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Abstract

The widespread adoption of Transformer architectures in various data modalities
has opened new avenues for the applications in molecular modeling. Neverthe-
less, it remains elusive that whether the Transformer-based architecture can do
molecular modeling as good as equivariant GNNs. In this paper, by designing
Interatomic Positional Encoding (IPE) that parameterizes atomic environments as
Transformer’s positional encodings, we propose Geoformer, a novel geometric
Transformer to effectively model molecular structures for various molecular prop-
erty prediction. We evaluate Geoformer on several benchmarks, including the QM9
dataset and the recently proposed Molecule3D dataset. Compared with both Trans-
formers and equivariant GNN models, Geoformer outperforms the state-of-the-art
(SoTA) algorithms on QM9, and achieves the best performance on Molecule3D for
both random and scaffold splits. By introducing IPE, Geoformer paves the way
for molecular geometric modeling based on Transformer architecture. Codes are
available at https://github.com/microsoft/AI2BMD/tree/Geoformer.

1 Introduction

Transformer [46] has been a dominant architecture in modeling various data modalities such as
natural language, images, and videos. As such, it is natural to generalize Transformers in molecule
modeling. Molecules are represented as either 2D topology structures or 3D geometric structures.
Prevailing algorithms for modeling 2D topology [52, 36, 20] employ Transformers with global
attention, which treat the molecular structures as fully connected graphs and devise a diverse range
of positional encoding schemes. In contrast to topological graphs, geometric structures offer more
comprehensive description of molecules by providing the information of 3D coordinates. There
have been some recent attempts [28, 36, 55, 19, 29, 30, 50, 22, 8], to integrate specific geometric
features into Transformers. For example, Transformer-M [28] considers pairwise distances as a
learnable bias added to the attention weights as a supplement to the 2D topology encoding used in
Graphormer [52]. Nevertheless, they are insufficient to comprehensively encompass the intricacies of
the entire 3D molecular space, as they solely rely on distance information for positional encoding. In
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contrast, modern GNNs emphasize the significance of equivariance as a crucial bias, and explore
various methods to encode geometric information, including distances, angles, and dihedral angles
[13, 12, 39, 26, 49, 47]. Several works [3, 31, 2] further utilize high-order geometric tensors to yield
internal features in models, ensuring equivariance with respect to the E(3)/SE(3) group. As a result,
the performance of EGNNs in molecular property prediction significantly surpasses that of methods
based on Transformers.

The success of EGNNs underscores the advantage of integrating directional geometric information
into neural networks for molecular modeling [12, 26, 47, 48], while employing such information in
the Transformer-based architecture has yet to be developed. Intuitively, all geometric information is
embedded in atomic coordinates, which can be naturally utilized as a bias for developing an effective
positional encoding in Transformers. Based on atomic coordinates, atomic cluster expansion (ACE)
theory [10, 21] is a complete descriptor to represent the environment of centered atoms . In this
study, we first design interatomic positional encoding (IPE) by introducing cluster merging based
on ACE theory. By incorporating IPE into traditional Transformers, we extend the capabilities of
the Transformer, in terms of Geoformer, to effectively model molecular structures for molecular
property prediction. We conduct a comprehensive evaluation of Geoformer using several benchmarks,
which includes QM9 dataset [35] comprising 12 molecular properties and the recently proposed
Molecule3D dataset [51], containing 3,899,647 molecules sourced from PubChemQC[32]. Our
results demonstrate that Geoformer surpasses state-of-the-art algorithms on the majority of properties
on QM9 dataset, and achieves the lowest mean absolute errors on Molecule3D for both random and
scaffold splits. We also provide visualizations of the learned IPE, which shows that IPE can capture
different positional information compared with PE that only encodes pairwise distances.

Our contributions can be summarized as follows:

• We introduce a novel positional encoding method, i.e., Interatomic Positional Encoding
(IPE) to parameterize atomic environments in Transformer.

• By incorporating IPE, we propose a Geometric Transformer, in terms of Geoformer, which
models valuable geometric information beyond pairwise distances for Transformer-based
architecture.

• The proposed Geoformer achieves superior performance on molecular property predictions
compared with Transformers and EGNNs.

