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Estimating Latent Population Flows from Aggregated Data via Inversing
Multi-Marginal Optimal Transport

Sikun Yang*f

Abstract

We study the problem of estimating latent population flows
from aggregated count data. This problem arises when in-
dividual trajectories are not available due to privacy issues
or measurement fidelity. Instead, the aggregated observa-
tions are measured over discrete-time points, for estimat-
ing the transition flows among states. Most related studies
tackle the problems by learning the transition parameters of a
time-homogeneous Markov process. Nonetheless, most real-
world population flows can be influenced by various uncer-
tainties such as traffic jam and weather conditions. Thus, in
many cases, a time-homogeneous Markov model is a poor
approximation of the much more complex population flows.
To circumvent this difficulty, we resort to a multi-marginal
optimal transport (MOT) formulation that can naturally rep-
resent aggregated observations by constrained marginals,
and encode transition matrices by the cost functions. In par-
ticular, we propose to learn the time-varying transition ma-
trices by learning the cost matrices of the MOT formulation,
and to estimate latent transition flows simultaneously. The
experiments on both synthetic and real data, demonstrate the
improved accuracy of the proposed algorithms in estimating
transition flows, compared against the related methods.

1 Introduction

This work focuses on the problems where data about individ-
uals are not readily available because of various reasons such
as privacy issues and measurement fidelity. Instead, we only
have access to the population-level aggregate data that could
be incomplete and noisy. For instance, when studying the in-
fectious disease spreading [3]], it is too expensive or even im-
possible to track the trajectory of each individual. Neverthe-
less, the number of individuals in some regions over discrete
time points, can be measured using sensing devices. Statis-
tical analysis of these aggregate data is challenging, and has
received amounts of attention in diverse fields including es-
timating ensemble flows [8 [15], steering opinion dynamics
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among humans [28]], epidemic forecasting [20] among oth-
ers.

Over last decade, many efforts, such as collective graph-
ical models (CGMs) [21} 22} 125) [14], have been dedicated
to the problem of inference and learning with aggregated
data. These methods often assume that the individuals behind
aggregated data, behave according to a time-homogeneous
Markov chain. However, in many cases, the individual move-
ment behaviors are significantly affected by various factors
including weather conditions, traffic situations, and so on.
Hence, estimating latent transition flows only with a time-
homogeneous Markov model, may lead to a poor approxima-
tion in many cases. In addition, some recent studies [8} 9, [23]]
try to estimate the latent transition flow with marginally ag-
gregated observations, using a multi-marginal optimal trans-
port formulation. By representing aggregated observations
by constrained marginals, the transition flows can be esti-
mated by inferring the corresponding transport plan of the
MOT problem. In particular, the MOT formulation enables
to readily apply Sinkhorn algorithm to perform efficient in-
ference in collective graphical models with guaranteed con-
vergence. Following this success, Singh et al. [24] developed
an approximate expectation-maximization (EM) algorithm
to learn the parameters of a time-homogeneous Markov pro-
cess, from the marginally aggregate observations of an en-
semble flow. Despite being simple and tractable, this method
still strictly assumes that each individual behaves according
to a time-homogeneous Markov model, which thus may lead
to a poor approximation of complicated real-world flows.

In this work, we propose to estimate the latent transition
flows from aggregated data, by learning the cost functions of
the tree-structured multi-marginal optimal transport frame-
work. In particular, our method allows the estimated tran-
sition parameters to be time-varying, and thus demonstrated
improved accuracy in analyzing real-world population flows,
compared with existing time-homogeneous Markov models.
In particular, the main contributions of this paper are:

e We propose an expectation-maximization (EM)-type
algorithm to simultaneously learn the time-dependent
transition kernels of the MOT formulation, and to esti-
mate the transition flows using Sinkhorn belief propaga-
tion algorithm (Sec.4). The uniqueness of the recovered
transition parameters can be ensured under some mild
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conditions, as proved by the recent studies in inverse
optimal transport [[16]].

e We also investigate regularized convex optimization
algorithms [4] to construct cost functions as sparse
linear combinations of some basis distance functions,
which allow to learn more complicated cost functions
than symmetric ones.

e Experiments are conducted on both synthetic and real-
world flow data, to demonstrate the improved perfor-
mance of the proposed methods in estimating transition
flows, compared with existing methods with time ho-
mogeneous transition kernels.

