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ABSTRACT

We present a novel approach to calibrating linguistic expressions of certainty, e.g.,
“Maybe” and “Likely”. Unlike prior work that assigns a single score to each cer-
tainty phrase, we model uncertainty as distributions over the simplex to capture
their semantics more accurately. To accommodate this new representation of cer-
tainty, we generalize existing measures of miscalibration and introduce a novel
post-hoc calibration method. Leveraging these tools, we analyze the calibration
of both humans (e.g., radiologists) and computational models (e.g., language mod-
els) and provide interpretable suggestions to improve their calibration.

1 INTRODUCTION

Measuring the calibration of humans and computational models is crucial. For example, in health-
care, radiologists express uncertainty in natural language (e.g., “Likely pneumonia”) due to the
inherent ambiguity in the image they examine. These certainty phrases (e.g., “Maybe”, “Likely”)
influence healthcare providers’ decisions such as ordering additional diagnostic tests. Accurate per-
ception of these certainty phrases directly impacts patient diagnosis and treatment. Additionally, it’s
more natural for large language models (LLMs) to express their confidence using certainty phrases
since humans struggle with precise probability estimates (Zhang & Maloney, 2012). Our work en-
ables measuring the calibration of both data annotators and LLMs, paving ways for future work to
improve the reliability of LLMs.

Existing miscalibration measures focus on classifiers that provide a confidence score, e.g., posterior
probability. These approaches cannot be applied directly to text written by humans or language
models that communicate uncertainty using natural language. Prior work on “verbalized confi-
dence” attempted to address this by mapping certainty phrases to fixed probabilities, e.g., “High
Confidence” equals “90% confident”, (Lin et al., 2022a). The oversimplification misses two key
aspects: (1) individual semantics: people use phrases like “High Confidence” to indicate a range
(e.g., 80-100%) rather than a single value; and (2) population-level variation: different individuals
may interpret the same certainty phrase differently. Appendix D explains this gap in more detail.

Calibration in the space of certainty phrases presents unique challenges. Prior work such as his-
togram binning (Zadrozny & Elkan, 2001) and Platt scaling (Platt, 2000) fit low-dimensional func-
tions (e.g., one-dimensional for binary classifiers) to map uncalibrated confidence scores to cal-
ibrated probabilities. However, when working with certainty phrases, direct manipulation of the
underlying confidence scores is not feasible. Rather than mapping confidence scores directly, we
instead calibrate a model by adjusting the use of different certainty phrases.

In this work, we measure and calibrate both humans and computational models that convey their
confidence using natural language expressions of certainty. The key idea is to treat certainty phrases
as distributions over the probability simplex. Using this construction, we generalize existing esti-
mators for miscalibration metrics, such as the expected calibration error (ECE) (Pakdaman Naeini
et al., 2015), and visualization tools, such as the reliability diagrams (Wilks, 2006). To calibrate
over certainty phrases, we learn a discrete and possibly stochastic calibration map over a set of these
certainty phrases to a potentially different set. This mapping is derived as the solution to an optimal
transport problem that minimizes the net change in calibration error.

We demonstrate our approach by analyzing the calibration of radiologists writing clinical reports,
accounting for variables such as the pathology and radiologist’s identity. Moreover, we show how
we can guide radiologists to become better calibrated in their use of certainty phrases. In addition,
we showcase the calibration of language models and demonstrate the effectiveness of our calibration
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method to post-hoc improve model calibration. Our research opens new avenues for assessing and
improving the calibration of humans and computational models that communicate their confidence
using natural language.

2 RELATED WORK

Measuring Miscalibration We build our approach on the expected calibration error (ECE), a pop-
ular method for measuring miscalibration (Zadrozny & Elkan, 2001). Previous research has focused
on adapting ECE to skewed confidence score distributions (Nguyen & O’Connor, 2015), improving
its sample efficiency (Zhang et al., 2020), and debiasing (Roelofs et al., 2022). We extend the ECE
estimator to accommodate the assumption that certainty phrases represent distributions rather than
real-valued scores. This formulation is robust to binning strategies and alleviates estimation noise
under small sample sizes (Kumar et al., 2019). Interestingly, our proposed ECE estimator can be
viewed as a variant of kernel density estimator for ECE (Zhang et al., 2020; Popordanoska et al.,
2022) that uses input-dependent, possibly asymmetric kernels.

Calibrating Classifiers & Regressors We focus on post-hoc calibration, as opposed to training
models to be calibrated ab initio. Post-hoc calibration reduces to estimating or fitting the canonical
calibration function (Vaicenavicius et al., 2019). For example, histogram binning (Pakdaman Naeini
et al., 2015) estimates the canonical calibration function with histogram regression. Platt scaling
(Platt, 2000), isotonic regression (Zadrozny & Elkan, 2002), and Beta calibration (Kull et al., 2017)
fit monotonic, potentially smooth functions from data. These methods assume models provide con-
fidence scores, which makes them unsuitable when only certainty phrases are available.