2 Preliminary

The Atomic Cluster Expansion (ACE) [10] is a complete descriptor of the local atomic chemical
environments, represented by hierarchical many-body expansion. The key components of ACE are:
a) ACE defines a complete set of basis functions for the environment of the centered atom (radial
basis functions and spherical harmonics in practice); b) ACE significantly reduces the computational
efforts for body order computing to linear time complexity scaling with the number of atoms within
molecule. These advantages serve ACE as an accurate, fast, and transferable theory framework for
molecular modeling. In order to facilitate readers’ comprehension of our interatomic positional
encoding, we would present the core operations of ACE in several equations.

ACE includes a set of orthogonal basis functions ��(r̂ij) to describe the spatial relations between
two atoms. r̂ij denotes the relative position pointing from atom i to atom j, and � indicates the
functions’ polynomial degree. ACE focuses on modeling the potential energy of a system by focusing
on a collection of atoms, specifically atomic clusters. In this method, the centered atom, denoted
as i, is surrounded by K neighboring atoms, which form the atomic cluster. The potential energy
of the atomic cluster depends on the hierarchical interactions between the central atom i and its K
neighboring atoms, known as many-body expansion. The expansion of atomic potential energy could
be written by:

Ei =
X

j1

X

v1

cv1�v1(r̂ij1) +
X

j1j2

X

v1v2

cv1v2�v1(r̂ij1)�v2(r̂ij2) + · · · (1)

with an unrestricted summation. cv indicates the expansion coefficients. However, the sum of
surrounding neighbors within the cluster would scale to O(NK) with K neighbors and become
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Figure 1: Illustration of Interatomic Positional Encoding (IPE) C⌘ . Panel a depicts the extended
Self-Attention with C⌘ . C⌘ contributes to the construction of attention weights while simultaneously
being updated by atomic features; Panel b highlights the relationship between C⌘ , cluster �i, cluster
�j , and the merged cluster �ij , as described in Theorem 1 and 2, Equation 6 to Equation 11.

numerically expensive. N denotes the number of atoms within one molecule. ACE leverages the
density trick to reduce the computational overhead. It defines atomic base Ai,� and A-basis Ai,v as:

Ai,� =
X

j2N(i)

��(r̂ij) (2)

Ai,v =
✏Y

t=1

Ai,�t , v = (�1, . . . , �✏) (3)

where ✏ denotes the order of body expansion, i.e., (✏+ 1)-body expansion, and v stands for the set
of v. By firstly summing the neighboring basis functions and then applying multiplication, ACE
can efficiently represent the atomic expansion scaling with the complexity O(N). Since Ai,v is
not rotationally invariant, we need additional Clebsch-Gordan coefficients C� to construct fully
permutation and isometry-invariant basis functions (B-basis), and describe the potential of cluster �i

in Equation 1 as their linear combination with c-coefficients [21]:

Bi,v =
X

v0

Cvv0Ai,v0 (4)

Ei =
X

✏

ci,vBi,v = ci ·Bi (5)

3 Methods

In this section, we would introduce our Interatomic Positional Encoding (IPE) based on ACE theory
in Section 3.1, and discuss how we integrate IPE into the Transformer architecture in Section 3.2.

3.1 Positional Encoding for Geometric Molecule Modeling

In the context of geometric molecule modeling, the positions of atoms are the most intuitive positional
information to encode in Transformers (termed as “positional encoding"). While most recent works
have adopted pairwise distances between atoms as the relative PE, such a representation is often
inadequate for capturing the complex interactions within molecules. As a result, it is essential to
use a more comprehensive and appropriate PE for geometric data. Motivated by ACE, we propose
an Interatomic Positional Encoding (IPE) to efficiently describe the many-body contributions in
Transformers for geometric molecule modeling. The distinction from ACE is that IPE further takes
the interactions between atomic clusters into account. More details on the IPE method and its
integration into the Transformer architecture will be provided in the subsequent sections.
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Theorem 1 Given two cluster �i and �j and their basis functions, there exists a set of invariant

basis functions for the merged cluster �ij to describe integrated cluster potentials Ẽij .