2 Related Work

Collective graphical models (CGMs) is proposed by [21] as
a formalism to perform inference in aggregate noisy data in-
cluding ensemble flows. Sheldon et al. [22] studied the in-
tractability of the exact marginal inference in CGMs, and
proposed an approximate maximum a posteriori (MAP) es-
timation as a substitute. Following this success, Sun et al.
[25] developed the non-linear belief propagation algorithm
to perform approximate MAP inference in CGMs. Bethe-
RDA is another algorithm dedicated to aggregate inference
in CGMs via regularized dual averaging (RDA) with guar-
anteed convergence. Recently, Bernstein and Sheldon [3]] de-
veloped an approach of moments estimator to learn the pa-
rameters of the Markov model from aggregate noisy flows.
Haasler et al. [11 8] recently investigated the problems of es-
timating ensemble flows from a graphical-structured multi-
marginal optimal transport perspective. In particular, Haasler
et al. [9] studied a graphical-structured multi-marginal opti-
mal transport, which allows to consider various related prob-
lems such as information fusion under a unified MOT frame-
work. Singh et al. [23] first studied the inference (filter-
ing) problems in CGMs based upon the graphical-structured
MOT framework. Singh et al. [24] derived an approximate
EM algorithm to conduct learning and inference in time-
homogeneous collective graphical models.

To the best of our knowledge, most collective graph-
ical models try to capture transition flows using time-
homogeneous Markov models. In contrast, we aim to learn
the time-dependent transition matrices indirectly by learn-
ing the corresponding cost functions. Our methods are
based upon a tree-structured multi-marginal optimal trans-
port (MOT) formalism. Using the MOT framework, the ex-
isting works [11} 9] only estimate the transition flows with
a predetermined transition kernel. In this paper, we try to
learn time-varying transition parameters and also to estimate
the transition flows, from noisy aggregate data. In addition,
the proposed methods are closely related to inverse opti-
mal transport [[13} 16, 4], where they only aim to learn the
cost functions from the observed matchings. In constrast,

this work needs to recover transition flows from noisy ob-
servations, and to learn the time dependent cost functions,
iteratively. Other related studies include collective flow dif-
fusion models (CFDM) [26}, [1]], which can incorporate peo-
ple’s travel duration between locations for estimating transi-
tion flows. Neural collective graphical models (CGMs) can
estimate population flows by incorporating additional spa-
tiotemporal information into transition kernel parameterized
by neural nets [12]]. The CFDM and Neural CGMs need
to explicitly model observation noise, while the proposed
methods can compactly capture noisy observations via con-
strained marginals.

3 Background

Notations. By exp(-),In(-),®, /, we denote the element-
wise exponential, logarithm, multiplication, and division of
vectors, matrices and tensors, respectively. The outer product
is denoted by ®. Let p and q be two nonnegative vectors,
matrices or tensors of the same dimension. The normalized
Kullback-Leibler (KL) divergence of p from q is defined
as H(plq) = >,(piIn(E") — pi + @), where 0In0 is
defined to be 0. Similarly, defined H(p) = H(p|l) =
>;(piln(p;) — p; + 1), which is effectively the negative of
the entropy of p.

