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Abstract

Data-driven models have emerged as a promising approach for solving partial dif-1

ferential equations (PDEs) in science and engineering. Previous machine learning2

(ML) models typically cover only a narrow distribution of PDE problems; for exam-3

ple, a trained ML model for the Navier-Stokes equations usually works only for a4

fixed Reynolds number and domain size. To overcome these limitations, we propose5

a data augmentation scheme based on scale-consistency properties of PDEs and6

design a scale-informed neural operator that can model a wide range of scales. Our7

formulation (i) leverages the fact that many PDEs possess a scale consistency under8

rescaling of the spatial domain, and (ii) is based on the discretization-convergent9

property of neural operators, which allows them to be applied across arbitrary10

resolutions. Our experiments on the 2D Darcy Flow, Helmholtz equation, and11

Navier-Stokes equations show that the proposed scale-consistency loss helps the12

scale-informed neural operator model generalize to Reynolds numbers ranging13

from 250 to 10000. This approach has the potential to significantly improve the14

efficiency and generalizability of data-driven PDE solvers in various scientific and15

engineering applications.16

1 Introduction17

Natural phenomena often exhibit strong relationships across a wide range of scales. A canonical18

example is the Koch snowflake, a fractal where the same generating rule applies at various scales,19

as illustrated in figure 1. Such multi-scale behavior is also seen in solutions of partial differential20

equations (PDEs), which model various phenomena in science and engineering. For instance,21

the Navier-Stokes equation, a classical model describing fluid motion, applies to both large-scale22

problems such as weather forecasting [1], and small-scale problems such as airfoils [2]. Despite the23

diversity in behaviors and frequency ranges, these problems can be reformulated in a dimensionless24

manner using scale parameters such as the Reynolds number in the Navier-Stokes equation and the25

wavenumber in the Helmholtz equations, leading to broad applicability.26

Data-driven models have become a common methodology to complement or augment numerical27

solvers for physical simulation [3]. However, existing data-driven models are typically targeted to28

a single input variable, such as the coefficient function or initial condition, while other parameters29

remain fixed, including the domain size, boundary condition, and forcing term [4]. Recently, general30

foundation models have been proposed to capture various datasets under a wide range of conditions,31

or even multiple families of PDEs [5–11]. However, they do not explicitly capture relationships32

across a wide range of scales seen in physical systems. It is challenging for standard neural networks33

to capture different scales. Multi-scale physical phenomena exhibit varying intrinsic complexities and34

frequency ranges, often generated at different resolutions. In general, separate neural network models35

are trained for capturing each scale, making it cumbersome to couple them together and impose36

constraints across scales. In prior works, symmetry-based data augmentation has led to improved37

generalization and data efficiency [12–14]. For 2D PDEs, the symmetry group includes translation,38
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Figure 1: Row 1: Koch snowflake, a toy example of a problem at different scales. We consider three
sets of PDEs with different scales. Large-scale problems are intrinsically more complex: Row 2:
Darcy Flows O(1), Row 3: Helmholtz Equation O(k2), Row 4: Navier Stokes equation O(Re3). In
this work, we aim to design a learning framework to capture the consistency across the scales.

rotation, Galilean boost, and scaling. Among them, scale symmetry has been the least successful in39

improving performance [13, 14].40

A possible reason is that the previous formulations of scale-symmetry are defined as global scaling,41

which does not introduce new scales. In this work, instead, we use sub-sampling (i.e., restricting to a42

subdomain) to create new data instances of various scales, which broadens the training distribution43

and allows the model to capture the solution operator over a wide range of scales. Neural operators44

are ideal models for imposing such constraints across multiple scales. Neural operators are designed45

to learn the solution operator of PDEs in a dimensionless manner [15–18]. They automatically rescale46

problems to a unit domain size without the need for interpolation. Neural operators are discretization-47

convergent, maintaining accuracy across various resolutions and converging as the resolution refines,48

making them ideal backbone models for addressing problems at various scales.49

Our approach. In this work, we extend the notion of scale-symmetry to scale-consistency across50

problems with different intrinsic scales. The solution operators of PDEs are scale-consistent, meaning51

that applying the model on a large domain and then restricting it to its subdomain should yield the52

same result as directly applying the model to the subdomain. Based on scale-consistency, we propose53

a data augmentation scheme to generate instances with different scales. As shown in Figure 2, given54

a data instance, we sub-sample the domain to obtain new data at a smaller scale, and we calculate55

the new input coefficients, boundary conditions, and corresponding output solution, which are then56

rescaled to unit domain size by adjusting the scale parameter. The loss is defined as the difference57

between the sub-domain model output and the sub-sampled ground truth data. Furthermore, when58

the ground truth output solution is unknown, we can use the global model output as an estimate and59

define the loss as the difference between the models evaluated at different scales, which can be used60

to sample larger unseen scales.61

To capture a wide range of scales, we propose a new architecture called the scale-informed neural62

operator, as shown in Figure 3. Since neural operators can handle any scale by design, we incorporate63

the scale parameter as additional input and embed the scale features in the Fourier space, helping the64

model capture different frequencies corresponding to different scale parameters. Similar to [19], we65

use a weight-sharing parameterization, where a single weight network is shared across all frequency66

modes. This approach not only reduces the size of the model parameters but also enables the handling67
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Figure 2: Self-consistency: given data instance of input coefficient a, boundary g, scale parameter
k, and solution u, we restrict them to a sub-domain Ω̂ to obtain new data instance â, ĝ, û, which
is rescaled to unit length by adjusting the parameter to k 7→ λk. The loss is defined as ∥u|Ω̂ −
G(a|Ω̂, u|∂Ω̂, λk)∥ (4). When the solution u is unavailable, it can be approximated by G(a, g, k) and
the loss becomes ∥G(a, g, k)|Ω̂ − G(a|Ω̂,G(a, g, k)|∂Ω̂, λk)∥ (3), resulting in a self-supervised loss.

of higher frequencies without truncation. Additionally, it employs a multi-band U-shaped architecture68

that optimizes channel dimensions, using larger dimensions for lower frequency bands and smaller69

dimensions for higher frequency bands, reducing the weight tensor size in the original FNO. In70

summary, our main contributions are:71

• We propose a data augmentation scheme based on scale-consistency that creates data instances72

with various intrinsic scales via sub-sampling and super-sampling.73

• We show a theorem for Darcy equation that if the model is scale-consistent and it matches the74

target operator at simple instances, then it matches the target operator at all instances.75

• We design a scale-informed neural operator that takes the scale parameter as input with weight-76

sharing parameterization and adaptive U-shape architecture to capture a wide range of scales.77

• Our experiments on 2D Darcy Flow, Helmholtz equations, and Navier-Stokes equations demon-78

strate that the scale-consistency loss helps the scale-informed neural operator model extrapolate79

to wider scales with a 25% error reduction compared to baseline models.80

The proposed approach has the potential to significantly improve the efficiency and generalizability of81

data-driven PDE solvers in various scientific and engineering applications, reducing the need for ex-82

tensive training data and enabling the development of more flexible and foundational models.83