Proof. A merged cluster �ij can be represented as translating two clusters �i and �j such that their
centered-atoms, i.e., atoms i and j, overlap as shown in Fig. 1(b). All their neighbors are merged into
a new cluster �ij , and the newly formed atomic base can be expressed as:

Ãij,� = (Ai,� Aj,�)⌦ (Ai,� Aj,�)
>

=

✓
Ai,�Ai,� Ai,�Aj,�

Aj,�Ai,� Aj,�Aj,�

◆

=

 P
m1m2

��(r̂im1)��(r̂im2)
P

mn ��(r̂im)��(r̂jn)
P

mn ��(r̂jn)��(r̂im)
P

n1n2
��(r̂jn1)��(r̂jn2)

! (6)

with the product explicitly writing out. m,n are the neighbor atom symbols of atoms i, j, respectively.
⌦ is the tensor product. We write the atomic base Ai,�Aj,� as Aij,� (due to the permutational
invariance, we have Aij,� = Aji,�) which still follows the density trick. Therefore, we could
construct a new A-basis for merged cluster �ij when taking product of Ãij,�:

Ãij,v = Ãij,�1 � Ãij,�2 � · · ·� Ãij,�⌘

= (Ai,v Aj,v)⌦ (Ai,v Aj,v)
>

=

 Q2⌘
t=1 Ai,�t

Q⌘
t=1 Aij,�tQ⌘

t=1 Aji,�t

Q2⌘
t=1 Aj,�t

!

=

✓
Ai(i),v Aij,v

Aji,v Aj(j),v

◆

(7)

where 2⌘ = ✏ and ⌘ = 1, 2, . . . . Ãij,v could describe (✏ + 1)-body and (✏ + 2)-body expansion
simultaneously in O(N). To be concrete, Ai(i),v contributes the (✏+1)-body expansion, while Aij,v

contributes the (✏ + 2)-body expansion due to cluster merging. For instance, when taking ⌘ = 1,
Ai,v and Ai(i),v denote 2-body (im) and 3-body expansion (im1m2) in original cluster �i, and Aij,v

denotes the 4-body expansion (mijn) in merged cluster �ij , respectively. Further explanation can be
found in the following Remark. Ãij,v exists when ✏ � 2, which implies considering at least 4-body
expansion within molecules. Then we could construct the corresponding matrix of B-basis B̃ij,v

following Equation 4 and represent the potential of cluster �ij as:

Ẽij =
X

⌘

cij,�B̃ij,v (8)

Remark. A straightforward illustration can be drawn by setting � = 1 (Cartesian space) and ⌘ = 1.
In this case, basis Bi(i) could be interpreted as the sum of cosine value of the surrounding angles

within cluster �i [39, 43], i.e.,
P

m1m2
cos ✓im1m2 , which represents the 3-body contributions in

O(N). Similarly, basis Bij could be treated as the sum of proper dihedral angles between two
clusters �i and �j [49], i.e.,

P
mn cos'mijn, which represents 4-body contributions in O(N). The

basis Bij indeed serves as the contribution for torsion potential between two clusters in the original
ACE, which primarily considers the contributions within a single cluster. The detailed proof could
be found in Appendix B. As a result, incorporating Aij effectively enhances the representation of
interatomic relations by capturing the interactions between clusters, thereby offering a possible way
for designing a geometric Transformer architecture.

Theorem 2 (Interactomic Positional Encoding (IPE)) Given one molecule with N atoms, there

exists a positional encoding matrix C⌘ 2 RN⇥N
, which naturally describes the interatomic potentials.

⌘ denotes the orders of body expansion in Equation 7. In particular, C⌘ is directly multiplied with

Query and Key before scaling. e.g., softmax, serving as the positional encoding in Transformer:

↵ = (XWQ)(XWK)> � C⌘ (9)

where X 2 RN⇥F
denotes the atomic features and W 2 RF⇥F

denotes the learnable matrix. F is

the hidden dimension. Q,K represent Query and Key, respectively. � is the Hadamard product.
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Figure 2: Geoformer Architecture. Geoformer consists of (c) an Embedding layer; (b) an elaborate
Encoder incorporating L attention blocks with IPE C⌘ to extract geometric features and capture
complex interatomic relationships within the molecular structure. The extended Self-Attention
module with C⌘ is depicted in Fig. 1; (d) a lightweight Decoder for predicting molecular properties
of interest, such as energy and HOMO-LUMO gap.