3.1 Optimal transport. Here we only consider the dis-
crete optimal transport problems, and refer to [27] for its
continuous counterpart. Let p1 € ]Rilo and ps € Rizo
be two distributions with equal mass. The optimal trans-
port (OT) aims at finding a transport mapping from g to
p2, while minimizing the total transport cost. In particu-
lar, the transport cost is defined by an underlying cost ma-
trix C € R1*4 where C;, ;, measures the cost of mov-
ing an unit mass from location 4; to 75. Hence, the Monge-
Kantorovich formulation of OT is to find a transport plan by
solving the following optimization problem

min  (C, M),
MeIl(py,p2)

where (C, M) = >, . Cj, i, M, 4y, and TI(p1, p2) de-
notes the set of nonnegative matrices satisfying maringal
constraints specified by g1 and po. Computing the exact OT
problem requires solving a linear program with time com-
plexity O(n?Inn) [19], which is too expensive for large-
scale settings. To avoid excessive computational cost, Cu-
turi [6]] introduces an entropy regularization term H (M) =
>y in(Miy iy In(M;, 4,) — M, 4, + 1), and thus forms an
approximate OT problem as

3.1 min

oiin {<c, M) + eH(M)},

where € > 0. When € approaches 0, one recovers the canoni-
cal OT. For € > 0, taking the dual of the approximation leads
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to a strictly convex optimization problem, which enables us
to obtain an unique solution up to multiplication/division by
a constant [7]].

3.2 Multi-marginal optimal transport. Multi-marginal
optimal transport (MOT) generalizes bi-marginal OT by
considering optimal transport problems involving multiple
marginal constraints. More specifically, the MOT problem
is to find a transport plan between a set of marginals

{m;}j=1,2,. 7, where p; € Rijo. In this setting, the trans-

port cost is encoded as C' = [C;, 4,...i,] € Rdvxxds]
and the transport plan is denoted by M = [M;, 4,...5,] €
]R‘ilox'”XdJ. For a tuple (i1,i2,...,47), Ci, ip,...i, denotes

the transport cost of moving an unit mass, and M;, ;, . i,
describes the amount of mass transported for that tuple. Nat-
urally, the Monge-Kantorovich formulation of MOT reads

(3.2) min (C, M)
subjectto  P;(M)=p;, forjel,

where I' C {1,2,...,.J} denotes an index set specifying
which marginal constraints are given. The projection of the
tensor M on its j-th marginal is given by

(3.3) P;(M) = > M, iy 1vigigsnsis

T1yeensbj—1y8j 4150yl

Note that the original multi-marginal optimal trans-
port formulation [17, [18] specifies all the marginal distri-
butions as its constraints. Here we consider the case where
only a subset of marginals are explicitly given, i.e., I' C
{1,2,...,J}. This arises in many cases of interests in-
cluding dynamic network flows [10] and Barycenter prob-
lems [2].

The entropy regularized MOT reads

H}an {(C,M} +6H(M)}

subjectto P;(M) =p;, forjeTl.

Using the Lagrangian duality theory, it is not hard to see the
optimal solution of the entropy regularized MOT is of the
form M = K ® B where K = exp(—C/e¢), and
B=b;®---®by with

b — exp(aj/e), ifjel
T 1, otherwise

where a; € R™ denotes the dual variable corresponding to
the constraint P;(M) = p;, for j € I'. The generalized
Sinkhorn algorithm solves entropy regularized MOT prob-
lems by iteratively updating the vectors b, for j € T', as

bj %bJ@HJ/PJ(K@B)

Note that the computational complexity of Sinkhorn algo-
rithm still scales exponentially with J because the number
of elementsin M isd; X -+ X d.

Fortunately, the tree-structured cost tensors in many
cases of interests, allow us to make the computation of
the marginal projections feasible [11]. More specifically, let
T = (V, &) be a tree with VV denoting the nodes, and £ the
edges. Assume that the cost tensor C' can be decomposed
according to a tree structure 7 = (V, £) with J nodes as

(3.4) Cirniy = > O,
(v,u)€EE

where C("*) denotes the cost matrix between marginals
oy and py,, for (v,u) € €. We refer to the problem
with a cost of the form 3.4 as a tree-structured multi-
marginal optimal transport problem. In particular, for an
entropy regularized MOT problem with a tree-structured
cost, the transport plan is M = K ® B. By letting K (*%) =
exp(—C (¥ /¢), the projection of M on the j-th marginal is
given by

(3.5)
P;(M);;

= (by)i; > 11 Kfvf) IT )i,

Uyeensij—1,05415 500 (V,u)EE vEV\J

This sum only involves matrix-vector multiplications, and
hence substantially reduces the computational complexity
compared with the brute force summation in Eq. The
full algorithm is introduced as Sinkhorn belief propagation
algorithm in [[11], for graphically structured MOT problems.

