** on eight diverse instance-level benchmarks and show that, in addition to being substantially faster, it delivers large performance gains on out-of-domain datasets while matching the performance of much heavier models on the training domain.

2 RELATED WORK

Image retrieval re-ranking. Among retrieval re-ranking methods, one line of research focuses on query expansion (Arandjelović & Zisserman, 2012; Radenović et al., 2019; Shao et al., 2023; Gordo et al., 2020), primarily using global descriptors. Another approach, which is also the focus of this work, leverages local descriptors for improved re-ranking. In the Bag-of-Words framework (Csurka et al., 2004) with hand-crafted descriptors (Lowe, 2004), a common strategy is to impose simple geometric constraints (Sivic & Zisserman, 2003) or perform RANSAC-like verification (Philbin et al., 2007). Since then, these methods have been adapted to work with local descriptors derived from the deep network (Noh et al., 2017; Simeoni et al., 2019), ultimately surpassing their hand-crafted predecessors.

Deep learning models have emerged as powerful alternatives to estimate image similarity based on local descriptor sets. State-of-the-art methods such as RRT (Tan et al., 2021) and AMES (Suma et al., 2024) match local descriptors using standard transformer-based architectures. Unlike these models, which take descriptor vectors as input, an alternative approach is to compute local descriptor similarities first, forming a *similarity-based representation* of the image pair. Early similarity-based models are employed for video retrieval, such as ViSiL (Kordopatis-Zilos et al., 2019), which computes Chamfer Similarity at both the frame and video levels and employs a 2D convolutional network to capture temporal relationships. CVNet (Lee et al., 2022) densely computes similarities across all local descriptors and processes them using a computationally expensive 4D convolutional network. In contrast, R^2 Former (Zhu et al., 2023) builds a similarity representation from sparse sets of local descriptors and employs a deep transformer architecture for similarity estimation. ELViS is also a *similarity-based* model, but it is significantly simpler, faster, and more intuitive, while promoting better generalization to unseen domains.

108 In the context of fine-grained sketch retrieval, Chowdhury et al. (2022) employ optimal transport
 109 to aggregate local region descriptors. In contrast to their formulation, which incorporates Lagrange
 110 multipliers for cross-modal matching, we adopt entropy-regularized OT and devise a fully differen-
 111 tiable counting mechanism, particularly effective for cross-domain generalization.

112 **Domain generalization.** Single-source domain generalization is predominantly investigated in im-
 113 age classification (Khosla et al., 2012; Li et al., 2017; Csurka et al., 2022). The prevailing strategies
 114 involve synthetic data generation techniques that operate by augmenting training samples in the
 115 image space (Volpi et al., 2018; Xu et al., 2021b;a) or representation space (Mancini et al., 2020;
 116 Zhou et al., 2021), or by directly generating novel samples (Yue et al., 2019; Qiao et al., 2020). Lo-
 117 cal descriptors paired with BoW also show benefits for generalization in classification (Wan et al.,
 118 2022). The generalization ability is obtained during a training process that either starts from scratch
 119 or consists of fine-tuning a network pretrained on ImageNet.

120 In tasks such as image matching (Jin et al., 2020) and 3D reconstruction (Schönberger & Frahm,
 121 2016), where open-world performance and generalization are essential, we observe a distinct trend
 122 compared to other computer vision tasks. Hand-crafted representations (Lowe, 2004) and matching
 123 methods (Schönberger & Frahm, 2016) remain among the top-performing approaches. A major
 124 shift happens with the advent of large pre-trained foundation models (An et al., 2023; Zhai et al.,
 125 2023; Oquab et al., 2024; Radford et al., 2021). These models are exposed to vast amounts of data
 126 during training, making it unclear whether a given test image truly belongs to an unseen domain.
 127 Notably, keeping their representations frozen while applying hand-designed methods has proven
 128 highly effective across diverse object types and domains (Örnek et al., 2024). While training a model
 129 on top of frozen representations may introduce domain dependence, carefully designed approaches
 130 have been shown to encourage generalization (Jiang et al., 2024).

132 3 METHOD

133 In this section, we introduce **ELViS**, an image-to-image similarity method that takes sets of local
 134 descriptors as input. Instead of operating directly on the descriptors, our approach builds, refines,
 135 and processes their similarity matrix, and enables a learnable and intuitive voting mechanism with
 136 few parameters that generalizes well to unseen domains. An overview is presented in 2.

139 3.1 BACKGROUND

140 **Problem formulation.** The goal of an image retrieval system is to search a database \mathcal{D} using a query
 141 image q and retrieve the most relevant images. At its core, image retrieval depends on a pairwise
 142 image-to-image similarity function $s(q, x) \in \mathbb{R}$, which measures the relevance between the query q
 143 and each database image $x \in \mathcal{D}$, allowing for ranking based on similarity scores. We aim to learn
 144 s by training on a source domain, typically rich in instance-level training data, and then test on a
 145 target domain that remains unseen during training.

146 **Local descriptors.** After an initial ranking with global descriptors, state-of-the-art instance-level
 147 retrieval methods include a second-stage pairwise reranking step using local descriptors (Suma et al.,
 148 2024; Tan et al., 2021; Zhu et al., 2023). In ViT architectures, these local descriptors correspond
 149 to a subset of the patch descriptors. Given an image x , the set of local descriptors is represented as
 150 a $D' \times M$ matrix, $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_i \dots \mathbf{x}_M]$, where each descriptor $\mathbf{x}_i \in \mathbb{R}^{D'}$ is a D' -dimensional
 151 vector. We select the strongest M descriptors per image based on a strength score (Suma et al.,
 152 2024). For efficiency and better task adaptation, the descriptor dimensionality is reduced from D' to
 153 D through a *learnable linear projection*. This projection is implemented as a linear layer followed
 154 by layer normalization and ℓ_2 -normalization per local descriptor. The projection It is a common
 155 component among all learnable methods we compare with in the experiments.

156 **Image similarity.** The similarity $s(q, x) \in \mathbb{R}$ between images q and x is computed as a function of
 157 their corresponding local descriptor matrices $\mathbf{Q}, \mathbf{X} \in \mathbb{R}^{D \times M}$, i.e., $s(q, x) := s(\mathbf{Q}, \mathbf{X})$. The core of
 158 s processes the *local descriptor similarity matrix* $\mathbf{S} = \mathbf{Q}^\top \mathbf{X} \in \mathbb{R}^{M \times M}$. For notational clarity, we
 159 assume the same number of descriptors per image for q and x , while the method is generic and does
 160 not impose such a constraint.

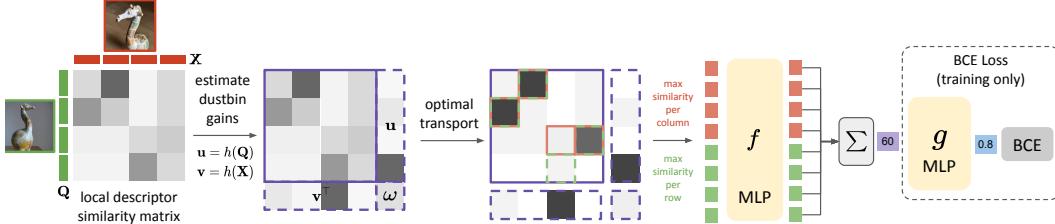


Figure 2: **Detailed overview of ELViS.** The similarity matrix is refined using optimal transport with descriptor-dependent dustbin gains. The strongest local *similarities* per descriptor are then selected and transformed element-wise by a learned function f , before being sum-aggregated into a scalar global similarity. During training, a modified BCE loss with a learnable function g reshapes the penalty curve; g is used only for training and is expandable at inference.

3.2 FROM LOCAL DESCRIPTORS TO LOCAL SIMILARITIES

The proposed approach operates in the space of *descriptor similarities*, in particular similarity matrix \mathbf{S} , whose values represent correspondences between the patches the descriptors are extracted from. We introduce a refinement of \mathbf{S} to generate matrix \mathbf{S}' that emphasizes mutually consistent strong correspondences and discard correspondences from uninformative descriptors.

We formulate the problem as a variant of optimal transport which is efficiently solved using the iterative Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967) allowing back-propagation through the optimization process. More precisely, our objective ¹ is to find a matrix \mathbf{P} , that maximizes $\langle \mathbf{P}, \mathbf{S} \rangle_F$ subject to constraints $\mathbf{P} \mathbf{1}_M = \mathbf{1}_M$ and $\mathbf{P}^\top \mathbf{1}_M = \mathbf{1}_M$, where $\mathbf{1}_M$ is a vector of ones of size M , and $\langle \cdot, \cdot \rangle_F$ denotes the Frobenius inner product. The solution \mathbf{P} is seen as a refined, double stochastic, similarity matrix. To allow distracting or uninformative, *e.g.* extracted from the background, descriptors to be ignored and not participate in correspondences of the final matrix, slack variables are introduced indicating the gain for not transporting mass for a descriptor. This is what SuperGlue² refers to as *dustbins* (Sarlin et al., 2020), *i.e.* the gain of assigning a descriptor to the dustbin and not to any descriptor in the other image. It is achieved by creating augmented $(M + 1) \times (M + 1)$ matrix $\hat{\mathbf{S}}$ by

$$\hat{\mathbf{S}} = \begin{bmatrix} \mathbf{S} & \mathbf{u} \\ \mathbf{v}^\top & \omega \end{bmatrix}, \quad (1)$$

where $\mathbf{u}, \mathbf{v} \in \mathbb{R}^M$ contain the dustbin gains for the query and database image descriptors, respectively, while ω accounts for the gain related to the total mass moved to the dustbins.

We define \mathbf{P} as the solution to the following optimization problem:

$$\max_{\mathbf{P}} \langle \mathbf{P}, \hat{\mathbf{S}} \rangle_F + \lambda H(\mathbf{P}) \quad (2)$$

$$\text{s.t. } \mathbf{P} \mathbf{1}_{M+1} = \mathbf{a}, \quad \mathbf{P}^\top \mathbf{1}_{M+1} = \mathbf{b},$$

where $\mathbf{a} = [\mathbf{1}_M^\top \ M]^\top$ and $\mathbf{b} = [\mathbf{1}_M^\top \ M]^\top$ are the marginal constraints extended to include dustbins. We use the entropy-regularized variant of Sinkhorn-Knopp (Cuturi, 2013), with regularization term λ . After optimization, we drop the additional dustbin row and column and maintain the *refined similarity matrix* $\mathbf{S}' = \mathbf{P}_{1:M, 1:M}$ for the following steps.

