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ABSTRACT

Recent studies have shown that pre-trained vision-language models can effectively
adapt to diverse downstream tasks through parameter-efficient prompt tuning. Un-
fortunately, the tuned models can exploit spurious correlations during prediction,
resulting in a failure to generalize to out-of-distribution test data, especially when
the tuning dataset exhibits bias. How to achieve cross-modal mitigation of spu-
rious correlations during prompt tuning of vision-language models remains an
open question. In this paper, the challenging problem is tackled by leveraging the
stable relationship between necessary and sufficient causal features and the corre-
sponding label. On the one hand, we constrain the learning process of prompt by
reinforcing the necessary and sufficient connection between the textual labels and
textual features. On the other hand, the probability of necessity and sufficiency
between the textual features and the filtered visual features is measured and max-
imized to enhance cross-modal feature alignment. By iteratively optimizing these
two objectives, we can achieve cross-modal mitigation of spurious correlations
because the logic equivalence between textual labels and visual features is bol-
stered. The theoretical analysis on generalization error indicates that our method
can achieve a tighter generalization error bound than existing approaches. We
evaluate the proposed method on several commonly adopted out-of-distribution
datasets, and the empirical results demonstrate the superiority of our method over
the state-of-the-art competitors.

1 INTRODUCTION

Vision-language models (VLMs), which integrate visual and textual data processing for complex
real-world tasks (Zhou et al.,[2020; |[Radford et al., 20215 Zhao et al., 2024;|Zhang et al., | 2024c)), have
become a cornerstone of multi-modal learning. Recent advancements have demonstrated the pow-
erful zero-shot generalization capabilities of pre-trained vision-language models (VLMs), enabling
them highly adaptable to a wide range of downstream tasks, especially image classification (Radford
et al.,2021). To harness the flexible adaptability of pre-trained VLMSs, prompt tuning emerges as
a parameter-efficient tuning technique and has achieved significant success (Zhou et al., [2022bja;
Chen et al., 2023)). Rather than fine-tuning all model parameters, prompt tuning focuses on modi-
fying the text prompts while keeping the model’s pre-trained parameters largely intact. Optimizing
the learnable prompts can enhance the alignment between textual and visual representations, thereby
improving the performance of vision-language models.

It has been found that modern machine learning and data-driven models can easily rely on spurious
correlations to make prediction (Geirhos et al.| 2020} |Ye et al. [2024). Referring to statistical asso-
ciations between variables, spurious correlations arise from statistical bias and confounding factors
rather than representing a true causal relationship. Consequently, spurious correlations are unstable
and can vary across different data distributions. Thus, the performance of models utilizing spurious
correlations can degrade dramatically on test data when a distribution shift occurs between the train-
ing/tuning data and test data, even though they demonstrate perfect performance on training/tuning
data. In other words, models that employ spurious correlations exhibit poor out-of-distribution
(OOD) generalization performance. A further complication is that this issue is especially preva-
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lent in complex datasets where high-dimensional inputs, including image data and text data, may
contain hidden biases.

Although considerable efforts have been made to mitigate spurious correlations in both visual modal-
ity (Arjovsky et al.| 2019; (Creager et al.l 2021} [Yang et al., [2023b; |Qiu et al.| 2024) and textual
modality (Peyrard et al.| 2022} [Zhou et al.| 2023)), these methods are primarily designed for single-
modal learning and are not applicable to multi-modal learning. In contrast to single-modal learning,
the critical challenge of cross-modal mitigation of spurious correlations lies in how to organically
integrate mitigation in visual modality, mitigation in textual modality and cross-modal alignment
of representations.

Among recent studies, the cross-modal contrastive learning framework presented in (Yang et al.,
2023c)) addresses the mitigation of spurious correlations in both textual and visual modalities while
requiring access to text descriptions of spurious features/objects. In general scenarios, spurious fea-
tures are typically latent and unobservable. Moreover, the method proposed in (Yang et al.| 2023c),
which is designed for fine-tuning of VLMs and alters all model parameters, cannot be applied to
prompt tuning of VLMs. Besides, CoOPood (Zhang et al., |2024b)) focuses on mitigating spurious
correlations in visual modality during prompt-tuning of VLMs. It overlooks the spurious corre-
lations in the textual modality. Furthermore, CoOPood relies on the assumption that the spurious
correlations between spurious features and the target label are approximately subject to uniform
probability distributions. Therefore, how to organically integrate mitigation in visual modality, miti-
gation in textual modality and cross-modal alignment of representations, without invoking unnatural
assumptions, remains an open problem.

Inspired by the causal intervention-based calculation of the probability of necessity and sufficiency
(PNS) between two variables (Tian & Pearl, 2000; (Wang & Jordan, [2021}; |Yang et al.l [2023b), we
introduce the concept logic alignment (i.e., alignment with necessity and sufficiency) to integrate
mitigation of spurious correlations and cross-modal alignment of representations organically for
prompt tuning of VLMs. The key insight is that logic equivalence (i.e., necessary and sufficient) not
only facilitates mitigation of spurious correlations (Wang & Jordan, 2021} |Yang et al., [2023b)), but
also enhances dimensionality-agnostic alignment between two variables. In the context of vision-
language models, the overall objective is to achieve the logic equivalence between visual causal rep-
resentations (denoted by ®,,) and textual label (denoted by Y), i.e., Y < ®,. Considering spurious
correlations can exist in both visual and textual modalities, the equivalence Y < &,, alone cannot
guarantee that the aligned textual representations exclude spurious features. Therefore, establishing
a stricter equivalence chain Y < ®; & @, (where ®; represents textual causal representations) is
our final objective. Specifically, our framework can be divided into two components: 1) Y < &,
eliminates the spurious correlations in textual modality; 2) ®; < &, integrates mitigation of spuri-
ous correlations in visual modality and cross-modal alignment of representations organically when
Y & &, excludes spurious features in ®;. In practical implementation, the logic equivalence be-
tween two variables is achieved by maximizing the probability of necessity and sufficiency (PNS)
between them. The main contributions of this work are summarized as follows:

* We introduce the concept logic alignment to address cross-modal mitigation of spurious
correlations for prompt-tuning in vision-language models. Capable of integrating miti-
gation of spurious correlations and cross-modal alignment of representations organically,
Logic alignment can serves as a promising technique for handling spurious correlations in
various multi-modal learning scenarios.

* We design a practical framework to calculate the PNS between the textual label and textual
representations, as well as the PNS between textual representations and visual representa-
tions. By maximizing these two PNS terms, the proposed objective can effectively achieve
cross-modal mitigation of spurious correlations for prompt-tuning in VLMs.

* The theoretical analysis proves that our method can yield a tighter generalization error
bound compared to existing approaches. Moreover, the detailed components of the derived
generalization error bound verify the importance of maximizing the two proposed PNS
terms from a theoretical perspective.

