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ABSTRACT

Deep anomaly detection (AD) aims to provide robust and efficient classifiers for
one-class and imbalanced outlier-exposure settings. However current models still
struggle on edge-case normal samples and are often unable to keep high perfor-
mance over different scales of anomalies. Additionally, there is a lack of a unified
framework that efficiently addresses both OC and OE settings. To address these
limitations, we present a novel two-stage method which leverages multi-scale nor-
mal prototypes during training to compute an anomaly deviation score. First, we
employ a novel memory-augmented contrastive learning (CL) to jointly learn rep-
resentations and memory modules across multiple scales. This allows us to effec-
tively capture subtle features of normal data while adapting to varying levels of
anomaly complexity. Then, we train an efficient anomaly distance-based detector
that computes spatial deviation maps between the learned prototypes and incom-
ing observations. Our model outperforms the SoTA on a wide range of anomalies,
including object, style, and local anomalies, as well as face presentation attacks,
while being on par with SoTa out-of-distribution detectors. Notably, it stands as the
first model capable of maintaining exceptional performance across both settings.

1 INTRODUCTION
Detecting deviations from a well-defined normal baseline is a central challenge in modern machine
learning. Anomaly detection (AD) differs significantly from conventional binary classification, due
to the intricate, incomplete, and ill-defined nature of anomalies. This has led to the emergence of
deep AD methods that provide greater stability with imbalanced training dataset. However, existing
AD models still have some limitations. (1) There is a hard trade-off between remembering edge-case
normal samples and remaining generalizable enough toward anomalies. This lack of normal sample
memorization often leads to high false reject rates on harder samples. (2) These models tend to focus
on either local low-scale anomalies or global object-oriented anomalies but fail to combine both.
Current models often remain highly dataset-dependent and do not explicitly use multi-scaling. (3)
AD lacks an efficient unified framework which could easily tackle OC and imbalanced OE detection.
Indeed, existing methods are either introduced as OC or OE detectors, with different specialized
approaches and set of hyper-parameters (as can be seen in Fig. 1), a noteworthy limitation persists.
Current methods are confined to their original design setting, necessitating a complete overhaul of
the algorithm when transitioning from scenarios lacking anomaly samples to those enriched with
them. This impracticality becomes evident in real-world applications where initially only normal
samples are available, and the acquisition of anomaly samples occurs later.
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Figure 1: AnoMem vs. SoTA on CIFAR-
100 with different anomaly ratio 𝛾 .

To address these limitations, we introduce a novel two-
stage AD model named AnoMem which memorizes
during training multi-scale normal class prototypes to
compute an anomaly deviation score at several scales.
Unlike previous memory bank equipped methods (Gong
et al., 2019; Park et al., 2020), our normal memory lay-
ers encompass multiple scales, enhancing both AD and
the quality of learned representations. Additionally, by
using the modern and backpropagable Hopfield layers
for memorization, our method is much more efficient
than nearest neighbor anomaly detectors (Bergman et al., 2020; Gui, 2021): those mentioned detec-
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tors require keeping the whole normal set, while ours can learn the most representative samples with
a fixed size. Through extensive experiments, we demonstrate that our method significantly outper-
forms all previous memory-equipped anomaly detectors. Our main contributions are the following:
• We propose to integrate memory modules into CL to remember normal class prototypes during

training. In the first stage, we jointly learn representations and memory modules using CL, allow-
ing for effective normal sample memorization. In the second stage, we learn to detect anomalies
using the memorized prototypes. When anomalous samples are available, we train a detector on
the spatial deviation maps between prototypes and observations. To our best knowledge, AnoMem
is the first working well in both OC and OE 1 settings with a few anomalies, making it a unifying
method. Our unified setting differs from existing ones. In semi-supervised AD, not all training
samples are annotated, while open-set supervised AD (Ding et al., 2022) focuses on detecting
unseen anomalies, which remains supervised with several anomaly types seen during training.

• AnoMem is further improved by using multi-scale normal prototypes for representation learn-
ing and AD. We introduce a novel way to efficiently memorize 2D features maps spatially. This
enables our model to accurately detect low-scale, texture-oriented anomalies and higher-scale,
object-oriented anomalies (multi-scale AD).

• We validate the efficiency of our method and compare it with SoTA methods on one-vs-all, out-of-
distribution (OOD) and face anti-spoofing detection. We improve detection with up to 50% error
relative improvement on object anomalies and 14% on face anti-spoofing.

2 RELATED WORK
Memory Modules. A memory module should achieve two main operations: (i) writing inside a
memory from a given set of samples, and (ii) recovering from a partial or corrupted input the most
similar sample in its memory with minimal error. Memory modules will differ on the amount of
images they can memorize given a model size and the average reconstruction error.
A simple memory module is the nearest neighbor queue. Given a maximum size 𝑀 , it stores
the last 𝑀 samples representations in the queue. To remember an incomplete input 𝒙, it re-
trieves the nearest neighbor from the queue. A more effective memory module is the modern
Hopfield layer (Ramsauer et al., 2021). It represents the memory as a learnable matrix of weights
𝑿 ∈ ℝ𝑑×𝑁Mem and retrieves samples by recursively applying the following formula until conver-
gence: 𝝃(𝑡+1) = sof tmax

(

𝛽𝝃(𝑡)𝑿
)

