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ABSTRACT

Language models’ (LMs) proficiency in handling deterministic symbolic rea-
soning and rule-based tasks remains limited due to their dependency implicit
learning on textual data. To endow LMs with genuine rule comprehension abil-
ities, we propose "Neural Comprehension" - a framework that synergistically
integrates compiled neural networks (CoNNs) into the standard transformer archi-
tecture. CoNNs are neural modules designed to explicitly encode rules through
artificially generated attention weights. By incorporating CoNN modules, the
Neural Comprehension framework enables LMs to accurately and robustly ex-
ecute rule-intensive symbolic tasks. Extensive experiments demonstrate the su-
periority of our approach over existing techniques in terms of length general-
ization, efficiency, and interpretability for symbolic operations. Furthermore,
it can be applied to LMs across different model scales, outperforming tool-
calling methods in arithmetic reasoning tasks while maintaining superior in-
ference efficiency. Our work highlights the potential of seamlessly unifying
explicit rule learning via CoNNs and implicit pattern learning in LMs, paving
the way for true symbolic comprehension capabilities. The code is released at:
https://github.com/wengsyx/Neural-Comprehension.

1 INTRODUCTION
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Figure 1: The length generalization of T5 (with fine-
tune), GPT-3.5 and GPT-4 (with few-shot) on symbolic
operations (Addition) tasks. To evaluate the model’s
proficiency, we conducted experiments on tasks ranging
from 3 to 30 digits, with longer than 10 digits being
out-of-distribution of training data.

Language models (LMs), particularly large
language models (LLMs), have exhibited
impressive performance on complex rea-
soning tasks (Brown et al., 2020; Zhang
et al., 2022; Chowdhery et al., 2022; Wei
et al., 2022a; Suzgun et al., 2022). De-
spite this, the proficiency of LMs in tack-
ling deterministic symbolic reasoning and
rule-based tasks is still limited (Welleck
et al.; Razeghi et al., 2022). For example,
GPT-3’s arithmetic performance declines
with higher digit numbers (Brown et al.,
2020), and its mathematical accuracy is in-
fluenced by word frequency in training data
(Razeghi et al., 2022). Moreover, length
generalization (Anil et al., 2022) remains a challenge even for 100-billion-parameter models, such
as GPT-4 (Bubeck et al., 2023). We hypothesize that these limitations stem from the dependency
of LMs on implicitly learning rules from textual data. As illustrated in Figure 1, a simple length
generalization experiment using addition tasks with varying numbers of digits highlights this limi-
tation. Performance deteriorates as test length increases, indicating that these models strongly rely
on statistical patterns in the data rather than capturing fundamental logical structures. This implicit
learning of statistical patterns constrains the accuracy of LMs in executing symbolic operations tasks.

∗These authors contribute equally to this work. And B means corresponding author.
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We propose a transformer-based language model framework, termed "Neural Comprehension", which
synergistically integrates a pretrained LM (Li et al., 2021b) and compiled neural networks (CoNNs)
(Weiss et al., 2021), combines their complementary strengths in a plug-and-play manner, to achieve
high accuracy and robust performance. CoNNs are neural networks but the rules are explicitly coded
through transformer-liked structures and attention. Therefore, the CoNN is human-controllable,
executing rules through artificially generated attention weights, and can achieve perfect accuracy
once compiled network is done. Neural Comprehension relys solely on neural networks without
requiring additional tools. It employs a token-by-token generative method, analogous to GPT-3,
where each token can be generated by either the pretrained LM or one of the CoNNs. The Neural
Comprehension comprises a pretrained LM and multiple sets of CoNNs. The implementation of the
Neural Comprehension framework facilitates the integration of rule-intensive abilities and reasoning
capabilities into LMs, endowing them with genuine symbolic comprehension skills.

We conduct extensive experiments to evaluate the performance of our proposed Neural Compre-
hension method on a variety of rule-intensive tasks. Our experimental results demonstrate the
effectiveness of our approach in comparison with existing state-of-the-art techniques, such as vanilla
fine-tuning, few-shot learning, and Chain-of-Thought reasoning (Wei et al., 2022b). Specifically,
Neural Comprehension outperforms these methods in terms of accuracy, efficiency, and interpretabil-
ity, showcasing its superiority in handling rule-intensive tasks. On the other hand, compared to
the Tool-Based method (Mialon et al., 2023), Neural Comprehension provides a unified end-to-end
neural network framework, eliminating the need for external interpreters and having higher inference
efficiency. Historically, LMs are far from mastering robust symbolic task, such as symbolic operations
and arithmetic reasoning (Stolfo et al., 2023). Our research provides a compelling case for LMs in
neural network frameworks mastering symbolic operations, highlighting its potential to transform the
landscape of symbolic reasoning and numerical computation capabilities for LMs.

Contributions Our main contributions are as follows:

• We pioneer the implementation of flawless execution rule-intensive symbolic operations
for language models that rely on neural networks. By employing a plug-and-play way, we
successfully integrate CoNNs, which are interpretable and human-controllable, into the
language model. Our method facilitates direct rule deduction without the need for learning
from conditional probabilities, leading to a more robust and effective approach. (Section 4)

• We have built the AutoCoNN toolkit to make Neural Comprehension scalable, which
leverages LLMs’ contextual learning capabilities to automatically generate new CoNNs.
Our method can be easily extended to various symbolic operations tasks. (Seciton 4.3)

• Our experimental results on symbolic tasks and real-world arithmetic reasoning tasks
demonstrate the superior performance of our method in comparison to existing techniques.
Notably, our LM achieves flawless execution on symbolic reasoning tasks. (Section 5.1 5.2)

• It is worth noting that tool-based methods are only applicable to language models with code
generation capabilities and require the cooperation of external interpreters. Our experiments
demonstrate that the symbolic processing capabilities of neural understanding are on par
with tool-based methods, but are applicable to models ranging from small ones like T5-Small
(60M) to large ones like GLM-130B (130B) and GPT-3.5 (175B). (Section 5.3)

• We also studied the potential of combining multiple CoNNs and found that adding correlated
CoNNs can continuously increase performance, while adding uncorrelated CoNNs rarely
leads to performance degradation. This provides a new approach for model fusion, enabling
the model to easily acquire new knowledge. (Section 5.4)

2 RELATED WORKS

Pretrained Language Models encompass those trained on general-purpose corpora (Lewis et al.,
2019; Scao et al., 2022; Sun et al., 2022) and specialized symbolic tasks (Geva et al., 2020;
Lewkowycz et al., 2022; Yang et al., 2023). They primarily aim to capture statistical patterns
in language, which limits their capacity for symbolic reasoning. Symbolic reasoning involves ma-
nipulating abstract symbols and logical rules to derive new knowledge (Shindo et al., 2021; Yang &
Deng, 2021) and necessitates the ability to extrapolate to novel situations and reason about concepts
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absent in the training data (Fujisawa & Kanai, 2022). Due to the constraints of gradient learning,
LMs face challenges in wholly solving symbolic problems (Stolfo et al., 2023).

In-Context Learning has emerged as a promising approach to address these challenges (Dong et al.,
2022) and closely approximate the predictors computed by gradient descent (Akyürek et al., 2022).
By prompting the language model to generate an explanation before generating an answer, the chain
of thought (Wei et al., 2022b; Kojima et al., 2022; Zhang et al., 2023; Zhou et al., 2022a) encourages
the model to think sequentially. This technique has been employed in various numerical and symbolic
reasoning tasks, such as scratchpad prompting (Nye et al., 2021) for length generalization (Anil
et al., 2022) and utilizing the chain of thought to perform arithmetic operations like summing pairs of
single digits with carry (Zhou et al., 2022b). However, this approach often necessitates substantial
computational resources, and achieving perfect accuracy remains challenging.

Augmented Language Models have been proposed as an alternative, supplementing language models
with external tools (Mialon et al., 2023). Examples include generating Python code for numerical
reasoning (Gao et al., 2022; Chen et al., 2022) or incorporating tool usage as a pretraining task
(Schick et al., 2023). However, using external tools lacks a unified framework with language models
and instead relies on the normativity of program generation.

3 PRELIMINARIES

Example 1 The Parity CoNN

⋆

If we want the transformer to perform the Parity task full accurately:
Input: 1 0

1. Select(Indices,Indices,True) =
�
1 1
1 1

�

2. Aggregate
��

1 1
1 1

�
, [1 0]

�
= [1 1]

3. Zipmap([1 1] ,Lambda x : 0 if x % 2 == 0 else 1) = [1 1]

Output: [1 1]

Figure 2: Demonstration of the principles of Parity CoNN.

Compiled Neural Network (CoNN). CoNN is a transformer-based neural network leveraging
artificially compiled attention weights to execute rules. CoNN has multiple attention layers and Multi-
Layer Perceptron (MLP) layers, and each attention layer facilitates interactions between tokens. For
example, in Figure 2, the multiplication of query and key elements representing a "Select" operation
in CoNN. Subsequent multiplication with value elements indicates an "Aggregate" operation. The
MLP layer is responsible for the token itself and is referred to as the "Zipmap" operation (Weiss et al.,
2021). By utilizing the three operations (Select, Aggregate, and Zipmap) to represent the sequence-
to-sequence process, we can convert symbolic parity task into transformer weights (Lindner et al.,
2023). CoNN can also stack multiple layers to address various human-defined rule problems, such as
mathematical calculations and symbol operations 1. Figure 2 shows an example of Parity CoNN:
The first step is to obtain a matrix of all ones to that of the sequence using the "Select" operation.
Secondly, the "Aggregate" operation is used to combine the matrix obtained in the previous step with
the input sequence (with the aim of calculating the total number of 0’s and 1’s in the sequence). The
third step involves determining whether the total count is odd or even by "Zipmap".