4 Problem Formulation

Consider a population of NV individuals (e.g., pedestrians,
bikes, cars), each of which independently behaves according
to a Markov chain. Let the states of the Markov chain be
X = {Xi1,...,Xg} with S being the number of states.
In particular, the transition parameters of the Markov chain
allows to be time-varying, and specified by A, where

Aﬁj = p(si41 = z; | s¢ = ;) denotes the transition
probability from state x; at time ¢, to state x'; at time ¢+1. Let
(pt); denote the number of individuals appearing in state x;
at time ¢, and M* = [M/;], where M}, denote the number
of individuals moving from state z; at time ¢, to state x;
at time ¢ + 1. Hence, p; represents the marginal aggregate
observation at time ¢, and M* captures the transition flows
from time ¢ to t + 1. We also denote the noisy observation
of py by fie. Fig. |l] illustrates an example of the studied
problem. The probability of the transition flow observed
during the time interval [¢, ¢ 4 1] is given by

T ()i 1 t
M) = e At VM
p(M’) 131 T, M. jl;[l( ij)
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Figure 1: An illustration of the studied problem. The 5 x 5 grid
cells form 25 states (a). There are 1, 000 individuals moving among
these states. The aggregated observations (the number in each
cell, indicates the observed count of individuals in that state) are
measured at two consecutive time steps, as shown in (b) and (c),
respectively. This work aims to estimate the latent transition flow
(f) (the value of (4, j)-th entry denotes the number of individuals
moving from state ¢ to state j at the target time step) by learning the
cost matrices (d). The transition matrix is displayed in (e).

Interestingly, a large deviation interpretation [9] has
shown that as the number of individuals N tends to infinity,
if L p¢ — fag, and M — M, the log-likelihood of the
transition flow M can be well approximated as

1

7 10 p(M) > ~H(M' | diag(7a) A").

Fig. fa) illustrates a scenario for which given two
marginal observations pq and pr, the previous studies[9)
[1]] aim to estimate the transition flows {M*}/_,' using the
predetermined transition matrix A, for time-homogeneous
Markov models. Fig. 2[b) describes the problem setting,
where we only have access to the noisy observations
{ins }1 |, of the true marginals {g;}7_;. Let M? denote the
flows between the true aggregate p; and its noisy observa-
tion fi;. Hence, given the noisy aggregates {fi;}- ; ', we
can estimate latent transition flows by solving a convex opti-
mization problem given by

IHereafter, we use i, M to denote the normalized observations

Bt M, respectively, for ease of notation.

Me3)

0@ @ W@ @
® RCalO

Figure 2: An illustration of the original ensemble flow estima-
tion problem in [9, [11]], where the transition parameter A and two
marginals 1 and g are known, and the goal is to estimate tran-
sition flows and intermediate marginals (a). Latent flow estimation
problems (b) and (c), provide multiple noisy marginals, for which
we aim to estimate the underlying transition flows, marginals, and
to learn transition parameters. In (c), fi;,s denotes the s-th noisy
measurements at time ¢, and M?%* denotes the transition flows
between fi: s and p:. The graphs in (d)(e)(f) refer to the tree-
structured representation of the problems in (a)(b)(c), respectively.
In particular, we use M) to denote the transition flow between
nodes u and v for the ease of notation.

T—1
: t : t
46 min ;H(M | diag(pe;)A")

ST D) g
T—1

+ Y H(M' | diag(fi)A)
t=1

subject to M'1 =y, (MHT1 = fay,
M1 =, (ML= pyya,
for t=1,..., 7T —1.

where A denotes the emission parameter, which determines
the conditional distribution of the noisy observation fi; given
the true marginal p;.