2 Related work84

Neural operator. Data-driven methods have become increasingly popular in learning Partial Differ-85

ential Equations (PDEs) for scientific computing [1, 20]. As the solutions of PDEs live on infinite86

dimensional function space, the neural operators are constructed in a continuous manner to learn the87

underlying solution operators [15, 21, 17]. Among these, the Fourier Neural Operator (FNO) stands88

out as one of the most effective models [22] with numerous variants [23–25]. Specially AFNO [19]89

has an attention-like layer using FFT, and UNO [26] has a U-shape architecture. In this work, we use90

FNO as the backbone model.91

Symmetry. In previous works [12–14], the scaling symmetry has been used for data augmentation.92

In the context of a dynamical system, symmetry is a relationship between the spatial domain,93

temporal domain, and magnitude. For the example of simplified Navier-Stokes equation ∂tu +94

u∇u = ν∆u, u is the velocity field, and ν is viscosity. If we transform the velocity field as95

Tλ : u(x, t) 7→ λu(λx, λ2t), the equation becomes λ2(∂tu+ u∇u) = λ2ν∆u which is still satisfied96

with ν unchanged. The scaling symmetry form an equivariance Tλ ◦ G(u) = G ◦ Tλ(u) with operator97

G. However, it has been reported as not helpful in [13] and [14]. One reason may be that continuous98
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Figure 3: Diagram: scale-informed neural operator has a U-shape structure on the Fourier space. In
the down block, the input tensors are truncated and lifted by complex layer R; in the up block, the
tensors are projected and added to the inputs. Skip connections are added across the blocks.

scaling symmetry is ill-defined on periodic domains considered in [13]. Another reason could be99

that scaling the magnitude of velocity λu changes the range of inputs. In most scenarios, such as100

weather forecasts, the magnitude of velocity lies in a constant range. In this work, we consider101

a generalized scaling equivariance considering the scaling parameter Re := LU/ν, where L is102

the domain size and U is the mean magnitude of the velocity field. The scale-transform not only103

scale the input function (vorticity), but also scale the parameter, Tλ : (ω(x), Re) 7→ (ω(λx), λ2Re).104

Tλ ◦ G(ω,Re) = G ◦ Tλ(ω,Re). In the new formulation, L scales as λx as before, but the magnitude105

U = O(1) and dt are unchanged.106

3 Scale-Consistency107

Many PDEs possess symmetries, which are reflected by the fact that the equations remain invariant108

under transformations such as translation, rotation, or re-scaling. An example is the Darcy flow109

problem on a domain Ω ∈ Rd.110 {
−∇ · (a(x)∇u(x)) = 0, (x ∈ Ω),

u(x) = g(x), (x ∈ ∂Ω).

(1a)
(1b)

Then the associated solution operator G can be viewed as a mapping111

(a(x), g(x)) 7→ G(a, g)(x) := u(x).

Re-scale symmetry. Let Tλ be the re-scaling operator defined by (Tλa)(x) := a(λx). In the absence112

of boundary conditions, the scale symmetry implies an equivariance property of G:113

G(Tλa, . . .) = TλG(a, . . .).

The boundary condition (or simply the fact that the PDE is defined on a bounded domain Ω) breaks the114

scale symmetry; if u : Ω → R is defined on the domain Ω, then Tλu is defined on the rescaled domain115

Ωλ = {λ−1x|x ∈ Ω}, and we are generally lacking information about the boundary condition on116

the boundary of the re-scaled domain ∂Ωλ. Thus, the presence of boundaries in most problems of117

practical interest makes it difficult to leverage the underlying symmetry properties of the equations in118

a straightforward way.119
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Nevertheless, under some conditions on the domain Ω (e.g. Ω = [0, 1]d is a cube), the formal scale120

symmetry of the solution operator of (1) implies that if u(x) solves (1) with coefficient field a(x) and121

with boundary condition g(x), then the rescaled function uλ(x) = Tλu(x) = u(λx), solves122 {
−∇ · (aλ(x)∇uλ(x)) = 0, (x ∈ Ωλ),

uλ(x) = Tλu(x), (x ∈ ∂Ωλ).

i.e. uλ(x) is a solution of the Darcy flow problem on domain Ωλ, with coefficient field aλ = Tλa,123

and boundary condition (Tλu)|∂Ωλ
. Another operation we can perform is the restriction from Ωλ124

to Ω when λ ≤ 1. Intuitively, this condition expresses the fact that the solution operator of (1) is125

scale-consistent: The solution on a smaller subdomain Ω ⊂ Ωλ can either be obtained126

1. by solving the PDE over the entire domain Ωλ and then restricting the solution u to the smaller127

domain u|Ω.128

2. u|Ω can be obtained by solving the PDE directly on the domain Ω, and imposing consistent129

boundary condition u|∂Ω.130

Combining the scale symmetry with restriction, we obtain the following identity in terms of the131

solution operator G:132

[TλG(a, g)]|Ω = G([Tλa]|Ω, [Tλu]|∂Ω) ≡ G([Tλa]|Ω, [TλG(a, g)]|∂Ω), (λ ≤ 1). (2)

For the solution operator, this identity holds for arbitrary inputs a(x) and g(x). The scale-consistency133

(2) can be used as a loss to train solution operators. Informally, if an operator satisfies (2), then it134

must be the target solution operator. The proof can be found at B.135

Theorem 3.1 (Scale-consistency (informal)) If an operator Ψ satisfies the scale-consistency (2)136

and it matches the ground truth solution operator G on nearly constant functions, then Ψ ≡ G.137

Scale-consistency loss. The first way to impose such a constraint is by introducing a loss of the138

form139

L(a, g) = ∥TλΨ(a, g)−Ψ(Tλa, TλΨ(a, g)|∂Ω)∥. (3)

Note that this is an unsupervised loss term that doesn’t require access to G. It only requires producing140

input function samples (a, g). When solution data u is available, the scale-consistency loss simplifies141

to142

L(a, g) = ∥Tλu−Ψ(Tλa, Tλu|∂Ω))∥. (4)

Infinitesimal scale-consistency. Another way to impose this constraint is by taking the λ-derivative143

of (2), leading to:144

∂λTλG(a, g) = ∂λ [G(Tλa, TλG(a, g)|∂Ω)] .
We note that if a(x) is a function, then the derivative ∂λTλa evaluated at λ = 1, is given by145

∂λTλa|λ=1 = [∂λa(λx)]λ=1 = x · ∇a(x),

i.e., a radial spatial derivative of a. Substitution of this identity, and noting that Tλ=1a = a and146

Tλ=1G(a, g)|∂Ω = g, implies that147

x · ∇x[G(a, g)](x) =
〈
δG(a, g)

δa
, x · ∇xa

〉
+

〈
δG(a, g)

δg
, x · ∇x[G(a, g)]

〉
. (5)

We observe that while (2) is highly non-linear, the infinitesimal constraint is quadratic in G.148

3.1 Scale-dependent problem: extension beyond scale symmetry149

The scale-consistency constraint can be written in greater generality, even if the underlying PDE150

has no scale symmetry. In this case, the domain could be an input to the operator, and the relevant151

scale-consistency would be152

G(a, g; Ω)|Ω′ = G(a|Ω′ ,G(a, g,Ω)|∂Ω′ ; Ω′), (Ω′ ⊂ Ω).