4 METHOD

Language models excel in language understanding tasks, but lack robust capabilities for symbolic
tasks. We propose a Neural Comprehension framework that make CoNN guided by abstract rules
into language models in a plug-and-play fashion, which integrates the language model’s implicit
learning parameters and CoNNs’ explicit learning parameters. In Neural Comprehension, we designed
CoNNs in neural networks with weights and structures directly encoding the symbolic rules within
the standard architecture of the LM to enhance deterministic rule comprehension and allow for
deterministic execution of rule-based tasks.

1Appendix B provides a more detailed description of CoNN.
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        To find out how much farther Stanley ran than walked, we 
need to subtract the distance he walked from the distance he ran 
364425 - 216582 = 147843  meters. Therefore, Stanley ran 
147843 meters farther than he walked.
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Figure 3: The architecture of the proposed Neural Comprehension framework.

4.1 NEURAL COMPREHENSION

Neural Comprehension is a MoE-style (Shazeer et al., 2017) neural network framework we designed,
which is entirely composed of neural networks and maintains the generative seq2seq style. It uses
predefined CoNNs as gating to determine when to output results from CoNNs. This approach is
simple and plug-and-play, allowing combination with pretrained LMs. As illustrated in Figure 3, the
language model encodes the context and produces the textual and reasoning process context D(x)
step by step, a decoder architecture to generate the subsequent context step by step iteratively. And
CoNNs handle sequence transformations involving rules, when a rule-required operation emerges,
CoNN’s attention is utilized to calculate specific values. For example, in Figure 3, when calculating
364425-216582, the only pretrained language model may output 148843, which is incorrect. However,
the Subtraction CoNN can correct the result to 147843 in the neural comprehension framework.
This dynamically encoded process improves intermediate results interpretability and final result
accuracy. Neural Comprehension combines LM and CoNNs in a piecewise function to perform

gradient update. LM’s hidden state output is HL =
(
HL1

· · ·HLdL

)⊤
∈ RdL , HLi

∈ (0, 1), and

CoNN’s output is HC =
(
HC1 · · ·HCdC

)⊤
∈ RdC , HCi ∈ {0, 1},

î = argmax
i

[(
IdL

, 0
0, βIdC

)(
HL,
HC

)]
, β ∈ {0, 1} (1)

where HC is a one-hot vector, and dL
and dC

here refer to the vocabulary size of the Model’s decode
output. 2 The Neural Comprehension combines the LLM’s hidden state output, HL, and CoNN’s
output, HC , using identity matrices IdL

(for dL) and IdC
(for dC) to concatenate them for model

fusion. Specifically, the hidden state representation matrix is obtained by extending the original
hidden state representation matrix of the LM with the hidden state matrix on the CoNNs’ vocabulary
through a block matrix operation, resulting in a larger matrix.

4.2 GRADIENT MODIFICATION IN NEURAL COMPREHENSION

To better appreciate the benefits of our method in handling rule-intensive tasks and improving
accuracy, it is crucial to understand the gradient perspective of In-Context Learning (ICL). Recent
studies on ICL algorithms have shown that the learning process of language models within the
optimization process in ICL can be viewed as a search for suitable gradients to minimize the loss

2It is worth noting that in this paper, for ease of implementation, the output vocabulary size of CoNNs’
decode dC is generally less than 100 due to limitations in computing resources (detailed information is shown in
Appendix Table 1).
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function. (Garg et al., 2022; Von Oswald et al., 2023). Due to the implicit learning nature of standard
ICL methods, gradients learned from data may not always be ideal for addressing rule-intensive
tasks. Therefore, our proposed method introduces an explicit learning component to provide more
appropriate gradient updates for such tasks, ultimately leading to enhanced overall performance. We
focus on elucidating the changes in the gradient introduced by the Neural Comprehension model, the
gradient of the model during the execution of ICL can be partitioned into two categories based on the
origin of the gradients:

Gradient =
{

GT Text: Language Model
GR Rule: CoNNs (2)

Here, GT represents the gradients derived implicitly from the language model (LM) and corresponds
to the text-based learning aspect of the model. Conversely, GR represents the gradients explicitly
derived from the CoNNs, encoding rule-based knowledge. The specific computation process can be
seen in Equation 1. Note that the gradients’ decomposition is only approximate and may not reflect
the true generating process of text. The Neural Comprehension framework integrates both gradient
sources to optimize the ICL process. In linear regression problems (Akyürek et al., 2022), the loss
function can be expressed as a piecewise function according to Equation 1, here P1(x) is the LM and
P2(x) is CoNN, the In-context-learner can be separate into two process:

L =
∥∥y − β⊤x

∥∥2 (3)

=

{ ∥∥y −G⊤
T x

∥∥2 x ∈ P1(x)∥∥y −G⊤
Rx

∥∥2 x ∈ P2(x)
(4)

Based on the partitioned gradient as defined in Equation 2, the overall gradient of the Neural
Comprehension model can be obtained by computing their individual gradients concerning the
respective β:

∂L

∂β︸︷︷︸
Gradient

=

{ ∂L
∂GT

x ∈ P1(x)
∂L
∂GR

x ∈ P2(x)
(5)

This partitioning allows the Neural Comprehension model to specifically address the gradient require-
ments of both implicit learning via LM and explicit learning via CoNNs. It is crucial to note that
CoNNs are designed to minimize the loss associated with rule-based tasks, essentially providing an
optimal gradient for tasks involving rule-intensive operations. This leads to a substantial improvement
in the model’s accuracy for rule-based tasks, as the gradient updates provided by CoNNs are more
suitable for rule learning compared to the initially available gradients from the LM. By amalgamating
both of gradient sources, the Neural Comprehension model achieves a more refined optimization of
in-context learning. The Neural Comprehension model effectively balances the need for implicit and
explicit learning within the ICL framework, leading to enhanced overall performance in terms of
accuracy and interpretability.

4.3 AUTOCONN TOOLKIT

To improve the scalability of Neural Comprehension frameworks, we propose the AutoCoNN toolkit,
which can automatically generate new CoNNs and adapt Neural Comprehension given by "Instruct"
and "Example", where "Instruct" serves as explicit symbolic definitions, and "Example" provides
some input-output pairs for the operation. Considering that LLMs like GPT-4 can describe symbolic
reasoning processes but cannot faithfully execute them (Cai et al., 2023), AutoCoNN Toolkit enables
converting the reasoning process of symbols into CoNNs while maintaining a complete neural network
framework without extra interpreters. The AutoCoNN process is divided into three steps. First, we
provide 24 Tracr code (Lindner et al., 2023) examples as context. Then the LLM is asked to generate
20 different Tracr codes by sampling decoding based on the "Instruct" and "Example". Finally,
we convert these codes into pytorch-form (Paszke et al., 2019) CoNNs and filter them on the pre-
provided Examples to obtain accurate CoNNs. We provide further experimental analysis to test the
performance of AutoCoNN in Appendix D. Meanwhile, the Parity, Reverse, Copy and Last
Letter CoNN mentioned in the Section 5 are constructed by AutoCoNN, which demonstrates the
practical value of AutoCoNN.
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5 EXPERIMENTS AND RESULT

5.1 SYMBOLIC TASKS
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(D) Subtraction
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Figure 4: Comparison of Neural Comprehension and other implicit learning-based methods in symbolic
operations tasks to test length generalization performance. In this, the T5 model uses the Vanilla Fine-tune
method for learning, and LLMs use the Few-shot learning method. In Neural Comprehension, each task has a
different CoNN, namely Parity, Reverse, Addition, and Subtraction.

Techniques In-distribution Out-of-distribution Time and Space Complexity Interpretability
Vanilla Fine-tune (For LM) ✓✓ ✗ ✓✓ ✗
Vanilla Few-shot (For LLM) ✓ ✓ ✓✓ ✗
Scratchpad (Anil et al., 2022) ✓✓ ✓ ✗ ✓
Algorithmic (Zhou et al., 2022b) ✓✓ ✓ ✗ ✓
Neural Comprehension (Ours) ✓✓ ✓✓ ✓✓ ✓✓

Table 1: Performance on Symbolic operations tasks of five techniques that language models admit: (1) Vanilla
Finetuning, (2) Vanilla Few-shot, (3) Scratchpad (Chain-of-Thought reasoning), (4) Algorithmic (Chain-of-
Thought reasoning) and (5) Neural Comprehension. We find that the first four learning-based methods have
different modes of failure regarding in and out-of-distribution coverage for symbolic operations. However,
Neural Comprehension has strong advantages in terms of length generalization, efficiency, and interpretability.
✗ signifies poor ✓ signifies nontrivial, ✓✓ signifies near-perfect performance. (*) Refers to task-dependency.