» The experimental results across diverse datasets demonstrate the superiority of the proposed
framework in out-of-distribution generalization performance, compared with the state-of-
the-art competitors.
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2 RELATED WORK

Causal Representation Learning Attaining causally invariant predictors over varied data distri-
butions is proposed in the field of causal inference [Peters et al.| (2016)), and introduced into machine
learning to tackle the OOD generalization problem by IRM |Arjovsky et al.[(2019). Then, many ef-
forts are dedicated to facilitating the application of invariant representation learning to more general
scenarios. Some works focus on achieving invariant learning when the environment label is unavail-
able, e.g., EIIL [Creager et al.| (2021), HRM [Liu et al.| (2021a), KerHRM |L1u et al.| (2021b), ED-
NIL |Huang et al.|(2022) and ZIN |Lin et al.|(2022). IFM |Chen et al.| (2022b) lowers the requirement
on the number of available environments. Another branch|Ahuja et al.|(2021)); Chen et al.| (2022a);
Huh & Baidyal (2022)) completes the constraints that IRM misses. Besides, iCaRL [Lu et al.| (2022)
extends causal representation learning to non-linear causal representations while ACTIR [Jiang &
Veitch| (2022) extends causal representation learning to anti-causal scenarios. Causal representation
learning is also applied to graph representation learning |L1 et al.[(2022); |Chen et al.| (2022c) and
natural language modeling [Peyrard et al.|(2022)). These methods are devised for handling spurious
correlations in single-modal learning scenarios.

Prompt Tuning of Vision-Language Models The typical vision-language model, CLIP (Radford
et al., [2021) is trained using a contrastive learning framework where textual and visual representa-
tions are aligned by maximizing the cosine similarity between the image and text embeddings of cor-
rect pairs. To fully exploit the powerful adaptation capability, prompt tuning is proposed to improve
the performance of pre-trained vision-language models (e.g., CLIP) on downstream task (Zhou et al.,
2022bza). Among these attempts, CoOp (Zhou et al., 2022b) designs learnable prompts to adjust the
mapping from textual label to textual representations and greatly improves the performance of pre-
trained CLIP on downstream visual tasks. Furthermore, CoCoOp (Zhou et al. [2022a) introduce a
image-conditional context generator to improve the zero-shot generalization performance of CoOp.
Subsequently, MaPLe (Khattak et al.| [2023a) adopts both textual and visual learnable prompts to
enhance the alignment of textual and visual representations in downstream tasks. Another prevalent
line of works utilize fine-grained learnable textual prompt to tackle the imbalance between textual
and visual modalities (Chen et al., [2023; |Shen et al., |2024; |Li et al., [2024). All above prompt tun-
ing methods do not consider the mitigation of spurious correlations in vision-language models. In
particular, CoOPood (Zhang et al.,|2024b) is proposed as a pioneering work focusing on mitigating
spurious correlations in visual modality during prompt-tuning of VLMs. However, it overlooks the
spurious correlations in the textual modality. Moreover, CoOPood relies on the assumption that the
spurious correlations between spurious features and the target label are approximately subject to
uniform probability distributions, which limits the applicability of CoOPood to general scenarios.

3 PRELIMINARY

We introduce the background knowledge about prompt tuning of VLMs and causally motivated
calculation for probability of necessity and sufficiency (i.e., PNS) in this section.

3.1 PRrRoMPT TUNING OF CLIP

Contrastive Language-Image Pre-training (CLIP) (Radford et al.l2021) maintains two separate en-
coder: text encoder extracting textual representations from the text input and image encoder drawing
visual representations from the image input. Textual and visual representations are aligned by con-
ducting contrastive learning based on the language-image data pairs. For the sake of simplicity,
we denote the text encoder as f and image encoder as g in CLIP. With a handcrafted prompt (e.g.,
a photo of a [CLASS]) input into the frozen text encoder, the pre-trained CLIP can be deployed
to downstream image classification tasks. Specifically, input images are fed to the image encoder,
while the text prompt is input into the text encoder. Suppose “[CLASS]” has K categories in current
downstream task, the pre-trained CLIP can make a probability prediction for input image = by

) — exp(sim(Zf,g(x))/T)
PRI = S5 esploim(e o))

where zi ,j €1,2,..., K denotes text feature generated for class j by the text encoder f. sim(a,b)
denotes the cosine similarity between two vector a and b while 7 is the temperature parameter.

(D
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In order to improve the performance of pre-trained CLIP in downstream tasks, CoOp (Zhou et al.,
2022b) introduces learnable text prompt to amend the mapping from text labels to textual represen-
tations. Suppose the learnable context is denoted as @ = [q1, q2, ..., ], the complete text input
can be written as Q¢ = [q1, 92, .-, v, CLASS]. When the text input Q¢ = [Q,CLASS] is fed
to the frozen text encoder, the corresponding textual feature vector for class k can be written by
zF = f([Q, k)). For each instance (;, y;) in the tuning dataset Ds := {(z;, y;) }'™;, the model can
exp(sim(f([Q,yi]),g(xi))/7)
sy exp(sim(£((Q.41),9(x:))/7)
optimized by solving the following objective:

HgHECE—logz’t = Z yilogp(yi | z:). 2)
(wi,yi)€Ds

provide a prediction by p(y; | z;) = . The learnable text prompt is

Since only text prompt is learnable while both text and image encoder are frozen during the tuning
stage, prompt tuning is a parameter-efficient tuning scheme and has gained great success.

3.2 PROBABILITY OF NECESSITY AND SUFFICIENCY (PNS)

Probability of Necessity and Sufficiency (PNS) describe the probability with which a variable is the
necessary and sufficient cause of another variable. The formal definition of PNS is given as follows.

Definition 3.1 (Probability of Necessity and Sufficiency (Pearl, |2009)). Let the specific implemen-
tations of causal variable ® as ¢ and ¢, where ¢ # ¢. The probability with which variable ® is the
necessary and sufficient cause of variable Y on test data distribution Py is given by:

PNS(Y,®) := Pr(Yipoee) =y | 2 =0,Y #£y) Pr(® =0,Y #y)
suf ficiency

+PT(Ydo(<I>:qE) Fy|P=9¢,Y =y)Pr(®=9¢Y =y),

necessity

3)

where do(® = ¢) (do-operator) means the manipulable variable ® is forced to be a fixed value ¢.

Since the probability of necessity and sufficiency is defined based on counterfactual distributions,
it is usually intractable to estimate the PNS of two variables. However, with two assumptions (Ex-
ogeneity and Monotonicity) proposed and utilized in (Pearl, 2009; |Yang et al.l |2023b), we can
obtain a useful lemma as follows. Considering the limited length of main text, we put more detailed
explanations about Exogeneity and Monotonicity assumption in Appendix [C]

Lemma 3.2 (Pearl| (2009); Yang et al.| (2023b))). If variable ® is exogenous relative to variable Y,
and 'Y is monotonic relative to ®, we can get

PNS(Y,®)=Pr(Y =y |®=¢)-Pr(Y =y|[2=9). 4)

suf ficiency necessity

3.3 PNS RISK MODELING

According to definition PNS risk is based on the measure of ¢ and ¢. As ¢ represents the
intervention value, it is not necessary for it to be a sample from the same distribution as the causal
variable ®. Thus, we need an auxiliary variable ® € Z (within the same space as variable ®). The
intervention value ¢ is sampled from the distribution P7(® | X = x). To calculate the probability
of necessity and sufficiency between the representations and the target in neutral networks, we need
to construct three networks parameterized by 6 and ¢ to estimate the distributions Pr(® | X = z) =
and Pr(® | X = ) by PZ(® | X = z) = and P5(® | X = x), respectively. Additionally, we
need to build a linear classifier w to parameterize the mapping from causal representations to target.
That is, the target can be obtained by y = sign(wT¢) (Yang et al.,2023b).