Descriptor-dependent dustbin gains. Prior work (Sarlin et al., 2020) sets dustbin gains \mathbf{u}, \mathbf{v} to a fixed or learnable scalar. Instead, we predict the gain based on the descriptor itself with function $h : \mathbb{R}^D \rightarrow \mathbb{R}$. The gains as given by

$$\begin{aligned} \mathbf{u} &= [u_1 \dots u_i \dots u_M] & = [h(\mathbf{q}_1) \dots h(\mathbf{q}_i) \dots h(\mathbf{q}_M)] \\ \mathbf{v} &= [v_1 \dots v_i \dots v_M] & = [h(\mathbf{x}_1) \dots h(\mathbf{x}_i) \dots h(\mathbf{x}_M)], \end{aligned} \quad (3)$$

¹Note that we operate with a similarity matrix and not a cost matrix, therefore the maximization instead of minimization. Similarity is seen as negative cost, or as the gain of transporting mass.

²Prior work applies Sinkhorn-Knopp on similarity matrices to establish point correspondences, while we care about the correspondence strengths and aim to aggregate them into an image-level similarity score.

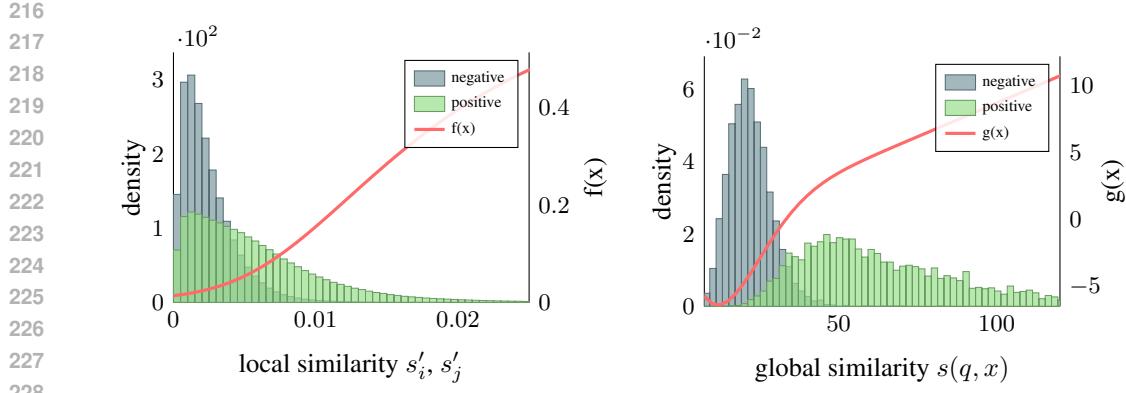


Figure 3: **Shape of the learned univariate functions f (left) and g (right).** Although parameterized as MLPs, both functions learn well-behaved scalar transformations that effectively separate matching and non-matching distributions. The distributions of input values are visualized separately for positive and negative image pairs, sampled during training.

where u_i and v_i denote the i -th element of vector \mathbf{u} and \mathbf{v} , respectively. Larger dustbin gains of u_i and v_i assigns higher chance for the correspondences of descriptor i to be moved to the dustbin. We implement h as a two-layer MLP with a GELU activation function. Gain ω is a learnable scalar. Our experiments demonstrate that using descriptor-dependent dustbin gains is essential for the effectiveness of such a refinement step in the overall pipeline.

3.3 FROM LOCAL SIMILARITIES TO GLOBAL SIMILARITY

In this step we transform the similarity matrix S' into a set of votes that are aggregated into a single value representing the global similarity of the input image pair.

Strongest vote per descriptor. Given matrix \mathbf{S}' , that contains similarities for all pairs of descriptors, we keep the strongest similarity for each descriptor of each of the two images, acting as a *vote*. This is equivalent to selecting the strongest correspondence per descriptor. Formally, this is given by

$$s'_i = \max_{j \in \{1, \dots, M\}} \mathbf{S}'_{i,j}, \quad s'_j = \max_{i \in \{1, \dots, M\}} \mathbf{S}'_{i,j}, \quad \forall i, j \in \{1, \dots, M\}, \quad (4)$$

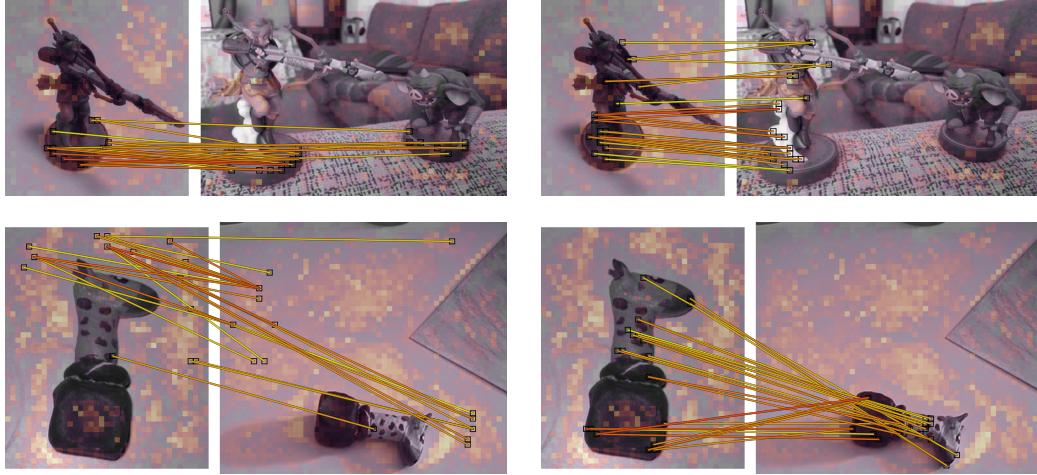
where s'_i and s'_j are row- and column-wise max-pooled similarities³. Summing all similarities in s'_i and s'_j jointly, for $i, j = 1 \dots M$, is equivalent to computing Chamfer Similarity on S' under the assumption of equal descriptor set cardinalities. We go one step further in the next processing stage. It is worth noting that Chamfer Similarity after vanilla optimal transport, even without learning, already serves as a strong baseline for generalization, as confirmed by our experiments, which motivates our choice to build on and extend this architecture.

Learnable vote strength and counting. We transform votes s'_i and s'_j via function $f : \mathbb{R} \rightarrow \mathbb{R}$, a real function mapping an input scalar similarity to an updated scalar similarity, *i.e.* vote, in $[0, 1]$. Function f is implemented by a two layer MLP with sigmoid at its output, which according to the universal approximation theorem can approximate any continuous real function. Then, the image-to-image similarity is computed by counting all votes via summation

$$s(q, x) = \sum_{i=1}^M f(s'_i) + \sum_{j=1}^M f(s'_j). \quad (5)$$

This voting-based global similarity estimation is inspired by classical works in image retrieval (Tolias & Jégou, 2014), which demonstrate that the number of strong local descriptor correspondences

³We equivalently define s_i and s_j from max pooling in S , which is only used for visualization purposes.



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285 **Figure 4: Visualization of the 25 strongest correspondences (votes)** among s_i, s_j (left) and s'_i, s'_j (right) before (left) and after (right) refinement with optimal transport. Red (yellow) represents high (low) similarity. Raw similarity values in S (left) and values in S' after passing them through f (right) are used. Heatmaps represent the dustbins values by evaluating h densely for all patches in both images; bright values indicate large dustbin gain and uninformative descriptors.

290
291 is a robust indicator of image similarity. In contrast to hand-crafted weighting functions for corre-
292 spondence strengths, like RBF-kernel (Jégou et al., 2008) or monomial kernel (Tolias et al., 2013),
293 our learnable function f adaptively transforms the similarities to optimize retrieval performance. We
294 visualize the learned f after training in Figure 3, which noticeably differentiates from linear weight-
295 ing, *i.e.* identity function is f and the corresponding MLP would not be included in the model. Our
296 experiments show that using a learnable f is beneficial for generalization; excluding it makes the
297 descriptor projection layer responsible for obtaining appropriate correspondence strength and the
298 method more descriptor-dependent and domain-dependent.

299 **Example visualization.** Figure 4 shows the strongest correspondences selected from the similarity
300 matrices before and after refinement, *i.e.* from S and S' , respectively. Without refinement, many
301 strong correspondences are formed between background or non distinctive regions; the refine-
302 ment step suppresses these mainly due to the use of dustbin gains. The final set contains a large number
303 of correct object correspondences, whose strengths are meaningfully transformed by f . Summing
304 these strengths yields the final similarity score between the two images, making the process both
305 intuitive and interpretable.

306 3.4 TRAINING AND INFERENCE

309 **Training.** We introduce a data-adapted variant of the Binary Cross-Entropy loss (BCE) to train
310 ELViS with positive and negative image pairs. Standard BCE minimizes $-\log p$ for positive pairs
311 and $-\log(1-p)$ for negative pairs, where $p = s(q, x)$ is the predicted similarity. In our formulation,
312 p is first passed through a learnable function $g : \mathbb{R} \rightarrow [0, 1]$ before BCE is applied, yielding losses
313 $-\log g(p)$ and $-\log(1 - g(p))$. This modification no longer optimizes the log-likelihood of the
314 predicted probability but instead the log of a transformed version of it. By reshaping the penalty
315 curve through g , we control which prediction errors are emphasized or downweighted. The function
316 g is implemented as a two-layer MLP with a sigmoid output, and its learned shape is shown in Fig-
317 ure 3. Empirically, g tends to be nearly piecewise-linear, with its slope changing around the region
318 where positive and negative pairs start to overlap more, thereby enabling differentiated penalization
319 of errors. Thus, training proceeds under a warped notion of similarity defined by g .

320 **Inference and reranking with ELViS.** At inference, the auxiliary function g is discarded. This
321 strategy parallels the use of projection heads in self-supervised learning (Chen et al., 2020; Zbontar
322 et al., 2021) that are expendable modules used for optimization, encouraging generalization to other
323 tasks. Discarding g is valid because, similar to a learnable temperature in contrastive losses (Rad-
324 ford et al., 2021), g scales the similarity for the loss without altering the ranking order, provided it

324 is an increasing function. Although monotonicity is not enforced during training, we consistently
 325 observe g to be monotonic, where it matters, in practice. Observe in Figure 3 that the non-monotonic
 326 part occurs in the range of values where only negative pairs appear, therefore, affecting neither the
 327 relative ranking between negative and positive pairs nor performance. Attempts to enforce mono-
 328 tonicity explicitly, *e.g.* by constraining MLP weights to be non-negative as in (You et al., 2017),
 329 slightly degrades performance and requires further exploration.