𝑿𝑇 , where 𝝃(0) is the query vector and 𝛽 is the inverse temperature.
Its form is similar to the attention mechanism in transformers, except it reapplies the self-attention
until convergence. This layer has a very high memory capacity and remember samples with very low
redundancy (Ramsauer et al., 2021). Subsequently, we call this layer a Hopfield layer of size 𝑁Mem.
Anomaly Detection. AD involves classifying data into two categories: normal and anomaly. While
the normal class is well-defined, the anomaly class encompasses all other variations, making it
broader and more complex. This leads to a natural data imbalance. In the literature, various methods
have been proposed, categorized into three families of approaches: pre-trained feature adaptation,
discriminative, and generative methods (as outlined in (Salehi et al., 2022)). This paper categorizes
existing methods based on the availability of anomalous samples, leading to two distinct categories:
one-class AD (OC-AD) which exclusively use normal samples for training, and outlier-exposure AD
(OE-AD) which incorporate a small set of anomalies during training to enhance adaptability.
There exist different OC-AD approaches. Pretext task methods learn to solve a different auxiliary
task on normal data (Hendrycks et al., 2019; Jezequel et al., 2022b; Bergman & Hoshen, 2020), and
the anomaly score reflects performance on this auxiliary task. Two-stage methods consist of rep-
resentation learning and anomaly score estimation. After training an encoder on normal data using
self-supervised learning (Cho et al., 2021; Tack et al., 2020; Chen et al., 2021; Zbontar et al., 2021) or
an encoder pre-trained on additional datasets (Xiao et al., 2021; Reiss & Hoshen, 2023; Reiss et al.,
2021), an OC classifier computes the anomaly score in the latent space (Sehwag et al., 2021; Li
et al., 2021; Sohn et al., 2021). Some methods (Bergman et al., 2020; Gui, 2021) use a nearest neigh-
bor queue for anomaly scoring. Density estimation methods estimates the normal distribution using
deep density estimators like normalizing-flows (Kumar et al., 2021), variational models (Daniel et al.,
2019) or diffusion models (Wyatt et al., 2022; Mirzaei et al., 2023). Reconstruction methods mea-
sure the reconstruction error of a bottleneck encoder-decoder, trained with denoising autoencoders

1We embrace the OC term, widely employed in OOD detection, which involves using external datasets as
pseudo OOD samples. Our OE-AD refers to training data that includes both inlier and outlier samples.
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(Perera et al., 2019; Schneider et al., 2022) or two-way GANs (Tuluptceva et al., 2019; Schlegl et al.,
2017; Liu et al., 2021). Some incorporate memory in the latent space of an auto-encoder (Gong
et al., 2019; Park et al., 2020) during training for optimal reconstruction. More recently, knowledge
distillation methods have been adapted to AD by using the representation discrepancy of anomalies
in the teacher-student model (Deng & Li, 2022; Cohen & Avidan, 2022).
OE-AD mainly revolves around two-stage methods and anomaly distance methods. We note how-
ever that some recent work has tried to generalize pretext task to OE-AD (Jezequel et al., 2022b). In
the OE-AD two-stage methods, a supervised classifier with the anomalous samples is trained in the
second stage instead of the aforementioned one-class estimator (Han et al., 2021). Distance meth-
ods directly use a distance to a centroid as the anomaly score and learn the model to maximize the
anomaly distance on anomalous samples and minimize it on normal samples (Ruff et al., 2020; Jeze-
quel et al., 2022a). To the best of our knowledge, no OE-AD methods in the literature use any kind
of memory mechanism for the anomaly score computation. For instance, MemSeg (Yang et al.,
2023) and PatchCore (Roth et al., 2022) use frozen pretrained encoder and memory is not learned.
Moreover, there is no anomaly distance learning (only a fixed 𝐿2 norm is used).
There is a closely related task of anomaly localization (AL), which goal is to produce an anomaly
heatmap. AL datasets range from defect localization (Bergmann et al., 2019) to surveillance video
abnormal event detection (Mahadevan et al., 2010). Specialized methods targeting localization (Yi
& Yoon, 2020; Li et al., 2021) have been introduced to efficiently solve this task.
Finally, the related task of out-of-distribution (OOD) detection aims to detect whether or not an
observation has been sampled from the same distribution as the training set (Yu et al., 2023; Lafon
et al., 2023; Djurisic et al., 2023). Compared to AD, the normal class of OOD will be highly multi-
modal since it can cover multiple semantic classes. Moreover, OOD will put more weight than in AD
on the acquisition process of data (e.g., capture sensor, lighting, background). As a consequence, it
is generally preferred for OOD detectors not to generalize too much on normal data, while it is the
opposite in AD. In this paper, we present a generic unified method that jointly performs well on
AD, OOD detection and face presentation attack detection.
Contrastive Learning (CL). CL is a self-supervised representation learning method. It operates on
the basis of two principles: (1) two different images should yield dissimilar representations, and (2)
two different views of the same image should yield similar representations. The views of an image
are characterized by a set of transformations  . There have been many methods enforcing these two
principles: SimCLR (Chen et al., 2020), Barlow-Twins (Zbontar et al., 2021) and VICReg (Bardes
et al., 2022) with a Siamese network, MoCo (He et al., 2020) with a negative sample bank, BYOL
(Grill et al., 2020) and SimSiam (Chen & He, 2021) with a teacher-student network or SwAV (Caron
et al., 2020) with contrastive clusters. While some contrastive methods such as SimCLR and MoCo
require negatives samples, other such as BYOL, SimSiam and SwAV do not.
In the simplest formulation, the pairs of representations to contrast are only considered from
two views of a batch augmented by transformations (𝑡, 𝑡′). In SimCLR, the following loss is
minimized:CO = 1

