

RMSL: WEAKLY-SUPERVISED INSIDER THREAT DETECTION WITH ROBUST MULTI-SPHERE LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Insider threat detection aims to identify malicious user behavior by analyzing logs that record user interactions. Due to the lack of fine-grained behavior-level annotations, detecting specific behavior-level anomalies within user behavior sequences is challenging. Unsupervised methods face high false positive rates and miss rates due to the inherent ambiguity between normal and anomalous behaviors. In this work, we instead introduce weak labels of behavior sequences, which have lower annotation costs, i.e., the training labels (anomalous or normal) are at sequence-level instead of behavior-level, to enhance the detection capability for behavior-level anomalies by learning discriminative features. To achieve this, we propose a novel framework called Robust Multi-sphere Learning (RMSL). RMSL uses multiple hyper-spheres to represent the normal patterns of behaviors. Initially, a one-class classifier is constructed as a good anomaly-supervision-free starting point. Building on this, using multiple instance learning and adaptive behavior-level self-training debiasing based on model prediction confidence, the framework further refines hyper-spheres and feature representations using weak sequence-level labels. This approach enhances the model’s ability to distinguish between normal and anomalous behaviors. Extensive experiments demonstrate that RMSL significantly improves the performance of behavior-level insider threat detection.

1 INTRODUCTION

Nowadays, modern information systems have become indispensable core components in the operation of enterprises and organizations, with various monitoring data such as user behavior records continuously generated by these systems. **Insider Threat Detection** (ITD) (Silowash et al., 2012; Costa et al., 2016; Alzaabi & Mehmood, 2024) typically aggregates these regards into behavioral sequences for analysis, aiming to automatically identify anomalies. By detecting such anomalies, organizations can promptly recognize potential threats and take proactive measures to prevent losses.

However, current studies (Yuan et al., 2019; 2020; Vinay et al., 2022; Le & Zincir-Heywood, 2021a; Le et al., 2020; Zheng et al., 2022; Tuor et al., 2017; Wang et al., 2021) primarily focus on sequence-level detection, and there is insufficient research on fine-grained behavior-level detection. Given that a behavior sequence might consist of hundreds or thousands of behaviors, identifying specific anomalous behaviors can significantly help reduce the cost of manual screening and localization, making it highly significant. This paper primarily investigates **behavior-level ITD**.

Dealing with the behavior-level ITD task presents several unique challenges. **The first challenge** is the scarcity of behavior-level annotations. Due to the extreme rarity and stealthiness of anomalous behaviors, it is impractical to provide anomaly annotations for such a large number of behaviors. Almost all ITD studies (Du et al., 2017; Shen et al., 2018; Wang et al., 2021; Ni et al., 2025) train unsupervised or single-class models to learn normal patterns and identify behaviors that deviate from these patterns as anomalies. However, there still are some problems in real-world scenarios where it's impossible to enumerate all normal patterns during training, and the boundaries between normal and abnormal are blurred, leading to high false positives and miss detection rates. Introducing supervised signals regarding anomalies can help the model effectively distinguish between normal and abnormal. To address the first challenge and strike a trade-off between annotation costs and improving detection performance, this work explores a weakly-supervised setting for behavior-level detection by

054 introducing only some sequence-level annotations as inexact supervision, named **Weakly-supervised**
 055 **ITD** (WITD), as shown in Figure 1.

056
 057 The cost of obtaining sequence-
 058 level annotations is relatively
 059 lower, as it only requires labeling
 060 whether a rough interval con-
 061 tains anomalies. Moreover, as
 062 more and more systems begin to
 063 integrate AIOps (Gulenko et al.,
 064 2020), the avenues for obtain-
 065 ing sequence-level annotations
 066 have become more diversified.
 067 Once an anomaly in monitoring
 068 metrics or a system failure is
 069 captured, the approximate time
 070 range of the anomaly occurrence
 can be given.

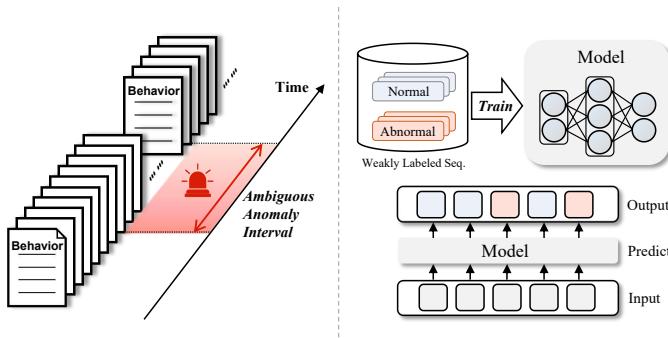


Figure 1: Illustration of Weakly-Supervised Insider Threat Detection.

071 **The second challenge** is how to efficiently utilize easily accessible normal data to appropriately
 072 model the normal patterns of data. DeepLog(Du et al., 2017) and TIRESIAS(Shen et al., 2018) learn
 073 to predict the next behavior given the historical behavior sequence and detect behaviors that deviate
 074 from the model’s prediction as anomalies. OC4Seq(Wang et al., 2021) learns to compress all normal
 075 data into single minimal volume hyper-sphere and detects anomalies by predicting the distance of the
 076 input from the center of the hyper-sphere. In this paper, we argue that assuming normal data follow a
 077 unimodal distribution (i.e., all normal data can be contained within a hyper-sphere) is inappropriate
 078 for the ITD task. In the real world, using a single hyper-sphere may not adequately describe all
 079 normal patterns. To provide different descriptions for different normal patterns, we propose Robust
 080 Multi-sphere Learning (RMSL). In RMSL, we use multiple hyper-spheres to represent different
 081 normal patterns of behaviors and determine anomalies by combining classification separability with
 the degree of deviation from the hyper-spheres.

082 We designed a three-stage progressive training strategy to optimize the model for obtaining robust
 083 representations: the multiple hyper-spheres based zero positive warm-up stage, the multiple instance
 084 learning stage, and the adaptive behavior-level self-training debiasing stage. In the first stage, we
 085 optimize the model using only normal behavior sequences without any anomalous positive examples,
 086 i.e., the zero positive scenario. This provides a good unsupervised starting point for anomaly detection,
 087 enabling the model to have some predictive anomaly scoring ability. Subsequently, to enhance the
 088 anomaly detector’s ability to explicitly distinguish between normal and anomalous behaviors, we
 089 refine multiple hyper-spheres and feature representations by using sequence-level annotations as
 090 weak supervision in the second stage. This naturally transitions to WITD, making the detector more
 091 robust, which is highly beneficial for tasks such as detecting subtle disguised anomalous behaviors in
 092 the field like insider threat detection. Some studies(Feng et al., 2021; Lv et al., 2023) have shown
 093 that multiple instance learning (MIL) exhibits a certain degree of selection bias. After the second
 094 stage, we further divide behaviors based on the model’s confidence in the third stage, and propose a
 095 progressive adaptive behavior-level self-training method to learn more robust representations.

096 The contributions of this paper are as follows:

- 097 • We propose a novel weakly supervised learning framework, Robust Multi-sphere Learning
 098 (RMSL), to address the challenge of label scarcity in behavior-level anomaly detection.
 099 To the best of our knowledge, we are the first to formulate the fine-grained behavior-level
 100 insider threat detection problem in the context of MIL.
- 101 • We develop a multiple hyper-spheres based anomaly detector with three-stage progressive
 102 training: starting from a zero-positive initialization and gradually incorporating sequence-
 103 level supervision to enhance the model’s ability to distinguish between normal and anom-
 104 aalous behaviors.
- 105 • Extensive experiments on CERT r4.2 and r5.2 datasets demonstrate state-of-the-art per-
 106 formance, achieving 9.78% and 3.98% AUC improvements over 16 baselines on the two
 107 datasets, respectively.