Distribution calibration (Song et al., 2019) works on regressors that, akin to our setup, predict con-
fidence distributions rather than scores. In contrast to distribution calibration, we focus on classifi-
cation problems. Moreover, matching the predicted distribution to the true distribution of subsets of
examples sharing the same prediction is not of interest in our application.

Language Model Calibration Language model calibration typically involves defining real-valued
confidence scores and using existing tools designed for calibrating classifiers. For instance, confi-
dence scores can represent conditional probability of an answer given the context (Desai & Durrett,
2020) or the average probability across different paraphrases of answer tokens (Jiang et al., 2021).
These methods require access to the model’s internal state. Our work is closely related to “verbal-
ized confidence“ (Lin et al., 2022b; Tian et al., 2023), where the model articulates its confidence
in token-space as certainty phrases. Rather than focusing solely on the mean, our method offers a
more realistic quantification of calibration error by treating each certainty phrase as a distribution.
Unlike previous studies that apply calibration techniques designed for classifiers (Desai & Durrett,
2020) or fine-tune the language model for controlled generation (Mielke et al., 2022), we propose a
lightweight discrete policy that adjusts the use of certainty phrases to improve calibration.

3 METHOD

3.1 BACKGROUND

Miscalibration Measures Let X be the input space and Y be a finite set of labels. For simplicity,
we consider binary classification, i.e., Y = {0, 1}. A probabilistic classifier g : X → [0, 1] provides
its confidence level for the positive class. Here, we use g to refer to any type of classifier, whether it
be a human or a computational model. Classifier g is calibrated if the true probability of the positive
class given model’s prediction is exactly equal to that prediction:

E [Y | S] = S, (1)

where S = g(X) represents the confidence score. For instance, a radiologist is perfectly calibrated
if his predicted probabilities match real-world outcomes, e.g., if a radiologist predicts a 30% proba-
bility of pneumonia for a group of patients, then pneumonia actually occur in 30% of those patients.

Alternative definitions of calibration, e.g., confidence calibration (Guo et al., 2017) and class-wise
calibration (Kull et al., 2019), are equivalent for binary classification (Vaicenavicius et al., 2019).
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Figure 1: Probability density functions obtained by fitting beta distributions to results of a survey of
radiologists’ perception of different certainty phrases (Shinagare et al., 2023).

The expected calibration error (ECE) (Pakdaman Naeini et al., 2015) measures the degree to which
the calibration definition is violated in expectation:

ECE = E [ |E [Y | S]− S| ] , (2)

where the outer expectation is computed with respect to the distribution PS that is the pushforward
of PX by g. If ECE = 0, then g is perfectly calibrated.

Empirical Estimation Given a dataset D = {(x1, y1), · · · , (xN , yN )}, one can estimate ECE in
Equation (2) or visualize the reliability diagram (DeGroot & Fienberg, 1983) with binning (Pak-
daman Naeini et al., 2015). Specifically, we use (I1, · · · , IM ) to denote the set of bins that partition
classifier g’s range and Bm to denote the set of indices of samples whose predictions fall into bin Im.
Empirical averages

r̂m =
1

|Bm|
∑

n∈Bm

yn p̂m =
|Bm|
N

ĝm =
1

|Bm|
∑

n∈Bm

g(xn) (3)

serve as estimates for per-bin calibration function rm ≜ E [Y | S ∈ Im], score probability pm ≜
P (S ∈ Im), and model prediction gm ≜ E [S | S ∈ Im] respectively.

The binning estimator for ECE is a weighted average of per-bin calibration errors

ÊCE =

M∑
m=1

p̂m |r̂m − ĝm| . (4)

Statistical properties of the estimator above have been studied in (Vaicenavicius et al., 2019).

If we define r̂(s) = r̂m for s ∈ Im, function r̂ is the histogram regression estimator for the canonical
calibration function r(s) ≜ E [Y | S = s]. The reliability diagram displays the curve (s, r̂(s)) for
s ∈ [0, 1]. If g is perfectly calibrated, then r̂(s) = s for s ∈ [0, 1].

Post-hoc Calibration Given a model g and a calibration dataset D, post-hoc calibration seeks a
calibration map t : [0, 1] → [0, 1] such that t ◦ g is well-calibrated. This can be achieved by mini-
mizing E(X,Y )∼Dℓ(t(g(X)), Y ) over a family T of possible mappings, where ℓ is a loss function.
Platt scaling (Platt, 2000) is an example of this approach, where T is the set of logistic functions and
ℓ is the log-loss.