2𝐵
∑𝐵

𝑘=1 𝓁NTX(𝒛𝑘, 𝒛′𝑘) + 𝓁NTX(𝒛′𝑘, 𝒛𝑘) where 𝒛, 𝒛′ are the last features of the
two augmented batches and 𝓁NTX is the Normalized Temperature-scaled Cross Entropy Loss (NT-
Xent). In practice, minimizing CO will yield representations with the most angular spread variance,
while retaining angular invariance in regard to  . Memory mechanisms can also be used into CL as
in (Dwibedi et al., 2021; Koohpayegani et al., 2021). During training, the positive and negative pairs
are augmented with the samples nearest neighbors from a memory queue. This allows the model to
reach better performance for smaller batch sizes.
3 PROPOSED METHOD
Notation. Let  = {(𝒙𝑘, 𝑦𝑘)}𝑘 be a training dataset with normal samples (𝑦𝑘 = 1) and potentially
anomalies (𝑦𝑘 = 0). 𝑓 ∶ ℝ𝐻×𝑊 ×𝐶 → ℝ𝐷 is a backbone made of several stages 𝑓 (1),⋯ , 𝑓 (𝑆) where
the dimensions of the 𝑠th scale feature map are 𝐻 (𝑠) ×𝑊 (𝑠) ×𝐶 (𝑠). We note 𝒛(𝑠) = 𝑓 (𝑠)◦⋯◦𝑓 (1)(𝒙).
3.1 MEMORIZING NORMAL CLASS PROTOTYPES
We first present how memory modules can be used in CL to provide robust and representative normal
class prototypes, and then generalize the idea to several scales throughout the encoder.
Foremost, we choose to apply a CL type method rather than other unsupervised learning schemes,
as it produces better representations with very few labeled data (Cole et al., 2022). We also favor
self-supervised learning only on the normal data rather than using a pre-trained encoder on generic
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Figure 2: Overview of AnoMem’s training. (a) First representation learning stage where normal
prototypes are learned at multiple scales using Hopfield layers and CL (b) Second anomaly detection
stage where multi-scale anomaly distance models are learned from memory deviation maps. Learn-
able parts of the model are in dark gray.
datasets 2 (Xiao et al., 2021) which often performs poorly on data with a significant distribution
shift. In order to learn unsupervised representations and a set of normal prototypes, we could se-
quentially apply CL then perform k-means clusterisation and use the cluster centroids as the normal
prototypes. However, this approach has two main flaws. First, the representation learning step and
the construction of prototypes are completely separated. Indeed, it has been shown in several CL
methods (Dwibedi et al., 2021; Caron et al., 2020) that the inclusion of a few representative sam-
ples in the negative examples greatly improves the representation quality, and alleviate the need for
large batches. Moreover, the resulting k-means prototypes do not often cover atypical samples. This
means that harder normal samples will not be well encompassed by the normal prototypes, resulting
in high false rejection rate during AD. We compare our approach with k-means centroids in Sec. 4.3.
To address these flaws, we introduce a novel approach based on memory modules to jointly learn
an encoder and normal prototypes. Let 𝒛𝑘 and 𝒛′𝑘 respectively be the encoder features for the con-
trastive upper and lower branch. Instead of contrasting 𝒛𝑘 and 𝒛′𝑘, we apply beforehand a Hopfield
memory layer HF(⋅) to the first branch in the case of normal samples. We note that the memory layer
is only applied when the sample is normal, since we assumed that anomalous data is significantly
more variable and less defined than normal data. As such, we note

Mem(𝒛, 𝑦) = 𝑦 ⋅ HF(𝒛) + (1 − 𝑦) ⋅ 𝒛 (1)
With SimCLR loss, we introduce the following contrasted memory loss for representation learning:

COM(𝒛, 𝒛′, 𝑦) = 1
2𝐵

𝐵
∑

𝑘=1

[

𝓁NTX
(

Mem(𝒛𝑘, 𝑦𝑘), 𝒛′𝑘
)

+ 𝓁NTX
(

𝒛′𝑘,Mem(𝒛𝑘, 𝑦𝑘)
)] (2)

where 𝓁NTX(𝒛, 𝒛′) = − log exp(sim(𝒛,𝒛′)∕𝜏)
∑

𝒑 1[𝒑≠𝒛] exp(sim(𝒛,𝒑)∕𝜏) . 𝒑 covers any representation inside the multi-view
batch, 𝜏 is a temperature hyper-parameter and sim(⋅, ⋅) is the cosine similarity. In contrast with
existing two-stage AD methods, we explicitly introduce the anomalous and normal labels from the
very first step of representation learning. We note that the labels 𝑦𝑘 are only used to exclude anomalies
from the memory learning, making the representation learning both usable in OC and OE settings.
Variance loss as regularization. Our procedure can be prone to representation collapse during the
first epochs. Indeed, we observed that the dynamic between CL and the randomly initialized memory
layer can occasionally lead to a collapse of all prototypes to a single point during the first epochs.
To prevent this, we introduce an additional regularization loss which ensures the variance of the
retrieved memory samples does not reach zero:

V(𝒛, 𝑦) = − 1
∑

𝑘 𝑦𝑘

𝐵
∑

𝑘=1
𝑦𝑘
√

Var
[

Mem(𝒛𝑘, 𝑦𝑘)
] (3)

Multi-scale contrasted memory. To gather information from several scales, we apply our contrasted
2It is not fair to compare pre-trained methods to ours. AnoMem is trained from scratch with only 50K images