108

2 PROBLEM DEFINITION

110 Given a set of weakly labeled behavior sequences $\mathcal{D}_L = \{S^{(i)}, Y^{(i)}\}_{i=1}^{|\mathcal{D}_L|}$ as the training set \mathcal{D}_{train} ,
 111 where each behavior sequence $S^{(i)} = \{e_l^{(i)}\}_{l=1}^{N_S^{(i)}}$ contains $N_S^{(i)}$ behaviors, $e_l^{(i)}$ denotes the l -th
 112 behavior in the sequence $S^{(i)}$, and $Y^{(i)} \in \{0, 1\}$ is a sequence-level label. An anomalous behavior
 113 is denoted as e_l^+ , while a normal behavior is denoted as e_l^- . If a sequence contains at least one
 114 anomalous behavior, it is considered an anomalous sequence, denoted as S^+ . Otherwise, the sequence
 115 is considered a normal sequence, denoted as S^- . The goal of WITD is to learn a mapping function
 116 $f(\cdot | \cdot; \theta)$ using the weakly labeled behavior sequences in the training set \mathcal{D}_{train} , which generates an
 117 anomaly score $f(e_l^{(i)} | S^{(i)}; \theta) \in \mathbb{R}$ for each behavior $e_l^{(i)}$. If the anomaly score of a behavior exceeds
 118 a detection threshold τ_a , it is classified as an anomalous behavior, where θ represents the parameters
 119 of the model. The model performance is evaluated using a test set $\mathcal{D}_{test} = \{S^{(i)}, Y^{(i)}\}_{i=1}^{|\mathcal{D}_{test}|}$ with
 120 behavior-level labels, where $Y^{(i)} = \{y_l^{(i)}\}_{l=1}^{N_S^{(i)}}$ and $y_l^{(i)} \in \{0, 1\}$ is a behavior-level label.
 121

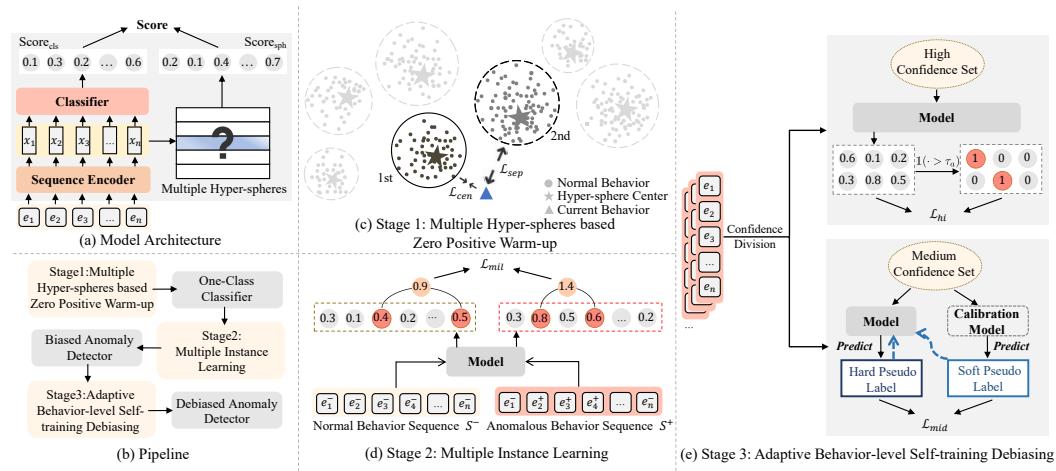
138

Figure 2: Overall architecture of RMSL.

139

3 METHODOLOGY

140 To address WITD, we propose Robust Multi-sphere Learning (RMSL) to detect whether a certain
 141 behavior e_l in the given behavior sequence S is anomalous. The overview of RMSL is depicted in
 142 Figure 2. The model architecture of RMSL consists of three components: a sequence encoder, multi-
 143 ple hyper-spheres based normal prototypes, and an anomaly classifier. The optimization of RMSL
 144 employs a progressive training strategy divided into three stages to obtain robust representations: the
 145 multiple hyper-spheres based zero positive warm-up stage, the multiple instance learning stage, and
 146 the adaptive behavior-level self-training debiasing stage.

147

3.1 MODEL ARCHITECTURE

148 In this subsection, we provide a detailed description of the architecture of RMSL. It consists of three
 149 components and ultimately produces behavior-level anomaly scores.

150 **Sequence encoder.** We first utilize a sequence encoder to generate the representation \mathbf{x}_l of the
 151 behavior, which includes the behavior embedding and the sequence context encoding process.
 152 Specifically, we project the behavior code e_l into an embedding space using an embedding layer,
 153 obtaining the embedding vector \mathbf{e}_l :

$$154 \mathbf{e}_l = \text{Embedding}(e_l). \quad (1)$$

155 Subsequently, we need to encode the contextual information in the behavior sequence to obtain the
 156 representation of the entire behavior sequence. GRU(Chung et al., 2014) is a widely used architecture

162 that effectively captures temporal dependencies between elements in the sequence through the gating
 163 mechanisms. For the behavior sequence encoder, our bidirectional GRU employs two layers:
 164

$$165 \quad \mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{N_S}) = \text{GRU}(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{N_S}), \quad (2)$$

166 where \mathbf{x}_l represents the contextual representation of behavior e_l .
 167

168 **Multiple hyper-spheres based normal prototypes.** To address the challenge of appropriately
 169 modeling the normal patterns of data, some previous works such as Deep SVDD(Ruff et al., 2018),
 170 DeepSAD (Ruff et al., 2019) and OC4Seq(Wang et al., 2021) utilized a minimal-volume hyper-
 171 sphere to encapsulate these normal patterns by compressing all normal data into it. However, in
 172 real-world scenarios, considering normal behaviors as originating from a multi-modal distribution is
 173 more appropriate. In this work, we do not use a single hyper-sphere to store the normal, which is
 174 insufficient to uniformly describe all normal patterns. Instead, we employ M learnable hyper-spheres
 175 as prototypes to store and memorize different normal patterns, and optimize these hyper-spheres to
 176 create compact representations of diverse underlying distributions in the data, naming it multiple
 177 hyper-spheres based normal prototypes. The centers of these hyper-spheres are denoted as $\mathbf{p}_m \in \mathbb{R}^d$
 178 ($m = 1, \dots, M$), where d is the feature dimension. For each behavior e_l , given its contextual
 179 representation vector \mathbf{x}_l , we can compute the distance $d_{l,m}$ from this behavior to each hyper-sphere
 180 center. A larger distance from the behavior to the center of its nearest hyper-sphere implies that the
 181 behavior is dissimilar to all historical normal patterns and is more likely to be an anomaly. This
 182 process can be formulated as follows:
 183

$$184 \quad d_{l,m} = \|\mathbf{x}_l - \mathbf{p}_m\|_2, \quad 1\text{st} = \arg \min_{m=1}^M d_{l,m}, \quad \text{Score}_{\text{sph}}(e_l|S) = \|\mathbf{x}_l - \mathbf{p}_{1\text{st}}\|_2, \quad (3)$$

185 where $d_{l,m} \in \mathbb{R}^{N_S \times M}$, $1\text{st} \in \{m\}_{m=1}^{N_S}$ denotes the index of the nearest hyper-sphere to behavior \mathbf{x}_l ,
 186 and $\text{Score}_{\text{sph}}(e_l|S) \in \mathbb{R}$ represents the deviation score of the behavior relative to the hyper-spheres,
 187 named as hyper-spheres based deviation score.
 188

189 **Anomaly classifier.** We use a discriminative anomaly classifier \mathcal{M}_{cls} to predict whether a behavior
 190 belongs to the anomaly class. This classifier consists of a self-attention layer(Vaswani et al., 2017)
 191 and a fully connected layer. The self-attention layer further enhances the representation ability of
 192 behavior features, yielding the representation $\mathbf{x}_l^{\text{attn}}$, and introduces additional parameters to better
 193 adapt to the classification task. The fully connected layer is used for the final classification decision.
 194 The entire anomaly classifier can be formulated as:
 195

$$196 \quad \text{Score}_{\text{cls}}(e_l|S) = \text{sigmoid}(\mathbf{w}_{\text{FC}}^{\top} \mathbf{x}_l^{\text{attn}} + b_{\text{FC}}), \quad (4)$$

197 where $\mathbf{w}_{\text{FC}} \in \mathbb{R}^d$ is the weight matrix, $b_{\text{FC}} \in \mathbb{R}$ is the bias, $\text{sigmoid}(\cdot)$ is the sigmoid activation
 198 function, and $\text{Score}_{\text{cls}}(e_l|S)$ reflects the score of behavior e_l being classified into the anomalous
 199 class from the perspective of classification separability.
 200

201 **Anomaly scores.** In this work, we do not use a single classifier to generate anomaly scores but
 202 instead contribute anomaly scores from complementary perspectives. The anomaly classifier provides
 203 discriminative scores based on class separability, while the hyper-spheres based deviation score
 204 quantifies the degree of deviation of behaviors from normal patterns. This dual-scoring mechanism
 205 enables a more comprehensive assessment of anomalies. For the behavior e_l in sequence S , we define
 206 the total anomaly score as:
 207

$$208 \quad f(e_l|S; \theta) = \alpha \times \text{Score}_{\text{cls}}(e_l|S) + (1 - \alpha) \times \text{Score}_{\text{sph}}(e_l|S), \quad (5)$$

209 where $\alpha \in [0, 1]$ is a hyperparameter, which we refer to as the dual scoring balance factor.
 210

211 3.2 STAGE 1: MULTIPLE HYPER-SPHERES BASED ZERO POSITIVE WARM-UP

212 In this stage, we constructed a one-class classifier based on multiple hyper-spheres in the zero
 213 positive scenario (i.e., optimizing the model using only normal behavior sequences without any
 214 anomalous positive examples) as a good anomaly supervision-free starting point to warm up for the
 215 second stage multiple instance learning. This is based on the consideration that, at the beginning
 216 of training, the model is not well-trained yet, and the anomaly score prediction function does not
 217 have a clear mapping relationship. Directly selecting the behaviors with the highest anomaly scores
 218 from the anomaly sequence might not be truly anomalous, causing errors during the early phases of
 219

multiple instance learning optimization. These errors will accumulate as the model trains, leading to suboptimal performance. Using the one-class model as a starting point can improve the model’s ability to select anomalous samples in the early phases of multiple instance learning. Specifically, we use two losses to constrain the optimization of hyper-spheres.