In some cases, this is equivalent to scaling certain parameters in the PDE, as explained below.153

Helmholtz equation. An example not satisfying scale symmetry is the Helmholtz equation,154

∆u(x) + k2u(x) = f(x). (6)

5



In this case, a rescaling of the spatial variable corresponds to a rescaling of the frequency k2, i.e.155

uλ(x) = u(λx) solves ∆uλ(x) + λ−2k2uλ(x) = λ−2f(λx), or156

∆uλ(x) + k2λuλ(x) = fλ(x),

with kλ := λ−1k, fλ(x) := λ−2f(λx). Thus, the scale-consistency constraint involves the whole157

family of PDEs, ∆u+ k2u = f, for k > 0, with the transform on parameter Tλ(k) = λk.158

Navier-Stokes equation. Another example is the two-dimensional incompressible Navier-Stokes159

equation in vorticity formulation,160

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t), (7)

describing the evolution of the vorticity ω = curl(u) of an underlying flow velocity field u. Rescaling161

the spatial variable x corresponds to rescaling the viscosity ν; ωλ(x, t) = ω(λx, t) solves162

∂tωλ(x, t) + uλ(x, t) · ∇ωλ(x, t) = νλ∆ωλ(x, t),

where νλ := λ−2ν, and where uλ is the flow field associated with ωλ, s.t. curl(uλ) = ωλ.163

3.2 Main algorithms164

Remark: neural operator automatically rescales input to unit length. For standard neural165

networks such as convolution neural networks, re-scaling T needs to be implemented as interpolation.166

However, in the design of neural operators such as FNO, the domain size is implicitly re-scaled to167

unit length, where the Fourier basis is defined with length [0, 1]. Given Tλf defined on domain [0, λ],168

Fourier neural operator Ψ automatically rescale it to unit length,169

Ψ(Tλf, . . .) := Ψ(T1/λTλf, . . .) = Ψ(f, . . .).

where f is defined on unit size [0, 1]. Therefore, the re-scaling T is omitted in the algorithm.170

Scale-down. The down-algorithm is based on equation (4), where we use sub-sampling (i.e., restrict171

to sub-domain) to obtain instance with smaller scale λk < k. Given the input and output data172

{(a, g, k), u} defined on domain Ω, we truncate the domain into a smaller sub-domain Ω̂. The input173

and output restrict to the sub-domain, along with the re-scaled parameter, become a new data instance174

{(â, ĝ, k̂), û}. We compute the consistency loss as the difference between the model evaluated on175

restricted input Ψ(â, ĝ, k̂) and the restricted output û.176

Algorithm 1 Scale-down via sub-sampling
1: input: data pair {(a, g, k), u} on domain Ω = [0, 1]2, model Ψ, and sampling rate λ < 1.
2: sample the sub-domain Ω̂ = [w,w + λ]× [h, h+ λ], where w, h ∼ Unif [0, 1− λ].
3: define new instance with (â = a|Ω̂, ĝ = u|∂Ω̂, k̂ = λ k), û = u|Ω̂.
4: output: consistency loss = ∥Ψ(â, ĝ, k̂)− û∥.

Scale-up. The up-scaling algorithm is based on equation (3), where we sample new instances177

corresponding to larger scale λk > k. Given the distributions µ for a and ν for g, we can sample new178

instance a, g with larger scale λk and apply Algorithm 1. Different from 1, we do not have the ground179

truth output u on the larger scale. Instead, we estimate using the model u = Ψ(a, g, λk).180

Algorithm 2 Scale-up
1: input: distributions of inputs µ, ν, model Ψ, scale parameter k, and sampling rate λ > 1.
2: sample new instances a ∼ µ, g ∼ ν. Define new scale as λk.
3: estimate the solution of new domain u = Ψ(a, g, λk).
4: call Algorithm 1 with input {(a, g, λk), u} with scale 1/λ.
5: output: consistency loss = ∥Ψ(a|Ω̂,Ψ(a, g, λk)|∂Ω̂, k)−Ψ(a, g, λk)|Ω̂∥.

4 Scale-informed Neural Operator181

The scale-informed neural operator is based on the FNO [22], where convolution is implemented as182

a pointwise multiplication in the Fourier space. Since FNO automatically rescales its input to unit183

length, we design a scale embedding in the Fourier space to inform the model of the scale parameter184

k. Further, we design a U-shaped architecture to optimize the channel dimension.185
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4.1 Scale-informed MLP on Fourier Space186

In the previous FNO, the weight tensor R is defined as a (M1 × · · · ×Md × Cin × Cout)-tensor,187

which is sufficient for lower-dimensional problems with fewer total modes M . For larger-scale188

problems, such as highly turbulent flows, the weight tensor R becomes prohibitively large. Therefore,189

we propose an implicit representation of the weight tensor similar to AFNO [19], where the complex190

weight R with the shape (Cin × Cout) is shared across all modes (M1 × · · · ×Md).191

Different from AFNO, we further define the features of scale k and mode index ξ as input, so192

that the transform R can behave correspondingly with respect to different scales k and modes ξ.193

Let Ck be the embedding channel dimension; we define scale features as h(k)i = ki/(Ck−1) for194

i = 0, 1, . . . , Ck − 1, which covers a wide range from k0/(Ck−1) = 1 to k(Ck−1)/(Ck−1) = k. The195

input ft(ξ) ∈ CCin is first element-wise multiplied with the features of the scale parameter and196

wavenumber h(k, ξ), and then multiplied with R, followed by a group normalization and a complex197

activation σ as defined in Section C.4. The transform K can be viewed as a kernel function defined198

on the Fourier space:199

(Kft+1)(ξ) = σ
(
R(ft(ξ)⊙ h(k, ξ))

)
. (8)

4.2 Multi-band Architecture200

The Fourier signal usually follows an ordered structure, where the energy decays as the wavenumber201

increases. Therefore, previous methods such as FNO [22] and SNO [27] choose to truncate to a202

fixed number of frequencies by omitting higher frequencies. Similar to previous works such as UNet203

[28] and UNO, we design a multi-band structure to gradually shrink the frequency bands, as shown204

in Figure 3. Different from UNO, which applies spectral convolutions at each down and up block,205

in this work, we define the U-shaped structure fully in the Fourier space. Given the initial channel206

dimension C, maximum input modes M , and a predefined number of levels L, we define Cl and Ml207

as Cl = 2lC and Ml = 2−lM , where each block has shape C2
l M

d
l . For d = 2, C2

l M
2
l = C2M2, so208

each level has the same size. We define the first level in MLP formulation, where R1 has the shape209

(Cin × Cout), and higher levels in tensor formulation with (Md
l × Cin × Cout).210