Proof. As mentioned in Section 2 and Theorem 1, the basis functions Ai,v in Equation 3 could
represent the local chemical environment of cluster �i with density trick. Inspired by this, we first
construct the Av⌧ = [A1,v⌧ ,A2,v⌧ , . . . ,AN,v⌧ ]

> with integer ⌧ = [1, ⌘] and Ai,v⌧ =
Q⌧

t=1 Ai,vt .
We then treat Av⌧ as the absolute positional encoding attached to the Query and Key, and attention
matrix ↵ before scaling, e.g., softmax, could be modified as follows:

↵⌧ = (XWQ �Av⌧ )(XWK �Av⌧ )
>

= (XWQ)(XWK)> � (Av⌧A
>
v⌧

)

= (XWQ)(XWK)> �

X
v⌧

Ãv⌧

(10)

where � is the entry-wise Kronecker Product. The detailed proof could be found in Appendix B.
Instructed by [10, 21], we add Clebsch-Gordan coefficients Cv⌧ to ensure the rotationally invariance,
and therefore obtain B̃v⌧ =

P
v0
⌧
Cvv0

⌧
Ãv0

⌧
. Then we can write the linear expansion:

↵ = (XWQ)(XWK)> �

⇣X⌘

⌧=1
WB̃B̃v⌧

⌘
(11)

where WB̃ is a learnable weight matrix denoting c-coefficients, which is similar to the message
construction in MACE [2]. Such operation could be done by a tensor broadcast. Eventually, our
interatomic positional encoding C⌘ could be represented as:

C⌘ =
X⌘

⌧=1
WB̃B̃v⌧ (12)

We can further modify the Equation 11 as Equation 9 and complete the proof.

3.2 Geoformer: Geometric Transformer for Molecules

Overall Design. The comprehensive structure of Geoformer is depicted in Figure 2. This design
comprises an Embedding layer, an elaborate Encoder for extracting geometric features, and a
lightweight Decoder for predicting molecular properties. Within the Geoformer’s Encoder, L attention
blocks are integrated, each having hidden dimension F and employing the proposed interatomic
positional encoding C⌘ . Notably, C⌘ is updated by the atomic features X 2 RN⇥F within each block.
Geoformer takes the atom type Z 2 RN and atomic coordinates R 2 RN⇥3 from one molecule with
N atoms as inputs, and produces the corresponding molecular properties as outputs.
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Embedding Layer. The Embedding layer maps the atom type Z to X
0
2 RN⇥F :

X
0 = LayerNorm (embed(Z)) (13)

and initialize the IPE C0
⌘ 2 RN⇥N⇥F with 2-body expansion, i.e., radial basis functions (RBF) [45]:

gk(R̂) = �(kR̂k) · exp

✓
��k

⇣
exp

⇣
�kR̂k

⌘
� µk

⌘2◆
(14)

C0
⌘ = g(R̂)WRBF (15)

where R̂ 2 RN⇥N⇥3 denotes the relative position between two atoms, k ·k is the vector norm, �k, µk

are optional learnable parameters that specify center and width of gk(R̂), and �(·) is a smooth cosine
cutoff function. g(R̂) = [g1(R̂), . . . , gK(R̂)]> 2 RN⇥N⇥K is composed of the values of K radial
basis functions. WRBF 2 RK⇥F is a learnable matrix mapping basis functions to the hidden size.

Attention block with IPE. The extended attention block is illustrated in Fig. 1(a). In contrast to the
traditional Transformer, a learnable IPE matrix C⌘ is introduced to each attention block. Following
TorchMD-NET [43], the softmax function is substituted with the SiLU activation to enhance accuracy,
and the attention weight is scaled by a smooth cutoff:

A(X l) = SiLU
⇣X

F

��
(X l

W
l
Q) ⇤ (X

l
W

l
K)>

�
�Cl

⌘

�⌘
· �(kR̂k) (16)

where ⇤ denotes the batched tensor product, i.e., (X l
W

l
Q) ⇤ (X

l
W

l
K)> 2 RN⇥N⇥F . l indicates l-th

attention block. In Fig. 1, the mask operation corresponds to the implementation of an alternative
attention mask. It effectively filters out atoms with excessive distance, concentrates attention and
improves the performance of the attention mechanism [5]. Then we produce the weighted values per
atoms after self-attention to update Cl