We conduct a length generalization experiment (Anil et al., 2022) to examine the distinctions between
the Neural Comprehension and learning-based methods, as depicted in Figure 4. Our experimental
design encompasses 1000× 40 independent test sets, comprising problems with varying digit lengths
from 1 to 40 digits. 10 to 20 digits within the range are provided by us for methods based on implicit
learning for training; during the testing phase, this range is called In-Dist. Furthermore, we present
results for both Scratchpad (Anil et al., 2022) and Algorithmic (Zhou et al., 2022b) approaches.

The results of our experiment demonstrate that the Vanilla Fine-tune (red lines) method performs
optimally on the in-domain (10-20 digit) training set, while its performance deteriorates for both
more simplistic and more intricate. This finding suggests that the absence of relevant samples in the
training set may cause gradient descent-based language models to underperform on both simpler and
more complex tasks. As further discussed in the appendix D.1, this phenomenon can be attributed to
the inherent generalization limitations of statistical models and the position bias of language models.

Considering the Vanilla Few-shot method (green lines), we determine that its performance is less
impacted by the prompt sample range compared to Vanilla Fine-tune. Large language models, which
are trained on extensive text corpora, excel at solving more straightforward problems such as symbolic
operations within a ten-digit range. Nevertheless, performance remains below par for test sets with
more than ten digits, even when prompted with 10-20 digit samples.
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Observing CoT-like methods (we use GPT-3.5), including Scratchpad and Algorithmic, unveils their
robust length generalization capabilities. Scratchpad works by requiring large language models
to record intermediate steps, while Algorithmic employs a similar approach to record the carry
operations involved in the addition process. This can be primarily attributed to their proficiency in
decomposing complex problems into smaller incremental steps and maintaining intermediate states.
However, these methods necessitate substantial computational resources, and extending the length
beyond the input limit of the model becomes challenging.

Our study reveals that Neural Comprehension attains remarkably high accuracy in symbolic operations.
This implies that Neural Comprehension, unlike conventional methods, does not rely on training data
and remains unaffected by discrepancies in input lengths for in-distribution and out-of-distribution
data. Consequently, it alleviates the requirement for step-by-step work tracking, and language
models with CoNNs only need relatively fewer computational steps to execute sequence operations
directly. Encoding rules into neural network modules endows us with greater interpretability, enabling
language models to flawlessly perform purely symbolic operation tasks.

5.2 SYMBOLIC REASONING
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Figure 5: In the iterative process of gradient descent during
training. The bleu line represents a language model that in-
corporates neural comprehension, and the red line represents
the original language model. Additionally, we provide Direct,
which is a direct prediction of the final result, as a reference.

In this section, we investigate the
performance of Neural Comprehen-
sion in terms of symbolic reasoning
capabilities. Our hypothesis is that,
although pretrained Language Mod-
els (LMs) demonstrate strong lan-
guage understanding abilities, they
lack the capacity to deduce and com-
prehend rules regarding symbolic
reasoning tasks. Thus, we aim to
evaluate whether the incorporation
of compiled neural networks in the
form of CoNNs can address this lim-
itation and improve the LM’s sym-
bolic reasoning abilities.

To assess the performance of
the rule comprehension component
(CoNNs) in symbolic reasoning, we
devise an experiment that measures
the model’s accuracy using interme-
diate processes and represents them
in a "Chain of Thought"-like manner.
In doing so, the experiment decom-
poses language understanding and
rule comprehension explicitly into
simpler outputs, avoiding the com-
plexities of reasoning and additional
error propagation in the models. Ex-
ample outputs from this approach can be found in Appendix F. We observed that neural compre-
hension improves the symbolic reasoning capabilities of pretrained language models in most cases
(Neural Comprehension almost always outperforms Vanilla Fine-tune in Figure 5), and can fit faster.
This observation suggests that the introduction of compiled neural networks has a positive impact on
pretrained LMs, addressing rule comprehension limitations in symbolic reasoning tasks.

5.3 ARITHMETIC REASONING

Arithmetic reasoning serves as a suitable testbed for evaluating language models and their ability to
address real-world problems. In this study, we examine the AddSub+ dataset variants that involve
different digit lengths, utilizing the Addition and Subtraction models from the CoNNs family.
Notably, the capabilities of Neural Comprehension extend beyond these tasks, as CoNNs can also
simulate calculators that support multiplication and division operations, and potentially perform
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Figure 6: We conducted simulations of the AddSub dataset with varying digits by modifying the "lEquations"
parameter. We then tested the performance of three LLMs with and without Neural Comprehension in generating
CoT outputs for AddSub+. And we reported the solve rates of three LLMs and compared the solve rates of
using additional tools (PAL (Gao et al., 2022)).

Addition llama-2-7b llama-2-70b GLM-130B Avg
CoT 6.3 43.8 6.3 18.8
PAL 18.7 37.5 6.3 20.8
NC (Ours) 12.5 43.8 7.2 21.2

Subtraction llama-2-7b llama-2-70b GLM-130B Avg
CoT 6.3 27.9 1.8 12.0
PAL 7.2 31.5 3.6 14.1
NC (Ours) 9.9 32.4 4.5 15.6

Mixed llama-2-7b llama-2-70b GLM-130B Avg
CoT 11.1 16.7 0.0 9.3
PAL 11.1 27.8 5.6 14.8
NC (Ours) 27.8 33.3 5.6 22.2

Table 2: Experiments on the addition and subtraction subset for GSM8K-Hard dataset showing
performance comparisons across different models and methods: Only Addition (left), Only Subtrac-
tion (center), and Mixed addition and subtraction (right), using Vanilla CoT, PAL, and NC (Neural
Comprehension) methods.

linear algebra computations or even in-context learning algorithms that employ backpropagation
(Giannou et al., 2023).

To evaluate the impact of Neural Comprehension on arithmetic reasoning, we compare the output
of vanilla CoT language models and those incorporating Neural Comprehension, using the vanilla
CoT baseline as a reference. As demonstrated in Figure 6 and Table 2, the vanilla CoT model
struggles to extrapolate and solve arithmetic problems involving longer digit lengths. However,
integrating Neural Comprehension significantly improves the performance of language models on
such complex arithmetic tasks. Since we only incorporated the Addition and Subtraction
CoNNs, we attribute the observed performance enhancement to the increased computational accuracy
of the language model. For further evidence, we present additional experimental results on widely-
used arithmetic reasoning datasets in Appendix E.2, which reinforce the benefits of using Neural
Comprehension over the vanilla CoT model.

In comparison to language models employing external tools like PAL (Gao et al., 2022), our findings
suggest that Neural Comprehension offers greater flexibility for LM. Firstly, by design, it minimizes
the necessity for additional processing steps or external tools, leading to an efficient direct computa-
tional approach. This contrasts with Tool-based methods that often require additional programming
and execution steps, increasing complexity and computational resources. Moreover, CoNN maintains
end-to-end differentiability, crucial for models adapting to new data or tasks. In contrast, Tool-based
methods are non-differentiable, limiting their adaptability in reinforcement learning settings or tasks
with sparse delayed rewards (Chung et al., 2022; Ouyang et al., 2022). Furthermore, CoNN’s modu-
larity enhances performance across various model scales, applicable regardless of a language model’s
ability to call functions, unlike tools only operable in large, additionally code-trained models. Thus,
the Neural Comprehension framework’s efficiency, unified end-to-end neural network architecture,
and extensive applicability constitute its distinct advantages over the Tool-based approach, offering a
robust and scalable solution for a multitude of linguistic and computational challenges.

5.4 ABLATION AND ANALYSES: MODULE COMBINATION FOR NEURAL COMPREHENSION

Efficiently deploying multiple CoNNs is crucial for achieving exceptional Neural Comprehension
performance. As depicted in Figure 7, the amalgamation of distinct CoNNs, tailored for both
symbolic and arithmetic reasoning tasks within the language model framework, can lead to remarkable
benefits. Similar to ToolFormer (Schick et al., 2023), we combine multiple different CoNNs into
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Figure 7: In Neural Comprehension framework, the performance of multiple different module combination is
demonstrated. The left side shows the effect of combining a pretrained language model with a CoNN, while
the right side shows the impact of combining a language model with multiple CoNNs. For different tasks, we
categorize CoNNs as Correlated (green) and Uncorrelated (red), indicating whether the CoNN is related to the
current task or not.

one framework, enabling the language model to have multiple capabilities. We conduct experiments
on Last Letter Concatenation tass and AddSub+ dataset, which shows the plug-and-play gating
mechanism can still well control these CoNNs to output what should be output. It is observed that
integrating pertinent CoNNs bolsters the performance of the initial language model, whereas the
inclusion of unrelated language models rarely causes detrimental effects, regardless of whether single
or multiple CoNNs are combined.

This can be ascribed to the refined design of the Neural Comprehension framework, which ensures
the precise execution of assigned tasks by CoNNs without interference from irrelevant modules. Each
CoNN module is adept at generating the appropriate output when needed, thereby preventing the
emergence of erroneous results from unrelated components. Importantly, as seen in Appendix B.3,
the parameter count for each CoNN module ranges from 1/1000 to 1/1000000 of that for GPT-3,
and the experiments in Appendix D.3 show that the inference latency in the neural understanding
framework only increases by 1%-3% compared to Vanilla.