Down Blocks. At each level, the input tensor is transformed into shape (B,Cl,M1,l, . . . ,Md,l) with211

the down blocks. The down block consists of two steps:212

• Truncation: Truncate the modes from Ml to Ml+1.213

• K Layer: Apply Rl,l+1 to lift the channel dimension from Cl to Cl+1, followed by a complex214

activation function.215

After reaching the lowest level, we have collected the input {f, f1, . . . , fL}.216

Up Blocks. Conversely, the up blocks lift the tensor back to the original shape.217

• K Layer: Apply Rl,l−1 to project the channel dimension from Cl to Cl−1, followed by a218

complex activation function.219

• Summation: Combine the output of mode Ml with the inputs fl of Ml−1 by adding corre-220

sponding modes.221

Optionally, we have the middle block Rl,l applied on fl. The complex kernel consists of learned222

complex matrices {Rl,l+1}L−1
1 and {Rl,l−1}L2 .223

Skip Connection. Furthermore, we define skip connections in the Fourier space. After the down224

block, we save the intermediate tensors {f, f1, . . . , fL} and pass them to the next layer. The skip-out225

tensor at layer t will be added back at the next layer t+ 1 in the down block.226

Boundary. For boundary value problems, we take the boundary as an additional input. For a 1-227

dimensional boundary on a 2-dimensional square domain, we extend the boundary to 2D by repeating228

along the other dimension. For Dirichlet-type boundaries, it is known that the boundary is the restric-229

tion of the solution, and their magnitudes should be similar. Therefore, we define a normalization at230

the end of the model that multiplies the output by the magnitude of the boundary.231

5 Experiments232

We generated datasets for the Darcy Flow, Helmholtz equation, and Navier-Stokes equation, each233

spanning a wide range of scales. For each test case, we trained the models on a narrow range of scales234

and compared the performance with and without self-consistency augmentation. All experiments235
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Figure 4: Supervised training versus self-supervised training evaluated on multiple scales. Left:
Darcy Flows. Mid: Helmholtz Equation. Right: Navier-Stokes equation. The range of the black
dashed line shows the region of training scales. It is shown that self-consistency loss helps general-
ization to unseen scales.

were run on Nvidia A100 (40GB) or P100 (16GB) GPUs. We used the Adam optimizer with a236

default learning rate of 1e− 3, weight decay of 1e− 4, and a cosine annealing scheduler, trained for237

100 epochs. The error metric is relative L2 error. The choice of hyperparameters can be found in238

Appendix D.1. The results show that self-consistency augmentation helps the model generalize better239

to unseen scales.240

5.1 Self-consistency loss241

In the first part, we compare FNO, UNet, and our models, with and without the self-consistency242

loss. For Darcy and Helmholtz equations, where the input distribution is given as a Gaussian random243

field, we apply both sub-sampling 1 and super-sampling 2. For the Navier-Stokes equation, the input244

distribution is unknown, so we only apply sub-sampling. The detailed data generation can be found245

at A.246

Darcy Flow. We considered the Darcy Flow (1) with a non-zero Dirichlet boundary. The input247

coefficient a was sampled as a = 2 + 10 · 1[â>0] representing two types of media with values 2 and248

10, where â is sampled from a Gaussian random field N (0, C). The covariance kernel C has Fourier249

coefficients exp(−σ|ξ|1/2). We considered wave lengths σ = 2, 4/3, 1, 1/2, 1/4 := 1/k, which is250

inverse to the scales. The resolutions were s = 64, 96, 128, 256, 512, respectively. We train 1024251

instances for training and 128 for testing. The data generation details can be found in Appendix A.1.252

We used σ = 1 for training. Since Darcy has no scale parameters, we used FNO with and without253

scale-consistency. As shown in Figure 4 (left) and Table 2, FNO with scale-consistency reduced the254

error by half compared to the baseline.255

Helmholtz. We considered the Helmholtz equation (6) with a non-zero Dirichlet boundary. The256

input coefficients a, g were sampled from a fixed Gaussian random field, with varying wavenumbers257

k = 1, 2, 5, 10, 25, 50, 100. The resolutions were 64, 64, 64, 128, 256, 512, 1024, respectively. We258

train 1024 instances for training and 128 for testing. The data generation details can be found in259

Appendix A.2. We used k = 5, 10, 25 for training. As shown in Figure 4 (middle) and Table 3,260

the scale-informed FNO with scale-consistency reduced the error by half compared to the baseline261

FNO on smaller wavenumbers k = 1, 2, but neither model captured larger scales k = 50, 100, since262

Helmholtz equation has very different behaviors on larger scales.263

Navier-Stokes. We considered the Navier-Stokes equation (7) defined on sub-domain similar to264

applications in climate. The input is the vorticity field of the previous ten time frames ω0. We con-265

sidered Reynolds numbers ranging from Re = 250, 500, 1000, 2000, 4000, 10000. The resolutions266

were 32, 64, 128, 128, 256, 512, respectively. We train 50 trajectories for training and 5 (per each267

Re) for testing, where each trajectory consists of 300 time steps, with dt = 0.1. The data generation268

details can be found in Appendix A.3. We used Re = 1000 for training. As shown in Figure 4 (right)269

and Table 1, the scale-informed multi-band neural operator with scale-consistency reduced the error270

by 1/4 compared to the baseline UNet on unseen Re = 250, 500, 4000, 10000.271

5.2 Ablation study272

Further, we conducted an ablation study on the proposed model in the standard supervised learning273

setting with periodic Navier-Stokes equation with fixed scales Re = 5000 (with forcing) and274

Re = 10000 (zero forcing) as in [29]. For baselines, we consider FNO [22], UNet [28], FNO-UNet275
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Figure 5: Ablation study. left: Cost Accuracy: Kolmogorov Flow with RE=5000 on resolution
s = 128 × 128. We use full modes for all the models. Our model (tensor) converges faster than
baseline models. Further, the model (mlp) achieves comparative accuracy with 1/10 of the parameters.
right: discretization convergence: the proposed model does not truncate to a fixed bandwidth. As the
training resolution increases, the model’s error converges while the baseline FNO remains the same.

Table 1: Navier-Stokes equation trained on RE1000, zero-shot test on various RE.