(of CIFAR) whereas those methods use an additional large-scale dataset like ImageNet-21K (14M images).
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memory loss not only to the flattened 1D output 𝒛 of our encoder but also to 𝑆 intermediate layer 3D
feature maps 𝒛(1),⋯ , 𝒛(𝑆).
We add after each scale representation 𝒛(𝑠) a memory layer HF(𝑠) to effectively capture multi-scale
normal prototypes. However, memorizing the full 3D map as a single flattened vector would not
be ideal. Indeed, at lower scales we are interested in memorizing local patterns regardless of their
position. Moreover, the memory would span across a space of very high dimensions. Therefore, 3D
intermediate maps are viewed as a collection of 𝐻 (𝑠)𝑊 (𝑠) 1D feature vectors 𝒛(𝑠)𝑖,𝑗 rather than a single
flattened 1D vector. This is equivalent to remembering the image as patches. Since earlier features
map will have a high resolution, the computational cost and memory usage of such approach can
quickly explode. Thus, we only apply our contrasted memory loss on a random sample with ratio
𝑟(𝑠) of the available vectors on the 𝑠th scale. Our multi-scale contrasted memory loss becomes

COM-MS = 1
∑

𝑠 |Ω(𝑠)
|

𝑆
∑

𝑠=1

∑

(𝑖,𝑗)∈Ω(𝑠)

𝜆(𝑠)
[

COM
(

𝒛(𝑠)𝑖,𝑗 , 𝒛
′(𝑠)
𝑖,𝑗 , 𝑦

)

+ 𝜆𝑉 V(𝒛
(𝑠)
𝑖,𝑗 , 𝑦)

]

(4)

where 𝜆𝑉 controls the impact of the variance loss, 𝜆(𝑠) controls the importance of the 𝑠th scale, and
Ω(𝑠) is a random sample without replacement of ⌊𝐻 (𝑠) 𝑊 (𝑠) 𝑟(𝑠)⌋ points from J1,𝐻 (𝑠)K × J1,𝑊 (𝑠)K.
We choose to put more confidence on the latest stages which are more semantically meaningful than
earlier scales, meaning that 𝜆(1) < ⋯ < 𝜆(𝑆).
We simultaneously minimize this loss on all the encoder stages and the 𝑆 memory layers’ weights.
An overview of this first stage is given in Fig. 2a, and its algorithm is presented in Alg. 1. Compared
to previous memory bank equipped anomaly and OOD detectors (Gong et al., 2019; Park et al., 2020;
Bergman et al., 2020; Gui, 2021; Zhang et al., 2023), our model is the first to memorize the normal
class at several scales, allowing it to be more robust to anomaly sizes. Moreover, the use of normal
memory does not only improve AD but also the quality of the learned representations, as will be
discussed in Sec. 4.3.
3.2 MULTI-SCALE NORMAL PROTOTYPE DEVIATION
In this second step of training, our goal is to compute an anomaly score given the pre-trained encoder
𝑓 and the multi-scale normal memory layers HF(1),⋯ ,HF(𝑆). For each scale 𝑠, we consider the
difference 𝚫(𝑠) between the encoder feature map 𝒛(𝑠) and its recollection from the 𝑠th memory layer.
The recollection process consists in spatially applying the memory layer to each 𝐶 (𝑠) depth 1D vector
(with (HF(𝒛))𝑖,𝑗 = HF(𝒛𝑖,𝑗)):

𝚫(𝑠) = 𝒛(𝑠) − HF(𝑠)
(

𝒛(𝑠)
) (5)

One-class AD. We use the 𝐿2 norm of the difference map as an anomaly score for each scale, and
no further training is required:

𝑠𝑎
(𝑠)(𝒙) = ‖Δ(𝑠)

‖2 (6)
Outlier-exposure AD. We use the additional anomaly data to train 𝑆 scale-specific classifiers on
the difference map Δ(𝑠). Each classifier is first composed of an average pooling layer 𝜙 followed by
a two-layer MLP 𝑔(𝑠) with a single scalar output. 𝜙 reduces the spatial resolution of Δ(𝑠), to prevent
using very large layers on earlier scales. The output of 𝑔(𝑠) directly corresponds to the 𝑠th scale
anomaly distance:

𝑠𝑎
(𝑠)(𝒙) = 𝑔(𝑠)◦𝜙(Δ(𝑠)) (7)

Each scale-specific classifier is trained using the intermediate features of the same normal and anoma-
lous samples used during the first step along their labels. The training procedure is similar to other
distance-based anomaly detectors (Ruff et al., 2020; Jezequel et al., 2022a) where the objective is to
obtain small distances for normal samples while keeping high distances on anomalies. We note that
our model is the first to introduce memory prototypes learned during representation learning into
the anomaly distance learning. The distance constraint is enforced via a double-hinge distance loss:
𝓁dist(𝑑, 𝑦) = 𝑦⋅max

(

𝑑− 1
𝑀 , 0

)

+(1−𝑦)⋅max (𝑀−𝑑, 0), where 𝑑 is the anomaly distance for a given
sample and 𝑀 controls the size of the margin around the unit ball frontier. Using this loss, both
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normal samples and anomalies will be correctly separated without encouraging anomalous features
to be pushed toward infinity. Our second stage loss is:

SUP = 1
𝑆 ⋅ 𝐵

𝐵
∑

𝑘=1

𝑆
∑

𝑠=1
𝓁dist

(

𝑔(𝑠)◦𝜙(Δ(𝑠)), 𝑦𝑘
) (8)

Finally, all scale anomaly scores are merged using a sum weighted by the confidence parameters 𝜆(𝑠):

𝑠𝑎(𝒙) =
1

∑

𝑠 𝜆(𝑠)
∑

𝑠
𝜆(𝑠) ⋅ 𝑠𝑎

(𝑠)(𝒙) (9)

The anomaly score 𝑠𝑎 effectively combines the expertise of the scores from each scale, making it
more robust to different sizes of anomalies than other detectors. As mentioned in Sec. 3.1, the 𝜆(𝑠)
will put more weight to later scales, making our detector more sensitive to broad object anomalies.
This second stage is summarized in Fig. 2b. As we can see, only the second stage has to be swapped
between OC and OE learning, resulting in a unified easily-switchable framework for AD.