Let Z(A) be an indicator function, where Z(A) = 1 if A is true; otherwise, Z(A) = 0. PNS risk
based on Definition [3.1]and Lemma [3.2] can be calculated by

Rs(w,0,€) := Ew s [Eomps (@ x=2)L[sig0(wTd) # Y] + Egopg(dx =) Llsign(wTe) = y]]  (5)

For practical modeling convenience, a recent study (Yang et al.l [2023b)) proposed an effective ap-
proximation scheme for PNS risk by deriving an upper bound of Equation 3]
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Proposition 3.3 (Proposition 3.1 in (Yang et all 2023b). Given a source domain S, we define the
sufficient and necessary risks as:

SFs(w,0) = E(z,y)~Ds By ps (@ x=2)LIsign(wT @) # yl,
NCs(w,§) == E(z,y)~Ds]Edszg(§|X=x)I[Sign(wa5) =y,
and let the Monotonicity measurement be defined as
Mg(0,8) = E(ay)~DsEgn po (@) x =) g pg () x =) L5180(wT §) = sign(wT )],
then we have
Rs(,0,€) = ME(0,€) + 28 Fs(w,0)NCs (w,€) < ME(0,€) +2SFs(w,0).  (6)

Based on the upper bound derived in Proposition[3.3] CaSN (Yang et al.| 2023b) maximizes the PNS
between variable ¢ and variable Y by solving the following optimization problem:

miglmgaxﬁpNs(w,O,f) = MZ(0,€) + SFs(w,0) + ARk, subjectto ||¢p— | >46, (7)

where Ry := Ep  KL(P(® | X = 2)||me) + Ep, KL(P§(® | X = )||7g). KL(-,-) denotes
the KL-divergence between two probability distributions. 7¢ := Ps(®) and 7g := Ps(®) describe
the prior distributions of ® and ®, respectively.

4 METHODOLOGY

In this section, we first discuss the detailed design of the proposed framework LogicAl-PT in Sec-
tion [4.1] and then provide theoretical analysis on generalization error bound to demonstrate the ef-
fectiveness of the proposed method from the theoretical perspective in chapter [4.2]

3\%\ Intervention
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PNS Calculator

@ Qe || s | - > f
Learnable context Text Encoder
o (D) Lpns—text
Q [Cly - [Clm [Class] : / NSC features
PrirT T rrr s :
1 ® Cosine similarity 1 LCE—logit
1 1 .
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Figure 1: Illustration of the overall framework. “NSC” represents “necessary and sufficient cause”.
Two filters behind the image encoder are implemented using two linear layer, respectively. Specifi-
cally, the NSC features in textual and visual modalities are given by f([Q, CLASS]) and h(g(X)),
respectively. The interventions in textual and visual modalities are given by f([Q, CLASS]) and
h(g(X)), respectively.

4.1 OVERVIEW OF LOGICAL-PT

In order to achieve effective cross-modal mitigation of spurious correlations for prompt-tuning in
vision-language models, we design a practical framework which can be divided into two compo-
nents: 1) Y < &, eliminates the spurious correlations in textual modality; 2) &, < ®,, integrates
mitigation of spurious correlations in visual modality and cross-modal alignment of representations
organically when Y < &, excludes spurious features in ®;. The overall framework of the proposed
method LogicAl-PT is displayed in Figure[l}
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Cross-modal logic alignment. As shown in objective (7), constructing the parameterized map-
ping w, 6 and ¢ is necessary for calculating the PNS risk. When we aim at achieving cross-modal
logic alignment, we need to maximize the probability of necessity and sufficiency between visual
representations and textual representations. In the design framework, two filters h and & serve as the
parameterized mapping 6 and &, respectively. Moreover, f([Q, CLASS]) can work as the classifier
w. Therefore, the PNS risk corresponding to cross-modal logic alignment is given by

LPNS—cross = EPNS(f([Qa CLASS]); h7 E) (8)

Textual logic alignment. When we calculate textual PNS risk to achieve textual logic alignment,
f([Q,CLASS]) and f([Q, CLASS]) serve as the parameterized mapping 6 and &, respectively. To
construct the classifier w for textual representations, we draw the prototype of each class from the
visual representation space h(g(X)). These prototypes can serve as a classifier for the textual rep-
resentations by calculating cosine similarity-based logit. In this way, the PNS risk corresponding to
textual logic alignment is given by

EPNS—temt = £PNS(h(g(X))7 f([Qa CLASS])? f([Qa CLASS])) (9)

Opverall objective. As shown in Figurem, the cross-modal cross-entropy loss Lo g—jogit is com-
puted utilizing the cosine similarity between textual representations f ([, CLASS]) and visual rep-
resentations h(g(X)). Therefore, the overall objective can be written as

131}13 max LoB-togit + aLpns(f([Q,CLASS)), h, h) + BLpNs(R(g(X)), f(|Q,CLASS)), f([Q,CLASS])). (10)

4.2 THEORETICAL ANALYSIS

Along the information flow from visual representations ®, to text label Y in a vision-language
model, we can evaluate the effectiveness of the visual feature extractor ®,, in predicting the target Y
using the mutual information (Y'; ®,(X)). In practice, we can acquire the empirical estimation of
I(Y;®,(X)) on the source dataset Dyg, represented as Is(Y'; ®,(X)). When the learning model is
ready for deployment, we prioritize the performance of ®, on some unknown target data distribu-
tion, denoted by I(Y; ®,(X)). Since I (Y; ®,(X)) is inaccessible, bounding the generalization
error I (Y; @, (X)) — Is(Y; @, (X)) is critical for analysing the generalization performance of the
proposed method in learning theory.

Before starting to the theoretical analysis on generalization error bound, we first introduce a useful
assumption for the following theoretical analysis.

Assumption 4.1. In the textual modal, the textual representations ®, are fully informative for de-
termining the target Y. That is, we have Y 1L ®,, | ®,.

Theorem 4.2. Suppose the source and target data distributions are denoted by Ps(X,Y) and
Pr(X,Y), respectively, and the size of the source dataset D is m. Then, there exists a finite constant
C such that the following inequality holds with a probability at least 1 — §:

Clog([V1/3) (1X1og(m) + |V og(|21)) + 2]

m

[IF(Y;@,(X)) — Is(Y;@,(X))| <

Empirical error term

+ JN2) + VOITY[R) + T(Be|P0) + VOV T (P4 D0),

Textual error term Alignment error term

where m > S log(|V|/0)|X|e. The term ‘Textual error term’ is caused by distribution shift in

textual modality while ‘Alignment error term’ stems from the misalignment between textual and
visual modalities. J (Y |®;) denotes the Jeffrey’s divergence defined by

T(Y|®,) £ KL(PF(Y | )|[Ps(Y | 1)) + KL(Ps(Y | @)|[P(Y | Dy))

where KL(+||-) denotes the Kullback—Leibler divergence between two probability distributions. Sim-
ilarly, the term J (9| ®,) is given be