⌘:

AttnV (X
l) = A(X l)�X

l
W

l
V (17)

Then under the instruction of Equation 7, we construct the A-basis for all merged cluster:

Al
v⌧

=
⌧Y

t=1

X

j

AttnV (X
l)W l

AttnYl⇤,m(R̂/kR̂k) (18)

Ãl
v⌧

= (Al
v⌧

W
l
Ã(1)

vt

)⌦ (Al
v⌧

W
l
Ã(2)

vt

)> (19)

where W
l
Attn is a learnable matrix, Yl⇤,m⇤(R̂/kR̂k) denotes the spherical harmonics with order l⇤

and degree m
⇤. W l

Ã(1)
vt

and W
l
Ã(2)

vt

are two learnable matrix without bias to ensure equivariance [39].
We could further construct a new form of residual IPE within each block following Equation 8 and
11:

�Cl
⌘ =

X⌘

⌧=1
W

l
B̃

X
v0
⌧

Cvv0
⌧
Ãv0

⌧
(20)

where W
l
B̃

is a learnable matrix. Finally we apply the residual connection to compute IPE for the
next block:

Cl+1
⌘ = SiLU

�
Cl

⌘W
l
C

�
� �Cl

⌘ +Cl
⌘ (21)

where W
l
C is a learnable matrix and SiLU(Cl

⌘W
l
C) plays a role of gated filter. The update of atomic

features still follows the traditional procedures:

Attn(X l) =
X

j
AttnV (X

l) +X
l (22)

FFN(X l) = SiLU(X l
W

l
1)W

l
2 +X

l (23)
where

P
j denotes the sum of atomic values weighted by the attention score. W l

1 and W
l
2 are two

learnable matrix in feed-forward layer. The output of each step is fed into a Layer Normalization
(LayerNorm). It is important to emphasize that while the theoretical derivations of the Geoformer
architecture above may appear complex, in practice, the model utilizes simplified settings to reduce
computational complexity. Specifically, we employ ⌘ = 1 for body expansion and l

⇤ = 1 for spherical
harmonics. It streamlines the complex tensor contraction and Clebsch-Gordan product calculations,
making the model more efficient and easier to implement. Despite this, Geoformer achieves or
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surpasses state-of-the-art prediction results on several benchmark datasets, as demonstrated in the
subsequent section.

Decoder. The Geoformer utilizes a lightweight Decoder, as depicted in Fig. 2(d). It consists of a two
linear layers with SiLU activation and an aggregation module

P
to predict the specific molecular

property. The lightweight Decoder ensures that the Geoformer remains computationally efficient
while maintaining its ability to accurately predict molecular properties based on the geometric features
captured by the Encoder. More details on Decoder for specific properties are shown in Appendix G.

4 Experiments

4.1 Experimental Setup

Geoformer is evaluated on both QM9 dataset [35] that consists of 12 molecular properties and a
large-scale Molecule3D dataset [51] derived from PubChemQC [32] with ground-state structures
and the corresponding properties calculated at DFT level. All results are measured by mean absolute
error (MAE) on test sets and baseline results are directly taken from the corresponding papers. All
models are trained using the AdamW optimizer, and we use the learning rate decay if the validation
loss stops decreasing. We also adopt the early stopping strategy to prevent over-fitting. The optimal
hyperparameters such as learning rate and batch size are selected on validation sets. More detailed
hyperparameters setting for Geoformer are provided in Appendix Table 4.

4.2 QM9

Table 1: Mean absolute errors (MAE) of 12 kinds of molecular properties on QM9 compared with
state-of-the-art algorithms. The best one in each category is highlighted in bold.