This observation underscores the remarkable scalability of the Neural Comprehension framework,
which possesses the capability to not only accommodate existing knowledge concepts but also
assimilate novel ones as the number of CoNNs expands. Theoretically, the integration of tens of
thousands of CoNN modules within language models holds the potential to foster a comprehensive
understanding of concepts.

6 CONCLUSION

We have observed that language models lack an intrinsic comprehension of rule-based concepts and
explored how Neural Comprehension can integrate compiled neural networks into the language model
framework in a simple and plug-and-play manner. On the one hand, we demonstrated the superiority
of our approach over existing learning-based methods, where our method implements comparable
improvements to external tools within the neural network framework but does not require additional
interpreters. This also enables language models without coding capabilities to possess symbolic
manipulation abilities. On the other hand, compared to external tools, gradients can propagate without
proxies, allowing better integration and full differentiability. The Neural Comprehension solves
the issue of language models themselves being unable to perform robust symbolic operations and
providing a foundation for future work on unifying both implicit and explicit learning in language
models and facilitating seamless integration.
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REPRODUCIBILITY STATEMENT

All CoNN models mentioned in this paper have been saved in Pytorch format in the Supplementary
Materials, with dropout set to 0 to ensure deterministic outputs that conform to human-specified
rules. The code for the AutoCoNN toolkit and Neural Comprehension framework in this paper can
be found in the code portion of the Supplementary Materials. Details of all experiments setting
referenced in this paper are included in Appendix F.1. Detailed descriptions of all tasks, datasets,
and baselines mentioned in this paper are provided in Appendix F.2. Details of all few-shot prompts
referenced in this paper are included in Appendix G.
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A DISCUSSION OF LIMITATIONS AND FUTURE WORK

We have presented a novel framework that integrates Compiled Neural Networks (CoNNs) with
existing language models to bolster their rule understanding abilities. Although our approach has
shown promising performance improvements on symbolic and arithmetic reasoning tasks, there are
several limitations and potential avenues for future research that warrant further exploration.

A significant limitation of our current framework lies in the more efficient and natural incorporation of
CoNNs into language models. Currently, our method employs a sparse neural network that treats the
pretrained language model and CoNNs as separate modules. A more desirable solution is to leverage
a dense neural network, simultaneously utilizing the benefits of both components. Examining the
large-scale applicability of CoNNs is a beneficial endeavor. Although our experiments have been
conducted on a relatively small scale (up to five stacked CoNNs), the advancements and abilities
language models may gain from larger-scale combinations of CoNNs remain unclear. Exploring
the scalability of our method and the performance advantages of deploying more complex CoNN
architectures in language models could provide valuable insights into their potential.

Another promising area of research is the inclusion of explicit knowledge into CoNNs. While the
current implementation centers on encoding rules into CoNNs, future work could exploit techniques
from knowledge graphs to compile explicit knowledge into language models. This may significantly
enhance language models’ interpretability and knowledge representation capabilities, potentially
resulting in improved performance on an even broader range of tasks.

In conclusion, our work on enhancing language models’ rule understanding capabilities through
CoNN integration has yielded promising results, albeit with some limitations and remaining chal-
lenges. By addressing these areas and extending our approach, we believe that it can ultimately lead
to the development of more powerful, interpretable, and knowledge-rich language models.

B COMPILED NEURAL NETWORKS

In this section, we will discuss the concept, implementation, and potential of Compiled Neural
Networks (CoNN), a type of neural network inspired from previous works on transformers. CoNNs
can perform diverse tasks such as computer arithmetic and linear algebra, demonstrating a wide range
of applications in LMs and beyond.

16

https://openreview.net/forum?id=5NTt8GFjUHkr
https://www.mi-research.net/en/article/doi/10.1007/s11633-022-1393-5
https://www.mi-research.net/en/article/doi/10.1007/s11633-022-1393-5


Published as a conference paper at ICLR 2024

B.1 INTRODUCTION

Transformers have garnered significant attention due to their ability to capture high-order relations
and manage long-term dependencies across tokens through attention mechanisms. This enables
transformers to model contextual information effectively. Pretrained language models, such as GPT-3
(Brown et al., 2020), exploit contextual learning to invoke various modules for different tasks, like
performing arithmetic upon receiving arithmetic prompts. To further enhance rule comprehension in
such models, CoNN-based modules are introduced as a part of Neural Comprehension.

Distinct from common models like BERT (Devlin et al., 2018), CoNNs leverage a transformer
structure and derive their weights from specialized design rather than pretraining. Each Attention
layer and Multilayer Perceptron (MLP) layer in a CoNN represents a specific sequence transformation,
leading to a neural network module embodying explicit and interpretable operations.

RASP (Weiss et al., 2021) is a Restricted Access Sequence Processing Language that abstracts
the computational model of Transformer-encoder by mapping its essential components, such as
attention and feed-forward computation, into simple primitives like select, aggregate, and zipmap.
This language enables RASP programs to perform various tasks like creating histograms, sorting, and
even logical inference, as demonstrated by Clark et al. (2020).

Tracr (Lindner et al., 2023) serves as a compiler that converts human-readable RASP code into
weights for a GPT-like transformer architecture with only a decoder module. The Tracr framework
uses JAX to transform RASP-defined code into neural network weights. Our neural reasoning
framework employs weights generated by Tracr, which are then converted into PyTorch weights to be
compatible with the pretrained language model.

Looped Transformers as Programmable Computers (Giannou et al., 2023) introduces a novel trans-
former framework that simulates basic computing blocks, such as edit operations on input sequences,
non-linear functions, function calls, program counters, and conditional branches. This is achieved
by reverse engineering attention and hardcoding unique weights into the model, creating a looped
structure. The resulting CoNN can emulate a general-purpose computer with just 13 layers of trans-
formers, and even implement backpropagation-based context learning algorithms, showcasing the
approach’s vast application prospects.

Overall, the potential applications of CoNNs are extensive, given their capacity to perform a wide
array of tasks beyond natural language processing. CoNNs offer increased interpretability and
transparency through explicitly defined operations, which is vital in fields such as medical diagnosis
and legal decision-making. Additionally, CoNNs can lead to more efficient and effective neural
network architectures by reducing pretraining requirements and facilitating improved optimization of
network parameters.

B.2 EXAMPLE

In this subsection, we briefly describe how computational processes can be represented using trans-
former code and demonstrate how new CoNN weights can be obtained with the aid of the Tracr
compiler.

B.2.1 PARITY CONN

In the introduction, we tried to introduce how to perform parity checking on a sequence containing [0
| 1] using a CoNN. Whenever we need to check the sequence, this CoNN can output the completely
correct answer.

Figures 8 and 9 present two distinct input sequences, and illustrate the corresponding hidden state
and final output obtained after passing through the internal layers of the Parity CoNN architecture.

B.2.2 REVERSE CONN

Figures 10 and 11 show the hidden state and output of Reverse CoNN when inputting text. The
embedding of CoNN can be customized, so tokens can be either words like ’hello’ or individual
letters.
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THE TRACR CODE OF PARITY CONN

def parity(sop) -> rasp.SOp:
"""Multiply the length of each token."""
sop = rasp.SequenceMap(lambda x,y: x * y,sop,length).named(’map_length’)

"""Add each bit."""
out = rasp.numerical(rasp.Aggregate(rasp.Select(rasp.indices,rasp.indices,rasp.Comparison.

TRUE).named(’Select’),rasp.numerical(rasp.Map(lambda x: x, sop).named(’map_length’)),
default=0).named(’Aggregate’))

"""Calculate whether the remainder of dividing it by 2 is odd or even."""
out = rasp.Map(lambda x: 0 if x % 2 == 0 else 1,out).named(’Zipmap’)

return out
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Figure 8: Input the [1,0,0,0,1] (target output = 0) for Parity CoNN.
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Figure 9: Input the [1,0,1,0,1] (target output = 1) for Parity CoNN.

B.2.3 ADDITION CONN

Due to the high complexity of the model, we decided to omit the hidden state transformation
for the Addition CoNN. However, we have provided code later in the text that will allow for
easy implementation of this CoNN. The code includes add_in_the_same_position and
add_carry functions, which are used to calculate the addition and carry of pairs in the CoNN
respectively. We divide the entire operation into two models. For the add_carry model, we refer
to the approach of ALBERT. After the output of the add_in_the_same_position model, we
cyclically use the add_carry model L times, where L is the length of the text, to ensure that all
digits can carry. It is important to note that this particular Addition CoNN is only capable of
performing addition operations on natural numbers.
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THE TRACR CODE OF REVERSE CONN

def reverse(sop) -> rasp.SOp:
"""Get the indices from back to front."""
opp_idx = (length - rasp.indices).named("opp_idx")

"""opp_idx - 1, so that the first digit of indices = 0."""
opp_idx = (opp_idx - 1).named("opp_idx-1")

"""Use opp_idx to query indices, get the Select."""
reverse_selector = rasp.Select(rasp.indices, opp_idx,rasp.Comparison.EQ).named("

reverse_selector")

"""Aggregate the reverse_selector and sop"""
return rasp.Aggregate(reverse_selector, sop).named("reverse")

THE TRACR CODE OF ADDITION CONN

def split(sop, token, index):
"""Match the position of target token"""
target_position = rasp.Aggregate(rasp.Select(sop, rasp.Map(lambda x: token, sop), rasp.