Multi-Center loss. We extend the standard center loss (Wen et al., 2016) from multi-class to multi-spheres. For a normal sequence S^- , we minimize the distance of each behavior in the sequence to its nearest hyper-sphere, such that behaviors of the same normal pattern cluster into corresponding compact hyper-spheres in the feature space:

$$\mathcal{L}_{cen} = \frac{1}{N_{S^-}} \sum_{l=1}^{N_{S^-}} \|\mathbf{x}_l - \mathbf{p}_{1st}\|_2^2, \quad (6)$$

where N_{S^-} denotes the length of the normal sequence S^- .

Hyper-sphere separability loss. Using only the multi-center loss may lead to learning meaningless results, such as hyper-sphere collapse, where all centers of hyper-spheres are optimized to converge to a single point, losing the significance of storing normal patterns in multiple hyper-spheres. To encourage different hyper-spheres to reflect different normal patterns, we propose a soft hyper-sphere separability loss that enforces the distance between a behavior and the second nearest hyper-sphere center to be greater than the distance to the nearest hyper-sphere center, thereby increasing the distance between different hyper-spheres to ensure separation between hyper-spheres representing different patterns:

$$\mathcal{L}_{sep} = \frac{1}{N_{S^-}} \sum_{l=1}^{N_{S^-}} \text{BCE} \left(\frac{\exp(\|\mathbf{x}_l - \mathbf{p}_{2nd}\|_2)}{\exp(\|\mathbf{x}_l - \mathbf{p}_{1st}\|_2) + \exp(\|\mathbf{x}_l - \mathbf{p}_{2nd}\|_2)}, 1 \right), \quad (7)$$

where 1st and 2nd are respectively the indices of the nearest and second nearest hyper-spheres to \mathbf{x}_k , $2nd = \arg \min_{m=1, m \neq 1st} d_{l,m}$, and $\text{BCE}(\cdot, \cdot)$ is used to calculate binary cross-entropy losses.

The total training loss at this stage can be calculated as $\mathcal{L}_1 = \mathcal{L}_{cen} + \lambda_{sep} \mathcal{L}_{sep}$. After training, the model tends to have a smaller deviation score $Score_{sph}$ for normal behaviors, while anomalous behaviors, which the model has not seen, are likely to be further from the hyper-spheres storing the normal behavior patterns. Consequently, their $Score_{sph}$ are also more likely to be larger than that of normal behaviors. We use this property to help warm up MIL in the next stage.

3.3 STAGE 2: MULTIPLE INSTANCE LEARNING

To address the behavior-level ITD task, our ultimate goal is to ensure that the anomaly scores for anomalous behaviors are higher than those for normal behaviors, effectively separating out the anomalies. Typically, achieving this goal requires relying on detailed behavior-level annotations for model optimization. However, with the Multiple Instance Learning (MIL) technique (Carboneau et al., 2018; Wu et al., 2015; Zhang et al., 2013), we can adopt a more efficient approach: consider the sum of the anomaly scores of the highest-scoring behaviors within a sequence as the anomaly score for the entire sequence. Based on this, ensure that the anomaly score of an anomalous sequence is higher than that of a normal sequence, thereby enabling the optimization of the model using sequence-level labels. This method indirectly achieves the goal of scoring anomaly behaviors higher than normal behaviors, which can be formalized as:

$$\sum_{l \in \Omega_{S^+}} f(e_l | S^+; \theta) > \sum_{l \in \Omega_{S^-}} f(e_l | S^-; \theta), \quad (8)$$

where Ω_{S^+} and Ω_{S^-} represent the indices of behaviors with the highest anomaly scores in the anomalous sequence S^+ and the normal sequence S^- , respectively. Therefore, in the second stage of the progressive training strategy, we introduce sequence-level weak supervision signals. By applying the MIL technique, based on the one-class model obtained in the first stage, we further enhance the model’s ability to distinguish whether a behavior is abnormal or not. By selecting the behaviors with the highest anomaly scores $f(e_l | S^{(i)}; \theta)$ within a sequence (i.e., $\Omega_{S^{(i)}} = \max_{e_l \in S^{(i)}} (f(e_l | S^{(i)}; \theta))$), and minimizing the binary cross-entropy loss $\mathcal{L}_{mil} = \frac{1}{|\mathcal{D}_L|} \sum_{i=1}^{|\mathcal{D}_L|} \text{BCE}(\hat{Y}^{(i)}, Y^{(i)})$ using the sequence-level labels, the entire model \mathcal{M} is optimized to further refine feature representations and hyper-spheres, where $\hat{Y}^{(i)} = \frac{1}{|\Omega_{S^{(i)}}|} \sum_{l \in \Omega_{S^{(i)}}} f(e_l | S^{(i)}; \theta)$.

270 3.4 STAGE 3: ADAPTIVE BEHAVIOR-LEVEL SELF-TRAINING DEBIASING
271

272 After obtaining an anomaly score prediction model \mathcal{M} through MIL in the second stage, \mathcal{M} acquires
273 an initial capability to distinguish anomalies. However, due to the mechanism of MIL that optimizes
274 the model by selecting only a few representative behaviors, there exists a prediction bias. In the
275 third stage, we use adaptive behavior-level self-training debiasing technology to fully utilize the
276 information of all behaviors in the sequence. By generating efficient pseudo labels to optimize
277 the model while introducing minimal noise, we eliminate the prediction bias and improve anomaly
278 detection performance. The debiased model is named as \mathcal{M}' , and the corresponding parameters are
279 denoted as θ' .
280

281 Specifically, based on the model trained in the second stage, we calculate the confidence of the model's
282 prediction for each behavior in the sequence S . Monte Carlo (MC) Dropout(Gal & Ghahramani,
283 2016) provides a good way to estimate it. It treats the network parameters θ as random variables
284 following some distribution $q(\theta)$. By using the dropout operation(Hinton, 2012) during each forward
285 pass, we can approximate sampling from the distribution of the model parameters. Through multiple
286 forward passes, we can approximate the distribution of the model's predictions. The expectation and
287 variance of the distribution of the anomaly score of a behavior e_l can be estimated from the mean and
288 variance of the outputs generated by multiple forward passes:
289

$$\begin{aligned} \mathbb{E}_{\theta \sim q(\theta)}(f(e_l|S; \theta)) &\approx \mu = \frac{1}{T} \sum_{t=1}^T f(e_l|S; \theta_t), \\ \mathbb{V}\text{ar}_{\theta \sim q(\theta)}(f(e_l|S; \theta)) &\approx \sigma^2 = \frac{1}{T-1} \sum_{t=1}^T (f(e_l|S; \theta_t) - \mu)^2, \end{aligned} \quad (9)$$

290 where θ_t denotes the model parameters for the t -th dropout sampling, and T is the number of forward
291 passes. A smaller variance indicates higher prediction confidence.
292

293 Afterward, we transform the inexact weakly-supervised learning task into a semi-supervised learning
294 task, where high-confidence samples are treated as labeled samples, while the remaining samples
295 are treated as unlabeled samples. For the abnormal sequence S^+ , the top $r_{hi} \times N_{S^+}$ behaviors with
296 the smallest variance are selected as high-confidence samples, the next $r_{mid} \times N_{S^+}$ behaviors are
297 considered as medium-confidence samples, and the rest are treated as low-confidence samples:
298

$$\begin{aligned} \Omega_{con}^{hi} &= \text{minTopK}_{e_l \in S^+}(\mathbb{V}\text{ar}_{\theta \sim q(\theta)}(f(e_l|S^+; \theta)), r_{hi} \times N_{S^+}), \\ \Omega_{con}^{mid} &= \text{minTopK}_{e_l \in S^+, l \notin \Omega_{con}^{hi}}(\mathbb{V}\text{ar}_{\theta \sim q(\theta)}(f(e_l|S^+; \theta)), r_{mid} \times N_{S^+}), \end{aligned} \quad (10)$$