Target µ ↵ ✏HOMO ✏LUMO �✏ hR
2
i ZPV E U0 U H G Cv

Unit mD ma
3
0 meV meV meV ma

2
0 meV meV meV meV meV

mcal
mol K

NMP [14] 30 92 43 38 69 180 1.50 20 20 17 19 40
SchNet [38] 33 235 41 34 63 73 1.70 14 19 14 14 33
Cormorant [1] 38 85 34 38 61 961 2.03 22 21 21 20 26
LieConv [11] 32 84 30 25 49 800 2.28 19 19 24 22 38
DimeNet++ [13] 30 44 25 20 33 331 1.21 6.32 6.28 6.53 7.56 23
EGNN [37] 29 71 29 25 48 106 1.55 11 12 12 12 31
PaiNN [39] 12 45 28 20 46 66 1.28 5.85 5.83 5.98 7.35 24
TorchMD-NET [42] 11 59 20 18 36 33 1.84 6.15 6.38 6.16 7.62 26
GNS + NoisyNode [15] 25 52 20 19 29 700 1.16 7.30 7.57 7.43 8.30 25
SphereNet [25] 25 45 23 19 31 268 1.12 6.26 6.36 6.33 7.78 22
SEGNN [4] 23 60 24 21 42 660 1.62 15 13 16 15 31
EQGAT [23] 11 53 20 16 32 382 2.00 25 25 24 23 24
PaxNet [54] 11 45 23 19 31 249 1.17 5.90 5.92 6.04 7.14 23
ComENet [47] 25 45 23 20 32 259 1.20 6.59 6.82 6.86 7.98 24
Equiformer [24] 11 46 15 14 30 251 1.26 6.59 6.74 6.63 7.63 23
AMP [44] 12 67 26 23 45 93 4.10 11.3 11.4 11.3 12.4 32

Molformer [50] 28 41 25 26 39 350 2.05 7.52 7.46 7.38 8.11 25
GeoT [22] 29.7 52.7 25.0 20.2 43.9 300.8 1.73 11.1 11.7 11.3 11.7 27.6
Geometric Transformer [8] 26.4 51 27.5 20.4 36.1 157 1.24 7.35 7.55 7.73 8.21 28.0
Transformer-M [28] 37 41 17.5 16.2 27.4 75 1.18 9.37 9.41 9.39 9.63 22
Geoformer 10 40 18.4 15.4 33.8 27.5 1.28 4.43 4.41 4.39 6.13 22

QM9 dataset consists of 130,831 small organic molecules with up to 9 heavy atoms. Each molecule
is associated with 12 targets covering its energetic, electronic, and thermodynamic properties. We
randomly split them in to 110,000 samples for training, 10,000 samples for validation and the remains
for testing following the prior work [43]. The evaluation results on QM9 are shown in Table 1
with the upper section displaying EGNNs and the lower showcasing Transformer-based methods.
When compared with other SoTA methods, Geoformer achieves the state-of-the-art results on 8
kinds of properties and shows comparable results on the remaining properties, which underscores
that our IPE can help Transformers learn useful positional information to better model molecular
structures. Specifically, we conduct a comparison between Geoformer and the previously best-
performing Transformer-based model, Transformer-M, which incorporates pairwise distances as
PE. As Transformer-M has been pretrained on the large-scale PCQM4Mv2 dataset [17], targeting
the prediction of HOMO-LUMO gaps, it exhibits comparable performance in terms of related
properties. Nevertheless, a noticeable performance disparity persists when evaluating other properties
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in comparison to the EGNNs. By integrating more directional information beyond distances into
Geoformer, it significantly surpasses Transformer-M in 9 kinds of properties without pretraining.

4.3 Molecule3D

Table 2: Mean absolute errors (MAE) of HOMO-
LUMO gap (eV) on Molecule3D test set for both
random and scaffold splits compared with state-of-
the-art algorithms.

Model Random Scaffold

GIN-Virtual [18] 0.1036 0.2371
SchNet [38] 0.0428 0.1511
DimeNet++ [13] 0.0306 0.1214
SphereNet [25] 0.0301 0.1182
ComENet [47] 0.0326 0.1273

Geoformer 0.0202 0.1135

The Molecule3D dataset consists of 3,899,647
molecules, each with the corresponding ground-
state structures and quantum properties calcu-
lated by Density Functional Theory (DFT). The
dataset is split into train, validation, and test
set with the ratio of 6:2:2. The official GitHub
repository of Molecule3D provides both random
and scaffold splits, which are both employed in
our experiments. The random split ensures that
the training, validation, and test sets are sampled
from the same distribution, while the scaffold
split introduces a distribution shift among dif-
ferent subsets. We focus our analysis on the
prediction of the HOMO-LUMO gap, in com-
parison with ComENet [47]. Table 2 displays
the results of our experiments on Molecule3D,
indicating that Geoformer achieved a reduction of 32.56% and 3.98% in test MAE on the random
and scaffold splits, respectively. These results highlight the superiority of our approach compared to
invariant GNNs on a large-scale dataset.