4 EXPERIMENTS
4.1 EVALUATION PROTOCOL AND MODEL DESIGN

In the first one-vs-all protocol, one class is considered as normal and the others as anomalous. The
final reported result is the mean of all runs obtained for each possible normal class. We consider
various ratios 𝛾 of anomaly data in the training dataset and for each, average the metrics on 10 random
samples. The OCAD setting is a special case of the OEAD setting with 𝛾 = 0. This protocol presents
a realistic challenge and is widely used in AD literature. It shows the model ability to generalize to
different anomalies without using a significant amount of training anomalies. The datasets considered
include CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and CUB-200 (Welinder et al., 2010). It is worth
noting that CUB-200 is a particularly challenging, featuring 200 fine-grained bird classes, each with
about 50 images. SOTA AD methods like CSI struggle to perform effectively on this dataset (see
Tab. 1). Our evaluation encompasses not only object anomalies but also more subtle style and local
anomalies where classes differ on minute details.
The second protocol of intra-dataset cross-type is centered around face presentation attack detec-
tion (FPAD), aiming to distinguish between real and fake faces. Training and test data are sampled
from the same dataset, albeit with one tested attack type being unseen during training. We can thus
evaluate the model generalization power and robustness to unseen attack types. Several attacks are
considered: paper print (PP), screen recording (SR), paper mask (PM) and flexible mask (FM). We
use the WMCA dataset (George et al., 2020), which contains over 1900 RGB videos of real faces
and presentation attacks, spanning various attack types, including object, style, and local anomalies.
For the final protocol of OOD detection, we evaluate how well the model discriminate ID samples
from OOD samples, after learning on the whole ID dataset. For this evaluation, we add the commonly
used datasets SVHN (Netzer et al., 2011) and LSUN (Yu et al., 2015).
We report the area under the ROC curve (AUROC) averaged over all normal classes in the case of
one-vs-all, and the relative error reduction ((1−𝛼2)−(1−𝛼1))∕(1−𝛼1) to compare two AUROCs 𝛼1 and 𝛼2.
Model design. Regarding network architecture, a Resnet-50 (He et al., 2016) (≈ 25𝑀 parameters)
is used as the backbone 𝑓 . We consider two different memory scales: one after the third stage and
another after the last stage. The associated memory layers are respectively of size 𝑁 (1)

Mem = 512 and
𝑁 (2)

Mem = 256 with an inverse temperature 𝛽 = 2, along with a pattern sampling ratio of 𝑟(1) = 0.3
and 𝑟(2) = 1. The choices of memory size and sampling ratios are respectively discussed in Sec. 4.4
and Sec. 4.5. The scale confidence factors are set to increase exponentially as 𝜆(𝑠) = 2𝑠−1, and the
variance loss factor is fixed to 𝜆𝑉 = 0.05 after optimization on CIFAR-10. We use 𝜏 = 0.1 as
suggested in (Chen et al., 2020). For the anomaly distance loss, we choose a margin size of 𝑀 = 2.
Implementation details and the selection of hyperparameters can be found in Appendix.
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Table 1: Comparison with SoTA in one-vs-all protocol. The three blocks respectively contain OC,
OE and methods usable in both settings. AnoMem is the best performing unified model. (We re-evaluated
Elsa, DP-VAE, GOAD and ARNet on CIFAR100 and CUB-200. ∗ is from (Mirzaei et al., 2023). + is included only for reference, not for a direct
performance comparison, as it uses very large external datasets—significantly more than our OE setting where we achieved better results.)

AUROC (%) CUB-200 CIFAR-10 CIFAR-100
Models \ 𝜸 0. 0.01 0.05 0.10 0. 0.01 0.05 0.10 0. 0.01 0.05 0.10
MemAE (Gong et al., 2019) 59.6 60.9 57.4
PIAD (Tuluptceva et al., 2019) 63.5 79.9 78.8
GOAD (Bergman & Hoshen, 2020) 66.6 88.2 74.5
MHRot (Hendrycks et al., 2019) 77.6 89.5 83.6
Reverse Distillation (Deng & Li, 2022) - 86.5 -
SSD (Sehwag et al., 2021) - 90.0 85.1
CSI (Tack et al., 2020) 52.4∗ 94.3 85.8
MSC+ (Reiss & Hoshen, 2023) - 94.8+ 94.4+

Supervised 53.1 58.6 62.4 55.6 63.5 67.7 53.8 58.4 62.5
Elsa (Han et al., 2021) 77.8 81.3 82.9 80.0 85.7 87.1 81.3 84.6 86.0
DeepSAD (Ruff et al., 2020) 53.9 62.7 63.4 65.1 60.9 72.6 77.9 79.8 56.3 67.7 71.6 73.2
DP VAE (Daniel et al., 2019) 61.7 65.4 67.2 69.6 52.7 74.5 79.1 81.1 56.7 68.5 73.4 75.8
AnoMem (ours) 81.4 84.1 85.3 86.0 91.5 92.5 97.1 97.6 86.1 90.9 92.3 94.7