Model parameters re250 re500 re1000 re2000 re4000 re10000
Resolution 32 64 128 128 256 512

UNet 25M 0.03554 0.02754 0.00897 0.02169 0.10120 0.22642
UNet+aug 25M 0.04181 0.03164 0.06964 0.08320 0.09960 0.18662

FNO 8M 0.00482 0.00819 0.01122 0.03260 0.07586 0.18902
FNO+aug 8M 0.00348 0.00608 0.00929 0.02793 0.07282 0.19559

Ours 34M 0.00508 0.00781 0.01305 0.03232 0.06502 0.17567
Ours+aug 34M 0.00459 0.00791 0.01388 0.03201 0.06293 0.16715

[30], and UNO [26]. The results show that our model achieves a smaller error rate with one-tenth of276

the parameters compared to the previous FNO at the cost of longer runtime, as shown in Figure 5277

(left). Since the model does not truncate the maximum Fourier frequency, its accuracy improves as278

the resolution refines, as shown in Figure 5 (right).279

Limitations. While sub-sampling 1 is generally helpful, super-sampling 2 requires input distribution280

known to sample new instances. For the example of the Navier-Stokes equation, it is challenging to281

sample input history from the unseen distribution (attractor) of higher Reynolds numbers. It could be282

an interesting direction to combine with generative models [31] to sample virtual inputs. Besides, our283

implementation of sub-sampling and super-sampling is limited to simple topology and cannot create284

periodic boundary domains such as torus or sphere.285

6 Conclusion286

In this paper, we consider the scale consistency for learning solution operators on partial differential287

equations (PDEs) across various scales. By leveraging the scale-consistency properties of PDEs and288

designing a scale-informed neural operator, we demonstrated the ability to model a wide range of289

scales. Experimental results showed significant improvements in generalization to unseen scales,290

with better generalization errors compared to baseline models. The proposed self-supervised training291

scheme further enhances model performance by creating virtual instances via sub-sampling and292

super-sampling. This approach holds promise for improving the efficiency and generalizability of293

data-driven PDE solvers, reducing the need for extensive training data, and enabling the development294

of more flexible and foundational models for scientific and engineering applications.295
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A Dataset404

A.1 Darcy Flow405

We use a finite element solver with a resolution of 1024 to generate the dataset. The dataset is similar406

to the one used in [22], but with non-zero Dirichlet boundary conditions.407

A.2 Helmholtz Equation408

We prepare the data using a finite element solver with a resolution of 1024. It is worth noting that for409

physical equations, the Helmholtz equation is often paired with an impedance boundary condition,410

namely a Robin boundary condition:411

∇u · ν = ikβu+ g

For simplicity, we use Dirichlet boundary conditions for operator learning in this work. It is important412

to note that the Helmholtz equation with Dirichlet boundary conditions is a wave scattering problem,413

which may have multiple solutions as studied in [32].414

A.3 Navier-Stokes Equation415

We consider a partially observed Navier-Stokes equation, inspired by practical applications in weather416

forecasting and oceanography, where a specific subdomain of the globe is of interest. We generate an417

isotropic Navier-Stokes equation on a periodic domain [0, 1]2 and truncate it to a [0, 0.5]× [0, 0.5]418

subdomain. For convenience, we set the forcing term to zero and study the decay of turbulence.419

Since the underlying system is defined on a periodic boundary, we generate the data using a pseudo-420

spectral solver with Crank-Nicolson time updates.421

B Proof of Theorem 3.1422

Theorem B.1 Suppose that the neural network solution Ψ is scale-consistent and is accurate for423

constant inputs. Namely if424

1. For almost constants a,425

Ψ(a, g) = G(a, g),

2. Ψ satisfies (2) exactly along with translation symmetry,426

3. Ψ satisfies the boundary condition exactly.427

then we must necessarily have Ψ ≡ G.428

Proof B.1 We use an overlapping partition of the domain Ω into subdomains and zoom in. Suppose
Ω = ∪i∈IΩi is an overlapping partition of Ω, such that each one of Ωi is a rescaling and shifting of
Ω and is of size h. For sufficiently small h, the coefficient a is almost constant in each one of the Ωi.
Consider a partition of unity 1 =

∑
i∈I χi such that χi has support in Ωi. By scale-consistency (2),

we know that Ψ is exact when restricted to Ωi. Thus we have by the weak formulation that

(a∇Ψ,∇vi) = (a∇G,∇vi) = 0

for any vi supported in Ωi. Therefore for any v supported in Ω, we can take vi = χiv and summing
up the weak formulation for all i and arrive at

(a∇Ψ,∇v) = (a∇G,∇v) = 0

Therefore Ψ is a weak solution with the desired boundary condition, and thus Ψ = G.429

C Implementation Details430

C.1 Fourier Neural Operator431

The neural operator, proposed in [33], is formulated as an iterative architecture f0 7→ f1 7→ . . . 7→ fT ,432

where fj for j = 0, 1, . . . , T − 1 is a sequence of functions, each taking values in RC . The433

input a ∈ A is first lifted to a higher-dimensional representation f0(x) = P (a(x)) by the local434

transformation P , which is usually parameterized by a shallow fully-connected neural network. The435

output u(x) = Q(fT (x)) is the projection of fT by the local transformation Q : RC → Rdu . In each436
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iteration, the update ft 7→ ft+1 is defined as the composition of a non-local integral operator K and a437

local, nonlinear activation function σ.438

Gθ := Q ◦ (WL +KL) ◦ · · · ◦ σ(W1 +K1) ◦ P (9)

Denote the layer σ(Wl +Kl) mapping the representation ft 7→ ft+1 by439

ft+1(x) := σ
(
Wft(x) +

(
K(a;ϕ)ft

)
(x)

)
, (10)

where K maps to bounded linear operators on U(D;RC) and is parameterized by ϕ ∈ ΘK, W :440

RC → RC is a linear transformation, and σ : R → R is a non-linear activation function whose action441

is defined component-wise.442

In FNO, the kernel integral operator in K is defined as a convolution operator in Fourier space. Let F443

denote the Fourier transform of a function f : D → RC and F−1 its inverse, then444

f̂(k) = (Ff)j(k) =

∫
D

fj(x)e
−2iπ⟨x,k⟩dx,

f(x) = (F−1f)j(x) =

∫
D

f̂j(k)e
2iπ⟨x,k⟩dk,

C.2 Tensor Parameterization and MLP Parameterization445

The spectral convolution is defined as446 (
K(ϕ)ft

)
(x) = F−1

(
Rϕ · (Fft)

)
(x) ∀x ∈ D, (11)

where Rϕ is the learnable weight matrix or weight tensor.447

Weight Tensor parameterization. Assuming the domain D is discretized with n ∈ N points,448

we have ft ∈ Rn×C and F(ft) ∈ Cn×C . Since we convolve ft with a function that only has449

Mmax Fourier modes, we may simply truncate the higher modes to obtain F(ft) ∈ CMmax×C , where450

Mmax = M1 × . . .×Md. Multiplication by the weight tensor R ∈ CMmax×C×C is defined as451

(
R · (Fft)

)
k
=

C∑
j=1

Rk,j(Fft)k,j . (12)

Weight MLP parameterization. Multiplication by the weight matrix R ∈ CC×C is defined452

as453 (
R · (Fft)

)
k
=

C∑
j=1

Rj(Fft)k,j . (13)

For the MLP parameterization, it is optional to add a bias term b ∈ CC .454

Combining MLP and tensor parameterization. The multi-band structure is designed in a robust455

manner, allowing the specification of the channel dimension Cl and bandwidth Ml to any size. It456

is also flexible to combine the tensor parameterization (12) and matrix parameterization (13). In457

practice, we use the first level as MLP to have a full-frequency convolution, and the rest of the levels458

as tensor versions.459

C.3 Frequency Encoding460

The wavenumber k ∈ Z is encoded to a frequency feature CCk by a frequency encoding layer before461

being fed into the kernel network. For Ck channels, we define462

kj = k
i

(Ck−1) , j = 0, 1, . . . Ck − 1. (14)

We note that kj is unbounded and can become very large. As k → ∞, kj → ∞. Since the input463

signal decays exponentially, f̂t(k) = O(exp(−αk)), a larger feature will help the model capture464

smaller signals.465
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Table 2: Darcy equation trained on σ = 1, zero-shot test on various scale.