T (®4]@0) £ KL(PT (D | Du(X))IPs (D | ©4(X))) +KL(Ps(Dy | Dy(X))[[Pr(Ds | D4(X))).
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Remark 4.3. The first term ‘Empirical error term’ stems from limited number of data samples
and will approach 0 as the size of source dataset grows towards infinity. As regard to the second
term ‘Textual error term’ caused by spurious correlations in textual modality, it can be unbounded
and equals to 0 if and only if Pr(Y|®,) = Ps(Y|®;). When the textual representations encode
spurious correlations, the second term is always strictly larger than 0. As comparison, the third
term ‘Alignment error term’ is caused by the misalignment between textual and visual represen-
tations. Similarly, the ‘Alignment error term’ is always non-negative and equals 0 if and only if
Py (®:|®,) = Ps(P:|P,). According to the results in Theorem 4.3 in (Yang et al.,|2023b)), we know
that optimizing the PNS risk in equationcan guarantee Y 1L Q | ®; and optimizing the PNS risk
in equation@]can enable ®, 1l X | ®,. Therefore, the proposed method can render both ‘Textual
error term’ and ‘Alignment error term’ approach 0. In other words, our method can guarantee a
tighter generalization error bound compared with the state-of-the-art prompt-tuning schemes for
vision-language models. Detailed proof of Theorem is provided in Appendix|[B|

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets To evaluate the performance of the proposed LogicAl-PT, we conduct experiments on
four commonly used datasets: Waterbird (Sagawa et al.,|2019)), CelebA (Liu et al.,2015), ImageNet-
1K (Russakovsky et al., 2015), and PACS [Li et al.|(2017). Detailed setup is explained as follows.

Waterbirds is a commonly used benchmark dataset for studying spurious correlations. The task is to
classify whether an image shows a landbird or a waterbird. The background (land and water) serve as
a spurious attribute for classification of bird images. Images in Waterbird dataset can be divided into
four groups: landbirds on land background (G1), landbirds on water background (G2), waterbirds
on land background (G3) and waterbirds on water background (G4). The number of pictures within
these four groups account for 73.0%, 3.8%, 1.2%, and 22.0% of the data, respectively. Group G3
is the minority group. In the training set, landbirds appeared more often on land backgrounds,
while waterbirds appeared more often on water backgrounds, so models fine-tuned on this dataset
tended to rely on backgrounds rather than birds to make prediction. However, in the testing set, both
landbirds and waterbirds have the same probability of appearing on a land background as on a water
background, which leads to a degradation of the model’s performance.

Similar to Watebirds, CelebA is a hair color prediction dataset, which also has 4 groups: non-blond
females (G1), non-blond males (G2), blond females (G3) and blond males (G4) with proportions
3.9%, 73.9%, 21.1%, and 1.1% of the data, respectively. Group G4 is the minority group.

In ImageNet-1K, there are features spuriously correlated with some categories (Singla et al.| [2021).
For example, for Baby pacifier class, the spurious attribute is baby face. Samples without babies in
the image are susceptible to being classified as water bottles rather than baby pacifier. CLIP using
ResNet-50 has a 98.2% classification accuracy for samples with babies in the image, but only 36.1%
for samples without babies. We use the water bottle class and the baby pacifier class in ImageNet-
1K as the training set, which has three groups: water bottles (G1), baby pacifier without baby (G2),
baby pacifier with baby (G3), accounting for 73.9%, 5.2%, and 20.9% of the data, respectively; the
group G2 is the minority group. Note that since the validation set for ImageNet contains only 50
images per class, we transferred a portion of the data from the original training set to the test set.

PACS is a larger real-world dataset commonly used for evaluating out-of-distribution (OOD) gener-
alization. It consists of 7 classes distributed across 4 domains. We adopt the “leave-one-domain-out”
strategy to evaluate OOD generalization performance. For example, when evaluating performance
on ‘Art Painting” domain, the remaining three domains are used as train domains.

Baseline Methods. We compare the performance of our LogicAl-PT with the state-of-the-art com-
petitors, including the zero-shot CLIP (Radford et al.l [2021)); CoOp (Zhou et al., 2022b), a widely
adopted prompt tuning method, which only minimize the contrastive loss Lo g—_j0gi:; Empirical
Risk Mimimization (ERM), the standard technique for minimizing classification loss which also
only minimize the cross-entropy loss; and CoOPood (Zhang et al.l[2024b) which aligns the textual
representations with the decoupled invariant representations. It is noted that, different from CoOp,
under our model framework, the ERM method will use the causal projection layer (i.e., h in Fig-
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ure [T). Besides, we also introduce two state-of-the-art prompt tuning methods as competitors: 1)
PromptSRC (Khattak et al.|[2023b) which designs a self-regulating framework for prompt learning
and DePT (Zhang et al.,[2024a)) which decouples the base-specific knowledge from feature channels
into an isolated feature space during prompt tuning of VLM:s.

5.2 OVERALL PERFORMANCE

Table 1: Overall performance comparison among LogicAl-PT and the state-of-the-art competitors.

Backbones ResNet-50 ViT-B/32

Datasets Waterbird CelebA ImageNet PACS Waterbird CelebA ImageNet PACS
Test Acc (%) Worst  Avg Worst Avg Worst Avg Worst Avg Worst  Avg Worst Avg Worst Avg Worst  Avg
CLIP 43.6 70.7 67.8 84.1 36.6 68.2 80.2 91.5 41.4 65.3 69.7 85.2 51.4 75.8 81.7 93.8
CoOp 49.3 79.1 289 80.6 77.3 87.7 81.3 92.4 43.5 77.4 26.2 77.0 87.1 92.8 82.4 94.5
ERM 54.7 84.1 26.7 78.2 80.5 88.5 80.0 92.6 49.6 78.3 25.9 76.8 86.7 93.3 82.9 94.1
CoOPood 60.3 86.3 31.6 78.6 85.8 92.9 81.5 92.8 52.5 79.2 27.1 76.5 89.9 94.6 82.7 94.4
PromptSRC 57.2 85.5 68.2 85.3 81.6 89.4 81.7 93.6 50.8 79.5 69.3 85.9 87.8 94.1 83.4 94.8
DePT+PromptSRC  57.9 86.0 68.3 85.7 82.0 90.1 81.6 93.9 51.7 80.0 70.2 86.3 87.4 94.3 83.5 95.1
LogicAl-PT 67.5 86.2 69.9 87.3 90.2 95.1 82.4 93.7 61.2 80.3 73.1 86.9 91.8 95.4 84.3 95.2

To assess OOD generalization performance, we evaluate the test accuracy of the obtained models
across a range of diverse test data distributions (4 test domains in Waterbird, CelebA, 3 test domains
in ImageNet-1K dataset, and 4 test distributions in PACS). Among them, the worst-case (Worst)
accuracy and average (Avg) accuracy are summarized in Table[T} Since the test data distribution is
unknown in practical scenarios, both the worst-case and average accuracy are significant for reflect-
ing the OOD generalization performance of a model. As shown in Table[T] our method LogicAl-PT
outperforms the competitors on both worst-case and average test accuracy in four commonly used
datasets. In particular, LogicAl-PT achieves around 7% / 9%, 2% / 3%, 4% / 2% and 1% / 1% higher
worst-case accuracy than the second best algorithm on Waterbird, CelebA, ImageNet-1K and PACS
when ResNet-50 / ViT-B/32 is used as backbone model, respectively.