300 where $\text{minTopK}(\cdot, k)$ returns the indices corresponding to the k smallest elements. For high-
301 confidence samples, we utilize the expectation of their anomaly scores to generate hard pseudo labels
302 for optimizing model parameters:
303

$$\mathcal{L}_{hi} = \frac{1}{|\Omega_{con}^{hi}|} \sum_{l \in \Omega_{con}^{hi}} \text{BCE}(f(e_l|S^+; \theta), \mathbb{1}(\mathbb{E}_{\theta \sim q(\theta)}(f(e_l|S^+; \theta)) > \tau_a)), \quad (11)$$

304 where τ_a is the anomaly detection threshold, behaviors with anomaly scores greater than τ_a are
305 considered as anomalies, behaviors with scores less than τ_a are considered normal, and $\mathbb{1}(\cdot)$ is an
306 indicator function.
307

308 For those medium-confidence samples, directly using hard pseudo labels may introduce noise. To
309 mitigate the impact of noise, we introduce more reliable soft pseudo labels to avoid high-confidence
310 erroneous predictions by the model. We optimize the model by simultaneously considering less
311 reliable hard pseudo labels y_{hard} and more reliable soft pseudo labels y_{soft} as follows:
312

$$\mathcal{L}_{mid} = \frac{1}{|\Omega_{con}^{mid}|} \sum_{l \in \Omega_{con}^{mid}} \lambda_{pse} \text{BCE}(f(e_l|S^+; \theta), y_{hard}) + (1 - \lambda_{pse}) \text{BCE}(f(e_l|S^+; \theta), y_{soft}), \quad (12)$$

313 where when $\mathbb{E}_{\theta \sim q(\theta)}(f(e_{hi}|S^+; \theta)) > \tau_c$, y_{hard} is set to 1, and when $\mathbb{E}_{\theta \sim q(\theta)}(f(e_{hi}|S^+; \theta)) < 1 - \tau_c$, y_{hard} is set to 0. τ_c is an adaptive threshold that increases with confidence and can be
314 computed at the t -th iteration as $\tau_c^t = \beta_c \tau_c^{t-1} + (1 - \beta_c) \text{maxNorm}(\mathbb{V}\text{ar}_{\theta \sim q(\theta)}(f(e_k|S; \theta))^{-1})$,
315 with $\tau_c^0 = \tau_a$, where $\text{maxNorm}(\cdot)$ is the maximum normalization operation. The soft pseudo label
316

$y_{soft} = f(e_l | S^+; \theta_{ema})$ is generated by the model's exponential moving average (EMA) model acting as a teacher to guide the learning of the current model. The parameters θ_{ema}^t of the EMA model at iteration t can be computed as $\theta_{ema}^t = \beta_{ema}\theta_{ema}^{t-1} + (1 - \beta_{ema})\theta^t$. The total training loss at this stage can be calculated as $\mathcal{L}_3 = \mathcal{L}_{hi} + \mathcal{L}_{mid}$.

Table 1: Performance comparison of RMSL with 16 baselines for behavior-level ITD. The best and second-best results are boldfaced and underlined, respectively. An upward arrow indicates the higher the better, and a downward arrow indicates the lower the better.

Model	CERT r4.2						CERT r5.2					
	AUC \uparrow	DR \uparrow	FPR \downarrow	DR@5% \uparrow	DR@10% \uparrow	DR@15% \uparrow	AUC \uparrow	DR \uparrow	FPR \downarrow	DR@5% \uparrow	DR@10% \uparrow	DR@15% \uparrow
DeepLog(Du et al., 2017)	0.7469	0.7152	0.3767	0.2310	0.3842	0.4620	0.8549	0.7767	0.2336	0.4970	0.5954	0.6648
TIRESIAS(Shen et al., 2018)	0.8377	0.7820	0.2338	0.3761	0.5277	0.6484	0.8804	0.8129	0.2073	0.5463	0.6373	0.7297
RNN(Elman, 1990)	0.7521	0.6934	0.3622	0.2299	0.3821	0.4625	0.8641	0.8286	0.2361	0.4548	0.5928	0.6910
GRU(Chung et al., 2014)	0.7486	0.7119	0.3804	0.2391	0.3815	0.4614	0.8504	0.7911	0.2395	0.4637	0.5704	0.6499
Transformer(Vaswani et al., 2017)	0.7981	0.7195	0.2799	0.2918	0.4201	0.5321	0.8628	0.7621	0.1985	0.4858	0.5745	0.6694
RWKV(Peng et al., 2023)	0.8165	0.7923	0.2576	0.2630	0.4348	0.5886	0.8727	0.8020	0.2345	0.5380	0.6224	0.6887
DIEN(Zhou et al., 2019)	0.7894	0.7461	0.3072	0.4147	0.4875	0.5342	0.8268	0.7724	0.2690	0.3811	0.5455	0.6175
BST(Chen et al., 2019)	0.6777	0.6554	0.3451	0.1625	0.2614	0.3647	0.8162	0.7417	0.2301	0.4772	0.5650	0.6548
FMLP(Zhou et al., 2022)	0.8526	0.7983	0.2027	0.4783	0.5647	0.6837	0.8435	<u>0.8757</u>	0.2889	0.4278	0.5171	0.5659
m-RNN	0.8652	0.8032	0.1996	0.4375	0.6707	0.7549	0.9108	0.8131	<u>0.1359</u>	0.6881	<u>0.7699</u>	0.8230
m-GRU	0.8514	0.8103	0.2378	0.3364	0.5962	0.7001	0.9040	0.7879	0.1367	0.6780	0.7458	0.7957
m-LSTM	0.8531	0.7891	0.2259	0.3310	0.5908	0.6897	0.8985	0.7730	0.1385	0.6729	0.7329	0.7779
m-Transformer	0.8533	0.8005	0.2112	0.3109	0.5451	0.6951	0.8929	0.8358	0.1586	0.5684	0.7357	0.8247
m-FMLP	<u>0.8837</u>	0.8190	<u>0.1671</u>	0.4266	<u>0.6772</u>	<u>0.7957</u>	0.8920	0.8169	0.1614	0.4878	0.7412	0.8066
ITDBERT(Huang et al., 2021)	0.7413	0.6911	0.3153	0.2005	0.3272	0.4383	0.8139	0.6853	0.1996	0.5724	0.6243	0.6518
OC4Seq(Wang et al., 2021)	0.8113	0.8080	0.2944	0.1466	0.3019	0.4712	<u>0.9202</u>	0.8503	0.1727	0.6414	0.7383	0.8245
RMSL (Ours)	0.9701	0.9142	0.0924	0.7030	0.9245	0.9585	0.9568	0.8908	0.0950	0.7945	0.8645	0.9073
Abs. Improv.	0.0864	0.0952	0.0747	0.2247	0.2473	0.1628	0.0366	0.0151	0.0409	0.1064	0.0946	0.0826
Rel. Improv.(%)	9.78%	11.62%	44.70%	46.98%	36.52%	20.46%	3.98%	1.72%	30.10%	15.46%	12.29%	10.02%

4 EXPERIMENTS

Experimental Settings. sections A.1 to A.3 and A.5 describes detailed experimental information, including datasets, baseline methods, implementation details, and evaluation metrics.

Overall Comparison. Table 1 shows the performance of our RMSL and all the baseline methods on the behavior-level ITD task. The results indicate that our RMSL significantly outperforms existing baselines across all datasets on the behavior-level detection tasks. Specifically, in terms of the AUC metric, RMSL outperforms the best-performing baseline by 9.78% and 3.98% on the CERT r4.2 and r5.2 datasets, respectively; on the DR metric, it also outperforms by 11.62% and 1.72%, respectively; and on the FPR metric, it outperforms by 44.70% and 30.10%, respectively. Previous baseline methods all considered how to better model normal behavior patterns, whether by designing better structures to describe behavior features, or designing different tasks to learn normal behavior patterns such as next behavior prediction (Deeplog (Du et al., 2017), TIRESIAS (Shen et al., 2018), RNN (Elman, 1990), GRU (Chung et al., 2014), Transformer (Vaswani et al., 2017), RWKV (Peng et al., 2023), DIEN (Zhou et al., 2019), BST (Chen et al., 2019), FMLP (Zhou et al., 2022)), masked behavior prediction (m-RNN, m-GRU, m-LSTM, m-Transformer, m-FMLP), or one-class classification based on minimizing hyper-spheres (OC4Seq(Wang et al., 2021)). Without any prior information about anomalies, the performance of these approaches has reached a bottleneck. Analyzing the possible reasons, the paradigm of simply treating deviations from normal as anomalies is inappropriate, as these models cannot truly distinguish between normal and abnormal. Since training sets cannot encompass all normal behavior patterns in the real world, these methods might misclassify unseen but normal behavior patterns as anomalies, leading to a high false positive rate. Reflecting on the field of cybersecurity, there may be another issue where some malicious users often disguise themselves as normal users to perform subtle malicious behaviors, making them very difficult to distinguish and leading to a low detection rate. ITDBERT(Huang et al., 2021) is a sequence-level supervised method, but it can also indirectly provide behavior-level scores by interpreting the model's predictions using attention scores. However, its performance lags significantly behind our method. In this work, we conducted a more practical weakly supervised setting, and experiments proved that this led to significant performance gains. Furthermore, our method starts with a one-class classification model and gradually enhances its behavior-level classification capabilities by introducing sequence-level labels, making it more flexible.