4.2 COMPARISON TO THE STATE-OF-THE-ART
4.2.1 ONE-VS-ALL
Considered OC methods are reconstruction error generative model (Tuluptceva et al., 2019), the
knowledge distillation method (Deng & Li, 2022), pretext tasks methods (Bergman & Hoshen, 2020;
Hendrycks et al., 2019), and the two-stage method (Tack et al., 2020). We also consider the two-stage
OE-AD (Han et al., 2021). To further show the disadvantages of classical binary classification, we
also include a classical deep classifier trained with batch balancing between normal samples and
anomalies. For the sake of completeness, we also include the pre-trained model on large dataset
MSC Reiss & Hoshen (2023). Lastly, unified methods usable in both OC and OE settings are in-
cluded with the reconstruction error model (Daniel et al., 2019), and direct anomaly distance models
(Ruff et al., 2020). For a fair comparison in the same conditions, we take the existing implementa-
tions or re-implement and evaluate ourselves all OC methods, except (Fei et al., 2020; Bergman &
Hoshen, 2020; Tack et al., 2020). The results are presented in Tab. 1.
First, the classical supervised approach falls far behind anomaly detectors on all datasets. This high-
lights the importance of specialized AD as classical models are likely to overfit on anomalies.
Furthermore, AnoMem overall outperforms significantly all considered detectors with up to 62%
relative error improvement on CIFAR-10 and 𝛾 = 0.01. Although performance greatly increases with
more abnormal data, it remains highly competitive with only normal samples. For OC-AD, AnoMem
outperforms all methods specialized for OC including pretext task and reconstruction error methods.
The usage of memory in AnoMem is much more efficient than the memory for reconstruction in
MemAE. Indeed, while we learn the memory through CL, MemAE and others (Gong et al., 2019;
Park et al., 2020) learned it via the pixel-wise reconstruction loss. Their normal prototypes are much
more constrained and therefore less semantically rich and generalizable. For OE-AD, AnoMem
reduces SoTA error gap on nearly all anomalous data ratio. Its multi-scale anomaly detectors allow
capturing more fine-grained anomalies as we can see in the CUB-200 results.
Finally, AnoMem performs very well in both OC- and OE-AD while other unified methods fail in
OC-AD. To the best of our knowledge, AnoMem is the first efficient unified anomaly detector. We
also note that our change from OC-AD to OE-AD was done with minimal hyperparameter tuning.
This is due to the first training step being shared between OC and OE settings.
4.2.2 OUT-OF-DISTRIBUTION (OOD) DETECTION
As can be seen in Tab. 2, AnoMem performs similarly well as the SoTA baseline CSI (Tack et al.,
2020), however the latter mainly relies during inference on keeping in memory the entire training
set features. This results in a very high memory footprint on huge training sets, while our model
ingeniously learns a fixed size memory3. Moreover, CSI often performs poorly on datasets with a
few training normal samples as can be seen on one-vs-all CUB-200 (50 images per class) results.

3In terms of memory usage, CSI and pretrained models using KNN require the storage of the entire normal
set, whereas AnoMem only needs a fixed size: for OOD detection with CIFAR as ID, CSI and pretrained models
need to store 60000 samples, whereas ours only requires 768 samples (256+512 for two memory modules).
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Table 2: Comparison of AnoMem with SoTA
methods on OOD detection protocol.

AUROC (%) CIFAR-10 (ID) →
Models / OOD data SVHN LSUN CIFAR-100
GOAD (Bergman & Hoshen, 2020) 96.3 89.3 77.2
MHRot (Hendrycks et al., 2019) 97.8 92.8 82.3
FS (Zaeemzadeh et al., 2021) 95.3 96.2 84.8
Energy OE (Liu et al., 2020) 96.6 94.0 84.4
Energy PEBAL (Choi et al., 2023) 97.7 94.5 85.2
CSI (Tack et al., 2020) 99.8 97.5 89.2
AnoMem (ours) 99.2 97.5 89.2

Table 3: Comparison of AnoMem with SoTA
in FPAD, columns represent unseen attacks.

AUROC (%) WMCA
Models / Kind All PP SR PM FM
PIAD (Tuluptceva et al., 2019) 76.4
MHRot (Hendrycks et al., 2019) 81.3
CSI (Tack et al., 2020) 82.7
MSC (Reiss & Hoshen, 2023) 85.3
GOAD (Bergman & Hoshen, 2020) 86.1
Supervised 78.3 77.1 80.7 81.9
Elsa (Han et al., 2021) 86.1 84.3 89.2 89.1
DP VAE (Daniel et al., 2019) 53.9 - - - -
DeepSAD (Ruff et al., 2020) 71.2 79.9 80.3 81.8 83.4
AnoMem (ours) 86.9 91.3 89.8 93.0 92.7

Table 4: Performance of AnoMem for image
classification through linear evaluation.

Memory Multi-scale CIFAR-10 CIFAR-100
- - 88.2 80.5
✓ - 91.4 (+3.2) 84.1 (+3.6)
✓ ✓ 91.9 (+0.5) 84.8 (+0.7)

Table 5: Performance of AnoMem for OC-
AD with multi-scale memory.