5.3 VISUALIZATION

For the purpose of verifying that the tuned models developed by our method LogicAl-PT exploit
the necessary and sufficient features rather than spurious features, we sample some data instances to
generate visual explanations for the selected model using Grad-CAM (Selvaraju et al| 2017). The
commonly used Grad-CAM can produce a localization map which highlights the important regions
in the input image that a deep learning model depends on for predicting the label. As shown in
Figure 2] the pivotal features employed by various prompt tuning methods and zero-shaot CLIP for
predicting WaterBird (Figure 2(a)) and BabyPacifier (Figure 2(b)) are highlighted in red.

The visualization results reveal that the proposed LogicAl-PT demonstrates two notable advantages
over existing prompt-tuning methods: 1) LogicAl-PT can effectively eliminate the non-causal
spurious features that are associated with the label (i.e., ‘background’ in WaterBird dataset and
‘baby’ in ImageNet-1K dataset). 2) LogicAl-PT can mitigate the ‘sufficient but not necessary’
features that demonstrate inconsistent presence across different data instances. For example, the
shape of feet is a ‘sufficient but not necessary’ feature for classifying the picture of a bird as ‘wa-
terbird’” or ‘landbird’ because its feet can retract or remain hidden when the bird is lying down or
in flight. 3) As shown in Figure 2(a)} LogicAl-PT can mitigate the ‘necessary but not sufficient’
features which can impact the classification performance when the distribution of these ‘necessary
but not sufficient’ features varies. For example, the wings of birds are ‘necessary but not sufficient’
features for distinguishing ‘waterbird’ from ‘landbird’. From the visualization results in Figure[2(a)]
we can find that LogicAl-PT avoids utilizing the wings to categorize the pictures of birds.

In summary, visualization results demonstrate the proposed LogicAl-PT can effectively exploit the
‘sufficient and necessary’ features and mitigate the unstable spurious features, including non-causal
spurious features, ‘sufficient but not necessary’ features and ‘necessary but not sufficient’ features.
This explains why LogicAl-PT achieves superior out-of-distribution generalization performance,
delivering more consistent results across diverse data distributions compared to its competitors.
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Figure 2: Visualization results of various prompt tuning approaches and zero-shot CLIP when pre-
dicting in WaterBird and ImageNet-1K datasets are generated by using Grad-CAM.

5.4 ABLATION STUDY

Table 2: The effect of the two separate regularization terms in the overall objective.
Datasets Waterbird CelebA ImageNet-1K PACS
Test Acc (%) Worst Avg  Worst Avg  Worst Avg  Worst Avg

LogicAl-PT (a« =0) 51.56 7824 30.17 7932 7859 8723 80.66 92.18
LogicAl-PT (3 =0) 6545 85.72 67.51 8574 88.64 9431 80.75 93.27

LogicAl-PT 67.52 86.23 69.85 87.31 90.24 9512 8241 93.65

Effect of Logic Alignments As discussed in Section [4.1] there are two significant regularization
terms corresponding to the cross-modal logic alignment and textual logic alignment in the proposed
optimization objective [I0] We evaluate the isolated effects of them by independently setting o« = 0
and 8 = 0 in the objective respectively. As displayed in Table [2| the results indicate that the
cross-modal logic alignment is more important for cross-modal mitigation of spurious correlations
than textual logic alignment. However, combining textual logic alignment with cross-modal logic
alignment can further improve the out-of-distribution generalization performance. In this case, a
natural question arises: ‘Is textual alignment necessary, and what role does it serve during prompt
tuning?’ We assess the necessity of textual logic alignment in the following paragraph.

Necessity of Textual Logic Alignment Before studying the role textual logic alignment serves
through the lens of visualization, we start from a qualitative analysis. Since the textual representa-
tions (corresponding to variable ®;) are the class-wise mapping from the text labels, the sufficiency
of variable Y for variable ®; (i.e., Y = ®;) is naturally guaranteed while the reverse Y < ®, is not
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ensured. In other words, textual representations (®;) must be necessary causes for variable Y, but
they don’t have to be sufficient causes for variable Y. Therefore, textual logic alignment is proposed
to enhance the sufficiency of text representations (®,) for label Y. Accordingly, when cross-modal
logic alignment (i.e., ®;, < P,) is achieved, combining textual logic alignment can mitigate the

visual features that are not sufficient for variable Y.
-
"
-

(b) ImageNet-1K

w/o TLA
w/o TLA

LogicAl-PT

LogicAl-PT

(a) WaterBird
Figure 3: Visualization results for assessing the necessity of textual logic alignment.

To investigate the actual role that textual logic alignment serves, we visualize the features which is
utilized by the model tuned without textual logic alignment (w/o TLA), i.e., 8 = 0. In particular,
when we set § = 0, « is tuned to its optimal value, i.e., the cross-modal logic alignment (®; < ®,,)
is enhanced. The visualization results are displayed in Figure 5] Comparing the results, we can
find that adding textual logic alignment can mitigate the visual features which are not sufficient for
predicting Y. For example, adopting textual logic alignment mitigates the ‘background’ feature
(on 3rd picture in Figure and ‘wing’ feature (on 2nd picture in Figure 3(a)) which are not
sufficient features for making classification in WaterBird dataset, and mitigate the ‘bottle’ feature
(on 2nd picture in Figure B(b)) and ‘baby face’ feature (on 4th picture in Figure 3(D)) that are not
sufficient features for predicting ‘babypacifier’ in ImageNet dataset. Therefore, we can conclude
that the visualization results support the qualitative analysis.

Table 3: Performance of LogicAl-PT with different values of « and /5 on ImageNet-1K.

«@ \ 0.0 \ 1.0 \ 10.0 \ 20.0 \ 30.0 \ 50.0
worst-case (%) 78.6 80.9 86.1 90.2 88.7 79.5
average (%) 87.2 89.4 93.5 95.1 94.0 87.9
B \ 0.0 \ 0.10 \ 1.00 \ 10.0 \ 20.0 \ 30.0
worst-case (%) 88.6 89.7 90.2 89.3 87.2 85.5
average (%) 94.3 94.8 95.1 94.5 93.2 91.9

Sensitivity of Hyper-parameters We evaluate the effects of two significant hyper-parameters in
the proposed objective (i.e., o and ) on model performance here. Since the results on other datasets
present the similar tendency as on ImageNet, we herein focus on ImageNet. When evaluating the
effect of a, we fix 8 = 1.0 . When evaluating the effect of «, we fix & = 20.0. The results are
shown in Table 5] We can find the performance of LogicAl-PT is more sensitive to the selection
of « than the selection of 3. To effectively mitigate spurious correlations in VLMs, careful tuning
of « is essential. Regarding (3, a small value is safer in practice, as a large 5 may compromise the
discriminative capability of the extracted features.