Ablation Study. The final RMSL is primarily trained in three training stages: multiple hyper-spheres based zero positive warm-up, multiple instance learning, and adaptive behavior-level self-training debiasing. To better understand how different training stages contribute to the final performance, we conducted ablation studies. Specifically, we introduced four variants of RMSL, each corresponding to models trained with different combinations of stages.

378 Figure 3 shows the results of the
 379 ablation study. The experimental
 380 results show that the model
 381 trained using the first two stages
 382 (“**stage 1+2**”) achieved signif-
 383 icant improvements across all
 384 metrics compared to the model
 385 trained only with the first stage
 386 (“**stage 1**”), demonstrating the
 387 effectiveness of the second train-
 388 ing stage multiple instance learn-
 389 ing. The model trained using all
 390 three stages (“**stage 1+2+3**”) out-
 391 performed other variants, show-
 392 ing a further slight improvement
 393 in metrics compared to “**stage 1+2**”,
 394 which confirms the effectiveness of the third training stage
 395 adaptive behavior-level self-training debiasing. Additionally, the metrics of “**stage 1+2**” were better
 396 than the model trained solely with the second stage (“**stage 2**”), proving the effectiveness of the first
 397 training stage multiple hyper-spheres based zero positive warm-up. A warm start from a one-class
 398 model, which can provide initial anomaly score predictions, can help MIL optimize better.

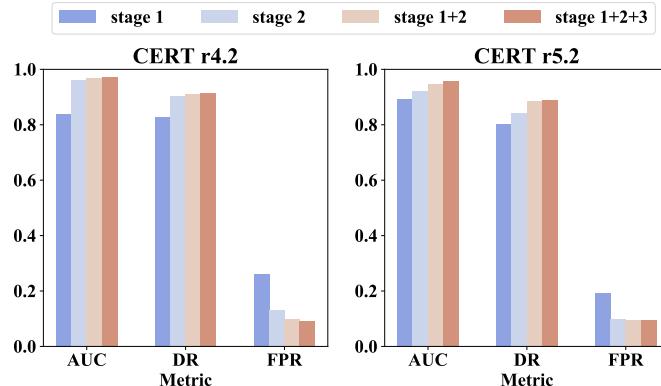
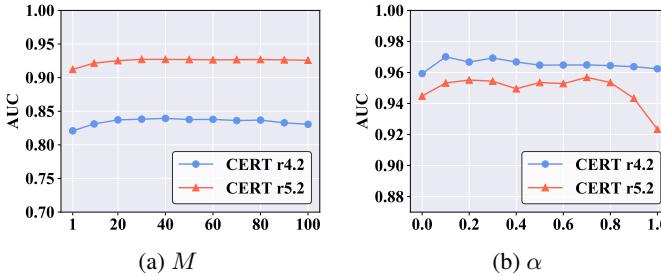


Figure 3: Results of the ablation study.

397 **Hyper-parameter Analysis.** In this subsection, we analyze the impact of two key hyper-parameters
 398 on the performance of RMSL across the CERT r4.2 and r5.2 datasets. Firstly, as depicted in
 399 Figure 4a, we varied the number of hyper-spheres based normal prototypes M from 1 to 100
 400 (step size 10). Observations indicate that with the increase of M , the AUC initially increases and
 401 then slightly decreases on both datasets, achieving the optimal performance when M is set to 40.
 402 The initial increase suggests that
 403 using multiple hyper-spheres as
 404 prototypes to represent normal
 405 patterns of behaviors is more
 406 expressive than compressing all
 407 normal behaviors into a single
 408 minimum volume hyper-sphere
 409 in the latent space (similar to
 410 Deep SVDD(Ruff et al., 2018)).
 411 The subsequent decline may be
 412 due to redundancy when the num-
 413 ber of hyper-spheres exceeds the
 414 number of normal patterns, in-
 415 creasing the likelihood that individual
 416 anomaly behaviors are incorrectly
 417 assigned to one of the
 418 hyper-spheres. In Figure 4b, we tuned the dual scoring balance factor $\alpha \in [0, 1]$ (step size 0.1), which
 419 balances the contributions of the discriminative score and the hyper-sphere-based deviation score.
 420 Setting $\alpha = 0$ relies solely on the deviation score, whereas $\alpha = 1$ uses only the discriminative score.
 421 Optimal performance is achieved at $\alpha = 0.1$ (r4.2) and $\alpha = 0.6$ (r5.2), highlighting dataset-specific
 422 trade-offs between the two scoring mechanisms.

Figure 4: The influence of number of hyper-spheres based normal prototypes M and dual scoring balance factor α .

423 **Visualization.** We also conducted visualization experiments to compare the embedding vectors
 424 between the zero-positive setting
 425 (Figure 5a) and the weak super-
 426 vision setting (Figure 5b). Vi-
 427 sualizations show red/black dots
 428 for anomalous/normal behaviors
 429 and blue hypersphere centers.
 430 The zero-positive setting ex-
 431 hibits significant embedding vec-
 432 tor overlap, whereas the weak su-
 433 pervision setting achieves clear
 434 separation. For more detailed
 435 information, please refer to sec-
 436 tion A.6.

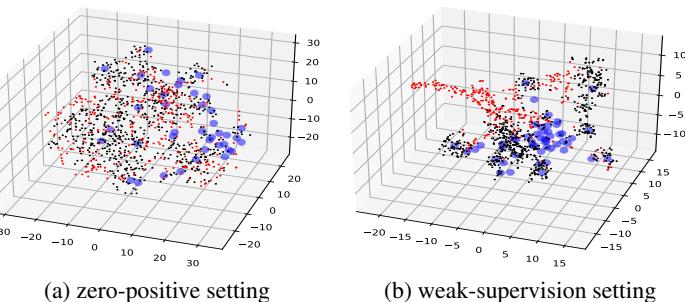


Figure 5: Embedding vectors visualization

432

5 RELATED WORKS

433

5.1 INSIDER THREAT DETECTION

436 In recent years, numerous studies have explored the application of deep learning techniques in Insider
 437 Threat Detection (ITD). These works treat user activities as behaviors and aggregate them into
 438 sequences, then leverage sequence models from the field of Natural Language Processing (NLP)
 439 to capture the temporal dependencies between user activities for anomaly detection (Tuor et al.,
 440 2017; Yuan et al., 2019; Vinay et al., 2022; Huang et al., 2021; Yuan et al., 2020; Lu & Wong,
 441 2019). Yuan et al. (2019) proposed a model that combines temporal point processes and recurrent
 442 neural networks to capture temporal information and activity types within sessions for sequence-level
 443 ITD. Furthermore, their subsequent work(Yuan et al., 2020) proposed a framework that combines
 444 metric-based few-shot learning and self-supervised pre-training methods to discover new malicious
 445 sessions and detect insiders through similarity scores. Huang et al. (2021) pre-trained a language
 446 model BERT(Devlin et al., 2018) on historical activity data to capture fused semantic representations
 447 and proposed an attention-based architecture to detect malicious activities of compromised internal
 448 nodes within a network. Tuor et al. (2017) use daily features for each user as historical feature vectors
 449 to predict the feature vectors of the next day, thereby enabling the detection of day-level insider
 450 threats. However, these methods can only determine whether a sequence is anomalous but fail to
 451 detect specific anomalous behaviors.

452

5.2 ANOMALY DETECTION WITH INEXACT SUPERVISION

453 Anomaly detection with inexact supervision refers to effectively identifying anomalies using coarse-
 454 grained labels. Current research mainly focuses on video anomaly detection tasks. Sultani et al.
 455 (2018) is the first to formulate anomaly detection with weakly supervised video-level labels as a
 456 Multiple Instance Learning (MIL) problem, treating each video as a bag of instances and using
 457 video-level anomaly labels to learn the anomaly scores of individual video segments. Tian et al.
 458 (2021) trained a classifier using the top K instances with the highest anomaly scores to learn more
 459 robust temporal features for identifying abnormal segments. Chen et al. (2023) proposed a feature
 460 magnitude contrastive loss to address the issue where the magnitude of normal instances is greater
 461 than that of anomalous instances due to changes in scene attributes, thereby enhancing the separability
 462 between normal and anomalous features. Differently, Lv et al. (2023) identified the problem of
 463 biased sample selection in MIL and proposed an unbiased MIL framework to enhance the detector's
 464 ability to distinguish between normal and anomalous behaviors, eliminating selection bias. To
 465 further improve the performance of weakly supervised video anomaly detection models, other studies
 466 have focused on applying two-stage training schemes. Specifically, Feng et al. (2021) introduced a
 467 self-training framework based on MIL, using a pseudo-label generator and a self-guided attention
 468 encoder to improve anomaly detection performance. Li et al. (2022) enhanced the MIL framework by
 469 improving sample selection, proposing multi-sequence learning to select consecutive segments with
 470 high anomaly scores. Although MIL methods have been widely applied in video anomaly detection,
 471 research in insider threat detection has not been fully explored.