Comparison.EQ), rasp.indices)

"""If need to match the front position."""
if index == 0:

out = rasp.Aggregate(rasp.Select(rasp.indices, rasp.indices - (length -
target_position), rasp.Comparison.EQ),

sop) # Move the sop on the left side of the token to the far
right.

return rasp.SequenceMap(lambda x, i: x if i == 2 else "_", out, rasp.categorical(
rasp.SequenceMap(lambda x, i: 2 if x >= i else 0, rasp.indices, length -

target_position))) # Use "_" to fill the empty position on the left.

"""If need to match the finally number."""
else:

return rasp.SequenceMap(lambda x, i: x if i else "_", sop,
rasp.SequenceMap(lambda x, i: 1 if x > i else 0, rasp.indices,

target_position)).named(
f"shift") # Use "_" to fill the empty position on the left.

def atoi(sop):
"""Converts all text to number, and uses 0 for strings of types other than numbers, It may

be mixed with ’str’ or ’int’.
"""

return rasp.SequenceMap(lambda x, i: int(x) if x.isdigit() else 0, sop, rasp.indices).
named(
"atoi")

def shift(sop):
"""Get the target indices."""
idx = (rasp.indices - 1).named("idx-1")

"""Use opp_idx to query indices, get the Select."""
selector = rasp.Select(idx, rasp.indices,

rasp.Comparison.EQ).named("shift_selector")

"""Aggregates the sops and selectors (converted from indexes)."""
shift = rasp.Aggregate(selector, sop).named("shift")
return shift

def add_in_the_same_position(sop):
x = atoi(split(sop,’+’,0)) + atoi(split(sop,’+’,1))
return x

def carry(sop):
weight = shift(rasp.Map(lambda n:1 if n>9 else 0,sop))

weight = rasp.Aggregate(rasp.Select(rasp.indices,rasp.indices,lambda key,query:key ==
query),weight,default=0)

x = rasp.Map(lambda n:n-10 if n>9 else n,sop)
return x + weight
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Figure 10: Input the [’hello’,’,’,’world’] for Reverse CoNN.

bo
s r e v e r s eaggregate_31:   0

aggregate_31:   1
aggregate_31:   2
aggregate_31:   3
aggregate_31:   4
aggregate_31:   5
aggregate_31:   6
aggregate_31:   7

indices:   0
indices:   1
indices:   2
indices:   3
indices:   4
indices:   5
indices:   6
indices:   7
map_30:   1
map_30:   2
map_30:   3
map_30:   4
map_30:   5
map_30:   6
map_30:   7
map_30:   8

one:    
opp_idx-1_35:  -8
opp_idx-1_35:  -7
opp_idx-1_35:  -6
opp_idx-1_35:  -5
opp_idx-1_35:  -4
opp_idx-1_35:  -3
opp_idx-1_35:  -2
opp_idx-1_35:  -1
opp_idx-1_35:   0
opp_idx-1_35:   1
opp_idx-1_35:   2
opp_idx-1_35:   3
opp_idx-1_35:   4
opp_idx-1_35:   5
opp_idx-1_35:   6
opp_idx-1_35:   7

opp_idx_36:  -7
opp_idx_36:  -6
opp_idx_36:  -5
opp_idx_36:  -4
opp_idx_36:  -3
opp_idx_36:  -2
opp_idx_36:  -1
opp_idx_36:   0
opp_idx_36:   1
opp_idx_36:   2
opp_idx_36:   3
opp_idx_36:   4
opp_idx_36:   5
opp_idx_36:   6
opp_idx_36:   7
opp_idx_36:   8
reverse_33:   0
reverse_33:   1
reverse_33:   2
reverse_33:   3
reverse_33:   4
reverse_33:   5
reverse_33:   6
reverse_33:   7

selector_width_6:   0
selector_width_6:   1
selector_width_6:   2
selector_width_6:   3
selector_width_6:   4
selector_width_6:   5
selector_width_6:   6
selector_width_6:   7
selector_width_6:   8

selector_width:    
tokens:   a
tokens:   b
tokens: bos
tokens:   c
tokens:   d
tokens:   e
tokens:   f
tokens:   g
tokens:   h
tokens:   i
tokens:   j
tokens:   k
tokens:   l
tokens:   m
tokens:   n
tokens:   o
tokens:   p
tokens: pad
tokens:   q
tokens:   r
tokens:   s
tokens:   t
tokens:   u
tokens:   v
tokens:   w
tokens:   x
tokens:   y
tokens:   z

Input

bo
s r e v e r s e0

20

40

60

80

100

Attn 1

bo
s r e v e r s e0

20

40

60

80

100

MLP 1
bo

s r e v e r s e0

20

40

60

80

100

Attn 2

bo
s r e v e r s e0

20

40

60

80

100

MLP 2

bo
s r e v e r s e0

20

40

60

80

100

Attn 3

bo
s r e v e r s e0

20

40

60

80

100

MLP 3

bo
s r e v e r s e0

20

40

60

80

100

Attn 4

bo
s r e v e r s e0

20

40

60

80

100

MLP 4

bo
s r e v e r s e0

20

40

60

80

100

Attn 5

bo
s r e v e r s e0

20

40

60

80

100

MLP 5

Figure 11: Input the [’r’,’e’,’v’,’e’,’r’,’s’,’e’] for Reverse CoNN.

THE TRACR CODE OF SUBTRACTION CONN

def split(sop, token, index):...

def atoi(sop):...

def shift(sop):...

def sub_in_the_same_position(sop):
x = atoi(split(sop,’-’,0)) - atoi(split(sop,’-’,1))
return x

def carry(sop):
weight = shift(rasp.Map(lambda n:1 if n<0 else 0,sop))
weight = rasp.Aggregate(rasp.Select(rasp.indices,rasp.indices,lambda key,query:key ==

query),weight,default=0)
x = rasp.Map(lambda n:n+10 if n<0 else n,sop)
return x - weight

B.2.4 SUBTRACTION CONN

The subtraction CoNN is similar to the addition CoNN. First, each digit is subtracted from its
corresponding digit, and then it is determined whether to carry over. For ease of experimentation, this
subtraction CoNN only supports subtraction of natural numbers where the minuend is greater than
the subtrahend.

B.3 CONN MODEL PARAMETERS

The parameter sizes of all CoNN models used in this work are listed in Table 3. It is noteworthy that
even for GPT-3, which has parameters that are orders of magnitude larger, it remains challenging to
solve symbolic problems. However, with the use of compiled neural networks, only a small number
of parameters are needed to achieve Neural Comprehension.
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Model Layers Heads Vocabulary Size Window Size Hidden Size MLP Hidden Size # Parameters Compared to GPT-3

Pariity 4 1 4 40 132 1959 2.2M ≈ 1/100,000
Reverse 4 1 28 40 297 1640 4.3M ≈ 1/50,000
Last Letter 3 1 28 16 103 32 62.6K ≈ 1/3,000,000
Copy 1 1 28 16 69 26 8.8K ≈ 1/20,000,000
Add_in_the_same_position 7 1 13 40 535 6422 51.8M ≈1/3000
Add_Carry 3 1 122 40 130 52 117K ≈1/1,500,000
Sub_in_the_same_position 7 1 13 40 535 6422 51.8M ≈1/3000
Sub_Carry 3 1 122 40 130 52 117K ≈1/1,500,000

Table 3: We reported on a CoNN with a single function, including its actual parameter size and
comparison with the parameters of GPT-3.

B.4 ENVIRONMENTAL AND HUMAN-CENTRIC BENEFITS OF COMPILED NEURAL NETWORKS

Compiled Neural Networks (CoNNs) address concerns related to the environmental impact of training
large models and the need for human-centric computing. CoNN models can reduce energy consump-
tion and carbon emissions by minimizing extensive pretraining and decreasing parameter size, as seen
in Table 3. This reduction in computational power and energy requirements makes both the training
and inference processes more environmentally friendly. Additionally, Neural Comprehension offers a
more interpretable and transparent alternative to conventional deep learning models. CoNN’s explicit
operation definitions and specialized architecture enable users to comprehend the reasoning behind
model decisions, fostering trust and facilitating human-AI collaboration. Increased interpretability
also allows for scrutiny of model behavior, promoting the development of fair, accountable, and
transparent systems aligned with ethical considerations and human values.’

C EXPERIMENT FOR AUTOCONN

C.1 METHOD

CoNN Model Example=1 Example=2 Example=5

Parity Model 5/10 10/10 10/10

Reverse Model 10/10 10/10 10/10

Last Letter Model 9/10 10/10 10/10

Copy Model 10/10 10/10 10/10

Table 4: For each CoNN model, we selected ten groups
of models that were judged to be correct by AutoCoNN.
We manually evaluated whether these models were indeed
correct. The ’Example=x’ means that x Examples were
provided in the validation stage.