Remark 1. Fig. e) depicts an equivalent tree structure’ of
Fig. 2[b). If we define the cost matrix C* = —elog(A?) and
C = —clog(A), the convex optimization problem in Eq.
is equivalent to a multi-marginal optimal transport problem
specified by

4.7 ml\;ln {(C,M} +ecHM | 1S><..‘><S)}

subjectto  Pj(M) = p;, forjeT,

2We use C(®:¥) in the tree structure representation instead of Ct,
for ease of notation. The meaning of C(%-%) can be understood from the
context.
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Algorithm 1 Sinkhorn Belief Propagation Algorithm

Input: Tree-structured graph 7 = (V,E) with V the node
set, £ the edge set, and the indices of the constrained
marginals I', marginal observations {u,};cr and edge
potentials &%) = exp(—C*?) /¢) for (t,v) € |€|

Output: the transition flows
M®) (2, 2,)

o<¢(t’v)($ta$v) II Mk%t(xt) I1 Mkﬁ“(x”)
kEN (1) keN (v)

Initialize the messages M, ., (2,,), ¥(v,u) € €
repeat
forv eI do
Update M, _,, (2,,) o 3 ¢* (2, mu)M

Muﬂv(xv) ’
Yu € N(v)

5 Update all the messages on the path from v to Vpext

M'I}—)u (Iu) X Z ¢U (Iva xu) H Mk—m(zv)
To keN (v)\u

N2

end for
7: until convergence

where the cost tensor C € RS* xS decomposes as
Ci,. i, = Z(u,’u)ef Cf‘:fv) according to the tree struc-
ture. The marginal observation p; equals to the projection
of the tensor-valued transport plan M € R5**% on its
j-th mode. Similarly, the transition flow M(**) can be ob-
tained by the projection of the tensor-valued transport plan
M on its (u, v)-th modes, i.e., M[(**) = Py (M). We re-
fer to Sec.4.2 in [9]] for the detailed proof of the equivalence
between Eq.[4.6]and

In particular, our goal is to develop an EM type
algorithm to iteratively recover the transition flows
{M(“’”)}(umeg and to learn the unknown cost matri-
ces {C(“’”)}(uﬂ,)eg, given the noisy marginal observations
{ix:}1_,. More specifically, in the M-step, we consider learn-
ing the cost matrices C(**)() of (-th iteration given the two
marginal observations u.,, and ., and the estimated transi-
tion flow M(“*)(¥) of the previous iteration. In the E-step,
the expectation of transition flow M(®»?)(+1) ig ypdated
based upon the estimated C@2)(®) Moreover, via the tree-
structured MOT framework, the proposed method can be
well extended to more complicated scenarios where multiple
noisy aggregates are available for each time step (Fig.[2}c)).
E-step. With the cost matrices {C("’”)}(um)eg updated in
the M-step, the optimization problem in Eq[.6|can be equiv-
alently solved via an entropy regularized multi-marginal
optimal transport formulation in Eq. A.7} Hence, the tree-
structure induced by the latent flow estimation, enables us to
readily utilize Sinkhorn belief propagation (SBP) algorithm
to recover the latent transition flows {M ")}, ,jce. The
SBP algorithm for the E-step is detailed in Algorithm [I]
M-step. Given the marginal observations {t;}cr, and the

estimated transition flows {M(“vv)}(u’v)eg, the parameter
learning of the collective graphical models in Eq. be-
comes an inverse multi-marginal optimal transport problem
given by

4.8) min {F(a7 C)+ R(C)}7
;o
where
F(a,C) = <M(€)7C> - Zjel‘<aj>p’j> + 6<K7B> is a
convex function, & = [ay, ..., || denote the dual vari-

ables corresponding to the marginal constraints {P;(M) =
Bitier, K = exp(f%), B = b; ® --- ® bjp| where
b; = exp(%%), and R(C) is the regularization imposed on
the cost tensor C. The detailed derivation of Eq. 4.8|can be
found in the appendix of [29]. Note that the optimization
problem in Eq[4.8] admits infinitely many solutions without
additional regularization imposing on cost tensor C.