330 Given a ranked list of candidate images for a query, obtained for instance using a global-
 331 representation-based retrieval method, we form query–candidate pairs and apply ELViS to compute
 332 refined similarity scores, which are then used to re-rank the list.

334 4 EXPERIMENTS

337 4.1 EXPERIMENTAL SETUP

339 **Datasets.** We evaluate the proposed method and the most related approaches on 8 datasets con-
 340 taining annotations on instance-level, and spanning multiple domains: (i) *Landmarks* – *ROxford*
 341 and *RParis*, reported jointly as *ROP+1M* (Philbin et al., 2007; 2008; Radenović et al., 2018), and
 342 GLDv2 (Weyand et al., 2020); (ii) *Household Items* – SOP (Song et al., 2015); (iii) *Retail Products*
 343 – Product1M (Zhan et al., 2021) and RP2K (Peng et al., 2020); (iv) *Artworks* – MET (Ypsilantis
 344 et al., 2021); and (v) *Multi-domain* – ILIAS (Kordopatis-Zilos et al., 2025) and INSTRE (Wang &
 345 Jiang, 2015). Further details are found in the Appendix A.

346 **Training domains.** We go beyond the standard evaluation commonly adopted in instance-level re-
 347 trieval papers, *i.e.* training on GLDv2 due to its large number of images and instances and evaluating
 348 on the same domain, *e.g.* GLDv2 and *ROP+1M*. We put a focus on generalization and introduce a
 349 protocol consisting of 8 instance-level retrieval datasets spanning diverse visual domains. Depend-
 350 ing on which dataset is used for training the re-ranking models, we categorize the datasets into two
 351 groups: in-domain and out-of-domain, and report the average performance separately for each. We
 352 select two large datasets with clearly defined train/test splits as training domains: GLDv2 and SOP.
 353 When training on GLDv2, we consider its validation set, and *ROP+1M*, as in-domain testing and
 354 the remaining 6 datasets as out-of-domain. When training on SOP, we consider only its test set as
 355 in-domain testing, while the remaining 7 datasets are treated as out-of-domain.

356 **Evaluation Protocol.** Retrieval performance is measured using mean Average Precision (mAP) on
 357 *ROP+1M* and mAP@K on the rest of the datasets. We additionally report average performance
 358 over all datasets in each group, *i.e.*, in-domain and out-of-domain. We re-rank the top 400 retrieved
 359 images in all experiments. As in AMES, we select the $M = 600$ strongest descriptors according
 360 to a local feature detector (Noh et al., 2017; Tolias et al., 2020) trained with images from the corre-
 361 sponding domain. We extract local descriptors with DINOv2 (Oquab et al., 2024), as in AMES, as
 362 well as DINOv3 (Siméoni et al., 2025) and SigLIP2 (Tschannen et al., 2025).

363 **Compared methods.** We compare the performance of the proposed ELViS with the most relevant
 364 re-ranking approaches from the literature, namely Reranking Transformer (RRT) (Tan et al., 2021),
 365 *R*²Former (Zhu et al., 2023), and AMES (Suma et al., 2024). We also compare to hand-crafted
 366 Chamfer Similarity (CS) (Barrow et al., 1977; Razavian et al., 2016) applied on S , and CS applied
 367 after refinement with vanilla Optimal Transport (OT) that uses fixed value dustbin gains that are
 368 equal to 1. Both these methods serve as baselines for local descriptor performance without training
 369 a re-ranking model. Since ELViS internally performs matching, we also include established feature
 370 matching model SuperGlue (Sarlin et al., 2020) as a baseline. We use the variant pre-trained in the
 371 landmark domain and use the count of valid matches as re-ranking score. Retrieval using only global
 372 representation is also evaluated, *i.e.*, there is no use of re-ranking. We train and evaluate all methods
 373 using the publicly available AMES repository⁴, and integrate the official implementations provided
 374 by the authors of RRT⁵, *R*²Former⁶, and SuperGlue⁷.

375 ⁴<https://github.com/pavelsuma/ames>

376 ⁵<https://github.com/uvavision/RerankingTransformer>

377 ⁶<https://github.com/Jeff-Zilence/R2Former>

378 ⁷<https://github.com/magicleap/SuperGluePretrainedNetwork>

Method	ROP+1M	GLDv2	ILIAS	INSTRE	MET	Prod1M	RP2K	SOP-1k	ID	OOD	avg
landmarks domain (GLDv2)											
No re-ranking	57.7	27.3	9.4	65.3	61.6	24.7	39.0	33.7	42.5	38.9	39.8
Chamfer[†]	56.7	23.8	6.2	55.0	37.3	17.8	55.8	48.6	40.2	36.8	37.6
Chamfer+OT[†]	60.6	23.8	14.3	76.0	74.0	35.1	55.4	46.2	42.2	50.2	48.2
SuperGlue[‡]	69.2	28.3	15.1	73.7	72.9	38.8	56.2	41.5	48.7	49.7	49.5
RRT*	69.2	33.1	13.1	72.4	64.1	29.3	60.7	52.1	51.1	48.6	49.2
R²Former[†]	68.5	32.6	15.2	77.6	72.0	35.6	47.7	43.7	50.6	48.6	49.1
AMES*	70.1	34.7	14.6	75.6	70.7	32.3	56.5	48.5	52.4	49.7	50.4
ELViS[†]	68.8	32.2	18.8	80.4	77.9	41.5	59.2	52.3	50.5	55.0 <small>(+4.8)</small>	53.9 <small>(+3.2)</small>
household items domain (SOP)											
No re-ranking	57.7	27.3	9.4	65.3	61.6	24.7	39.0	33.7	33.7	40.7	39.8
Chamfer[†]	46.2	15.4	6.7	63.2	45.2	24.7	50.3	50.2	50.2	35.9	37.7
Chamfer+OT[†]	52.3	18.6	11.7	75.9	71.6	37.5	52.7	45.8	45.8	45.7	45.7
RRT*	43.4	10.8	12.2	68.4	25.5	32.2	46.9	57.1	57.1	34.2	37.1
R²Former[†]	55.5	23.7	12.9	73.4	59.3	32.8	42.0	51.1	51.1	42.8	43.8
AMES*	55.6	17.2	12.4	72.2	44.2	36.7	51.8	56.7	56.7	41.4	43.3
ELViS[†]	59.7	22.9	18.6	81.1	76.7	44.1	54.2	54.9	54.9	51.0 <small>(+5.3)</small>	51.5 <small>(+5.8)</small>

Table 1: **Domain generalization performance (mAP)**. Training performed either on *landmarks* (GLDv2) or *household items* (SOP). Results reported per dataset and as average over in-domain (ID), out-of-domain (OOD), and all datasets (avg). Local descriptors extracted with DINOv2. Gray indicates in-domain results. Green (Red) highlights gain (loss) of ELViS over the second best method. [†], ^{*} indicate similarity-based and descriptor-based models, respectively. [‡] indicates the model uses SuperPoint local descriptors.

Method	ID	OOD	avg	Method	ID	OOD	avg
No re-ranking	51.4	60.5	58.2	No re-ranking	25.4	57.8	49.7
Chamfer	43.4	44.5	44.2	Chamfer	32.8	58.7	52.2
Chamfer+OT	42.0	51.4	49.1	Chamfer+OT	29.3	62.3	54.1
RRT	56.9	56.2	56.3	RRT	37.5	58.4	53.2
R²Former	57.1	63.9	62.2	R²Former	35.2	63.0	56.0
AMES	59.0	62.8	61.9	AMES	37.1	62.7	56.3
ELViS	57.0 <small>(-2.0)</small>	67.4 <small>(+3.5)</small>	64.8 <small>(+2.6)</small>	ELViS	36.4 <small>(-1.1)</small>	68.7 <small>(+5.7)</small>	60.6 <small>(+4.3)</small>

(a) DINOv3 (Siméoni et al., 2025)

(b) SigLIP2 (Tschannen et al., 2025)

Table 2: **Performance (mAP) comparison using local descriptors from additional foundational models**. Training performed on *landmarks* (GLDv2). Results reported per dataset and as averages over in-domain (ID), out-of-domain (OOD), and all datasets (avg). Green (Red) highlights gain (loss) of ELViS over the second best method.

4.2 RESULTS

Performance comparison. We present a performance comparison using DINOv2 and two different training sets in Table 1 and DINOv3 and SigLIP2 and training on landmarks in Table 2. **We maintain backbone consistency between local and global similarity, i.e. the same model is used for initial global retrieval and re-ranking with local descriptors.** We identify the following key observations:

- (i) *ELViS achieves the best average performance overall.* Across all settings, ELViS outperforms all other methods by a significant margin, ranging from 2.6 to 5.8, compared to the second best approach.
- (ii) *ELViS excels at domain generalization.* The performance gains for OOD datasets are large, i.e. improvements over the second best method equal to 4.8 and 5.3 while training on landmarks and household items, respectively, using DINOv2, and 3.5 and 5.7 using DINOv3 and SigLIP2, respectively, while training on landmarks.

Method	ID	OOD	avg
No re-ranking	42.5	38.9	39.8
ELViS	50.5	55.0	53.9
w/o dustbin	20.2 (-30.3)	31.9 (-23.1)	29.0 (-24.0)
w/o descriptor-dependent gain	48.8 (-1.7)	52.4 (-2.6)	51.5 (-2.4)
w/o f function	50.8 (+0.3)	53.8 (-1.2)	53.1 (-0.8)
w/o g function	45.6 (-4.9)	49.5 (-5.5)	48.5 (-5.4)
w/o f, g functions	47.3 (-3.2)	48.5 (-6.5)	48.2 (-5.7)
w/o descriptor projection	48.4 (-2.1)	51.7 (-3.3)	50.8 (-3.1)

Table 3: **Ablation study on method components.** Average, ID, and OOD performance, when training on landmarks. Green (Red) highlights gain (loss) over ELViS.