Memory Multi-scale CIFAR-10 CIFAR-100 WMCA
- - 88.1 82.7 81.6
- ✓ 89.4 (+1.3) 83.8 (+1.1) 84.0 (+2.4)
✓ - 90.5 (+2.4) 85.3 (+2.6) 84.8 (+3.2)
✓ ✓ 91.5 (+1.0) 86.1 (+0.8) 86.9 (+2.1)

It is also worth noting that algorithms in (Reiss & Hoshen, 2023; Li et al., 2023) obtain higher
performance on this task but they rely on models pretrained on an additional large-scale dataset such
as ImageNet-21K (14M images) (Russakovsky et al., 2015). Therefore, comparing directly those
methods to AnoMem, being trained from scratch on a smaller dataset (50K images of CIFAR), is not
fair as there is an overlap in nature of the pre-training samples used in (Li et al., 2023) and anomalous
samples to be detected. Finally, we note that in this protocol the normal class is composed of several
subclasses. This shows the ability of our memory modules to cover multi-modal normal cues.
4.2.3 FACE PRESENTATION ATTACK DETECTION (FPAD)
Tab. 3 compares our model on the FPAD intra-dataset cross-type protocol 4 with methods presented in
Sec. 4.2.1 (we re-evaluated those methods for FPAD using official codes). Without any further tuning
for face data, our method improves FPAD performance on WMCA with an error relative improve-
ments of up to 14% on paper prints. It outperforms existing anomaly detectors on all unseen attack
type, including the OC setting. We can also notice that it reduces the error gap between coarse attacks
(PM, FM) and harder fine-grained attacks (PP, SR) thanks to its multi-scale AD. AnoMem outper-
forms CSI and pre-trained method MSC. Moreover, the utilization of certain large-scale datasets,
e.g., ImageNet-21K, may not be permitted in industrial applications due to restrictive licenses.
4.3 ABLATION STUDY
This section studies the impact of the multi-scale memory layers in the two training stages and show
they are essential to our model performance. The baseline is the model using only the last feature
map, with k-means centroids as its normal prototypes.
First, we assess the impact of memory through linear evaluation on standard CIFAR-10/-100 clas-

sification benchmarks, examining how it influences the CL of the encoder representations. This
involves training an extra linear classifier on the frozen representations of the encoder. It is worth
noting that this experiment focuses on multi-class image classification rather than AD. The goal is
to validate the efficacy of the first step in our overall approach shown in Fig. 2a. As shown in Tab. 4,
the inclusion of the memory layers on the first branch drastically improves the quality of the encoder
representations. We hypothesize that, as shown in (Dwibedi et al., 2021), the inclusion of prototypi-
cal samples in one of the branch allows to contrast positive images against representative negatives.
This alleviates the need for large batch size, and highly reduces the multi-scale CL memory usage.
To support the importance of memory during AD, we compare the anomaly detector with k-means
centroids or with the normal prototypes learned during the first stage (Tab. 5). In the first case, we
train the anomaly detectors with the same procedure but instead of fetching the Hopfield layer output
we use the closest k-means centroid. Lastly, we measure the impact of multi-scale AD by comparing
the single-scale model only using the last feature map, and our two-scale model. While we sacrifice

4A few works have sought to apply generic AD to this real-world challenging problem with local anomalies.
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some of the memory and training time for the additional scale, our AD performance is improved
significantly with up to 10% error relative improvement on CIFAR-10.
4.4 MEMORY SIZE
The memory size must be carefully chosen at every scale to reach a good balance between the normal
class prototype coverage and the memory usage during training and inference. This section presents
some rules of thumb regarding the sizing of memory layers depending on the scale.
We start by plotting the relation between the last scale memory size, the representation separability,
and the final AD performance in Fig. 3a. As one could expect, higher memory size produces better
quality representations and more accurate anomaly detector. However, we can note that increasing the
memory size above 256 has significantly less impact on the anomaly detector performance. Therefore
a good trade-off between memory usage and performance seems to be at 256 on CIFAR-10.
Further, we study the impact of feature map scale on the required memory size. In Fig. 3b we fix the
last scale memory size to 256 and look at the AD accuracy for various ratios of memory size between
each scale. As lower scales benefit more from a larger memory than higher scales, we hypothesize
that the feature vectors of more local texture-oriented features are richer and more variable than global
object-oriented ones. Memory layers thus need to be of higher capacity to capture the complexity.
We further show the effectiveness of our memory mechanism in the appendix.
4.5 SPATIAL SAMPLING RATIOS
Sampling ratios 𝑟 are introduced in the first step to reduce the amount of patterns used in the con-
trastive loss, thereby reducing the size of the similarity matrix. At lower scales, similar nearby
samples make it less detrimental to skip some available patterns during training.

(a) Linear evaluation (ACC)
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Figure 3: Memory experiments on CIFAR10.
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Figure 4: Sampling ratio experiments.
To guide our choice of sampling ratio, we measure our anomaly detection AUC with various sampling
ratios and anomalous data ratio 𝛾 . Since the last scale feature maps are spatially very small, we only
vary the first scale ratio 𝑟(1) and set 𝑟(2) = 1. The batch size if fixed throughout the experiments.
The results are displayed in Sec. 4.5. We can see that low sampling ratios (𝛾 < 0.3) significantly
decrease the AD performance. However, the gain in performance for higher ratios is generally not
worth the additional computational cost: by more than doubling the amount of sampled patterns, we
only increase the relative AUC by 2%.
5 CONCLUSION AND FUTURE WORK
In this paper, we introduce a novel two-stage AD model, AnoMem, designed to seamlessly oper-
ate in both OC and OE settings. Our approach involves the memorization of prototypes for normal
class instances to compute an anomaly deviation score. By incorporating learnable memory layers
for normal instances within a CL framework, we jointly enhance encoder representations and es-
tablish robust memorization of normal samples. Subsequently, these learned normal prototypes are
leveraged to train a straightforward detector within a unified framework that accommodates both OC-
AD and OE-AD scenarios. Moreover, we extend these prototypes to multiple scales, enhancing the
model’s robustness against various anomaly sizes. Finally, we evaluate the performance of AnoMem
on diverse datasets containing object, style, and local anomalies to demonstrate its efficiency, even
when trained from scratch under limited data regimes.
For future work, we could explore the use of our model for anomaly localization. Indeed, we could
investigate how to integrate more efficiently additional scales and merge the anomaly maps into a
single heatmap. One solution could be to use Barlow-Twins instead of SimCLR by replacing 𝓁NTXwith the cross-correlation.
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APPENDIX