Model σ = 2 σ = 4/3 σ = 1 σ = 1/2 σ = 1/4
Resolution 64 96 128 256 512

FNO 0.03922 0.03999 0.03936 0.03451 0.03209
FNO+sup 0.02226 0.02365 0.02361 0.02396 0.02431

FNO+sub+sup 0.01918 0.02075 0.02035 0.02159 0.02237

Table 3: Helmholtz equation trained on k = 5, 10, 25

Model k = 1 k = 2 k = 5 k = 10 k = 25 k = 50 k = 100
Resolution 64 64 64 128 256 512 1024

FNO 1.35418 1.31057 0.03755 0.11684 0.19516 1.09210 1.09897
Ours+sup 0.22004 0.17735 0.03455 0.11810 0.18307 1.13492 1.17544

Ours+sub+sup 0.20662 0.16226 0.03448 0.11796 0.18365 1.51171 1.67784

C.4 Activation Functions on Complex Space466

R is a complex kernel neural network R : CCin+Ck → CCout . We use a complex GeLU as the467

activation function, which applies GeLU to the real and imaginary parts separately, similar to the468

complex ReLU in [34]. This choice empirically provides the best performance.469

cGeLU(f̂) : GeLU(real(f̂)) + iGeLU(imag(f̂)). (15)

D Experimental Details470

D.1 Scale Consistency Loss471

We test scale consistency on the Darcy Flow, Helmholtz equation, and Navier-Stokes equation.472

Darcy Flow In the Darcy Flow problem, since the solution is smooth and low-frequency, we use473

FNO as the baseline. As the domain is not periodic, we use domain padding similar to [35] and474

normalize the model output by the magnitude of boundary inputs, as discussed in Section 4. We475

use 20 Fourier modes, a width (channel dimension) of 64, and 4 layers for the runs with or without476

self-consistency. The super-sampling has an annealed learning rate with respect to the epoch, where477

we multiply the rate learn by α = ep/epmax, where ep = 0, 1, . . . , epmax.478

Helmholtz Equation For the Helmholtz equation, we compare FNO with the scale-informed FNO.479

Again, we normalize the model output by the magnitude of boundary inputs. Since the Helmholtz480

equation has higher frequency components, we use 64 Fourier modes, a width (channel dimension)481

of 32, and 4 layers. We use an annealed learning rate α = ep/epmax for super-sampling.482

Navier-Stokes Equation For the Navier-Stokes equation, we compare UNet, FNO, and the scale-483

informed neural operator. For UNet, we set 5 levels with channels ranging from 64 to 1024. For484

FNO, we set 32 Fourier modes and a width (channel dimension) of 32. For the scale-informed485

neural operator, we also set 32 Fourier modes and a channel dimension of 32, where the first level is486

MLP-based and the second level is tensor-based.487

D.2 Cost versus Accuracy Study488

We assess the trade-off between computational cost and accuracy by comparing the performance of489

various models on the Navier-Stokes flow with Re = 5000 to our baseline models at various memory490

consumption levels. Our comparison metric is the relative L2 loss, recorded after 50 epochs. We use491

the maximum number of modes for each model and vary the channel dimensions.492

The results, as detailed in Figure 5 and Table 4, demonstrate that the proposed model shows superior493

performance, particularly at larger widths. Notably, the model can match the performance of FNO494

with one-tenth the number of parameters and exceeds the performance of the U-shaped variants by495

more than 15%, especially at higher memory consumption levels.496
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Table 4: Performance of different model configurations on the RE=5000 Navier Stokes dataset

Model Channel Mem Params time Train h1 Test l2
(GB) (M) (s)

FNO w24 1.5 12.8 101 36.1% 15.7%
FNO w28 1.8 17.5 119 34.8% 15.0%
FNO w32 2.0 22.8 130 33.3% 14.5%
FNO w48 3.2 51.3 201 28.9% 12.5%
FNO w60 4.1 80.2 258 26.8% 11.7%
FNO w80 6.7 142.6 403 25.1% 11.1%
FNO w100 8.7 222.8 546 23.7% 10.6%
FNO w120 10.7 320.9 691 22.7% 10.3%
FNO w146 13.9 473.5 966 21.4% 9.9%

Ours (tensor) w10 1.5 21.3 260 34.1% 15.5%
Ours (tensor) w14 2.2 41.7 281 31.1% 13.3%
Ours (tensor) w16 2.6 54.5 314 28.7% 12.5%
Ours (tensor) w20 3.3 85.2 320 26.3% 11.3%
Ours (tensor) w26 4.9 144.0 404 24.3% 10.6%
Ours (tensor) w32 7.1 218.1 503 22.7% 9.9%
Ours (tensor) w36 8.7 276.1 624 22.0% 9.6%
Ours (tensor) w38 9.6 307.6 666 21.9% 9.5%
Ours (tensor) w40 11.0 340.8 700 21.1% 9.3%
Ours (tensor) w50 13.9 532.5 954 20.6% 9.1%

Ours (mlp) w30 3.3 0.2 385 38.1% 16.5%
Ours (mlp) w50 4.2 0.6 559 30.3 % 13.4%
Ours (mlp) w70 5.8 1.2 900 23.6% 10.3%
Ours (mlp) w90 7.4 1.9 1203 22.1% 9.6%

FNO-UNet w32 2.7 72.3 245 48.6% 26.7%
FNO-UNet w40 3.9 113 434 45.6% 25.4%
FNO-UNet w64 9.2 289 742 40.0% 23.1%
FNO-UNet w72 13.0 366 1138 38.4% 22.7%

UNet w50 4.2 18.9 885 30.9% 27.4 %
UNet w64 6.7 31.0 994 29.2% 26.7 %
UNet w80 11.0 48.4 1437 27.3% 26.1 %

UNO w40 4.6 14.5 271 50.6% 23.4%
UNO w56 6.2 28.3 350 50.1% 22.8%
UNO w76 8.2 52.0 511 49.6% 22.4%
UNO w100 9.1 90.2 677 49.5% 22.3%

NeurIPS Paper Checklist497

1. Claims498

Question: Do the main claims made in the abstract and introduction accurately reflect the499

paper’s contributions and scope?500

Answer: [Yes]501

Justification: The main claims reflects the results in experiment sections.502

Guidelines:503

• The answer NA means that the abstract and introduction do not include the claims504

made in the paper.505

• The abstract and/or introduction should clearly state the claims made, including the506

contributions made in the paper and important assumptions and limitations. A No or507