Models	Params (K)	Latency (μ s)
Chamfer+OT	0	98
RRT	2232	656
R^2Former	202	782
AMES	2130	952
ELViS	96	101

Table 4: **Complexity of ELViS vs other methods.** The number of parameters corresponds to all learnable components of each method, including the descriptor projection which is a part of all models. Latency corresponds to the processing of query-database-image pairs to estimate the final similarity. The projected local descriptors and dustbin gains for database images are considered as precomputed, stored, and given, while obtaining those of the query image does not depend on the number of images to re-rank; therefore, it is a constant cost and is not included. Latency is measured for a batch of 500 pairs and reported on average per pair.

(iii) *ELViS provides significant gains on harder datasets.* This is particularly evident in the case of the recent ILIAS datasets, which feature a database of *over 100M images*. Here, the *relative* performance improvement of ELViS over the second-best method is over 23% and 36% while training on landmarks and household items, respectively.

(iv) *Similarity-based models are more robust in OOD but weaker in ID.* It is not just about ELViS, but all similarity-based models seem to be top performing in OOD, but lag slightly behind in ID. For example, ELViS performs about 1-2 mAP worse than AMES on ID. Transformer models operating on local descriptors effectively overfit to the training domain, while similarity-based generalize due to strong inductive biases.

(v) *Hand-crafted similarity on top of strong foundational model representations is a strong baseline for OOD.* Chamfer+OT is the second best performing method across 3 out of 4 settings in OOD. This supports our choice of extending such architecture with minimal learnable parts that significantly boost performance without compromising speed (Figure 1) or interpretability. Note that Chamfer by itself is not an effective re-ranking strategy, indicating the value of OT and similarity refinement.

(vi) *Feature matching serves as a strong baseline for OOD generalization.* ELViS outperforms SuperGlue across all datasets except \mathcal{R} OP+1M, where the results are comparable. Despite this, off-the-shelf SuperGlue generalizes competitively with other re-ranking models specifically trained for image-to-image similarity. Note that SuperGlue is trained with strong correspondence supervision and benefits from data leakage on \mathcal{R} OP+1M as its training set includes the 1M distractor images.

Ablations. In Table 3, we present an ablation study of the proposed approach, analyzing the contribution of its internal components. Naively applying OT without dustbins (trained/tested only for an equal number of descriptors for both images) leads to a severe performance drop because uninformative descriptors are not ignored. Learning a scalar gain for all descriptors, as in Sarlin et al. (2020), degrades performance and shows the value of this contribution of ours. Interestingly, when removing function f , with or without the presence of g , the model relies directly on input descriptors to form vote strengths, therefore encouraging overfitting to the training domain, which improves ID performance at the expense of OOD generalization. Function g is essential for effective training of

Method	ID	OOD	avg
No re-ranking	42.5	38.9	39.8
AMES	52.4	49.7	50.4
ELViS	50.5	55.0	53.9
ELViS + AMES	52.1	54.7	54.0

Table 5: **Combination of ELViS and AMES.** AMES acts as the descriptor projection. Local descriptors are processed via 5 transformer blocks into output tokens that are subsequently fed into ELViS in the standard way.

Training size	ID	OOD	avg
No re-ranking	42.5	38.9	39.8
1.4K	45.9	48.5	47.9
8.1K	48.3	49.3	49.0
40K	50.1	51.8	51.3
762K	50.5	55.0	53.9

Table 6: **Scalability analysis.** ELViS trained on random subsets of the default GLDv2 training set, ranging from 0.2% to 100% (Full). Training hyperparameters are tuned for each subset size based on the performance on the validation set.

ELViS, and its introduction results in a noticeable boost. Lastly, we additionally evaluate the impact of the descriptor projection as the earlier learnable layer, which gives a boost on both ID and OOD.

Complexity analysis. Table 4 presents the computational complexity of ELViS compared to the best competitors. ELViS is the most lightweight and fastest model, containing the fewest network parameters, *i.e.* about $2 \times$ fewer than R^2 Former and about $20 \times$ fewer than AMES and RRT. Importantly, ELViS is several times faster. As further illustrated in Figure 1, this efficiency enables ELViS to re-rank significantly more images, yielding an additional performance boost over other methods if we consider a fixed time budget. Notably, compared to the Chamfer+OT baseline, ELViS is as fast, while its newly added learnable components, *i.e.* data-dependent dustbin gains, functions f and g , and the descriptor projection, give a strong performance boost.

Enhancing in-domain performance. ELViS excels in unseen domains, yet it is weaker than the SotA descriptor-based approaches in the seen domain. To investigate this gap, we devise a *hybrid* model combining AMES and ELViS. We replace the standard descriptor projection with a transformer module following the AMES architecture. The two input descriptor sets are passed through this transformer module, comprising several self- and cross-attention layers. The resulting transformer outputs are treated as refined descriptor sets for each image, which are then passed to ELViS. We train this hybrid model end-to-end using the default ELViS parameters. Table 5 shows the combination significantly boosts ID performance, with only a slight compromise in OOD. This makes the hybrid approach a viable re-ranking option when the test-time domain is known in advance.

Training in a low-data regime. To assess the data efficiency of ELViS, we simulate limited-data scenarios by training on random subsets of GLDv2. We evaluate models trained on 1.4k (50), 8.1k (250), and 40k (1250) images (classes), corresponding to roughly 0.2%, 1%, and 5% of the default training set. As shown in Table 6, ELViS demonstrates strong generalization even in low-data regimes. With only 1.4k images, ELViS already outperforms the global baseline with a substantial margin on average. Furthermore, we observe distinct scaling behaviors for ID and OOD, *i.e.* while ID performance saturates relatively early, OOD performance continues to improve. This suggests that smaller datasets are sufficient for in-domain retrieval, whereas learning robust, transferable similarity patterns requires larger-scale training. Finally, despite our best efforts to effectively train AMES on the same training sets, the final models does not improve global descriptor performance, highlighting the data efficiency of ELViS.

5 CONCLUSION

We introduce ELViS, a lightweight and highly effective image-to-image similarity model that achieves state-of-the-art re-ranking performance across multiple instance-level retrieval benchmarks. As a similarity-based model, ELViS benefits from strong inductive biases, enabling better generalization to unseen domains compared to descriptor-based approaches. Moreover, ELViS is composed of a sequence of intuitive processing steps. By avoiding deep stacks of generic neural blocks, it offers not only high efficiency, processing nearly an order of magnitude more images than the second-best model across all datasets in the same amount of time, but also improved interpretability of its predictions.

540 REFERENCES
541

542 Xiang An, Jiankang Deng, Kaicheng Yang, Jaiwei Li, Ziyong Feng, Jia Guo, Jing Yang, and Tongliang Liu.
543 UNICOM: Universal and compact representation learning for image retrieval. In *ICLR*, 2023. 3

544 Relja Arandjelović and Andrew Zisserman. Three things everyone should know to improve object retrieval. In
545 *CVPR*, 2012. 2

546 Harry G Barrow, Jay M Tenenbaum, Robert C Bolles, and Helen C Wolf. Parametric correspondence and cham-
547 fer matching: Two new techniques for image matching. In *Proceedings: Image Understanding Workshop*,
548 1977. 7

549 Gabriele Berton, Alex Stoken, Barbara Caputo, and Carlo Masone. EarthLoc: Astronaut photography localiza-
550 tion by indexing earth from space. In *CVPR*, 2024. 16

551 Bingyi Cao, André Araujo, and Jack Sim. Unifying deep local and global features for image search. In *ECCV*,
552 2020. 1

553 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for con-
554 trastive learning of visual representations. In *ICML*, 2020. 6

555 Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Viswanatha Reddy Gajjala, Aneeshan Sain, Tao Xiang, and
556 Yi-Zhe Song. Partially does it: Towards scene-level FG-SBIR with partial input. In *CVPR*, 2022. 3

557 Gabriela Csurka, Timothy M Hospedales, Mathieu Salzmann, and Tatiana Tommasi. Domain generalization.
558 In *Visual Domain Adaptation in the Deep Learning Era*. 2022. 1, 3

559 Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Katharina Willamowski, and Cédric Bray. Visual
560 categorization with bags of keypoints. In *ECCVW*, 2004. 2

561 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In *NIPS*, 2013. 4

562 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers. In
563 *ICLR*, 2024. 15

564 Albert Gordo, Filip Radenovic, and Tamara L. Berg. Attention-based query expansion learning. In *ECCV*,
565 2020. 2

566 Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and weak geometric consistency
567 for large scale image search. In *ECCV*, 2008. 6

568 Hanwen Jiang, Arjun Karpur, Bingyi Cao, Qixing Huang, and André Araujo. OmniGlue: Generalizable feature
569 matching with foundation model guidance. In *CVPR*, 2024. 3

570 Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua, Kwang Moo Yi, and Eduard Trulls.
571 Image Matching across Wide Baselines: From Paper to Practice. *IJCV*, 2020. 3

572 Nikhil Keetha, Avneesh Mishra, Jay Karhade, Krishna Murthy Jatavallabhula, Sebastian Scherer, Madhava
573 Krishna, and Sourav Garg. AnyLoc: Towards universal visual place recognition. *IEEE Robotics and Au-
574 tomation Letters*, 2023. 16

575 Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A. Efros, and Antonio Torralba. Undoing the
576 damage of dataset bias. In *ECCV*, 2012. 3

577 Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis Patras, and Ioannis Kompatsiaris. ViSiL: Fine-
578 grained spatio-temporal video similarity learning. In *ICCV*, 2019. 2

579 Giorgos Kordopatis-Zilos, Vladan Stojnić, Anna Manko, Pavel Šuma, Nikolaos-Antonios Ypsilantis, Nikos
580 Efthymiadis, Zakaria Laskar, Jiří Matas, Ondřej Chum, and Giorgos Tolias. ILIAS: Instance-level image
581 retrieval at scale. In *CVPR*, 2025. 2, 7, 14

582 Seongwon Lee, Hongje Seong, Suhyeon Lee, and Euntai Kim. Correlation verification for image retrieval. In
583 *CVPR*, 2022. 1, 2

584 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain general-
585 ization. In *ICCV*, 2017. 3

586 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR*, 2019. 15

587 David G. Lowe. Distinctive image features from scale-invariant keypoints. *IJCV*, 2004. 2, 3

594 Massimiliano Mancini, Zeynep Akata, Elisa Ricci, and Barbara Caputo. Towards recognizing unseen categories
 595 in unseen domains. In *ECCV*, 2020. 3

596

597 Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. Large-scale image retrieval with
 598 attentive deep local features. In *ICCV*, 2017. 2, 7

599 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer-
 600 nandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech
 601 Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel
 602 Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DI-
 603 NOv2: Learning robust visual features without supervision. *TMLR*, 2024. 1, 2, 3, 7, 15, 18