3.2 CONFIDENCE AS A DISTRIBUTION

Let U ≜ {u1, · · · , uK} be a set of K distributions corresponding to different certainty phrases. For
instance, the phrase “Maybe” could be modeled as Beta(2, 2), which is centered at 0.5 with decaying
density away from 0.5. Figure 1 illustrates what these distributions might look like. We can derive
confidence distributions from surveys on human perception of certainty phrases, e.g., in radiology
(Shinagare et al., 2023) or from social media polls (Fagen-Ulmschneider, 2023). In this work, we
employ beta distributions to represent the confidence distributions u1, · · · , uK .

We assume that instead of outputting a scalar-valued score, the classifier g : X → P([0, 1]) provides
its confidence for the positive class as a distribution over [0, 1]. Here, we use g to abstract a human
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or a language model that generates certainty phrases about its internal belief of an event, e.g., a
radiologist might dictate “Likely pneumonia.” To restrict our attention to a finite set of certainty
phrases, we assume g = u ◦ γ where γ : X → [K] outputs an index and u : [K] → P([0, 1]) maps
that index to the corresponding confidence distribution, i.e., u(k) = uk. Given any sample x ∈ X,
the classifier’s output g(x) = uγ(x) is one of the K confidence distributions. Alternatively, g(x) can
be interpreted as defining a conditional density for the score S that is a finite mixture over {uk}, i.e.,

fS|X(s | x) =
K∑

k=1

1 [γ(x) = k]uk(s). (5)

The definitions of calibration and ECE in Equations (1) and (2) remain valid even as we move to
treat confidence as a distribution. Instead of being the pushforward of PX by g, PS is characterized
by the density fS(s) = E

[
fS|X(s | X)

]
. We generalize estimators in Equation (3) as follows:

r̂m =

∑N
n=1 P (S ∈ Im | X = xn)yn∑N
n=1 P (S ∈ Im | X = xn)

p̂m =
1

N

N∑
n=1

P (S ∈ Im |X = xn) (6)

ĝm =

∑N
n=1 P (S ∈ Im | X = xn)E [S | S ∈ Im, X = xn]∑N

n=1 P (S ∈ Im | X = xn)
. (7)

Proposition 1. The estimators r̂m, p̂m, and ĝm defined in Equation (6) are consistent estimators for
E [Y | S ∈ Im], P (S ∈ Im), and E [S | S ∈ Im] respectively.
We provide the proof in Appendix A.1.

Interpretation The estimators in Equation (6) reduce to that in Equation (3) if the confidence
distributions are delta distributions, i.e., U = {δs | s ∈ [0, 1]}. Provided that the confidence dis-
tributions are supported on [0, 1], we can interpret the estimators in Equation (6) as allowing each
sample to contribute to the estimates r̂m, ĝm, p̂m of every bin Im with a smaller weight determined
by P (S ∈ Im | X = xn). The resulting estimates are more robust to increasing the number of bins
and will not result more biased calibration errors as we explain in Section 3.3.

Implementation Since the confidence distributions are represented via their parametric form,
computing P (S ∈ Im | X = xn) is straightforward and requires two evaluations of the CDF
of uγ(xn). In contrast, computing E [S | S ∈ Im, X = xn] involves integrating w.r.t. a den-
sity. If the number of bins M is small, we can use adaptive quadrature algorithms through
scipy.integrate to trade time for better approximation; If M is large, midpoint rule provides
sufficiently good approximation of the integral, requiring a single evaluation of the density uγ(xn).

Accounting for Uncertain Labels In practice, ground truth labels y1, · · · , yn may not always be
available. Instead, we might only have access to certainty phrases that provide information about the
latent binary labels. We can incorporate such uncertain labels into calibration error estimation, which
is especially useful when the sample size is small and many labels are uncertain. Let cn ∈ P([0, 1])
be the confidence distribution associated with the certainty phrases for label yn. To account for this
uncertainty, we can replace yn with P (cn ≥ 1

2 ) in the estimator r̂m defined in Equation (6). The
modified estimator remains consistent that we prove in Appendix A.2.

3.3 CONNECTION TO KERNEL DENSITY ESTIMATION OF ECE

Suppose I1, · · · , Im are equal width intervals, i.e., Im = (sm, sm + δ) for some δ > 0. We define
continuous versions of the estimator r̂m and p̂m in Equation (6)

r̂(s) =

∑N
n=1 fS|X(s | xn)yn∑N
n=1 fS|X(s | xn)

f̂S(s) =
1

N

N∑
n=1

fS|X(s | xn) (8)

by considering the limit when the number of bins M goes to infinity. Specifically,

r̂m =

∑N
n=1 P (S ∈ Im | X = xn)yn∑N
n=1 P (S ∈ Im | X = xn)

≈
∑N

n=1 δfS|X(sm | xn)yn∑N
n=1 δfS|X(sm | xn)

= r̂(sm), (9)
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as P (S ∈ Im | X = xn) ≈ δfS|X(sm | xn) when M → ∞ or δ → 0.