NA answer to this question will not be perceived well by the reviewers.508

• The claims made should match theoretical and experimental results, and reflect how509

much the results can be expected to generalize to other settings.510
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals511

are not attained by the paper.512

2. Limitations513

Question: Does the paper discuss the limitations of the work performed by the authors?514

Answer: [Yes]515

Justification: The limitation is discussed at the end of experiment section.516

Guidelines:517

• The answer NA means that the paper has no limitation while the answer No means that518

the paper has limitations, but those are not discussed in the paper.519

• The authors are encouraged to create a separate "Limitations" section in their paper.520

• The paper should point out any strong assumptions and how robust the results are to521

violations of these assumptions (e.g., independence assumptions, noiseless settings,522

model well-specification, asymptotic approximations only holding locally). The authors523

should reflect on how these assumptions might be violated in practice and what the524

implications would be.525

• The authors should reflect on the scope of the claims made, e.g., if the approach was526

only tested on a few datasets or with a few runs. In general, empirical results often527

depend on implicit assumptions, which should be articulated.528

• The authors should reflect on the factors that influence the performance of the approach.529

For example, a facial recognition algorithm may perform poorly when image resolution530

is low or images are taken in low lighting. Or a speech-to-text system might not be531

used reliably to provide closed captions for online lectures because it fails to handle532

technical jargon.533

• The authors should discuss the computational efficiency of the proposed algorithms534

and how they scale with dataset size.535

• If applicable, the authors should discuss possible limitations of their approach to536

address problems of privacy and fairness.537

• While the authors might fear that complete honesty about limitations might be used by538

reviewers as grounds for rejection, a worse outcome might be that reviewers discover539

limitations that aren’t acknowledged in the paper. The authors should use their best540

judgment and recognize that individual actions in favor of transparency play an impor-541

tant role in developing norms that preserve the integrity of the community. Reviewers542

will be specifically instructed to not penalize honesty concerning limitations.543

3. Theory Assumptions and Proofs544

Question: For each theoretical result, does the paper provide the full set of assumptions and545

a complete (and correct) proof?546

Answer: [Yes]547

Justification: The theorem on generalization to all scales, with the assmpution of perfect548

scaling symmetry and accuracy on the coarse scale, and its proof are in the appendix.549

Guidelines:550

• The answer NA means that the paper does not include theoretical results.551

• All the theorems, formulas, and proofs in the paper should be numbered and cross-552

referenced.553

• All assumptions should be clearly stated or referenced in the statement of any theorems.554

• The proofs can either appear in the main paper or the supplemental material, but if555

they appear in the supplemental material, the authors are encouraged to provide a short556

proof sketch to provide intuition.557
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• Inversely, any informal proof provided in the core of the paper should be complemented558

by formal proofs provided in appendix or supplemental material.559

• Theorems and Lemmas that the proof relies upon should be properly referenced.560

4. Experimental Result Reproducibility561

Question: Does the paper fully disclose all the information needed to reproduce the main ex-562

perimental results of the paper to the extent that it affects the main claims and/or conclusions563

of the paper (regardless of whether the code and data are provided or not)?564

Answer: [Yes]565

Justification: All of the hyperparameters are disclosed at appendix. The code is included in566

the supplements.567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• If the paper includes experiments, a No answer to this question will not be perceived570

well by the reviewers: Making the paper reproducible is important, regardless of571

whether the code and data are provided or not.572

• If the contribution is a dataset and/or model, the authors should describe the steps taken573

to make their results reproducible or verifiable.574

• Depending on the contribution, reproducibility can be accomplished in various ways.575

For example, if the contribution is a novel architecture, describing the architecture fully576

might suffice, or if the contribution is a specific model and empirical evaluation, it may577

be necessary to either make it possible for others to replicate the model with the same578

dataset, or provide access to the model. In general. releasing code and data is often579

one good way to accomplish this, but reproducibility can also be provided via detailed580

instructions for how to replicate the results, access to a hosted model (e.g., in the case581

of a large language model), releasing of a model checkpoint, or other means that are582

appropriate to the research performed.583

• While NeurIPS does not require releasing code, the conference does require all submis-584

sions to provide some reasonable avenue for reproducibility, which may depend on the585

nature of the contribution. For example586

(a) If the contribution is primarily a new algorithm, the paper should make it clear how587

to reproduce that algorithm.588

(b) If the contribution is primarily a new model architecture, the paper should describe589

the architecture clearly and fully.590

(c) If the contribution is a new model (e.g., a large language model), then there should591

either be a way to access this model for reproducing the results or a way to reproduce592

the model (e.g., with an open-source dataset or instructions for how to construct593

the dataset).594

(d) We recognize that reproducibility may be tricky in some cases, in which case595

authors are welcome to describe the particular way they provide for reproducibility.596

In the case of closed-source models, it may be that access to the model is limited in597

some way (e.g., to registered users), but it should be possible for other researchers598

to have some path to reproducing or verifying the results.599

5. Open access to data and code600

Question: Does the paper provide open access to the data and code, with sufficient instruc-601

tions to faithfully reproduce the main experimental results, as described in supplemental602

material?603

Answer: [Yes]604

Justification: The code is included in the supplemental material. Both code and datasets will605

be released.606
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Guidelines:607

• The answer NA means that paper does not include experiments requiring code.608

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/609

public/guides/CodeSubmissionPolicy) for more details.610

• While we encourage the release of code and data, we understand that this might not be611

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not612

including code, unless this is central to the contribution (e.g., for a new open-source613

benchmark).614

• The instructions should contain the exact command and environment needed to run to615

reproduce the results. See the NeurIPS code and data submission guidelines (https:616

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.617

• The authors should provide instructions on data access and preparation, including how618

to access the raw data, preprocessed data, intermediate data, and generated data, etc.619

• The authors should provide scripts to reproduce all experimental results for the new620

proposed method and baselines. If only a subset of experiments are reproducible, they621

should state which ones are omitted from the script and why.622

• At submission time, to preserve anonymity, the authors should release anonymized623

versions (if applicable).624

• Providing as much information as possible in supplemental material (appended to the625

paper) is recommended, but including URLs to data and code is permitted.626

6. Experimental Setting/Details627

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-628

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the629

results?630

Answer: [Yes]631

Justification: The details are discuseed in experiment section and appendix,632

Guidelines:633

• The answer NA means that the paper does not include experiments.634

• The experimental setting should be presented in the core of the paper to a level of detail635

that is necessary to appreciate the results and make sense of them.636

• The full details can be provided either with the code, in appendix, or as supplemental637

material.638

7. Experiment Statistical Significance639

Question: Does the paper report error bars suitably and correctly defined or other appropriate640

information about the statistical significance of the experiments?641

Answer: [No]642

Since the results differ by large margins, the error bars are not very necessary.643