604 Jingtian Peng, Chang Xiao, and Yifan Li. RP2K: A large-scale retail product dataset for fine-grained image
 605 classification. In *arXiv*, 2020. 7, 14

606 James Philbin, Ondřej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Object retrieval with large
 607 vocabularies and fast spatial matching. In *CVPR*, 2007. 2, 7, 14

608 James Philbin, Ondřej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Lost in quantization: Im-
 609 proving particular object retrieval in large scale image databases. In *CVPR*, 2008. 7, 14

610 Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. In *CVPR*, 2020. 3

611 Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej Chum. Revisiting oxford and paris:
 612 Large-scale image retrieval benchmarking. In *CVPR*, 2018. 7, 14

613 Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-tuning CNN image retrieval with no human annota-
 614 tion. *PAMI*, 2019. 2

615 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
 616 Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
 617 visual models from natural language supervision. In *ICML*, 2021. 1, 3, 6

618 Ali S Razavian, Josephine Sullivan, Stefan Carlsson, and Atsuto Maki. Visual instance retrieval with deep
 619 convolutional networks. *ITE Trans. on Media Technology and Applications*, 2016. 7

620 Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperGlue: Learning
 621 feature matching with graph neural networks. In *CVPR*, 2020. 4, 7, 9

622 Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *CVPR*, 2016. 3

623 Shihao Shao, Kaifeng Chen, Arjun Karpur, Qinghua Cui, André Araujo, and Bingyi Cao. Global features are
 624 all you need for image retrieval and reranking. In *ICCV*, 2023. 2

625 Eli Shechtman and Michal Irani. Matching local self-similarities across images and videos. In *CVPR*, 2007. 2

626 Oriane Simeoni, Yannis Avrithis, and Ondřej Chum. Local features and visual words emerge in activations. In
 627 *CVPR*, 2019. 2

628 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose, Vasil Khalidov,
 629 Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. DINOv3. In *arXiv*, 2025. 7, 8, 15,
 630 18

631 Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. *Pacific
 632 Journal of Mathematics*, 1967. 4

633 Josef Sivic and Andrew Zisserman. Video Google: A text retrieval approach to object matching in videos. In
 634 *ICCV*, 2003. 2

635 Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted structured
 636 feature embedding. In *arXiv*, 2015. 7, 14

637 Pavel Suma, Giorgos Kordopatis-Zilos, Ahmet Iscen, and Giorgos Tolias. AMES: Asymmetric and memory-
 638 efficient similarity estimation for instance-level retrieval. In *ECCV*, 2024. 1, 2, 3, 7, 14, 15

639 Fuwen Tan, Jiangbo Yuan, and Vicente Ordonez. Instance-level image retrieval using reranking transformers.
 640 In *CVPR*, 2021. 1, 2, 3, 7, 14

641 Giorgos Tolias and Hervé Jegou. Visual query expansion with or without geometry: refining local descriptors
 642 by feature aggregation. *Pattern Recognition*, 2014. 5

648 Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. To aggregate or not to aggregate: selective match kernels
 649 for image search. In *ICCV*, 2013. 6

650 Giorgos Tolias, Tomas Jenicek, and Ondřej Chum. Learning and aggregating deep local descriptors for instance-
 651 level recognition. In *ECCV*, 2020. 7

652 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil
 653 Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. SigLIP 2: Multilingual vision-
 654 language encoders with improved semantic understanding, localization, and dense features. In *arXiv*, 2025.
 655 7, 8, 15, 18

656 Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John Duchi, Vittorio Murino, and Silvio Savarese. General-
 657 alizing to unseen domains via adversarial data augmentation. In *NIPS*, 2018. 3

658 Chaoqun Wan, Xu Shen, Yonggang Zhang, Zhiheng Yin, Xinmei Tian, Feng Gao, Jianqiang Huang, and Xian-
 659 Sheng Hua. Meta convolutional neural networks for single domain generalization. In *CVPR*, 2022. 3

660 Shuang Wang and Shuqiang Jiang. INSTRE: A new benchmark for instance-level object retrieval and recogni-
 661 tion. *ACM TOMM*, 2015. 7, 14

662 Tobias Weyand, André Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2 - A large-scale bench-
 663 mark for instance-level recognition and retrieval. In *CVPR*, 2020. 7, 14

664 Zilin Xiao, Pavel Suma, Ayush Sachdeva, Hao-Jen Wang, Giorgos Kordopatis-Zilos, Giorgos Tolias, and Vi-
 665 cente Ordonez. LOCORE: Image re-ranking with long-context sequence modeling. In *CVPR*, 2025. 1

666 Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. A fourier-based framework for domain
 667 generalization. In *CVPR*, 2021a. 3

668 Zhenlin Xu, Deyi Liu, Junlin Yang, Colin Raffel, and Marc Niethammer. Robust and generalizable visual
 669 representation learning via random convolutions. In *ICLR*, 2021b. 3

670 Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya Gupta. Deep lattice networks and partial
 671 monotonic functions. In *NeurIPS*, 2017. 7

672 Nikolaos-Antonios Ypsilantis, Noa Garcia, Guangxing Han, Sarah Ibrahimi, Nanne Van Noord, and Giorgos
 673 Tolias. The Met dataset: Instance-level recognition for artworks. In *NeurIPS*, 2021. 7, 14

674 Nikolaos-Antonios Ypsilantis, Kaifeng Chen, Bingyi Cao, Mário Lipovský, Pelin Dogan-Schönberger, Grze-
 675 gorz Makosa, Boris Bluntschli, Mojtaba Seyedhosseini, Ondřej Chum, and André Araujo. Towards universal
 676 image embeddings: A large-scale dataset and challenge for generic image representations. In *ICCV*, 2023.
 677 14

678 Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing Gong.
 679 Domain randomization and pyramid consistency: Simulation-to-real generalization without accessing target
 680 domain data. In *ICCV*, 2019. 3

681 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning
 682 via redundancy reduction. In *ICML*, 2021. 6

683 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-
 684 training. In *ICCV*, 2023. 1, 3

685 Xunlin Zhan, Yangxin Wu, Xiao Dong, Yunchao Wei, Minlong Lu, Yichi Zhang, Hang Xu, and Xiaodan
 686 Liang. ProductIM: Towards weakly supervised instance-level product retrieval via cross-modal pretraining.
 687 In *ICCV*, 2021. 7, 14

688 Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. In *ICLR*, 2021.
 689 3

690 Sijie Zhu, Linjie Yang, Chen Chen, Mubarak Shah, Xiaohui Shen, and Heng Wang. R2former: Unified retrieval
 691 and reranking transformer for place recognition. In *CVPR*, 2023. 1, 2, 3, 7, 15

692 Evin Pinar Örnek, Yann Labb  , Bugra Tekin, Lingni Ma, Cem Keskin, Christian Forster, and Tomas Hodan.
 693 FoundPose: Unseen object pose estimation with foundation features. In *ECCV*, 2024. 3

694

695

696

697

698

699

700

701

Appendix

dataset	train set	validation set		test set		domain	evaluation metric
		queries	database	queries	database		
GLDv2	755K	379	762K	750	762K	landmark	mAP@100
SOP	48.9K	1K	10.6K	1K	60.5K	household	mAP@100
\mathcal{R} Oxford	—	—	—	70	5K+1M	landmark	mAP
\mathcal{R} Paris	—	—	—	70	6.3K+1M	landmark	mAP
Product1M	—	—	—	6.2K	38.7K	retail	mAP@100
RP2K	—	—	—	10.9K	10.9K	retail	mAP@100
MET	—	—	—	1K	397K	artwork	mAP@100
INSTRE	—	—	—	1.2K	27K	multi	mAP@100
ILIAS	—	—	—	1K	100M	multi	mAP@1K

Table G: Dataset statistics and metrics used. For each dataset, we use the most commonly used metric. Train and validation set statistics are reported only for the two training datasets that are used in this work.

A DATASET DETAILS

We evaluate the proposed method and the closest related approaches on eight datasets containing instance-level or fine-grained recognition annotations. These datasets span multiple domains listed below. **Examples of each are visualized in Figure E.**

Landmarks. The \mathcal{R} Oxford (Philbin et al., 2007; Radenović et al., 2018), \mathcal{R} Paris (Philbin et al., 2008; Radenović et al., 2018), and Google Landmarks dataset v2 (GLDv2) (Weyand et al., 2020) are designed for instance-level retrieval and recognition. GLDv2 contains a training/test split. As usual, we evaluate the *medium* and *hard* settings of \mathcal{R} Oxford and \mathcal{R} Paris datasets together with 1M accompanying distractor images, denoted as \mathcal{R} OP+1M.

Household Items. Stanford Online Products (SOP) (Song et al., 2015) is an instance-level dataset of furniture and electric appliance images sourced from eBay. It has been widely used for fine-grained image classification and contains a training/test split. For evaluation on SOP, we sample 1k test images that serve as queries. The entire test set is used for database. The training images are further divided into a training set and a validation set in an 80%-20% split.

Retail Products. Product1M (Zhan et al., 2021) and RP2K (Peng et al., 2020) are datasets containing a large variety of retail products, *e.g.* cosmetics and grocery store items. The former was made for instance-level retrieval, while RP2K originally targeted fine-grained image classification. We adopt its repurposed version from (Ypsilantis et al., 2023), tailored for retrieval.

Artworks. The MET (Ypsilantis et al., 2021) dataset depicts artworks from the Metropolitan Museum of Art in New York and is designed for instance-level recognition. To adapt the benchmark for retrieval, we keep only one positive image per query that is guaranteed to have visual overlap with it.

Multi-domain datasets. Instance-Level Image retrieval At Scale (ILIAS) (Kordopatis-Zilos et al., 2025) and INSTance-level visual object REtrieval and REcognition (INSTRE) (Wang & Jiang, 2015) datasets are designed for instance-level retrieval and include images from various domains, *e.g.* landmarks, products, and art.