Some recent advancements [13}[16] in solving the prob-
lem of inverse optimal transport(IOT), has proved that the
IOT problem admits an unique solution if the cost function
is restricted to belong to a set of symmetric matrices with
zero diagonal elements, and thus the proximal operator can
be specified by

C*¥) = prox, 5 (C) = (CH) + (CH2)T) /2,

and followed by enforcing the diagonal entries of C(*%) to
be 0. In our case, the cost tensor of the inverse multi-marginal
optimal transport problem, naturally decouples, according to
the tree structure as Ci, i, = >, »yee CE:ZUU) Thus, we
impose symmetric and zero-diagonal constraints straightfor-
wardly on each of the cost matrices Cv) instead of re-
stricting a symmetric cost tensor. One instance of symmetric
cost matrices is C(**) = [C’if’v)] with C’i(]y’”) = |z; — x;|?
where x; and x; denote i-th and j-th locations, respectively.
In particular, o can be updated using Sinkhorn belief propa-
gation algorithm for entropy regularized MOT. More specif-
ically, to solve the convex optimization problem in Eq/4.8]
a block coordinate descent scheme detailed in Algorithm [2]
can be considered to alternatively update C and o.
Although the symmetric and zero-diagonal constraints
ensure the unique solution, the cost matrices between the
states might be more complex. For instance, in many urban
population data [24]], most individuals are transitioning from
suburb towards downtown areas in the early morning, while
they are moving back in the opposite direction, in the late
evening. Inspired by recent advances in the optimal match-
ing studies [4], we consider constructing the time-dependent
cost matrices as a sparse, linear combination of basis dis-
tance matrices. More specifically, C(“?) = 22221 Bl Da
where D{; = |z; — x;|? denotes the (i, j)-th element of the
q-th basis distance matrix, x; is the i-th location, ﬁ(“’”) =
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Algorithm 2 Iterative Scaling Algorithm for Learning Cost
Functions

Input: The expected transition flows M@2)®)  and the
marginal observations p,, and g,
Output: the cost matrix C(%)
1: Initialize e, C(*¥), o, @, and set b; = exp(a/ /¢) for
7 =u,v
: repeat
Y+ exp ( - C(W}))

2

3 €
4 by p /(3D )

5 b, <_/-‘v/(z )
6 v
7

8

¥« M@ /(b, bl
Ccwv) = prox, p(—e¢log())
: until convergence

Algorithm 3 ISTA Algorithm for Learning Cost Functions

Input: The expected transition flows M®**)(®) marginal
observations ft,, p,, and basis distance matrices
D

Output: the cost matrix C(%?)

. Initialize ﬂ(u v) ,o% o’ and set C () _
PO 15(“” DY, and b; = exp(a’ /e) for j = u, v
2: repeat
3 SetC) = 29 (D
4 E(—exp(—c(:v)
50 by p/(Eby)
6: by, + p,/(XThy,)
7: M(u,v)(,@) — bu oY e bv
u,v) (£ w,v) (¢
A CRIC VH( (u2)(0)

(u,v) (£ U,v
= X, (M - M) D)
9: until COHVCI‘gCHCC

[ ;u’”), . ,ﬂg’v)] is a sparse coefficient vector with g-th

element determining the usage of DY in the construction
of C(**), Thus, the learning problem of the cost matrices
C(%?) reduces to an optimization problem with respect to
B?) and o as

min {F(a*,a?, 80) + 4|80},

Buv) au, av

where

F<au, av’ﬁ(u”u)) = Ziu,iv e[(a“’)iu ()i,
+ i, [CE“Z” — (a%);, — (a?);,], and a*, o’ denote
the dual variables corresponding to p*, p", respectively, and
the ¢; penalty term is to enforce a sparse coefficient vector
B As we did in Algorithm o can be updated using
Sinkhorn algorithm, and B(**) is updated using an iterative
shrinkage-thresholding algorithm (ISTA) [4], which leads

ol
cly)

Figure 3: Sensor locations

to the second block coordinate descent scheme as detailed
in Algorithm [3] for learning cost matrices. The proximal
operator is given by the soft-thresholding operator specified
by

prox,,,.|(z) = sign(x)max{|z| — pvy,0}.