Guidelines:644

• The answer NA means that the paper does not include experiments.645

• The authors should answer "Yes" if the results are accompanied by error bars, confi-646

dence intervals, or statistical significance tests, at least for the experiments that support647

the main claims of the paper.648

• The factors of variability that the error bars are capturing should be clearly stated (for649

example, train/test split, initialization, random drawing of some parameter, or overall650

run with given experimental conditions).651
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• The method for calculating the error bars should be explained (closed form formula,652

call to a library function, bootstrap, etc.)653

• The assumptions made should be given (e.g., Normally distributed errors).654

• It should be clear whether the error bar is the standard deviation or the standard error655

of the mean.656

• It is OK to report 1-sigma error bars, but one should state it. The authors should657

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis658

of Normality of errors is not verified.659

• For asymmetric distributions, the authors should be careful not to show in tables or660

figures symmetric error bars that would yield results that are out of range (e.g. negative661

error rates).662

• If error bars are reported in tables or plots, The authors should explain in the text how663

they were calculated and reference the corresponding figures or tables in the text.664

8. Experiments Compute Resources665

Question: For each experiment, does the paper provide sufficient information on the com-666

puter resources (type of compute workers, memory, time of execution) needed to reproduce667

the experiments?668

Answer: [Yes]669

Justification: Information is reported in the experiments section.670

Guidelines:671

• The answer NA means that the paper does not include experiments.672

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,673

or cloud provider, including relevant memory and storage.674

• The paper should provide the amount of compute required for each of the individual675

experimental runs as well as estimate the total compute.676

• The paper should disclose whether the full research project required more compute677

than the experiments reported in the paper (e.g., preliminary or failed experiments that678

didn’t make it into the paper).679

9. Code Of Ethics680

Question: Does the research conducted in the paper conform, in every respect, with the681

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?682

Answer: [Yes]683

Justification: We stick to the code of ethics.684

Guidelines:685

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.686

• If the authors answer No, they should explain the special circumstances that require a687

deviation from the Code of Ethics.688

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-689

eration due to laws or regulations in their jurisdiction).690

10. Broader Impacts691

Question: Does the paper discuss both potential positive societal impacts and negative692

societal impacts of the work performed?693

Answer: [NA]694

Justification: The work considers applications in partial differential equations. It does not695

have an immediate societal impact.696
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Guidelines:697

• The answer NA means that there is no societal impact of the work performed.698

• If the authors answer NA or No, they should explain why their work has no societal699

impact or why the paper does not address societal impact.700

• Examples of negative societal impacts include potential malicious or unintended uses701

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations702

(e.g., deployment of technologies that could make decisions that unfairly impact specific703

groups), privacy considerations, and security considerations.704

• The conference expects that many papers will be foundational research and not tied705

to particular applications, let alone deployments. However, if there is a direct path to706

any negative applications, the authors should point it out. For example, it is legitimate707

to point out that an improvement in the quality of generative models could be used to708

generate deepfakes for disinformation. On the other hand, it is not needed to point out709

that a generic algorithm for optimizing neural networks could enable people to train710

models that generate Deepfakes faster.711

• The authors should consider possible harms that could arise when the technology is712

being used as intended and functioning correctly, harms that could arise when the713

technology is being used as intended but gives incorrect results, and harms following714

from (intentional or unintentional) misuse of the technology.715

• If there are negative societal impacts, the authors could also discuss possible mitigation716

strategies (e.g., gated release of models, providing defenses in addition to attacks,717

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from718

feedback over time, improving the efficiency and accessibility of ML).719

11. Safeguards720

Question: Does the paper describe safeguards that have been put in place for responsible721

release of data or models that have a high risk for misuse (e.g., pretrained language models,722

image generators, or scraped datasets)?723

Answer: [NA]724

Justification: The work considers applications in partial differential equations. Our datasets725

have no immediate safety concern.726

Guidelines:727

• The answer NA means that the paper poses no such risks.728

• Released models that have a high risk for misuse or dual-use should be released with729

necessary safeguards to allow for controlled use of the model, for example by requiring730

that users adhere to usage guidelines or restrictions to access the model or implementing731

safety filters.732

• Datasets that have been scraped from the Internet could pose safety risks. The authors733

should describe how they avoided releasing unsafe images.734

• We recognize that providing effective safeguards is challenging, and many papers do735

not require this, but we encourage authors to take this into account and make a best736

faith effort.737

12. Licenses for existing assets738

Question: Are the creators or original owners of assets (e.g., code, data, models), used in739

the paper, properly credited and are the license and terms of use explicitly mentioned and740

properly respected?741

Answer: [Yes]742

Justification: We create our own datasets.743

Guidelines:744
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• The answer NA means that the paper does not use existing assets.745

• The authors should cite the original paper that produced the code package or dataset.746

• The authors should state which version of the asset is used and, if possible, include a747

URL.748

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.749

• For scraped data from a particular source (e.g., website), the copyright and terms of750

service of that source should be provided.751

• If assets are released, the license, copyright information, and terms of use in the752

package should be provided. For popular datasets, paperswithcode.com/datasets753

has curated licenses for some datasets. Their licensing guide can help determine the754

license of a dataset.755

• For existing datasets that are re-packaged, both the original license and the license of756

the derived asset (if it has changed) should be provided.757

• If this information is not available online, the authors are encouraged to reach out to758

the asset’s creators.759

13. New Assets760

Question: Are new assets introduced in the paper well documented and is the documentation761

provided alongside the assets?762

Answer: [Yes]763

Justification: Both code and dataset will be released and well-documented.764

Guidelines:765

• The answer NA means that the paper does not release new assets.766

• Researchers should communicate the details of the dataset/code/model as part of their767

submissions via structured templates. This includes details about training, license,768

limitations, etc.769

• The paper should discuss whether and how consent was obtained from people whose770

asset is used.771

• At submission time, remember to anonymize your assets (if applicable). You can either772

create an anonymized URL or include an anonymized zip file.773

14. Crowdsourcing and Research with Human Subjects774

Question: For crowdsourcing experiments and research with human subjects, does the paper775

include the full text of instructions given to participants and screenshots, if applicable, as776

well as details about compensation (if any)?777

Answer: [NA]778

Justification: We do not conduct crowdsourcing or research with human subjects.779

Guidelines:780

• The answer NA means that the paper does not involve crowdsourcing nor research with781

human subjects.782

• Including this information in the supplemental material is fine, but if the main contribu-783

tion of the paper involves human subjects, then as much detail as possible should be784

included in the main paper.785

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,786

or other labor should be paid at least the minimum wage in the country of the data787

collector.788

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human789

Subjects790
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Question: Does the paper describe potential risks incurred by study participants, whether791

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)792

approvals (or an equivalent approval/review based on the requirements of your country or793

institution) were obtained?794

Answer: [NA]795

Justification: We do not conduct crowdsourcing or research with human subjects.796

Guidelines:797

• The answer NA means that the paper does not involve crowdsourcing nor research with798

human subjects.799

• Depending on the country in which research is conducted, IRB approval (or equivalent)800

may be required for any human subjects research. If you obtained IRB approval, you801

should clearly state this in the paper.802

• We recognize that the procedures for this may vary significantly between institutions803

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the804

guidelines for their institution.805

• For initial submissions, do not include any information that would break anonymity (if806

applicable), such as the institution conducting the review.807
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