B IMPLEMENTATION DETAILS

We follow the standard practice of training image-to-image similarity models with local descriptors (Tan et al., 2021; Suma et al., 2024). All the learnable parameters of ELViS are trained with binary cross-entropy loss, where the ground truth label of the image pair denotes whether the two images are positive, *i.e.* depict the same object instance, or not. We apply balanced sampling so the

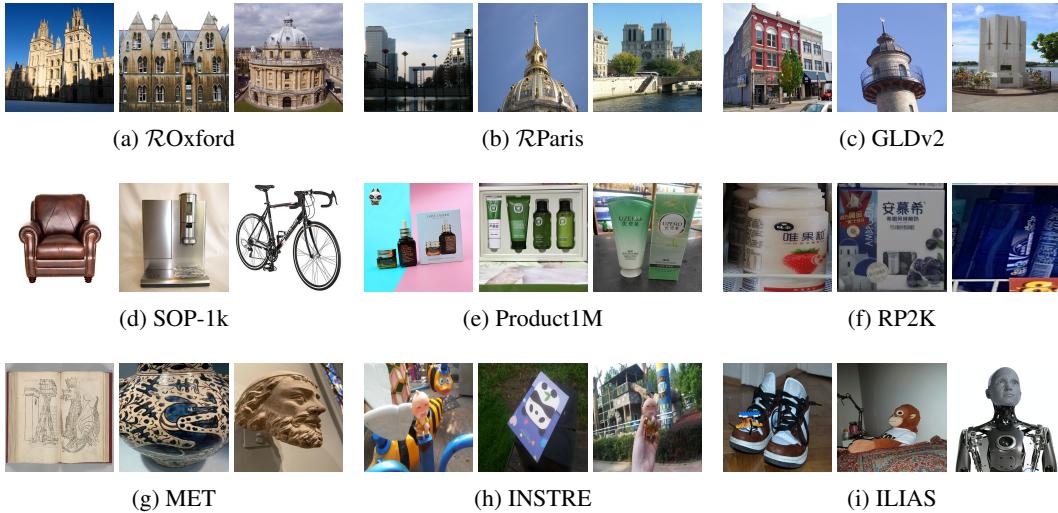


Figure E: **Benchmark Examples.** Three random samples are shown for each of the 9 datasets. All images are resized to a square aspect ratio for better visualization.

network sees the same number of both labels per batch. We mine challenging pairs by exploiting the most similar images as indicated by a given global descriptor representation.

Our model consists of a function f implemented as an MLP with a hidden dimensionality of 16, and a function g , also an MLP, with a dimensionality set to 64. For the refinement step, we set λ to 0.1 and initialize ω with 1. We run 10 iterations of the Sinkhorn-Knopp algorithm, which is a trade-off that balances the model speed and performance. For the dustbin function h , we retain the input dimensionality D for the hidden layer. Local descriptors are extracted from the DINOv2-Base model with registers (Oquab et al., 2024; Dariset et al., 2024), DINOv3-Large model (Siméoni et al., 2025), and SigLIP2-So400m@512 (Tschannen et al., 2025). The same models also provide the global descriptor to generate the respective ranked lists of images per query for reranking. The dimensionality after reduction is set to $D = 128$.

We train our model for 10 epochs, sampling triplets of anchors, positives, and negatives as described in (Suma et al., 2024). We use a batch size of 200 triplets and a variable number of local descriptors per image, sampled within the $[100, 400]$. The network is trained using the AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of $5 \cdot 10^{-4}$ and a cosine learning rate schedule with warmup. We follow the same training strategy for both GLDv2 and SOP, with the exception of the learning rate and number of epochs on the SOP dataset, which are set to $1 \cdot 10^{-3}$ and 30 for ELViS, and $5 \cdot 10^{-4}$ and 45 for the compared models, respectively.

For local descriptor extraction, images are resized according to their longer side. We use 770 for DINOv2 and 768 for DINOv3 and SigLIP2 to ensure divisibility by the ViT patch size. The output patch tokens by the backbones are then processed by a local feature detector, which assigns an importance weight to each token. Tokens with the highest weights are selected as local descriptors. Following AMES, we adopt its training strategy and network architecture for the local feature detector, training a different model for each backbone and training set. The dimensionality D' of the output local descriptors is 768 for DINOv2, 1024 for DINOv3, and 1152 for SigLIP2.

SuperGlue is evaluated using the default parameters of its pre-trained outdoor model, with the number of SuperPoint keypoints capped at 600 for consistency with other methods. Input images are resized such that the longer side is 1024 pixels, which ensures that typically-sized images produce enough keypoints while remaining comparable to the resolution used for other methods.

It is common practice to ensemble retrieval performance from global and local descriptors (Zhu et al., 2023; Suma et al., 2024). However, we found this was not necessary for our method to achieve its best performance. In all our experimental results, we report the following for each method: global+local for AMES, R2Former, and SuperGlue, and local-only for RRT, Chamfer, and ELViS. For AMES and SuperGlue the ensembling parameter is tuned on the in-domain validation set, while

Method	Alps			California			Gobi Desert			Amazon			Toskha Lakes		
	R@1	R@10	R@100	R@1	R@10	R@100									
AnyLoc	40.7	70.8	92.0	48.7	75.0	91.6	28.7	57.0	81.7	38.6	63.8	86.2	63.7	84.5	96.3
EarthLoc	53.9	71.9	87.2	55.9	74.6	91.6	46.8	65.0	82.9	45.6	66.6	82.4	67.6	80.3	91.9
No-reranking	35.7	65.6	91.1	50.1	78.2	93.9	26.2	53.3	84.0	31.4	61.1	83.9	52.4	78.1	94.9
AMES	44.0	74.5	93.7	57.4	83.0	95.7	36.0	64.7	87.0	40.4	69.2	87.8	61.5	85.4	96.8
ELViS	55.1	80.0	94.6	62.0	82.7	94.7	49.7	71.2	86.9	54.4	76.2	89.0	77.0	90.9	97.6

Table H: **Generalization to extreme domain shifts.** Benchmark devised for Astronaut Photography Localization (APL) through retrieval (Berton et al., 2024). Performance is measured in Recall@ k (R@ k). APL comprises five datasets covering different geographical areas of extreme visual environments. *Top:* reference methods AnyLoc (Keetha et al., 2023) (DINOv2) and EarthLoc (Berton et al., 2024) baseline (ResNet50). *Bottom:* Re-ranking 400 images on top of a DINOv3 backbone. **Bold** indicates the best performance.

λ	ID	OOD	avg	iterations	ID	OOD	avg
0.01	46.4	47.7	47.4	1	50.5	53.4	52.7
0.1	50.5	55.0	53.9	3	51.2	54.6	53.7
0.5	50.7	52.1	51.7	5	51.0	54.4	53.6
1.0	48.9	48.2	48.4	10	50.5	55.0	53.9
learnable	51.2	54.9	54.0	20	51.2	55.0	54.1

Table I: **Ablation study of the OT hyperparameters.** Models are trained on the Landmarks (GLDv2) domain. We report average performance over the in-domain (ID), out-of-domain (OOD), and all benchmarks (avg). We assess the impact of the regularization parameter λ and the number of OT iterations, varying one hyperparameter at a time while keeping all others at their default values.

for R2Former, it is fixed to an equal weight (0.5) for local and global similarity. We do not enforce a consistent setup across all methods, as no single ensembling scheme yields the best results in every setting; instead, we use the ensembling strategy proposed by the original works.

C ROBUSTNESS TO EXTREME DOMAIN SHIFTS

We evaluate robustness on the Astronaut Photography Localization (APL) benchmark (Berton et al., 2024). Although the downstream application is localization, the benchmark is formulated as a standard image retrieval task evaluated via Recall@ k . The query images are handheld photographs taken by astronauts, while the database consists of nadir satellite imagery. The goal is to retrieve, for each astronaut photograph query, the corresponding satellite image depicting the same location within the top k ranks. The benchmark includes five datasets representing extreme visual environments with distinct scientific importance, such as flood monitoring or disaster response.

Table H compares the performance of ELViS and AMES, both using the DINOv3 descriptors and re-ranking 400 images. For reference, we also report performance of two task-specific approaches: (i) AnyLoc (Keetha et al., 2023) a Visual Place Recognition (VPR), and (ii) the specialist EarthLoc (Berton et al., 2024) trained for the task. ELViS demonstrates high effectiveness compared with other methods. Moreover, it outperforms AMES and surpasses the top results reported in the original paper.

D ABLATION OF OT HYPERPARAMETERS

Table I reports the performance of ELViS under different values of the regularization parameter λ and different numbers of OT iterations. For each configuration, we train a new ELViS model from scratch. The results confirm that increasing the number of OT refinement iterations yields a slightly better performance. Conversely, setting λ to values either higher or lower than the default value ($\lambda = 0.1$) leads to a substantial performance drop, while making λ learnable does not provide any noticeable improvement on average. Using different hyperparameters during training and testing degrades performance considerably and was thus omitted from the results.

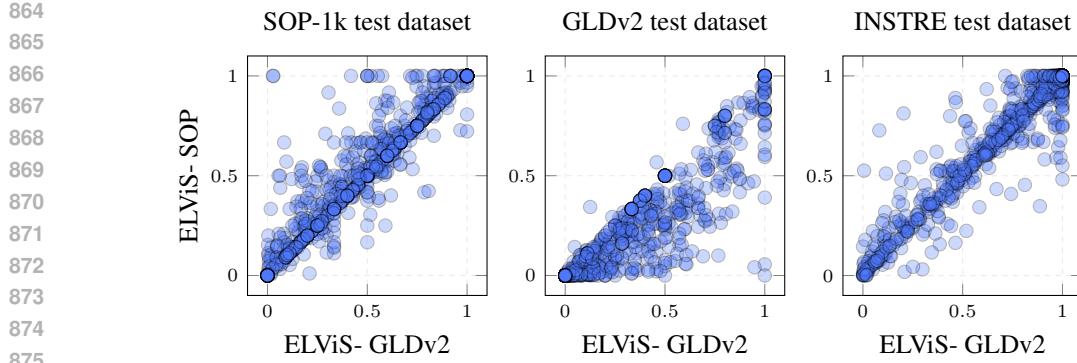


Figure F: **Average precision per query.** Each marker corresponds to the AP of a single query evaluated on different test datasets using DINoV2 as a representation model. x-axis: performance using ELViS trained on SOP dataset. y-axis: performance using ELViS trained on GLDv2 dataset.