472

6 CONCLUSIONS

473 In this paper, we propose a novel weakly supervised learning framework, Robust Multi-sphere
 474 Learning (RMSL), to address the challenge of sparse behavior-level labels in fine-grained ITD. This
 475 method models diverse normal behavior patterns through multiple hyper-spheres and determines
 476 anomalies by combining classification separability with the degree of deviation from the hyper-spheres.
 477 We adopt a three-stage progressive training strategy to obtain RMSL: first, a multi-sphere-based one-
 478 class model is trained in the zero positive scenario. Then, sequence-level weak labels are introduced
 479 to further optimize the model and enhance its ability to distinguish between normal and anomalous
 480 behaviors. Finally, a debiasing technique is applied to eliminate prediction bias. Experimental
 481 results show that RMSL significantly outperforms existing methods in insider threat detection tasks.
 482 However, our approach still has limitations. Although weak labels reduce the annotation cost, their
 483 quality (e.g., whether the entire behavioral sequence is accurately labeled as normal or abnormal) may
 484 also affect model performance. Future research will further focus on the evaluation and optimization
 485 of weak label quality to further enhance the practicality of this method.

486 REFERENCES
487

488 Muhammed AlSlaiman, Mohammed I Salman, Mariam M Saleh, and Bin Wang. Enhancing false
489 negative and positive rates for efficient insider threat detection. *Computers & Security*, 126:103066,
490 2023.

491 Fatima Rashed Alzaabi and Abid Mehmood. A review of recent advances, challenges, and oppor-
492 tunities in malicious insider threat detection using machine learning methods. *IEEE Access*, 12:
493 30907–30927, 2024.

494 Anna L Buczak and Erhan Guven. A survey of data mining and machine learning methods for cyber
495 security intrusion detection. *IEEE Communications surveys & tutorials*, 18(2):1153–1176, 2015.

496 Xiangrui Cai, Yang Wang, Sihan Xu, Hao Li, Ying Zhang, Zheli Liu, and Xiaojie Yuan. Lan: learning
497 adaptive neighbors for real-time insider threat detection. *IEEE Transactions on Information
498 Forensics and Security*, 2024.

499 Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain Gagnon. Multiple
500 instance learning: A survey of problem characteristics and applications. *Pattern recognition*, 77:
501 329–353, 2018.

502 503 Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior sequence transformer for
504 e-commerce recommendation in alibaba. In *Proceedings of the 1st international workshop on deep
505 learning practice for high-dimensional sparse data*, pp. 1–4, 2019.

506 507 Yingxian Chen, Zhengze Liu, Baoheng Zhang, Wilton Fok, Xiaojuan Qi, and Yik-Chung Wu. Mgfnet:
508 Magnitude-contrastive glance-and-focus network for weakly-supervised video anomaly detection.
509 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 387–395, 2023.

510 511 Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
512 gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.

513 514 Daniel L Costa, Michael J Albrethsen, and Matthew L Collins. Insider threat indicator ontology.
515 Technical report, Carnegie-Mellon Univ Pittsburgh Pa Pittsburgh United States, 2016.

516 517 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
518 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

519 520 Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection and diagnosis
521 from system logs through deep learning. In *Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security*, pp. 1285–1298, 2017.

522 Jeffrey L Elman. Finding structure in time. *Cognitive science*, 14(2):179–211, 1990.

523 524 Jia-Chang Feng, Fa-Ting Hong, and Wei-Shi Zheng. Mist: Multiple instance self-training framework
525 for video anomaly detection. In *Proceedings of the IEEE/CVF conference on computer vision and
526 pattern recognition*, pp. 14009–14018, 2021.

527 528 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
529 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
530 PMLR, 2016.

531 532 Anton Gulenko, Alexander Acker, Odej Kao, and Feng Liu. Ai-governance and levels of automation
533 for aiops-supported system administration. In *2020 29th International Conference on Computer
534 Communications and Networks (ICCCN)*, pp. 1–6. IEEE, 2020.

535 Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via bert. In *2021
536 international joint conference on neural networks (IJCNN)*, pp. 1–8. IEEE, 2021.

537 GE Hinton. Improving neural networks by preventing co-adaptation of feature detectors. *arXiv
538 preprint arXiv:1207.0580*, 2012.

539 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
1735–1780, 1997.

540 Weiqing Huang, He Zhu, Ce Li, Qiujuan Lv, Yan Wang, and Haitian Yang. Itdbert: Temporal-
 541 semantic representation for insider threat detection. In *2021 IEEE Symposium on Computers and*
 542 *Communications (ISCC)*, pp. 1–7. IEEE, 2021.

543

544 Isaiah J King and H Howie Huang. Euler: Detecting network lateral movement via scalable temporal
 545 link prediction. *ACM Transactions on Privacy and Security*, 26(3):1–36, 2023.

546

547 Duc C Le and Nur Zincir-Heywood. Anomaly detection for insider threats using unsupervised
 548 ensembles. *IEEE Transactions on Network and Service Management*, 18(2):1152–1164, 2021a.

549

550 Duc C Le and Nur Zincir-Heywood. Exploring anomalous behaviour detection and classification for
 551 insider threat identification. *International Journal of Network Management*, 31(4):e2109, 2021b.

552

553 Duc C Le, Nur Zincir-Heywood, and Malcolm I Heywood. Analyzing data granularity levels for
 554 insider threat detection using machine learning. *IEEE Transactions on Network and Service*
 555 *Management*, 17(1):30–44, 2020.

556

557 Shuo Li, Fang Liu, and Licheng Jiao. Self-training multi-sequence learning with transformer for
 558 weakly supervised video anomaly detection. In *Proceedings of the AAAI Conference on Artificial*
 559 *Intelligence*, volume 36, pp. 1395–1403, 2022.

560

561 Ximing Li, Xiaoyong Li, Jia Jia, Linghui Li, Jie Yuan, Yali Gao, and Shui Yu. A high accuracy and
 562 adaptive anomaly detection model with dual-domain graph convolutional network for insider threat
 563 detection. *IEEE Transactions on Information Forensics and Security*, 18:1638–1652, 2023.

564

565 Brian Lindauer. Insider Threat Test Dataset. 9 2020. doi: 10.1184/R1/12841247.v1.
 566 URL https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_Dataset/12841247.

567

568 Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng. Log2vec: A
 569 heterogeneous graph embedding based approach for detecting cyber threats within enterprise. In
 570 *Proceedings of the 2019 ACM SIGSAC conference on computer and communications security*, pp.
 571 1777–1794, 2019.

572

573 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 574 *arXiv:1711.05101*, 2017.

575

576 Jiuming Lu and Raymond K Wong. Insider threat detection with long short-term memory. In
 577 *Proceedings of the Australasian Computer Science Week Multiconference*, pp. 1–10, 2019.

578

579 Hui Lv, Zhongqi Yue, Qianru Sun, Bin Luo, Zhen Cui, and Hanwang Zhang. Unbiased multiple
 580 instance learning for weakly supervised video anomaly detection. In *Proceedings of the IEEE/CVF*
 581 *conference on computer vision and pattern recognition*, pp. 8022–8031, 2023.

582

583 Hang Ni, Jindong Han, Nengjun Zhu, and Hao Liu. Unsupervised graph anomaly detection via
 584 multi-hypersphere heterophilic graph learning. *arXiv preprint arXiv:2503.12037*, 2025.

585

586 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
 587 Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the
 588 transformer era. *arXiv preprint arXiv:2305.13048*, 2023.

589

590 Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander
 591 Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *International*
 592 *conference on machine learning*, pp. 4393–4402. PMLR, 2018.

593

594 Lukas Ruff, Robert A Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-
 595 Robert Müller, and Marius Kloft. Deep semi-supervised anomaly detection. *arXiv preprint*
 596 *arXiv:1906.02694*, 2019.

597

598 Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca Stringhini. Tiresias: Predicting
 599 security events through deep learning. In *Proceedings of the 2018 ACM SIGSAC Conference on*
 600 *Computer and Communications Security*, pp. 592–605, 2018.