A FIRST TRAINING STAGE OF ANOMEM (REPRESENTATION LEARNING)

Algorithm 1 AnoMem first learning stage
1: Input: batch size 𝐵, invariance transformations 
2: Initialization: encoders 𝑓 (1),⋯ , 𝑓 (𝑆), memory HF(1),⋯ ,HF(𝑆).
3: while not reach the maximum epoch do
4: Sample image minibatch 𝑿 with labels 𝒚
5: Sample augmentations 𝑡, 𝑡′ from 
6: Get augmented views 𝐙(0) ← 𝑡(𝐗) and 𝐙′(0) ← 𝑡′(𝐗)
7: for 𝑠 = 1⋯𝑆 do
8: 𝐙(𝑠) ← 𝑓 (𝑠)(𝐙(𝑠−1)) and 𝐙′(𝑠) ← 𝑓 (𝑠)(𝐙′(𝑠−1))
9: Sample ⌊𝐻 (𝑠) 𝑊 (𝑠) 𝑟(𝑠)⌋ vectors 𝑍 (𝑠)

𝑖,𝑗 from 𝐙(𝑠)

10: Retrieve each 𝑍 (𝑠)
𝑖,𝑗 memory prototypes using Eq. (1) with the 𝑠th scale memory layer.

11: Compute COM-MS from Eq. (4)
12: Gradient descent on COM-MS to update 𝑓 (1),⋯ , 𝑓 (𝑆)and HF(1),⋯ ,HF(𝑆).
13: Output: Encoder network 𝑓 , and the multi-scale memory prototypes from Mem(1),⋯ ,Mem(𝑆).

B IMPLEMENTATION DETAILS
Optimization. Training is performed under SGD optimizer with Nesterov momentum (Sutskever
et al., 2013), using a batch size of 𝐵 = 1024 and a cosine annealing learning rate scheduler
(Loshchilov & Hutter, 2017) for both of the stages.
Data augmentation. For the contrastive invariance transformations, we use random crop with
rescale, horizontal symmetry, brightness jittering, contrast jittering, saturation jittering with Gaus-
sian blur and noise as in SimCLR (Chen et al., 2020). It is worth noting that we do not need specific
augmentations as in CSI (Tack et al., 2020). Indeed, CSI requires additional shift transformations
(alongside standard augmentations like SimCLR and AnoMem) to generate its pseudo OOD nega-
tives. AnoMem performs differently: it directly learns prototypes of normal samples and does not
rely on pseudo negatives or require shift augmentations.
Model design. We conducted a performance evaluation of AnoMem using different backbone ar-
chitectures, including EffNet-B0, ResNet18, and ResNet50. In the context of one-vs-all evaluation
settings (OC and OE) on the CIFAR dataset, we achieved consistently high performance.
EffNet-B0 emerged as the top performer, demonstrating superior results, followed closely by
ResNet50 and then ResNet18. The performance gaps between these architectures were relatively
small, with EffNet-B0 outperforming ResNet50 by a margin of 0.2% to 0.3%, while ResNet50 sur-
passed ResNet18 by a modest margin of 0.4% to 0.6%. In our main paper, we presented the perfor-
mance of AnoMem using ResNet50, which was the median performer. It is worth noting that the
memory modules are scalable with the chosen backbone.

C SELECTION AND TUNING OF HYPERPARAMETERS
The variance loss weight 𝜆𝑉 was evaluated on CIFAR10 using different commonly used values. As
shown in Tab. 6, AnoMem is not sensitive to 𝜆𝑉 . Moreover, in our tests, it remains fixed for all other
datasets.
For the confidence weights 𝜆(𝑠), we compared two monotonically increasing functions linear and ex-
ponential. As we can see from the results in Tab. 7, the exponential weighting yields a better anomaly
detection than the linear weights. We believe that the linear relation does not sufficiently enhance ob-
ject anomalies and imposes excessive constraints during representation learning, particularly when
contrasting very low-scale patterns.
The margin 𝑀 enforces a norm constraint on normal and anomaly representations within a radius of
less than 1∕𝑀 and more than 𝑀 , respectively. A value of 1 pushes all representations indiscrimi-
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nately onto the unit sphere, while a high value leads to an ill-posed distance loss. We chose 𝑀 = 2
as a compromise, allowing half of the unit sphere to be allocated for normal samples. Indeed, we are
currently working on dynamically adjusting the value of 𝑀 .

Table 6: Linear evaluation on CIFAR-10 for different 𝜆𝑉 .
𝜆𝑉 0.1 0.05 0.025 0.01

AUROC (%) 91.90 91.91 91.87 91.86

Table 7: OC-AD evaluation on CIFAR-10 and CIFAR-100 for different 𝜆(𝑠) functions.
𝜆(𝑠) CIFAR-10 CIFAR-100 avg.

linear 91.2 85.6 88.4
exp 91.5 86.1 88.8

D QUALITATIVE EFFECTIVENESS OF LEARNED PROTOTYPE

We perform in Fig. 5 a t-SNE analysis on the last-scale prototypes, along with test samples from
normal and anomalous classes of CIFAR-10 after the first learning stage of AnoMem. As we can see,
the representations of normal and anomalous samples are well separated, confirming the effectiveness
of our memory backed representation learning. Moreover, the learnt normal prototypes are well
representative of the normal class, as testified by the close overlap in representation space.

normal prototype anomalous

Figure 5: t-SNE of learnt prototypes, normal and anomalous samples on CIFAR10.
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