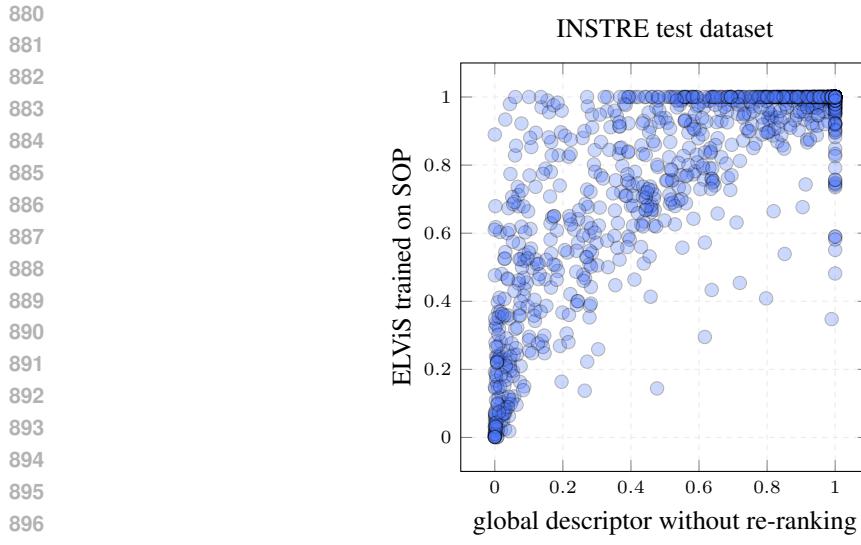


Figure G: **Average precision per query.** Each marker corresponds to the AP of a single query evaluated on INSTRE using DINoV2 as a representation model. y-axis: performance using ELViS trained on SOP dataset. x-axis: performance of the global descriptor without any re-ranking.

E DETAILED PERFORMANCE ANALYSIS

In Figure F, we compare the performance on per query basis for ELViS trained in two different domains. What we observe is justified by the train-test domain gaps. In particular, performance on household items is better when training on household items than on landmarks (left plot) and vice versa (middle plot). On INSTRE, which includes a small number of landmarks and household items among a large variety of objects, the best performing model varies a lot across queries.

In Figure G, we show the improvement of ELViS re-ranking over global descriptor retrieval, demonstrated on per-query basis. For the majority of queries, the model improves the ranking, while the cases where it performs poorly are few and marginally impacted.

918	Method	<i>R</i> Oxford	<i>R</i> Paris	GLDv2	ILIAS	INSTRE	MET	Prod1M	RP2K	SOP-1k	ID	OOD	avg
DINOv2 descriptors (Oquab et al., 2024)													
920	No re-ranking	47.3	67.9	27.3	9.4	65.3	61.6	24.7	39.0	33.7	42.5	38.9	39.8
921	Chamfer	43.0	54.8	23.8	6.2	55.0	37.3	17.8	55.8	48.6	40.2	36.8	37.6
922	Chamfer+OT	55.6	65.5	23.8	14.3	76.0	74.0	35.1	55.4	46.2	42.2	50.2	48.2
923	RRT	64.1 _{±0.6}	74.4 _{±0.0}	33.1 _{±0.2}	13.1 _{±0.6}	72.4 _{±1.1}	64.1 _{±0.7}	29.3 _{±1.7}	60.7 _{±0.9}	52.1 _{±0.6}	51.1 _{±0.3}	48.6 _{±0.9}	49.2 _{±0.8}
924	<i>R</i> ² Former	63.7 _{±0.2}	73.4 _{±0.1}	32.6 _{±0.0}	15.2 _{±0.1}	77.6 _{±0.1}	72.0 _{±0.3}	35.6 _{±0.3}	47.7 _{±0.6}	43.7 _{±0.1}	50.6 _{±0.1}	48.6 _{±0.2}	49.1 _{±0.2}
925	AMES	65.6 _{±0.5}	74.6 _{±0.1}	34.7 _{±0.3}	14.6 _{±0.2}	75.6 _{±0.3}	70.7 _{±0.9}	32.3 _{±2.5}	56.5 _{±1.1}	48.5 _{±0.5}	52.4 _{±0.3}	49.7 _{±0.9}	50.4 _{±0.7}
926	ELViS	64.3 _{±0.3}	73.3 _{±0.2}	32.2 _{±0.0}	18.8 _{±0.1}	80.4 _{±0.2}	76.5 _{±0.4}	41.5 _{±0.3}	59.2 _{±1.0}	52.3 _{±0.2}	50.5 _{±0.1}	55.0 _{±0.2}	53.9 _{±0.3}
DINOv3 descriptors (Siméoni et al., 2025)													
927	No re-ranking	64.2	78.1	31.7	26.5	88.2	77.2	64.9	61.6	44.5	51.4	60.5	58.2
928	Chamfer	55.1	70.1	24.2	6.5	71.3	48.6	34.1	62.7	43.8	43.4	44.5	44.2
929	Chamfer+OT	56.4	67.7	21.9	12.3	86.7	63.0	48.8	57.4	40.5	42.0	51.4	49.1
930	RRT	72.3 _{±1.1}	81.6 _{±0.2}	36.9 _{±0.1}	25.8 _{±1.8}	84.0 _{±1.5}	58.3 _{±3.5}	50.6 _{±2.9}	62.0 _{±1.8}	56.1 _{±0.3}	56.9 _{±0.4}	56.2 _{±2.0}	56.3 _{±1.6}
931	<i>R</i> ² Former	73.4 _{±0.1}	82.0 _{±0.2}	36.5 _{±0.1}	34.3 _{±0.3}	92.3 _{±0.1}	79.3 _{±0.5}	62.9 _{±0.4}	63.0 _{±0.1}	51.4 _{±0.1}	57.1 _{±0.1}	63.9 _{±0.3}	62.2 _{±0.2}
932	AMES	75.6 _{±0.3}	83.2 _{±0.2}	38.6 _{±0.2}	32.4 _{±0.8}	89.6 _{±0.1}	72.8 _{±0.4}	61.1 _{±0.1}	65.3 _{±0.1}	55.7 _{±0.9}	59.0 _{±0.2}	62.8 _{±0.5}	61.9 _{±0.3}
933	ELViS	73.0 _{±0.0}	81.2 _{±0.1}	37.0 _{±0.0}	41.2 _{±0.0}	93.4 _{±0.1}	81.0 _{±0.2}	63.9 _{±0.1}	68.1 _{±0.1}	57.0 _{±0.2}	57.0 _{±0.0}	67.4 _{±0.1}	64.8 _{±0.1}
SigLIP2 descriptors (Tschannen et al., 2025)													
934	No re-ranking	17.3	47.8	18.3	22.4	89.8	61.7	70.2	40.6	62.2	25.4	57.8	49.7
935	Chamfer	23.0	59.1	24.6	22.9	83.7	57.3	67.1	52.9	68.3	32.8	58.7	52.2
936	Chamfer+OT	23.0	54.9	19.7	28.3	90.0	69.0	69.3	50.2	67.3	29.3	62.3	54.1
937	RRT	28.3 _{±0.3}	62.0 _{±0.0}	29.8 _{±0.1}	24.9 _{±2.5}	82.9 _{±1.6}	59.2 _{±5.0}	65.3 _{±2.8}	48.4 _{±2.0}	69.7 _{±0.7}	37.5 _{±0.1}	58.4 _{±2.5}	53.2 _{±1.9}
938	<i>R</i> ² Former	25.7 _{±0.4}	59.8 _{±0.1}	27.7 _{±0.4}	31.3 _{±1.0}	90.4 _{±1.3}	69.4 _{±1.0}	70.5 _{±1.3}	47.8 _{±1.5}	68.4 _{±1.1}	35.2 _{±0.3}	63.0 _{±1.1}	56.0 _{±1.0}
939	AMES	27.7 _{±1.2}	61.1 _{±0.7}	29.9 _{±0.4}	30.4 _{±1.2}	89.0 _{±1.0}	65.9 _{±0.5}	72.5 _{±0.6}	48.2 _{±1.0}	70.1 _{±1.6}	37.1 _{±0.7}	62.7 _{±1.0}	56.3 _{±0.9}
940	ELViS	27.8 _{±0.0}	61.5 _{±0.1}	28.1 _{±0.0}	41.3 _{±0.2}	93.5 _{±0.1}	76.2 _{±0.4}	73.4 _{±0.1}	55.9 _{±0.2}	72.1 _{±0.0}	36.4 _{±0.1}	68.7 _{±0.1}	60.6 _{±0.1}

Table J: **mAP mean and standard deviation for training on Landmarks.** Three different backbones used as a representation model.

941	Method	<i>R</i> Oxford	<i>R</i> Paris	GLDv2	ILIAS	INSTRE	MET	Prod1M	RP2K	SOP-1k	ID	OOD	avg
942	No re-ranking	47.3	67.9	27.3	9.4	65.3	61.6	24.7	39.0	33.7	33.7	40.7	39.8
943	Chamfer	29.7	62.6	15.4	6.7	63.2	45.2	24.7	50.3	50.2	50.2	35.9	37.7
944	Chamfer+OT	43.7	60.8	18.6	11.7	75.9	71.6	37.5	52.7	45.8	45.8	45.7	45.7
945	RRT	28.2 _{±1.7}	58.7 _{±1.3}	10.8 _{±1.1}	12.2 _{±1.5}	68.4 _{±1.8}	25.5 _{±2.8}	32.2 _{±1.8}	46.9 _{±3.9}	57.1 _{±0.3}	57.1 _{±0.3}	34.2 _{±2.0}	37.1 _{±1.5}
946	<i>R</i> ² Former	43.4 _{±1.0}	67.5 _{±0.3}	23.7 _{±0.5}	12.9 _{±0.3}	73.4 _{±0.4}	59.3 _{±0.7}	32.8 _{±1.9}	42.0 _{±0.7}	51.1 _{±0.3}	51.1 _{±0.3}	42.8 _{±0.7}	43.8 _{±0.7}
947	AMES	46.2 _{±1.0}	65.1 _{±1.5}	17.2 _{±1.1}	12.4 _{±0.5}	72.2 _{±1.0}	44.2 _{±1.8}	36.7 _{±1.9}	51.8 _{±2.5}	56.7 _{±0.6}	56.7 _{±0.6}	41.4 _{±1.5}	43.3 _{±1.2}
948	ELViS	50.5 _{±0.6}	68.9 _{±0.1}	22.9 _{±0.3}	18.6 _{±0.0}	81.1 _{±0.2}	76.7 _{±0.3}	44.1 _{±0.1}	54.2 _{±0.9}	54.9 _{±0.1}	54.9 _{±0.1}	51.0 _{±0.3}	51.5 _{±0.2}

Table K: **mAP mean and standard deviation for training on Household Items.** DINOv2 used as a representation model.