For experts, they may need to spend
a lot of time writing code suitable for
CoNN, while non-expert users find it
hard to obtain or modify CoNN. These
issues limit the efficient combination
of CoNN and LM, so we utilized the
few-shot ability of language models
to make the AutoCoNN toolkit (Weng
et al., 2023b). In this section, we
will show a series of detailed exper-
iments on AutoCoNN to demonstrate
this. First, It is the Demo of Auto-
CoNN code:

DEMO OF AUTOCONN

from NeuralCom.AutoCoNN import AutoCoNN

INSTRUCT = ’Create an SOp that is the last letter of a word’
VOCAB = [’a’,’b’,’c’,’d’,’e’,’f’,’g’]
EXAMPLE = [[[’a’,’b’,’c’],[’c’,’c’,’c’]],[[’b’,’d’],[’d’,’d’]]]

auto = AutoCoNN()
model,tokenizer = auto(instruct=INSTRUCT,vocab=VOCAB,example=EXAMPLE)

Table 5 shows the efficiency comparison between experts and AutoCoNN. This demonstrates that the
AutoCoNN toolkit can generate various CoNNs faster. But we also found that for more difficult ones
like Addition and Subtraction, it fails to successfully generate, which becomes one of the limitations
of AutoCoNN. On the other hand, we tried providing only "Instruct" or "Example" for AutoCoNN to
generate3, and often "Instruct" can generate CoNN with higher accuracy, while "Example" cannot.
This shows that giving explicit operational instructions performs better than directly observing data
in AutoCoNN.

3In this experiment, the few-shot samples also contained only one of them
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CoNN Model Expert’s Working Time Success by AutoCoNN Can AutoCoNN solve AutoCoNN (w. Instruct) AutoCoNN (w. Example)

Parity Model 1 hours 8/20 ✓✓ 7/20 3/20

Reverse Model 0.5 hour 15/20 ✓✓ 16/20 11/20

Last Letter Model 0.5 hour 13/20 ✓✓ 12/20 10/20

Copy Model 0.2 hour 17/20 ✓✓ 17/20 15/20

Addition Model 48 hours 0/20 ✗ 0/20 0/20

Subtraction Model 48 hours 0/20 ✗ 0/20 0/20

Table 5: Comparison between AutoCoNN and Expert Built CoNN. The column ’Expert’s Working
Time’ refers to the time required for a trained engineer to write the CoNN code; ’Success by
AutoCoNN’ refers to the accuracy of 20 results generated by using GPT-3.5 for diverse decoding;
’Can AutoCoNN solve’ refers to whether AutoCoNN can identify suitable CoNN code from the 20
results through validation. It is worth noting that in this experiment, we use sampling decoding with
temperature=0.7 to generate 20 different CoNNs codes, which we convert to Pytorch versions of
CoNNs models. We report the accuracy of the CoNNs codes through manual (expert) evaluation.

It is difficult for non-expert users to assess the accuracy of the generated code, we automatically
utilize the Example information to verify the accuracy of the CoNN model - checking whether the
output result of the input sequence is exactly consistent with the Example. The results shown in Table
4 demonstrate that generally 2 Examples are sufficient to select an accurate CoNN model, which
means it is very easy for users to use and demonstrate. However, considering the varying difficulty of
different tasks, we still suggest non-expert users provide more Examples to ensure the accuracy of
the generated CoNN.

D EXPERIMENTAL SETTINGS

In this study, we primarily explore the capacity of language models to address symbolic reason-
ing tasks, concentrating on three areas: symbolic operations, symbolic reasoning, and arithmetic
reasoning.

Symbolic Operations Building upon the approaches developed by Anil et al. (2022) and Qian
et al. (2022), we examine the following tasks: Parity, Reverse, Addition and Subtraction. These
tasks do not require complex text understanding, but only require faithfully implementing symbolic
operations and outputting the corresponding results.

Symbolic Reasoning We employ the experimental framework of Wei et al. (2022b) for the two
tasks, Last Letter Concatenation and Coin Flip. These tasks require a combination of language
understanding and rule comprehension abilities.

Arithmetic Reasoning To evaluate the method’s generalization ability from symbolic operations
to arithmetic reasoning in addition and subtraction tasks, we use five established arithmetic reasoning
datasets: AddSub (Hosseini et al., 2014), SingleEq (Koncel-Kedziorski et al., 2015), MultiArith (Roy
& Roth, 2016), GSM8K (Cobbe et al., 2021), and SVAMP (Arkil et al., 2021). Additionally, we
introduce the AddSub+ dataset, containing tasks of varying complexity based on the number of digits
involved in arithmetic operations, ranging from 1-digit addition to 20-digit addition/subtraction tasks.

E SUPPLEMENTARY EXPERIMENT

E.1 THE EFFECT OF TRAINING DATA SCALE ON LENGTH GENERALIZATION OF
GRADIENT-BASED MODELS

To investigate the impact of training data scale on out-of-distribution (OOD) performance, we
conducted experiments using the T5-large model with varying amounts of in-distribution training
data. The experimental setup closely followed that of Main Figure 3, utilizing numbers with 10 to
20 digits as the training set but varying the number of training examples between 1 million and 15
million. The peak validation set performance for each experiment is reported in Figure 12.
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(d) Subtraction

Figure 12: Length Generalization Performance of Language Models with Different Dataset Sizes.

The results in Figure 12 show that increasing the scale of the In-Dist training data leads to only
marginal improvements in OOD performance. This finding is discouraging, suggesting that gradient-
based language models face challenges in capturing the true underlying meaning of symbols and their
transformation rules based on the data distribution alone.

E.2 REAL-WORLD ARITHMETIC REASONING TASKS

Method GSM8K SingleEq AddSub MultiArith SVAMP Average

Previous SOTA (Fintune) 35a/57b 32.5c 94.9d 60.5e 57.4f -

GPT-3 Standard 19.7 86.8 90.9 44.0 69.9 62.26

GPT-3 (175B)
code-davinci-001

CoT 13.84 62.02 57.22 45.85 38.42 43.47

CoT + Neural Comprehension 13.95(+0.11) 62.83(+0.81) 60.25(+3.03) 45.85(+0.0) 38.62(+0.2) 44.30(+0.83)

GPT-3.5 (175B)
code-davinci-002

CoT 60.20 91.01 82.78 96.13 75.87 81.20

CoT + Neural Comprehension 60.42(+0.22) 91.01(+0.0) 82.78(+0.0) 96.13(+0.0) 76.09(+0.22) 81.29(+0.09)

Table 6: Problem solve rate (%) on arithmetic reasoning datasets. The previous SoTA baselines are
obtained from: (a) GPT-3 175B finetuned (Cobbe et al., 2021); (b) GPT-3 175B finetuned plus an
additional 175B verifier(Cobbe et al., 2021); (c) Hu et al. (2019); (d) Roy & Roth (2016); (e) Roy &
Roth (2016); (f) Amini et al. (2019); (f) Pi et al. (2022)
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As model parameters, training calculations, and dataset sizes have increased, language models have
gained new capabilities (Srivastava et al., 2022; Wei et al., 2022a; Weng et al., 2024), such as Machine
Translation (Zhao et al., 2023; Li et al., 2024), complex QA (Zhu et al., 2022; Daull et al., 2023;
Zhu et al., 2023), Multimodal QA (Wang et al., 2023a; Li et al., 2023; Weng & Li, 2023), coding (Li
et al., 2022; Nijkamp et al., 2022), few-shot learning (Brown et al., 2020; Perez et al., 2021), medical
diagnosis (Li et al., 2021a; Xia et al., 2022; Weng et al., 2023a), and chain of thought (Wei et al.,
2022b; Weng et al., 2023c).

In Table 6, we compared Vanilla CoT with the Neural Comprehension framework for arithmetic
reasoning tasks. We integrated the Addition and Subtraction CoNNs with LLMs and observed
improved performance across several tasks. This suggests that the proposed Neural Comprehension
framework can compensate for the difficulties faced by large-scale language models in computational
tasks. Nevertheless, the performance improvement is not as significant due to the choice of specific
CoNN models to ensure clarity in our experiments. Designing CoNN models to support more general
arithmetic tasks could potentially yield more substantial improvements. In addition, since the Neural
Comprehension framework improves the gap between the data distribution learned by the language
model during training through gradient descent and the real rules, it can also be combined with some
existing logical improvements to language models, including self-consistency (Wang et al., 2023b),
least-to-most (Zhou et al., 2022a), self-improve (Huang et al., 2022), and self-verification (Weng
et al., 2023c). It can also be combined with some zero-shot methods (Kojima et al., 2022; Zhang
et al., 2023).

Method T5-small T5-base T5-large

Origin 1.74 1.52 3.87

Neural Comprehension 1.82 1.59 4.02

Ours Improve +0.08 +0.07 +0.15

Table 7: The test set problem-solving rate (%)
of the T5 model on the GSM8K dataset.

To further evaluate the effectiveness of the Neural
Comprehension framework, Table 7 presents the
results of fine-tuning T5 models with Addition
and Subtraction CoNN on the GSM8K train-
ing dataset. The comparison of three different-sized
models reveals that the framework can model deter-
ministic rules defined by humans, thus avoiding the
uncertainty associated with gradient descent learning
from data distribution.