4.4 Analysis on Interatomic Positional Encoding

The exceptional performance demonstrated by our Geoformer serves as an evidence that Interatomic
Positional Encoding (IPE) can effectively guide Transformers in modeling the geometry of molecular
systems. In order to analyze the distinctions between our learned IPE and other PEs that solely utilize
pairwise distances, we visualize the positional encoding for different molecules by IPE and other PEs,
respectively. As shown in Fig. 3, IPE exhibits different positional encoding information compared
with PEs that solely utilize pairwise distances. Specifically, for some positions that exhibit strong
signals shown in the PEs only with distances, IPE further enhances such signals and shows significant
distinction from background signals.

4.5 Ablation Study

Table 3: Ablation study on four properties U0, U , H and G in QM9
test set for model variants. The best one in each property is highlighted
in bold.

Property Non-updated IPE Addition Geoformer

U0 5.63 7.62 4.43
U 5.87 7.66 4.41
H 6.21 7.93 4.39
G 7.24 9.01 6.13

To verify the effectiveness
of our IPE, we conduct com-
prehensive ablation studies
with model variants on four
properties U0, U , H and
G in QM9. First, we re-
move the residual connec-
tion for IPE, which leads
to a Transformer that exclu-
sively encodes pairs of dis-
tances using the initial non-
updated IPE (Non-updated
IPE). More specifically, the RBF feature is constructed as Equation 14, where g(R̂) =
[g1(R̂), . . . , gK(R̂)]> 2 RN⇥N⇥K is composed of the values of K radial basis functions and
the PE undergoes a transformation in the l-th layer through a distinct linear layer that is not shared
across layers with the form:

Cl
⌘ = g(R̂)W l

RBF (24)
The remaining operations are consistent with those found in the original Geoformer implementation.
This should be highly similar to the previous Transformer, albeit with a slightly different pairwise
distance encoding approach.
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Figure 3: Visualization of IPE C⌘ on molecules GDB65488, GDB101712, GDB87153 and
GDB56373 in QM9 test set. Other PEs (first row) only encode pairwise distances by RBF, and the
learned IPE C⌘ (second row) encodes different positional information beyond pairwise distance. In
some atomic positions, IPE effectively emphasizes the atomic relationships, providing a more com-
prehensive representation of the underlying geometry within the molecular structure. This enhanced
encoding of geometric information enables the Transformer-based model to capture the intricate
interactions between atoms and better predict molecular properties.

Second, we discover that the way of incorporating IPE into the attention weights is crucial. In our
derivation (Eq. 10), multiplication emerges as a natural approach, whereas the addition of PEs as
attention bias prevails in the previous Transformer. To verify the effectiveness of our design, we
also introduce our IPEs into the Transformer in an additive manner (Addition), which we replace
multiplication to addition as follows:

A(X l) = SiLU
⇣X

F

��
(X l

W
l
Q) ⇤ (X

l
W

l
K)>

�
+Cl

⌘

�⌘
· �(kR̂k) (25)

where Cl
⌘ updated in the same way as the original Geoformer, only � has been replaced with +. As

show in Table 3, the performance of Geoformer without the updated IPE is worse than the original
version, which shows that the additional directional information is important.

The performance also drops when using the addition of PEs as the attention bias, which demonstrates
the multiplication is a proper way to incorporate IPE into Transformers. Furthermore, the results
for both variants outperform Transformer-M, which uses pairwise distance information as the atten-
tion bias. This observation further highlights the significance of these components to the overall
performance gains.