594 George J Silowash, Dawn M Cappelli, Andrew P Moore, Randall F Trzeciak, Timothy Shimeall, and
 595 Lori Flynn. Common sense guide to mitigating insider threats. 2012.

596

597 Waqas Sultani, Chen Chen, and Mubarak Shah. Real-world anomaly detection in surveillance videos.
 598 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6479–6488,
 599 2018.

600 Yu Tian, Guansong Pang, Yuanhong Chen, Rajvinder Singh, Johan W Verjans, and Gustavo Carneiro.
 601 Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In
 602 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4975–4986, 2021.

603

604 Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and Sean Robinson. Deep learning
 605 for unsupervised insider threat detection in structured cybersecurity data streams. In *Workshops at
 606 the Thirty-First AAAI Conference on Artificial Intelligence*, 2017.

607 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine
 608 Learning Research*, 9, 2008.

609

610 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 611 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 612 systems*, 30, 2017.

613 MS Vinay, Shuhan Yuan, and Xintao Wu. Contrastive learning for insider threat detection. In
 614 *International Conference on Database Systems for Advanced Applications*, pp. 395–403. Springer,
 615 2022.

616

617 Zhiwei Wang, Zhengzhang Chen, Jingchao Ni, Hui Liu, Haifeng Chen, and Jiliang Tang. Multi-scale
 618 one-class recurrent neural networks for discrete event sequence anomaly detection. In *Proceedings
 619 of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp. 3726–3734,
 620 2021.

621

622 Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach
 623 for deep face recognition. In *Computer vision–ECCV 2016: 14th European conference, amsterdam,
 624 the netherlands, October 11–14, 2016, proceedings, part VII 14*, pp. 499–515. Springer, 2016.

625

626 Jiajun Wu, Yinan Yu, Chang Huang, and Kai Yu. Deep multiple instance learning for image
 627 classification and auto-annotation. In *Proceedings of the IEEE conference on computer vision and
 628 pattern recognition*, pp. 3460–3469, 2015.

629

630 Junchao Xiao, Lin Yang, Fuli Zhong, Xiaolei Wang, Hongbo Chen, and Dongyang Li. Robust
 631 anomaly-based insider threat detection using graph neural network. *IEEE Transactions on Network
 632 and Service Management*, 20(3):3717–3733, 2022.

633

634 Shuhan Yuan and Xintao Wu. Deep learning for insider threat detection: Review, challenges and
 635 opportunities. *Computers & Security*, 104:102221, 2021.

636

637 Shuhan Yuan, Panpan Zheng, Xintao Wu, and Qinghua Li. Insider threat detection via hierarchical
 638 neural temporal point processes. In *2019 IEEE international conference on big data (big data)*, pp.
 639 1343–1350. IEEE, 2019.

640

641 Shuhan Yuan, Panpan Zheng, Xintao Wu, and Hanghang Tong. Few-shot insider threat detection. In
 642 *Proceedings of the 29th ACM International Conference on Information & Knowledge Management*,
 643 pp. 2289–2292, 2020.

644

645 Dan Zhang, Jingrui He, and Richard Lawrence. Mi2ls: multi-instance learning from multiple
 646 information sources. In *Proceedings of the 19th ACM SIGKDD international conference on
 647 Knowledge discovery and data mining*, pp. 149–157, 2013.

648

649 Chaofan Zheng, Wenhui Hu, Tianci Li, Xueyang Liu, Jinchan Zhang, and Litian Wang. An in-
 650 sider threat detection method based on heterogeneous graph embedding. In *2022 IEEE 8th Intl
 651 Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
 652 Performance and Smart Computing (HPSC) and IEEE Intl Conference on Intelligent Data and
 653 Security (IDS)*, pp. 11–16. IEEE, 2022.

648 Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai.
649 Deep interest evolution network for click-through rate prediction. In *Proceedings of the AAAI*
650 *conference on artificial intelligence*, volume 33, pp. 5941–5948, 2019.
651
652 Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. Filter-enhanced mlp is all you need for
653 sequential recommendation. In *Proceedings of the ACM web conference 2022*, pp. 2388–2399,
654 2022.
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703 A APPENDIX704 A.1 DATASETS
705

706 To evaluate the performance of our approach on the behavior-level ITD task, following previous
 707 studies (Liu et al., 2019; Li et al., 2023; Yuan et al., 2020; AlSlaiman et al., 2023; Le et al., 2020;
 708 Yuan & Wu, 2021; Xiao et al., 2022), we selected two publicly available datasets, **CERT r4.2** and
 709 **CERT r5.2** (Lindauer, 2020), which correspond to detection scenarios with different data scales and
 710 are widely used in the field of insider threat detection. These datasets encompass a variety of user
 711 behavior categories including logon/logoff, email communications, file accesses, device operations,
 712 and HTTP requests, each associated with a timestamp. For both CERT r4.2 and CERT r5.2 datasets,
 713 we aggregated user log data from multiple sources in chronological order and appended each user's
 714 behaviors to their historical behavior sequences. Sessions were defined using "login" and "logout"
 715 behaviors as delimiters, thereby dividing the data into individual sessions, each treated as a behavior
 716 sequence. Given that both datasets cover a period of one and a half years, we utilized the first
 717 year's data for model training and validation, while reserving the remaining six months' data for
 718 performance evaluation. For the training set, we only utilized sequence-level labels to optimize the
 719 model, whereas for the test set, we used behavior-level labels to evaluate performance. Detailed
 720 information about the datasets is summarized in Table 2.

721
722 Table 2: Statistics of the datasets.
723

724 Dataset	CERT r4.2	CERT r5.2
725 # Normal Sequences	469,478	1,004,791
726 # Abnormal Sequences	1134	1843
727 Seq.-level Imb. Ratio	414	545
728 # Normal Behaviors	32,762,906	79,846,358
# Abnormal Behaviors	7,316	10,306
729 Beh.-level Imb. Ratio	4,478	7,748

730
731 A.2 BASELINES

732 To better demonstrate the performance of our RMSL model, we compared it with 16 state-of-
 733 the-art baselines. Note that, since our evaluation granularity is at the behavior level, we only
 734 considered methods that can perform behavior-level anomaly detection without relying on behavior-
 735 level annotations. DeepLog(Du et al., 2017) and TIRESIAS(Shen et al., 2018) are two classic
 736 methods that fit normal behavior sequences by learning to predict the next behavior given the context
 737 of the behavior sequence. They can detect anomalies by determining if each input behavior deviates
 738 from the model's prediction. The backbone of DeepLog is a two-layer stacked LSTM(Hochreiter
 739 & Schmidhuber, 1997), whereas TIRESIAS maintains a single-layer LSTM but improves upon
 740 DeepLog by constructing a more complex memory structure within the LSTM unit. In addition
 741 to LSTM, we also tried three other widely popular sequence modeling architectures RNN(Elman,
 742 1990), GRU(Chung et al., 2014), Transformer(Vaswani et al., 2017), and RWKV(Peng et al., 2023) to
 743 learn to predict the next behavior and detect anomalies. Furthermore, we compared two classic user
 744 behavior modeling methods, DIEN(Zhou et al., 2019) and BST(Chen et al., 2019), which can predict
 745 the probability of user behaviors occurring, and a recent method, FMLP(Zhou et al., 2022), which
 746 filters noise from historical user behavior data to predict future user behaviors. The aforementioned
 747 models only consider the context before the occurrence of a behavior when predicting whether
 748 a behavior is abnormal. To fully utilize the context information of the entire behavior sequence,
 749 we allowed the models to access the entire behavior sequence and constructed a masked behavior
 750 prediction task, similar to LogBERT(Guo et al., 2021). In this task, a specific behavior in the behavior
 751 sequence is replaced with a mask identifier. We used bidirectional RNN, GRU, and LSTM, as well
 752 as Transformer and FMLP, to learn to predict the behavior at the masked position. Anomalies are
 753 detected by determining if each masked behavior deviates from the model's prediction, and these
 754 methods are referred to as m-RNN, m-GRU, m-LSTM, m-Transformer, and m-FMLP, respectively.
 755 ITDBERT(Huang et al., 2021) is an attention-based behavior-level detection method. The attention
 weights reflect the contribution of each behavior in the behavior sequence to predicting whether

756 the entire sequence is abnormal, allowing for the detection of abnormal behaviors based on these
 757 attention weights. Lastly, we also compared a representative method for treating ITD as a one-class
 758 classification problem, OC4Seq(Wang et al., 2021). This method learns to embed normal behaviors
 759 into a hyper-sphere, detecting anomalies by predicting how close behaviors are to the center of the
 760 hyper-sphere.