E.3 THE EFFICIENCY OF NEURAL COMPREHENSION

Vanilla Neural Comprehension δTime

Model Params Task GPU CPU GPU CPU GPU CPU

T5-small 60M Coin Flip 5.280s 5.720s 5.431s 5.872s 0.151s (2.86%) 0.152s (2.66%)

T5-base 220M Coin Flip 7.865s 13.767s 8.010s 13.939s 0.145s (1.84%) 0.172s (1.25%)

T5-large 770M Coin Flip 14.055s 32.953s 14.194s 33.120s 0.139s (0.99%) 0.167s (0.51%)

T5-small 60M Last Letter Concatenation 16.233s 28.309s 16.744s 28.720s 0.511s (3.15%) 0.411s (1.45%)

T5-base 220M Last Letter Concatenation 28.912s 55.660s 29.426s 56.087s 0.514s (1.78%) 0.427s (0.77%)

T5-large 770M Last Letter Concatenation 49.584s 103.739s 50.066s 104.134s 0.482s (0.97%) 0.395s (0.38%)

Table 8: In Neural Comprehension framework, the inference latency comparison of the T5 model.

To evaluate the efficacy of Neural Comprehension, we conducted further experiments comparing the
inference latency of both the Vanilla and Neural Comprehension frameworks on an equal number of
sequences and equal sequence lengths using GPU and CPU configurations. We employed a batch
size of 1 and assessed the inference latency of Neural Comprehension in conjunction with various T5
model sizes across two symbolic inference tasks to ascertain efficiency. The full results are detailed
in Table 8.

Our findings reveal that implementing Neural Comprehension increases computational requirements,
primarily attributed to the supplementary parameter volume and computational demands introduced by
CoNNs. However, as the scale of pretrained language models expands, the proportion of δTime within
the Neural Comprehension framework progressively diminishes, particularly for larger language
models.
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F IMPLEMENTATION AND DETAILS

Model Model Creator Modality Version # Parameters Tokenizer Window Size Access

T5-small Google Text T5.1.0 60M T5 512 Open
T5-base Google Text T5.1.0 220M T5 512 Open
T5-large Google Text T5.1.0 770M T5 512 Open

GLM-130B Tsinghua University Text GLM-130B 130B ICE 2048 open
GPT-3 OpenAI Text,Code code-davinci-001 175B* GPT-2 2048 limited
GP-3.5 OpenAI Text,Code,Instruct code-davinci-002 175B* GPT-2 8096 limited
GPT-4 OpenAI Text,Code,Instruct,. . . gpt-4 1750B* GPT-2 8000 limited

Table 9: Models. Description of the models evaluated in this effort: provenance for this information
is provided in models. ∗ indicates that we believe the associated OpenAI models are this size, but this
has not been explicitly confirmed to our knowledge.
In this section, we provide a detailed description of the experimental setup from a model and dataset
perspective, ensuring repeatability of our experiments.

F.1 MODEL

Our experiments primarily involve the T5, GPT, and GLM-130B families of models. Neural Compre-
hension framework supports seamless integration with language models having decoder structures,
regardless of the scale of the language model. We fine-tune the T5 models, while the larger mod-
els with over 10 billion parameters are used for few-shot In-context learning. Table 9 presents a
comprehensive list of all models used in our experiments4.

F.1.1 FINE-TUNING

For the T5 models, we employ the standard fine-tuning approach using the pretrained models as a
starting point. We follow the pre-processing steps in the T5 original paper, which involves set the
input text max length to 150 and using the tokenizer to process the data. We use a batch size of 64 for
all models and the Adafactor optimizer (Shazeer & Stern, 2018) with a learning rate of 1 × 10−4.
The models are trained for a maximum of 20 epochs. We use a cosine learning rate schedule with a
warm-up phase comprising 5% of the total number of training steps. We employ a dropout rate of 0.1
during training to mitigate overfitting. Our experiments utilize the PyTorch framework (Paszke et al.,
2019) for training and inference. Table 5 displays the parameter settings for the T5 models during
training, which is conducted on four NVIDIA A6000 GPUs with 48GB of memory each.

Training Setting Configuration
optimizer Adafactor
base learning rate 1× 10−4

weight decay 2× 10−5

decay rate -0.8
optimizer eps (1× 10−30,2× 10−3)
batch size 64
training epochs 20
gradient clip 1.0

Table 10: Training Setting

In Table 10, we list the hyperparameters used to
train the T5 model. We carefully selected these
parameters to ensure that the within-distribution
validation accuracy roughly converged. We re-
port all peak validation set results, and in ev-
ery experiment we ran, we found that within-
distribution validation accuracy monotonically
increased during training iterations (until it ap-
proached 100%), and we never observed over-
fitting. This may be due to the regular nature
of the tasks we considered in the paper. We fol-
lowed the Anil et al. (2022)’s setup and did not
use OOD performance in model selection, as this

would constitute "peaking at the test conditions". Regarding the number of training iterations, we
also tried training the T5 model with more iterations in the addition task, but this did not lead to
substantial differences in OOD performance (i.e., it was still equally poor).

F.1.2 FEW-SHOT IN-CONTEXT LEARNING

For the few-shot context learning on GPT and GLM-130B models, we employ an approach inspired
by the recent work on GPT-3 (Brown et al., 2020). In this methodology, the models are provided a

4The specific configurations of the GPT series of models can be found at https://platform.openai.
com/docs/model-index-for-researchers/model-index-for-researchers
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PARITY DATASET

def generate_parity_data(n):
data = []
for _ in range(100000):

input_str = ’’.join(str(random.randint(0, 1)) for _ in range(n))
label = sum(int(x) for x in input_str) % 2
data.append({’input’: input_str, ’label’: label})

return data

parity_data = {}
for n in range(1, 41):

parity_data[n] = generate_parity_data(n)

context consisting of a few examples of the input-output pairs in natural language format. Following
this, the models are expected to generalize and perform well on the task without any explicit fine-
tuning. We carefully design the context to include diverse examples that represent the range of
input types and required model reasoning. Importantly, we limit the context length to be within the
maximum token limits of the models. For instance, GPT-3 has a token limit of 2048. Due to limited
access to the GPT family of models, we utilize the official API for these experiments 5. .For the
GLM-130B, we employ the FasterTransformer framework to set up local inference with INT4 on
eight NVIDIA GeForce RTX 3090 GPUs with 24GB of memory each.

To compare with CoT and PAL which experimented on GPT-3 series models, we simulated Neural
Comprehension (NC) within the constraints of the API access. We treated the API’s output as if
it were part of the Neural Comprehension structure. This involved a simulated gating mechanism,
where the output from the API was corrected using CoNNs form left to right, and then the adjusted
response (Truncate the text after the altered text.) was changed into the API’ input for continued
generation. This simulation was to ensure that the benefits of NC could be compared fairly with the
existing results from PAL.

F.2 TASKS AND DATASET

In this paper, all data sets related to length generalization consist of independent data sets with the
same number of digits but different lengths, and each digit in the test set is unique. Therefore, there
may be slight fluctuations between data sets of different lengths, but the overall trend is generally clear.
To further illustrate the differences between data sets of different lengths, the following examples are
provided:

Parity: 110︸︷︷︸
Length = 3

= 0 101100︸ ︷︷ ︸
Length = 6

= 1 010001110101︸ ︷︷ ︸
Length = 12

= 0

Reverse: abc︸︷︷︸
Length = 3

= cba figure︸ ︷︷ ︸
Length = 6

= erugif accomplished︸ ︷︷ ︸
Length = 12

= dehsilpmocca

Addition: 1 + 2︸ ︷︷ ︸
Length = 3

= 3 18 + 245︸ ︷︷ ︸
Length = 6

= 263 48864 + 964315︸ ︷︷ ︸
Length = 12

= 1013179

Arithmetic Reasoning: Joan found 6546634574688499︸ ︷︷ ︸
Length = 16

seashells and Jessica found

3855196602063621︸ ︷︷ ︸
Length = 16

seashells on the beach. How many seashells did they find

together ?

F.2.1 DATA GENERATION DETAILS

Synthetic Parity Dataset: We sample instances of lengths 1-40 from a uniform Bernoulli distribution.
We first uniformly sample the number of ones, and then randomly shuffle the positions of each one
within a fixed-length bitstring. For the experiments in Figure 5.1, we train T5 on lengths 10-20, with
99000 training samples per bit. For all methods, we test each bit using 1000 samples.

5OpenAI’s API:https://openai.com/api/

26

https://openai.com/api/


Published as a conference paper at ICLR 2024

REVERSE DATASET

reverse_data = {}
for n in range(1, 41):

reverse_data[n] = []
for _ in range(100000):

word = ’’.join(random.choice(string.ascii_lowercase) for _ in range(n))
reverse_data[n].append({’input’:word,’label’:’’.join(list(reversed(word)))})

ADDITION DATASET

# Generate two random n-digit numbers and their sum
def generate_additive_example(n):

data = []
k = (n - 1) % 2
n = (n - 1) // 2 if n > 2 else n

for _ in range(100000):
a = random.randint(10**(n+k-1), 10**(n+k) - 1)
b = random.randint(10**(n-1), 10**n - 1)
data.append({’input’: str(a)+’+’+str(b), ’label’: a + b})

return data

# Generate an additive data set for digits ranging from 3 to 40
additive_data = {}
for n in range(3, 41):

additive_data[str(n)] = generate_additive_example(n)

Synthetic Reverse Dataset: We selected a dataset of instances with lengths ranging from 1 to 40.
For the experiments in Figure 5.1, the training set consists of 99000 samples each for lengths 10-20.
Each input is a randomly generated word string of specified length, where the letters are selected
uniformly at random from a set of 26 letters using a Bernoulli distribution (without necessarily having
any actual meaning), and all letters are converted to lowercase. The test set for lengths 1-40 contains
at least 1000 test samples.