F DETAILED QUANTITATIVE RESULTS

In Tables J and Tables K, we provide the mean and standard deviation across all runs. For every setting, we train three models using a different seed each time. These tables partly repeat information provided in the main paper, but are meant to complement the ones from the main paper with the std and the detailed per dataset performance for DINOv3 and SigLIP.

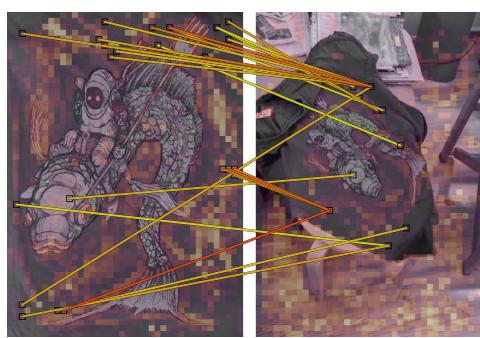
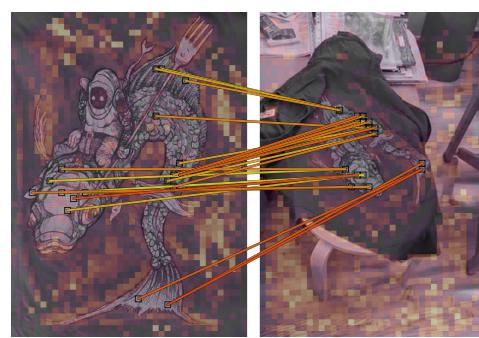
G ADDITIONAL QUALITATIVE EXAMPLES

In Figure H, we present additional visual examples of correspondences for positive image pairs from various domains, and in Figure I, the corresponding similarity matrices. Note that an initial similarity matrix with many large values does not necessarily result in many large values after refinement and vote strength transformation. This is due to the optimal transport optimization that jointly processes all similarities and requires some kind of mutual compatibility in the final result.

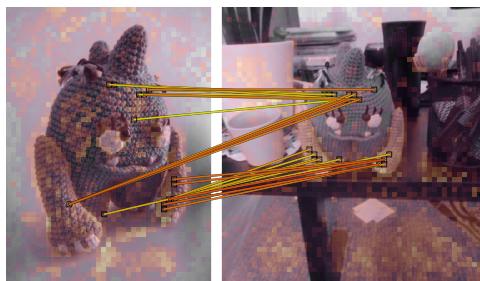
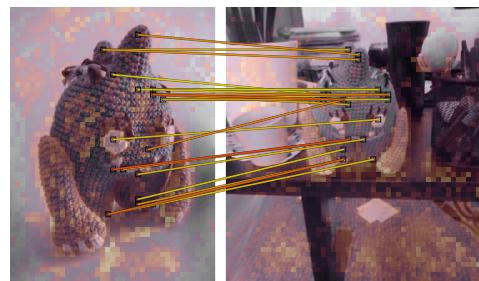
H LLM USAGE IN THIS PAPER

An LLM was used to correct and improve some already written parts of the paper, *i.e.* in the form of an advanced grammar/syntax checker, and for polishing the phrasing. An LLM was never used to generate text from scratch.

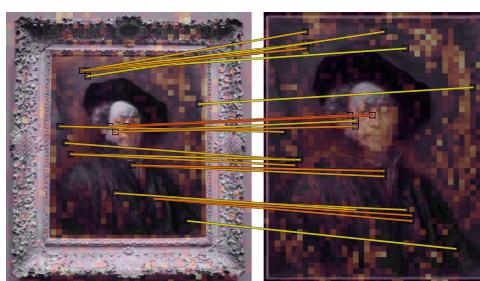
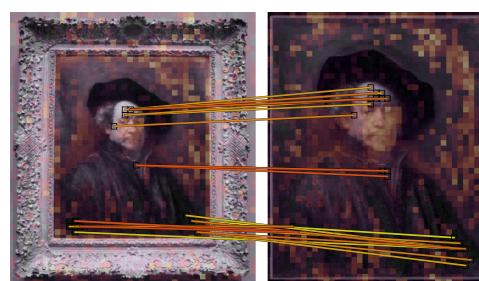
972
973
974
975
976
977
978
979
980
981
982
983



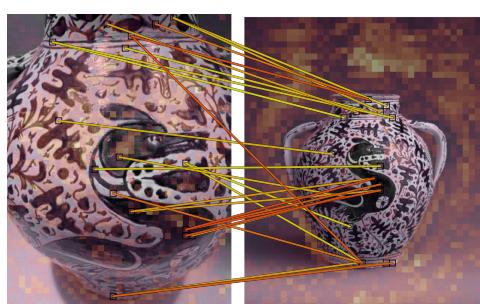
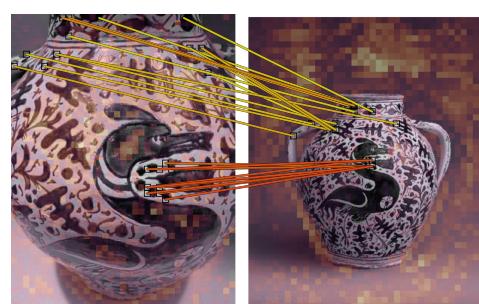
984
985
986
987
988
989
990
991
992
993



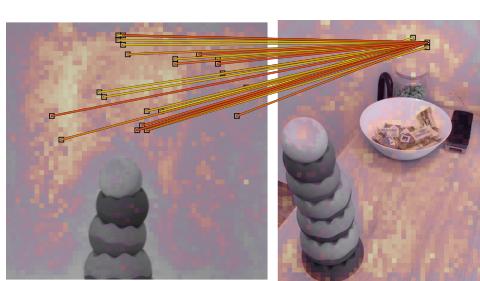
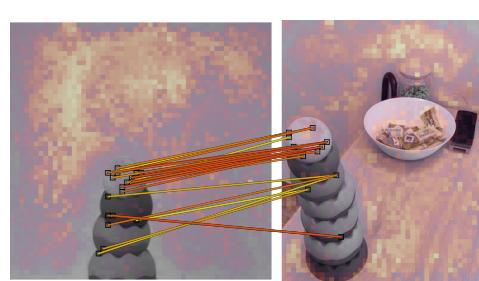
994
995
996
997
998
999
1000
1001
1002
1003



1004
1005
1006
1007
1008
1009
1010
1011
1012
1013



1014
1015
1016
1017
1018
1019
1020
1021
1022
1023



1024
1025

Figure H: **Visualization of strong correspondences** before (left) and after (right) refinement with optimal transport.

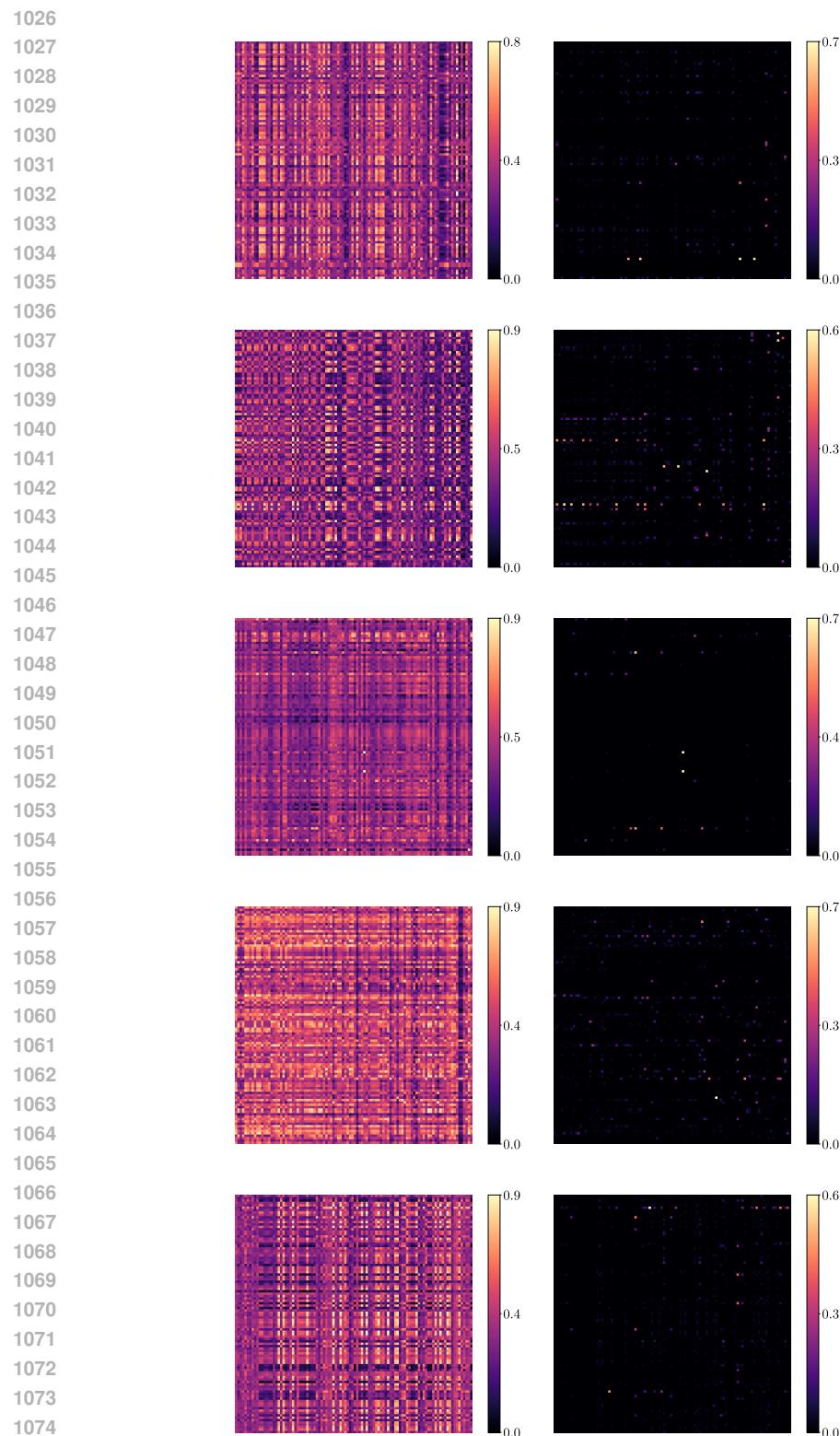


Figure I: Visualization of similarity matrices before (left) and after (right) refinement with optimal transport with individual values passed through function f . A subset of 100 descriptors is used. These examples correspond to the ones of Figure H.