The proposed EM-type algorithm is to iteratively im-
plement the Sinkhorn belief propagation in the E-step to es-
timate the expected transition flows, and to learn the cost
functions using Algorithm [2] or Algorithm [3]in the M-step.
Hereafter, we denote the two developed EM-type algorithms
as Sinkhorn belief propagation inverse symmetric transport
cost (SBP-ISTC), and Sinkhorn belief propagation iterative
shrinkage-thresholding (SBP-ISTA) algorithms.
Computational Cost. For Sinkhorn belief propagation al-
gorithm implemented in the E-step, computing the transition
flow matrices {M (")}, )¢ takes O(|€|S?) time, where
S is the number of states, and |£| is the number of edges
in the tree graph. To update the cost function in the M-step,
the iterative scaling algorithms enjoy the quadratic computa-
tional complexity O(S?). For Algorithm the computation
cost of ISTA algorithm scales with O(QL), where Q denotes
the number of basis distance matrices, and £ is the number
of inner iterations for the convergence of ISTA algorithm.

Experiments

Baselines. The proposed methods were compared with
some closely related methods: the collective graphical
model [3]], constrained norm-product (CNP) algorithm [[11]],
and Sinkhorn belief propagation-Expectation Maximization
(SBP-EM) algorithm [24]]. The STAY method assumes that
all the individuals stay in the same states from time ¢ to time
t+ 1, ie, M, = (u); and Mf] = 0 for j # . The
CGM, CNP, and SBP-EM algorithms assume the underlying
Markov chains are time-homogeneous, while our proposed
methods can estimate time-varying transition probabilities
by learning the underlying cost matrices.

The proposed methods were evaluated in terms of
estimating the transition flows {M?’ lel only using the
marginally aggregated count observations {fz; },. The per-
formance in estimating transition flows is evaluated using the
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Figure 4: The top plots shows a simulated ensemble flow of 1,000 particles moving over a 20 x 20 grid cells over 40 time points; the
middle displays the noisy observations of this ensemble flow; the bottom shows the distributions estimated by the proposed method for
each corresponding time point. The size of the blue dots is proportional to the number of particles at the corresponding state.

Table 1: Normalized mean absolute error (NMAE) for the estimation of transition flows in the real-world datasets

Beijing Taxi ;| San Francisco Cabs | Tokyo Flow | Chukyo Flow — - Synt'hetlc
time-varying | time homogeneous

STAY 0.378 0.346 0.186 0.187 0.667 0.725
CGM 0.301 0.307 0.181 0.448 0.512 0.634
CNP 0.375 0.296 0.182 0.179 0.428 0.576
SBP-EM 0.344 0.291 0.347 0.375 0.416 0.489
SBP-ISTC 0.244 0.167 0.166 0.145 0.389 0.473
SBP-ISTA 0.253 0.187 0.156 0.129 0.408 0.488

normalized mean absolute error (NMAE) defined by
T—1 S v v
t=1 Zi:l Zje/\/i ij - Mltjl
T—1 S v
t=1 Zi:l Zje/\/i Mitj
where A; stands for the set of neighbor states of state i, M, fj

is the true number of transitions from state ¢ at time ¢ to state
jattimet¢+ 1, and ij denotes the corresponding estimate.

NMAE =

)

5.1 Synthetic data. We consider simulating an ensemble
of 1,000 individuals moving over a 20 x 20 grid cells, as
shown in Fig. f] The goal of these individuals is to move
from bottom-left and bottom middle corners to top-right cor-
ner. In particular, the dynamic behaviors of these individuals
are determined by a log-linear distribution, which is modeled
by four factors: the physical distance between two states, the
angle between moving direction and the direction to the des-
tination, the preference to stay in the original state, and the
angle between the moving direction and an external force.
The parameters of the log-linear model for the first three fac-
tors, are set to be (3,5, 10), respectively. To simulate time-
varying dynamic behaviors of individuals, the angle between
the moving direction and an external force is set to be 7/t
fort = 1,...,T. There are 64 sensors placed over the grids
as shown in Fig. 3] Instead of collecting the full trajectories