6 CONCLUSION

This paper investigates the cross-modal mitigation of spurious correlations in prompt tuning of
vision-language models. We exploit causally motivated logic alignment (i.e., alignment with ne-
cessity and sufficiency) to integrate mitigation of spurious correlations and cross-modal alignment
of representations organically. Theoretical analysis is provided to prove that our method can yield a
tighter generalization error bound than existing approaches. Experimental results across diverse
datasets demonstrate the superiority of the proposed framework, termed LogicAl-PT, in out-of-
distribution generalization performance, compared with the state-of-the-art competitors.

10
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Figure 4: Illustration for three possible relations that are unstable across diverse data distributions
(non-causal spurious correlation, SF\NC relation, and NC\SF relation) in vision-language models,
where ‘SF\NC’ denotes ‘sufficient but not necessary’ and ‘NC\SF’ indicates ‘necessary but not
sufficient’. Besides, ‘SF and NC” means ‘sufficient and necessary” in Figure i(d)] ‘IID’ indicates
‘in-distribution’ while ‘OOD’ means ‘out-of-distribution’. ®,, represents the visual representation
while Y indicates text label.

In these examples, the task is a binary classification problem aimed at distinguishing ‘cat’ class from
‘fox’ class. The learned prompt together with the frozen text encoder works as a projector which
projects the two text labels onto a specific feature subspace. When the text labels are projected into
the ‘Background’ feature subspace (as shown in Figurei(a)), the ‘background’ feature component in
visual representation space determines the prediction result because prediction is made using cosine
similarity between visual features and text features. In this way, a spurious correlation between
visual representation and text label is built by this learned prompt. Similarly, the learned prompt in
Figurebuilds a SF\NC relation from @, to Y, since ‘cat feet’ is a sufficient but not necessary
feature for predicting ‘cat’; the learned prompt in Figure builds a NC\SF relation from ®,, to
Y, since ‘pointy ear’ is a necessary but not sufficient feature for predicting ‘cat’; the learned prompt
in Figure [f(d)] builds a SF and NC relation (i.e., logic alignment) from ®,, to Y, since ‘short mouth’
is a sufficient and necessary feature for predicting ‘cat’.

As illustrated in Figure [(a)} f(b)] and [A(c)] all these three relations (non-causal spurious correla-
tion, SF\NC causal relation, and NC\SF causal relation) are unstable when data distribution varies.
Therefore, apart from mitigation of cross-modal spurious correlations, cross-modal logic alignment
(i.e., sufficiency and necessary) is also essential for enhancing the out-of-distribution generalization
performance in vision-language models. This is why we utilize PNS risk in the prompt tuning of
VLMs to achieve better out-of-distribution generalization performance.

B THEORETICAL PROOF: GENERALIZATION ERROR BOUND

In this paper, we denote the true data distribution of source and target datasets as ps and p, respec-
tively. In practical scenarios, the number of available data instances in a specific dataset is limited.
We describe the empirical data distributions estimated from the source dataset and target dataset by
ps and pr, respectively. Without loss of generality, we use notations with subscripts S and 7 to
represent metrics on the source and target data, respectively, while notations with the overscript”
denote empirical estimates (e.g., the empirical distribution p and the true distribution p).

14
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Proposition B.1 (Lemma 11 Shamir et al.|(2010)). Let p be a distribution vector of arbitrary (pos-
sible countably infinite) cardinality, and p be an empirical estimation of p based on a dataset of size
m. Then with a probability of at least 1 — § over the samples, the following inequality holds:

2 1 \/210g(1/3) 0
Jm

lp =7l <

Theorem 4.7. Suppose the source and target data distributions are denoted by Ps(X,Y) and
P+(X,Y), respectively, and the size of the source dataset D is m. Then, there exists a finite constant
C such that the following inequality holds with a probability at least 1 — §:
Clog([1/8) (1X|Tog(m) + ¥ og(|2])) + 2|

vm

Empirical error term

+  JY|2) + VOIT YD) + T (P4|@y) + /CIV|T (R1] D),

Textual error term Alignment error term

[IF(Y;@,(X)) — Is(Y;®,(X))| <

where m > $log(|V|/6)|X|e?. The term ‘Textual error term’ is caused by distribution shift in
textual modality while ‘Alignment error term’ stems from the misalignment between textual and
visual modalities. 7 (Y'|®;) denotes the Jeffrey’s divergence defined by

TY @) £ KL(PT(Y | @) |IPs(Y | 1)) + KL(Ps(Y | @¢)||Pr(Y | D4))

where JCL(-||-) denotes the Kullback—Leibler divergence between two probability distributions.
Similarly, 7 (®;|®,) is given be

T(®4|®,) £ KL(PT (D | ©0(X))[Ps (@4 | D4(X))) +LL(Ps (D¢ | 20o(X))|[P7 (D | 0(X)))-
Proof. At the beginning of the proof, we denote the mutual information between X and Y which is
computed on data distribution ps, pr, ps and py by Is(Y; X), IT(Y; X), Is(Y; X) and I (Y; X),

respectively. We will derive the generalization error bound using the similar schemes as in (Shamir
et al.,[2010; |Yang et al., 2023a; Tang et al., [2024).

Before starting the process of proof, we define a useful real-valued function ¢ as follows:

0, z=0
£(z) =< zlog(L), 0<a<. (12)
L

It is noted that £(x) is a continuous, monotonically increasing and concave real-valued function.

In general, we consider a deterministic Visual feature extractor denoted by ®,. To enhance con-
ciseness in written expression, we will use ®,, to represent ®,(X) in this proof without further
elaboration. Thus, we can write that

Is(Y;®y(X)) — IT(YVi0,(X))| £ [Is(Y; D) — I7(Y; ®y)|
= [Is(Y;®,) = Is(Y; ®y) + Is(V; @) — I (V; )|

R (13)
S [Is(Y;90) = Is(Y;00)| + [ Is (Y Po) = I7(Y; D)
.Al -AQ
We know that the mutual information I(Y'; ®) is defined by:
I(Y;®) £ H(®) - H(®|Y) (14)

where H (-) represents the Shannon information entropy. We firstly deal with the first term in the
above inequality:

Ar = |Hs(®,) — Hs(®,) + Hs(®, | V) - Hs(®, | )] (15)
S

< ’H ((bv | Y) - Iz’S(q)v ‘ Y)‘ + ’I:]S((I)v) - HS(¢)U)|
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For the first term on the right side of Eq.[I5] we can write that

|Hs(®, | V) — Hs(®, | V)|
=3 (ps() Hs (@, | ) — ps(y) Hs(@, | )|

Yy

= Z( s(y) Hs(®, |y)—Ps(y)ﬁs(q’v|Z/)+Ps(y)ﬁs(‘1>u|y)—ﬁs(y)ﬁs(@v\y))‘

IA

Zps (Hs(®, | y) — Hs(®y | )| +| 3 (ps )~ () s | y)|
The first term on the right side of the above inequality can be bounded by

|2 st (f1s(e |9) = is( )
< Do) 32 (sl o(ns(nl) — () Log(ps(014)))|

szm Zﬂm%wﬁmmm
_Zps Zﬁ(\Zps 0ule) (ps(aly) = s (ay)
Y Po
= 3 st Ye(| X (sterle) = 4) astel) ool

o
< ps(n) 3o €([Ips(X1y) — ps (X[l [[ps(@1X) — A]))
Y Pu

where A can be any constant. When we set A £ ﬁ > . Ps(Pv|z), we can get

]Zps (Hs(®, | y) — Hs(@, | )| < 3 pse) S &(|lps(XIy) - ps(XIy) | - v/Vps(@0]X)))

bu
(16)

where =V (ps(¢| X)) describes the variance of the vector ps(¢,|X). It is known that Hg(®,) >