Synthetic Addition and subtraction Dataset: Addition and subtraction are fundamental arithmetic
operations that are commonly taught in primary school. To generate the dataset, we takes as input the
number of digits n and returns a list of 100000 examples. The function first calculates the remainder
k when (n − 1) is divided by 2, and then divides (n − 1) by 2 if n is greater than 2, else it sets n
to itself. This ensures that the length of the first number is either equal to or one digit longer than
the length of the second number. The function then generates 100000 examples using randomly
generated numbers. Specifically, it generates two numbers a and b where a is a random integer
between 10(n+k−1) and 10(n+k) − 1, and b is a random integer between 10(n−1) and 10n − 1. It
then appends each example to the list data in the form of a dictionary with the input as the string
"a+b" and the label as the sum a+b.

For the experiments in Figure Figure 1, we provided 99000 training data examples for addition with
numbers ranging from 3 to 10 digits in length for the T5 model. For the GPT-3.5 and GPT-4 models,
we provided 8 few-shot samples within 10 digits. We evaluated the performance of all three models
on numbers ranging from 3 to 30 digits in length, with 1000 test samples per digit. On the other hand,
for the experiments in Figure Figure 5.1, we provided 99000 training data examples for addition with
numbers ranging from 10 to 20 digits in length for the T5 model. For the GPT-3.5 and GPT-4 models,
we provided 8 few-shot samples within the range of 10 to 20 digits. We evaluated the performance of
all three models on numbers ranging from 3 to 30 digits in length, with 1000 test samples per digit.

For subtraction, we use a similar approach.

F.2.2 SYMBOLIC REASONING DATASET

Coin Flip: We followed Wei et al. (2022b)’s setup and randomly concatenated first and last
names from the top 1000 names in the census data (https://namecensus.com/) to create the
<NAME> token. In our work, flipping a coin corresponds to 1 and not flipping a coin corresponds
to 0. To make the inputs as close to English as possible without using too many symbols, we used
the sentence models "<NAME> flips the coin." and "<NAME> does not flip the coin." to represent
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SUBTRACTION DATASET

# Generate two random n-digit numbers and their minus
def generate_minus_example(n):

data = []
k = (n - 1) % 2
n = (n - 1) // 2 if n > 2 else n
for _ in range(100000):

a = random.randint(10**(n+k-1), 10**(n+k) - 1)
b = random.randint(10**(n-1), 10**n - 1)
if a > b:

data.append({’input’: str(a)+’-’+str(b), ’label’: a - b})
else:

data.append({’input’: str(b)+’-’+str(a), ’label’: b - a})
return data

# Generate an subtraction data set for digits ranging from 3 to 40
minus_data = {}
for n in range(3, 41):

minus_data[str(n)] = generate_minus_example(n)

COIN FILP DATASET

dataset = []
for i in range(500):

# randomly choose two names from the name_list
for o in range(2,5):

sentence = ’A coin is heads up.’
label = []
for time in range(o):

name = random.sample(names, k=1)[0]

# randomly choose whether to flip the coin or not
flip = random.choice([True, False])

# generate the statement and label based on whether the coin was flipped or not
if flip:

sentence += f" {name.capitalize()} flips the coin."
label.append(1)

else:
sentence += f" {name.capitalize()} does not flip the coin."
label.append(0)

sentence += ’ Is the coin still heads up?’

dataset.append({’question’:sentence, ’answer’:{0:’yes’,1:’no’}[sum(label)%2]})

whether the coin was flipped or not. This task is similar to the parity task, but requires further
semantic understanding. We constructed a training set of 1500 samples, with 500 samples for each of
2-4 coin flips. For the test set, we selected 100 non-overlapping samples for each of 2-4 coin flips,
and evaluated the model every 5 steps.

Last Letter Concatenation: We followed Wei et al. (2022b)’s setup and randomly concatenated first
and last names from the top 1000 names in the census data to create the <NAME> token. This task
requires the model to connect the last letter of each word in a concatenated name. This task requires
Neural Comprehension of rules in two aspects. First, it requires the model to correctly identify the
last letter of each word. Second, it requires the model to concatenate all the last letters of the words
together. We concatenated 2-5 first or last names, and constructed a training set of 1500 samples,
with 500 samples for each name length of 2-4. For the test set, we selected 100 non-overlapping
samples for each name length of 2-4, and evaluated the model every 5 steps.

F.2.3 ARITHMETICAL REASONING DATASET

In Table 11, we summarize the information of all arithmetic reasoning datasets used in this work. We
provide the links to access these datasets:

• GSM8K: https://github.com/openai/grade-school-math
• SingleEq: https://gitlab.cs.washington.edu/ALGES/TACL2015
• AddSub: https://www.cs.washington.edu/nlp/arithmetic
• MultiArith: http://cogcomp.cs.illinois.edu/page/resource_view/
98
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Dataset Number of samples Average words Answer Format Lience
GSM8K 1319 46.9 Number MIT License
SingleEq 508 27.4 Number MIT License
AddSub 395 31.5 Number Unspecified
MultiArith 600 31.8 Number Unspecified
SVAMP 1000 31.8 Number MIT License

Table 11: Arithmetical Reasoning Dataset Description.

• SVAMP: https://github.com/arkilpatel/SVAMP

G SOME EXAMPLES OF NEURAL COMPREHENSION

In this section, we will use gray font to represent the task input, yellow font to represent the neural

network output during training, and blue background to represent the neural network output during
generated.

G.1 SYNTHETIC SYMBOLIC

Q: 1011001010 A: 1

Q: 01111011000 A: 0

Q: 1010011001110 A: 1

Q: 10000001001001 A: 0

Q: 110100011110001 A: 0

Q: 1110011001010110 A: 1

Q: 1100000111011000101 A: 1

Q: 01100000110110010001 A: 0
——–(LLM’s few-shot prompt)——–
Q: 011110001010101101011 A: 0

Table 12: The example of Parity

Q: neofascism A: msicsafoen

Q: betaquinine A: eniniuqateb

Q: corediastasis A: sisatsaideroc

Q: ferroelectronic A: cinortceleorref

Q: cryoprecipitation A: noitatipicerpoyrc

Q: cryofibrinogenemia A: aimenegonirbifoyrc

Q: chemocarcinogenesis A: sisenegonicracomehc

Q: ponjpcdqjuuhiviojmby A: ybmjoivihuujqdcpjnop
———-(LLM’s few-shot prompt)———-
Q: helloworldhellochina A: anihcollehdlrowolleh

Table 13: The example of Reverse
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Q: 82637+3058 A: 85695

Q: 58020+96632 A: 154652

Q: 717471+58704 A: 776175

Q: 298309+702858 A: 1001167

Q: 1061462+2623780 A: 3685242

Q: 58720970+61609034 A: 120330004

Q: 364920479+78861480 A: 443781959

Q: 6050330002+211065324 A: 6261395326
———-(LLM’s few-shot prompt)———-
Q: 20021012+20021004 A: 40042016

Table 14: The example of Addition

Q: 82637-3058 A: 79579

Q: 96632-58020 A: 38612

Q: 717471-58704 A: 658767

Q: 702858-298309 A: 404549

Q: 2623780-1061462 A: 1562318

Q: 68720970-61609034 A: 7111936

Q: 364920479-78861480 A: 286058999

Q: 6050330002-211065324 A: 393967676
———-(LLM’s few-shot prompt)———-
Q: 20021012-20021004 A: 8

Table 15: The example of Subtraction

G.2 SYMBOLIC REASONING

A coin is heads up. Devin flips the coin. Maxwell does not flip the coin.

James flips the coin. Kenneth flips the coin. Is the coin still heads up?

1 0 1 1 -> 1

A coin is heads up. Ira flips the coin. Danny does not flip the coin.

Horace flips the coin. Is the coin still heads up?

1 0 1 -> 0

Table 16: The example of Coin Flip
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Take the last letters of the words in Elias Earnest Milton and concatenate them.
The last letter of Elias -> s The last letter of Earnest -> t
The last letter of Milton -> n The answer is stn

Take the last letters of the words in Randolph Weldon Olin Robbieänd concatenate them.

The last letter of Randolph -> h The last letter of Weldon -> n

The last letter of Olin -> n The last letter of Robbie -> e The answer is hnne

Table 17: The example of Last Letter Concatenation

G.3 ARITHMETICAL RESONING

Joan found 65466345746884996 seashells and Jessica found 38551966020636213
seashells on the beach . How many seashells did they find together ?

Joan started with 65466345746884996 seashells. She gave some to Sam. So:

65466345746884996 - 38551966020636213 = 2691437972624878
The answer is 2691437972624878

Table 18: The example of Arithmetirc Reasoning
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