5 Related Work

5.1 Positional Encoding in Transformers

The Transformer architecture contains a series of Transformer blocks as well as a positional encoding
(PE) to model the sequence data. Since the self-attention modules in Transformer blocks are
invariant to the sequence orders, the positional encoding plays an essential role in injecting positional
information from sequences into the Transformer. Recent PEs can be categorized into absolute PE and
relative PE. The original Transformer model incorporates absolute PE by directly adding the positional
encoding to the tokens [46]. Although absolute PE has been demonstrated to approximate any
continuous sequence-to-sequence functions [53], it tends to exhibit inferior generalization capabilities
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in comparison to relative PE, particularly when dealing with longer sequences[33]. The relative PE
further considers the pairwise relationship between two tokens. Shaw [41], T5 [34], DeBERTa [16],
and Transformer-XL [9] have developed various relative PE approaches for parameterizing relative
positions. The success of relative PE in natural language processing has inspired its applications in
other domains. For instance, the Swin Transformer [27] employs relative PE to model relationships
between image patches, while Graphormer[52] utilizes both absolute PE (centrality encoding) and
relative PE (spatial encoding and edge encoding) to model the graph topology. Recently, Transformer-
M [28] and Uni-Mol [55] have incorporated pairwise distances as relative positional encoding
to capture positional information within 3D space. TorchMD-Net [43] included the radial basis
functions (RBF) as distance filter to the attention matrix. MUformer [19] further extended the distance
filter by incorporating additional 2D structural information, resulting in improved performance and
applicability to molecule 2D-3D co-generation. Several works have further explored the integration of
different types of positional encoding in Transformers. GPS [36] offers an comprehensive overview
of the available PE methods employed in graph Transformers. The MAT [29] and R-MAT [30]
approaches methodologically introduce inter-atomic distances and chemical bond information as
domain-specific inductive biases in Transformer architecture. Molformer [50] employs Adaptive PE
to model molecules of varying sizes; GeoT [22] forgoes softmax in favor of distance matrices as a
scaling factor, and the application of multiplication for PE has been previously tried in the Geometric
Transformer [8]. In this study, our objective is to develop a relative PE for modeling molecular
geometry. Drawing upon the atomic cluster expansion theory, which will be discussed in Section 2,
we derive a rotation-invariant relative PE that incorporates additional positional information beyond
pairwise distances.

5.2 Geometric Deep Learning for Molecules

Geometric deep learning (GDL) has emerged as a promising approach to modeling molecular
geometry and predicting the properties of molecules, playing an important role in fields such as drug
discovery, materials science, and computational chemistry. By leveraging the inherent geometric
structures and incorporating symmetry in architecture design, GDL approaches offer an effective and
efficient representation for molecules. Invariant and equivariant graph neural networks (EGNNs)
are representative methods in GDL. SchNet [38], DimeNet++ [13], GemNet [12], SphereNet [25],
ComENet [47] gradually explicitly incorporate more geometric information including distances,
angles and dihedrals. Some works like PaiNN [39], TorchMD-Net [43], ViSNet [49] adopt vector
embedding and implicitly extract the above geometric information with lower consumption. Another
mainstream approach such as NequIP [3], MACE [2], Allegro [31] and Equiformer [24] guarantee
equivariance through group representation theory, which can achieve higher accuracy leveraging
high-order geometric tensors.

6 Discussion

In this paper, we propose a novel Transformer architecture in the field of molecular modeling.
This innovative approach, incorporating the novel Interatomic Positional Encoding (IPE), effectively
captures complex geometric information and interatomic relations beyond pairwise distances embeded
in the molecular structures. The extensive results on QM9 and Molecule3D dataset elucidate the
capability of Geoformer compared with Transformers and EGNNs. Further research can explore its
applicability to a broader range of systems such as materials and polymers. Moreover, the concept
Interatomic Positional Encoding may inspire the development of more advanced encoding schemes
in Transformers.

Limitation and Societal Impacts: Like other Transformer-based architectures, Geoformer suffers
from common training instabilities, necessitating the use of a relatively small learning rate during the
training process. Effective molecular geometry modeling, as provided by the Geoformer, significantly
benefits the materials science and pharmaceutical industries. However, it is essential to acknowledge
that the same technology could be misused for illicit activities, such as the manufacturing of illegal
drugs or the development of biochemical weapons.
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