\X |
H s(®, | y) for any y, since conditioning cannot increase entropy Shamir et al.[(2010). Therefore,

)Z ps(y ) Hs(®, | y) ‘ <|lps(Y ﬁs(Y)H‘Zﬁs(‘I)
y 17

= [lps(Y) = ps(V)|| (1Y | Hs (D))

Because &, (X) € Z, we ca get that Hg(®,,) < log(]Z|) according to the definition of Shannon
Information Entropy. Combining Eq. and Eq. (I7), we can get

Hs(@, | Y) = Hs(@, | V)| < 3 ps(n) D €([Ips(Xly) - ps(XIy)|| - vV ps(6,1X)))
y o

+ ([Y]-1og(12]) - [lps(Y) = ps (V)
(18)

16
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On the other hand, we have

[Hs(@,) — Hs(®,)| = )Z ps(6,) log(ps(62)) — Ps(62) log(hs(8,)))|
< Zg Ips(év) — Ps(dw)|)
—zs(\zps (D0l (ps () — ps()|) (19)
:25(\2 ps(@ula) = 4) (ps(a) = ps (@)
< Z€(||Ps ()| VVps(@0]X)))

where the constant A is chosen as A £ W > . Ps(dy|z). Plugging Eq. |i and Eq. into
Eq. (I3), we can get

A <3 ps() Y- €(lIps(XIy) = Bs(XIy)[| - vV (ps (60l X)) )
Y Pv

+ (1Y [log(|2])) - [[ps(Y) = ps(Y)|| + Zﬁ(”ps(x) —ps(X)| - V(pS(d)ulX)))
o
(20)

Subsequently, we can apply the concentration bound given in Proposition to || ps(X|y) —
7s(X|y)|l, (X) — ps(X)|| and ||ps(Y) — ps(Y)|| for any y in Eq. (20). To make sure the
bounds hold simultaneously over these |Y|| + 2 quantities, we replace J in Eq. by 6/(|Y|+2)
as in the proof of Theorem 3 in[Shamir et al.|(2010). Hence, with a probability at least 1 — § we have

Ay < 225((2+ V21og((|Y] +2)/5)) W)
bo

m
21

24\ /21og (V] +2)/6
AR gjm ) (viog(121)

There exists a small constant C' that makes the following inequality hold:
2+ /2log((|Y] +2)/0) < /Clog([Y/9)

In addition, we know that the variance of any random variable that takes value in the range [0, 1]
is at most . Since %7 3°, V/(ps(¢v]X)) is the variance of the distribution vector ps(¢,|X), we

have that V (ps(¢u| X)) < |X|/4, Yoo

Suppose that the size of training dataset (i.e., m = |D,,|) satisfying that
C
m > - log(|V']/8)| X1e® (22)

Then, we can get

Clog([Y/6)V (ps(9.1X)) _ \/Clog(lY/6>|X|

m 4m
We define that V(¢,) = C'log(|Y|/0)V (ps ¢v|X)) then we have that

() -
e .

=5 Vy.

—~

o
< ; <\/ V(jz“) log(v/m) + \/1%6>

17
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Using the results proved in the proof of Theorem 3 in |[Shamir et al.|(2010), we can have that
>, VV(b0) < /]X]|®,]. Therefore, we can write that

Zf(\/Clog |Y|/6)m(p3(¢v|X))> ; \/c1og(|Y|/5)Xz'%1og(m)+§<1>v| 23)

P

where |®,| denote the size of the feature space from which @, takes value. Recalling that ®,, is
used to represent ®,,(X) where @, itself is a deterministic feature extractor, we can conclude that
|®,| < |X]|. Thus, we can get

A < Clog(|Y]/8)|X|log(m) + 2| X]| Clog(|Y]/6)|Y|log(|Z])
1S + Jm

vim (24)
~ V/Clog(V1/3) (X | 1og(m) + |¥|lox(|2])) + 2|
- Vi
As regard to the second term in Eq. , we can write that
Ay = [I7(Y;®y) = Is(V; Dy
pT(y7¢v) pS(y7¢v)
= ‘ZZPT Ys bu) 10g< pp )p7(¢v)) — ps(y, dv) log (m)’
- ‘ SN (priws ) 108 (p7(w160)) = ps(y, 60)log (ps(ylén) ) + Hr(Y) - Hs(Y)’
Y b
(25)

As is commonly stated in the machine learning literature, the target variable Y is an exogenous
variable, which indicates that ps(Y") = p7(Y). Therefore, we have that |Hs(Y') — Hr(Y)| = 0.
In this way, we can write that

A < ‘ZZ( (y, d0)10g (p1(yl90)) — ps(y, ¢v) log (ps(y\%)))‘

\ZZ( (962108 (P7(y16)) = P7(y: 60) 08 (s (y]60) + Pr(y: 60) 1og (ps(]6.) — Ps (v, 60) o5 (ps(y1¢0) )|

< ‘ZZPT Y, bu) log (pT (vld,) )‘ (ZZ pr(y, d0) = ps(y, 6.)) log (ps(y\ou))‘

ps(ylow)

=KL(p7(Y | ®)|lps(Y | ,)) + ‘ ZZ p1(y, d0) — Ps(y, 6v)) log (ps(ylév))

B

According to the above equation, we have that
B = |23 (07 (v 62) — pslo60)) og (ps(v10) |
Y 9
Using the Jensen’s inequality, we can get
B> < Y| Z H Z p7(y, d0) — Ps(y, bv)) log (ps(ylbv)) H

<YV p(dw)
Y

o

< YIC2 3 S p(60)

Y Pu

2

)

(o7 (Wl60) — ps(vl60)) log (s (yl60))|

Ip7(l60) — ps(ylew)|

18
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where Cs denotes a constant satisfying that Cs = max(4, y)e(@,,v) | 10g (ps(y|dw))|. We know
that log(+) is a concave function, therefore we can get

B> < |Y[C5D D p(en)||pr(wlw) — ps(ylen) ||| 1og (pr(yléw)) — log (ps(ylew)) ||
Y Py

= Y13 32 D" p(6) (pr(yln) — ps(yl6n)) (log (pr(yle.)) — log (ps(yle.))
Yy v

Y

- p7(yldw) p7(yldw)
= |v|C?% %: %U:p((bv) <p7-(y¢v) log (W) — ps(ylv) log (lg(ym))

= IVIC3 (KLY | 8)lIps(Y | €,)) +KL(ps(Y | @,)llpr(Y | ©,))).
Consequently, we can get that

Ay <KL(pr(Y | @0)|lps(Y | ®0))

+ \/ YICE(KL(pr (Y [ @)llps(Y | 92)) + KLps (Y | 2)pr(Y [ ) 6)

ST (pr(V | @), ps(Y | @0)) + \/IYIC%J(J?T(Y | @), ps(Y | ©u))
where J (p, q) denotes the Jeffrey’s divergence between probability p and g which is defined by