761 A.3 IMPLEMENTATION

762 Our RMSL method is trained using the AdamW (Loshchilov & Hutter, 2017) optimizer with a weight
 763 decay of 0.0005. During the first stage of model training, the initial learning rate is set to 2e-6, during
 764 the second stage, the learning rate is set to 1e-5, and during the third stage, the learning rate is set to
 765 1e-6. The batch size is set to 128, with each mini-batch consisting of 64 randomly selected normal
 766 sequences and 64 abnormal sequences. For the dual scoring balance factor α , we set it to 0.1 for
 767 the CERT r4.2 dataset and 0.7 for the CERT r5.2 dataset respectively. Regarding the number of
 768 hyper-spheres M , we set it to 40 and randomly initialized each hyper-sphere center. The rationale
 769 for selecting these two key parameters is reported in the hyper-parameter analysis part of Section 4.
 770 We adopt the grid search strategy and leverage hyperparameter tuning tools¹ to achieve optimal
 771 performance, such as setting the hyper-sphere separability loss $\lambda_{sep} = 0.5$. For all experiments, for
 772 a fair comparison, our method is set with the same embedding size of 128 as all baseline methods
 773 and is trained for 10 epochs using an early stopping strategy. The experiments were conducted on a
 774 server with 2 Intel Xeon Gold 6226R CPUs running at 2.90GHz, 256GB of RAM, and one A6000
 775 GPU with 48GB memory. The toolkit used for the experiments included Python 3.8, PyTorch 1.13.

776 A.4 COMPUTATIONAL PERFORMANCE

777 We evaluated the computational performance of our model on a single NVIDIA A6000 GPU. For
 778 CERT 4.2, training on 32M behaviors completed in under 50 minutes, and inference on 1.9M
 779 behaviors required only 9 seconds, corresponding to an average latency of 0.0046 ms per behavior.
 780 For CERT 5.2, training on 79M behaviors completed in under 100 minutes, while inference on
 781 7.5M behaviors took 27 seconds, yielding an average latency of 0.0036 ms per behavior. GPU
 782 memory usage scaled predictably with batch size, ranging from 2,661 MB at a batch size of 128 to
 783 8,768 MB at 512. These results demonstrate that the model can be efficiently trained on large-scale
 784 behavioral datasets within practical time limits while supporting fast and memory-efficient inference,
 785 highlighting its scalability and suitability for real-world deployment.

786 A.5 METRICS

787 Similar to the previous works (Buczak & Guven, 2015; Le et al., 2020; Le & Zincir-Heywood, 2021a;
 788 King & Huang, 2023; Cai et al., 2024), we use the behavior-level area under the ROC curve (AUC),
 789 detection rate (DR), and false positive rate (FPR) as evaluation metrics for all datasets and models.
 790 Here, $DR = TP/(TP + FN)$ and $FPR = FP/(FP + TN)$. TP, FN, FP, and TN represent the number of true
 791 positives, false negatives, false positives, and true negatives, respectively. Furthermore, following
 792 previous studies (Le & Zincir-Heywood, 2021a;b; Tuor et al., 2017; Cai et al., 2024), we also report
 793 the detection rates DR@5%, DR@10%, and DR@15% under investigation budgets of 5%, 10%, and
 794 15% of the total number of behaviors, respectively.

795 A.6 VISUALIZATION DETAILS

796 We visualized the learned embedding vectors using t-SNE (Van der Maaten & Hinton, 2008) and
 797 compared between the zero positive setting and the weak supervision setting, as shown in Figure 6,
 798 where red dots represent anomalous behaviors, black dots represent normal behaviors, and blue
 799 markers indicate centers of hyper-spheres. Each setting displays 3D projections from two different
 800 angles. Figure 6a demonstrates the embedding vectors produced by the one-class model trained with
 801 the first training stage multiple hyper-spheres based zero positive warm-up, which only uses normal
 802 sequences for training. It can be observed that in the latent space, dots representing normal behaviors
 803 and anomalous behaviors cannot be well separated, indicating poor inter-class separability. Figure 6b
 804 presents the embedding visualization results after further introducing sequence-level weak supervision

805 ¹<https://github.com/microsoft/nni>

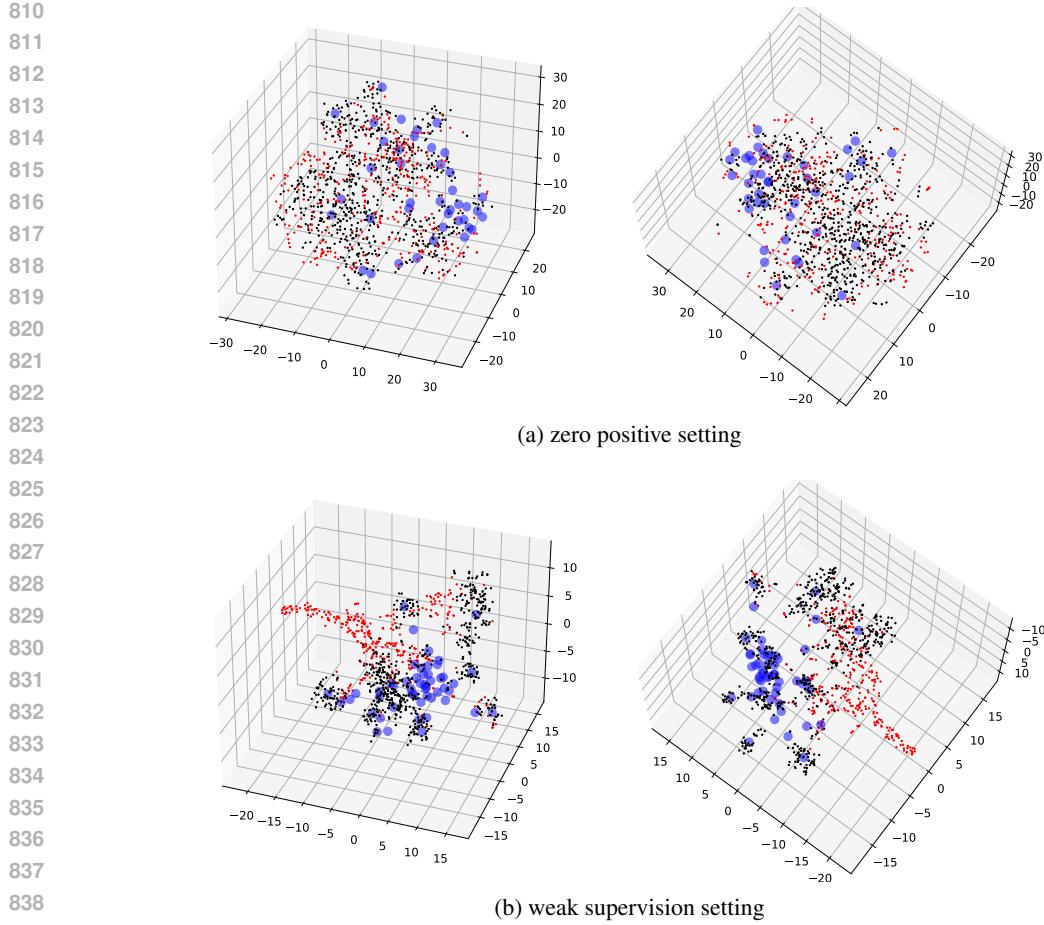


Figure 6: Visualization of the embedding vectors of RMSL in the zero positive setting and the weak supervision setting.

signals based on the one-class model. From the figure, it can be seen that normal behaviors tightly cluster around their respective hyper-sphere centers and maintain a clearer separation from anomalous behaviors, reflecting the optimization of the decision boundary between normal and anomalous patterns using weak supervision signals, which effectively enhances inter-class distinguishability.

A.7 ETHICS STATEMENT

This research does not involve human or animal subjects. All datasets utilized are publicly available and do not contain sensitive or personally identifiable information. Our work does not present potential risks related to harmful applications, such as discrimination, bias, or security concerns. The authors have no conflicts of interest or financial relationships relevant to this study. All experiments and analyses were conducted with integrity, transparency, and in accordance with ethical research practices.

A.8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. In this study, we propose a novel model. The datasets and preprocessing methods used for training and evaluation are detailed in section A.1, the baseline models for comparison are listed in section A.2, implementation details including hyperparameter settings, optimizer types, and runtime environment are provided in section A.3, and the evaluation metrics are described in section A.5. Furthermore, the supplementary

864 materials include code that can be used to reproduce the experiments, ensuring transparency and
865 facilitating verification of our findings.
866

867 **A.9 DECLARATION OF LLM USAGE**
868

869 The core methodological development in this study did not involve the use of large language models
870 (LLMs) as any essential, original, or non-standard component. LLMs were employed only minimally,
871 for purposes such as text polishing and language refinement.
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917