of all the particles, these sensors can only measure an ag-
gregated count of individuals currently being observed. The
probability of an individual being detected, decreases expo-
nentially as the distance between the individual and the sen-
sor increases. As shown in Fig.[4] although the sensor obser-
vations only roughly record the aggregated counts of individ-
uals, the proposed method still well estimate the population
flows with a high resolution. Table [T] shows the improved
performance of the proposed methods in estimating latent
population flow, compared against time-homogeneous mod-
els (CGM, CNP, SBP-EM). For a fair comparison, we also
consider setting the angle between moving direction and ex-
ternal force to be /2 for the whole interval, to simulate an
ensemble flow with a time homogeneous transition param-
eter. Although the proposed model slightly outperforms the
other baselines, SBP-EM achieves almost the same accuracy
in estimating latent transition flows of a time homogeneous
Markov model.

5.2 Real-world data. The performance of the proposed
methods in estimating transition flows from aggregated
count data, is evaluated using four real-world population
flow data. The Beijing Taxi data [30] consists of 10, 357 taxi
trajectories collected from February 2, 2008 to February 8,
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2008. The grid sizes in this data are 2kmx2km(17x17 grid
cells), and thus the number of states is 289. The time grid
is 15 minutes, and thus the aggregated observations were
made for 96 time steps for one day. The second data col-
lected 537 taxi cabs’ GPS traces in San Francisco (SF) from
to May 18 2008 to May 30 2008. The grid sizes in this
data are 2kmx2km(13x13 grid cells), and thus the num-
ber of states is 169. The time grid is 15 minutes, and thus
the aggregated observations were made for 96 time steps for
one day. The Tokyo People Flow data® consists of 6,432,
9,166, 6,822, 10,134, 6,646, 10,338 individual trajectories
on six days in the year of 2013. The grid sizes in this data
are 10kmx 10km(15x 15 grid cells), and thus the number of
states is 225. The time grid is 30 minutes, and thus the aggre-
gated observations were made for 48 time steps for one day.
The Chukyo Flow data cosists of 975, 1,372, 1,195, 1,506,
1,021, 1,615 individuals also on six days in the year of 2013.
The data is created in the same ways as Tokyo Flow data,
except the grid sizes are 10kmx 10km(10 x 10) grid cells.
Results. The normalized absolute error averaged over all
the time steps for each data, is presented in Table [T} For
all the datasets, the proposed methods achieved higher ac-
curacy than the other methods. In particular, we found that
our proposed methods outperform the closely related SBP-
EM algorithm by allowing the underlying cost matrices to be
time-varying. In addition, we found that the SBP-ISTA per-
formed better than SBP-ISTC in estimating transition flows
in the Tokyo and Chukyo People Flow data. We looked into
this data, and found that most individuals were moving from
outer suburb regions to inner downtown areas in the morning,
while transitioning on the opposite direction in the evening.
The transition flows collected in this data, exhibit asymmet-
ric moving patterns at different time steps. Hence, SBP-ISTA
achieved higher accuracy by constructing more complicated
cost matrices, compared with SBP-ISTC that enforces sym-
metric structured cost matrices.

6 Conclusion

This paper proposed to estimate latent transition flows from
marginally aggregated observations, via a tree-structured
multi-marginal optimal transport framework. More specifi-
cally, the proposed methods allow the transition kernels be-
hind population flows to be time-varying, by learning the
time-dependent cost functions. In particular, the cost ma-
trices can be uniquely recovered with theoretical guaran-
tees, by imposing structural restrictions over those cost ma-
trices. Hence, the transition flows can be estimated with
time-varying transitioning parameter, using Sinkhorn belief
propagation algorithm. We demonstrate how the proposed
method estimate the latent ensemble flows, using both time

3Data sources: SNS-based People Flow Data, http: //night-
ley.jp/archives/1954

homogeneous and time-varying synthetic dynamic flows.
The experiments on four real-world population flow data,
show the improved accuracy of the proposed methods in es-
timating latent transition flows, compared with the others as-
suming time-homogeneous transition kernels.
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