T (pr(Y [ ©,),ps(Y | ®,)) £ KL(p7 (Y | ®0)lps(Y | ©0)) + KL(ps(Y | ©o)[p7 (Y | ©0))
With Equation (24) and Equation (26), we can conclude that

Clog(IY1/3) (X |1og(m) + Y| 10g(|Z])) + 2|X|
Jm
+ T (or(V | 80),ps(Y | 8)) + [ IVICT (p(V | 1), (Y | @)
27)
When Assumption [4.1| is satisfied, we have that Y 1L @, | ®;. Thus, we can get that ps(Y |

D, ;) = ps(Y | @), VO, &y and pr(Y | Dy, ®1) = pr(Y | &4), VP4, . In other words, we
can derive that

ps(Y, ®,) Zps (Y, ¢, @ Zps Y [ 61, @0)ps(dr, ®u) = D ps(Y | ¢1)ps(dr, o).
Pt
That is, ps(Y | <I>v) =>4 ps(Y| ¢t)p3(¢t | ®,). Similarly, the probability distribution p (Y |
®,) can be rewrite as pr (Y | @,) = >_,, pr(Y | ¢¢)p7(¢: | ©0). Plugging these two equations
into KL(ps(Y | @,)|lpr(Y | ®,)), we can obtain that

Is(Y; @4 (X)) — IT(Y;®,(X))| <

e

_ o Z(m ps(y | ¢1)ps(9t | ¢o) '
= Zy:%:p(%)%;ps(y | $)ps(¢e | bu)log (Z@ o Y e %))

Here we consider a real-valued function ((z) = x log(x) which is a convex function. Then, we can
write that

KL(ps(Y | @,)lpr(Y | @) Zzpmzwywpmm) (E“’S”“’” ")t‘a”))

>, PT(W | ¢0)pT (1 | Do)

B ) . pr(y | o PT(Ot [60)  ps(y|d)ps(de | 6)
Zz;p(é Z])T y | ¢e)p7 (bt | D0)C (ZZ — \(bt)pT(@Mbu))

0 T [ 00T (00 | 00) pT(Y

pr(y \ B )W(@ | v) ps(y | p)ps(Be | dv)
S%:%;p ZPTH@W@M% ZZ << : (bz\au))

0 PTW | 00)p7(8¢ | ¢0) >\ PT(y | d0)p7(

- Zy:;p(%)%;m(y | 607 (8 | au)g(my i WT( o m))
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According to the definition of {(z) = x log(z), we can get that
Kﬁ(pS(Y | q)v)”pT(Y | (I)v))

S 60 S sy | n)ps | 60) o (ps(y | $0)ps(é | ¢v>>
Y Py [on

p7(y | 00)pT (98 | Do)

*ZZP Pv) Zps y | o)ps(¢e | ¢v)log (psiii || 21);)

_ o ps(y | d¢)
=> 3" ps(y, ¢, 60)1 g( (qubt))

Yy bu ¢u
+ZZZPS (y, ¢, dv) log (Ps(@ | ¢v))
v e (6e | ¢0)
o 1 ps(y | o) s (¢t|¢v)
ZZPS@/@ og( (y | d1) +;§;ps b1, ¢u) log o

= /Cﬁ(ps(y | @)[lp7 (Y | 1)) + KL(ps (D | ©0)llp7(Pe | D))
Similarly, we can also derive that
KL(pr(Y | @,)[ps(Y | ®0)) < KL(p7(Y | 20)[Ips(Y | ©4)) +KL(p7(Pe | Do)|Ips (Pt | ©0))
Therefore, we conclude that
T(pr(Y [ 20)llps (Y [ @) < T (pr(Y [ @0)llps(Y | @1)) + T (p7(Pe | ©0)[ps(®s | 20)).
Plugging this inequality into inequality we can finally get

A Clog(IV178) (1X|log(m) + [ Y| og(1Z1) ) + 21|
[I7(Y; (X)) — Is(V; @, (X))| < N
+ T2 + VDT ]®:) + T (@|2,) + VEVIT (@i]@,),

Thus, we complete the proof of Theorem d.2] O

C MORE DETAILS ABOUT PNS AND PNS MODELING

Probability of Necessity and Sufficiency (PNS) describe the probability with which a variable is the
necessary and sufficient cause of another variable. The formal definition of PNS is given as follows.

Definition C.1 (Probability of Necessity and Sufficiency (Pearl, [2009)). Let the specific implemen-
tations of causal variable ® as ¢ and ¢, where ¢ # ¢. The probability with which variable ® is the
necessary and sufficient cause of variable Y on test data distribution Py is given by:

PNS(Y,®) := Pr(Yipoee) =y | 2 =0,Y #y) Pr(® =0,Y #y)
suf ficiency

+PT(Ydo(<I>:qS) Y| P=0,Y =y)Pr(®=09¢,Y =y),

necessity

(28)

where do(® = ¢) (do-operator) indicates that the manipulable variable ® is forced to be a fixed
value ® = ¢.

Since the probability of necessity and sufficiency is defined based on counterfactual distributions, it

is usually intractable to estimate the PNS of two variables. Therefore, we need some assumptions to
facilitate the practical calculation of PNS.
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Assumption C.2 (Exogeneity (Pearl, 2009; |Yang et al.,[2023b))). Variable ® is exogenous relative to
variable Y with respect to the source domain S and target domain T, if the intervention probability
is identified by conditional probability, i.e., Ps (Ydo(¢:¢) =y =Ps(Y =y | ® = ¢) and
Pr(Yaow=¢) =y) =Pr(Y =y | ®=¢).

Assumption C.3 (Monotonicity (Pearl, [2009; |Yang et al.l 2023b))). Variable Y is monotonic rel-
ative to variable ® if and only if either P(Yyo(wo=¢) = s Yao(wo=g) # Y) = 0 0r P(Yapa=g) #
Y, Yyoo=g) = y) = 0 holds.

Exogeneity defined in Assumption [C.2] bridges the gap between the intractable intervention prob-
ability and the computable conditional probability, while monotonicity defined in Assumption
guarantees that the causal variable ® has monotonic effect on variable Y. With these two assump-
tions, we can obtain a useful lemma as follows.

Lemma C.4 (Pearl| (2009); Yang et al.|(2023b)). If variable ® is exogenous relative to variable Y,
and 'Y is monotonic relative to ®, we can get

PNS(Y,®) = Pr(Y =y | &= 6)~ Pr(Y =y | & = ). 29)

suf ficiency necessity

D MORE EXPERIMENTAL DETAILS

Implementation. In all experiments, we use the publicly available CLIP model with the ResNet-
50 (He et al., 2016)) and ViT-B/32 (Dosovitskiy, [2020) as the backbone models. The prompt used in
all methods has 8 learnable tokens and initialized as the default one “a photo of’. When comparing
the performance with baselines, we optimize the prompts for 50 epochs with SGD optimizer and a
cosine decay learning rate scheduler, the initial learning rate is 0.002. The batch size of images is
32 on all datasets. For LogicAl-PT, unless otherwise specified, the value of hyper-parameters o and
[ are 10.0 and 1.0 for CelebA; 20.0, 1.0 for ImageNet-1K; 3.0 and 2.0 for WaterBird.
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