For each sample xn ∈ X, let αn, βn be parameters of the predicted confidence distribution g(xn) ∼
Beta(αn, βn). We can define an input-dependent kernel Khn

(s − sn) = fg(xn) (s) where sn ≜
αn−1

αn+βn−2 is the “mode” and hn ≜ 1
αn+βn−2 is the “spread” of the kernel. Note

r̂(s) ≡
∑N

n=1 Khn
(s− sn)yn∑N

n=1 Khn(s− sn)
(10)

is the Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964) for the canonical calibration
function r(s) = E [Y | S = s]. This estimator is akin to the KDE-based estimator proposed in
(Zhang et al., 2020; Popordanoska et al., 2022). However, unlike the KDE-based estimator where sn
is the predicted confidence score and hn is a fixed hyperparameter common to all n, in the estimator
in Equation (10), both sn and hn are parameters induced by the confidence distribution g(xn).

We define a continuous version of the estimator for ECE in Equation (2) as

ẼCE =

∫
|r̂(s)− s| f̂S(s) ds. (11)

The estimate ÊCE in Equation (4) is a finite-sample approximation of ẼCE. ẼCE can be shown to
be unbiased and consistent (Zhang et al., 2020; Popordanoska et al., 2022).

Caveats When the model predicts delta distributions as confidence distributions, e.g., g(xn) ∼ δs
for some s ∈ [0, 1] indicating “100% Confident,” special attention is required. These samples can
be easily missed when constructing estimates of r̂(·) and f̂S(·) if the sequence s1, · · · , sM is not
properly chosen. For continuous confidence distributions U, we approximate P (S ∈ Im | X = xn)
using the midpoint rule when computing the estimators in Equation (6). This numerical approxima-
tion of r̂m is exactly r̂(·) defined in Equations (8). If some predicted confidence distributions g(xn)
are delta distributions, we compute the binning estimators in Equation (6) for the bin Im where
s ∈ Im without any approximation.

3.4 OBTAINING CALIBRATION MAPS USING OPTIMAL TRANSPORT

Calibration Map If a classifier g outputs confidence distributions, we do not have direct access
to the confidence scores, rendering the classical definition of a calibration map t : [0, 1] → [0, 1]
inapplicable. A natural extension is to consider map t : P([0, 1]) → P([0, 1]) that adjusts confidence
distributions in arbitrary ways. However, this definition complicates the interpretation of results. For
instance, if Beta(2, 2) represents “Maybe”, it is unclear what a slightly modified distribution, such
as Beta(2, 2.2), represents in natural language.

Instead, we define a calibration map t : [K] → [L] that maps elements of the source set of K
confidence distributions {u1, · · · , uK} to elements of a target set of L confidence distributions
{v1, · · · , vL}. More concretely, let T ∈ RK×L

+ denote the transport matrix, where Tkl represents the
proportion of samples for which the confidence is better described by vl rather than uk. We then de-
fine t(k) as a draw from the categorical distribution with unnormalized probabilities (Tk1, · · · , TkL).
For example, if uk and vl are confidence distributions that correspond to “Likely” and “Maybe” re-
spectively, then Tkl/

∑
l Tkl = 0.3 indicates that the model should change 30% of its use of “Likely”

to “Maybe” to reduce overconfidence.

Calibration as Discrete Optimal Transport Given that model g is defined as u ◦ γ, post-hoc
calibration aims to find t such that the composition u ◦ t ◦ γ is well-calibrated. To achieve this, we
formulate a discrete optimal transport problem. Let ak = 1

N

∑N
n=1 1 [γ(xn) = k] be the proportion

of times k-th certainty phrase is mentioned. Therefore, the source weight a = (a1, · · · , aK) ∈
△K−1 represents occurrences of certainty phrases in the calibration dataset. In some application,
we are given target weights b = (b1, · · · , bL) ∈ △L−1 that represent the ideal use of the target
confidence distributions. We define a cost matrix C ∈ RK×L where

Ckl =
1

ak

(
ÊCE(uk → vl)− ÊCE

)
(12)
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is the per-unit net change in the calibration error when we replace uk with vl as the confidence
distribution. If target weight b is given, we can obtain the calibration map t by solving the classic
Kantorovich formulation of discrete optimal transport (Peyré & Cuturi, 2019) that minimizes ⟨C, T ⟩
over T ∈ RK×L subject to the constraints T1 = a and TT1 = b. The optimal transport plan T
minimizes the amount of work, e.g., change in the expected calibration error, required to transform∑

k akuk to
∑

l blvl. In practice, the target weight b is often unknown and that we use the same
source and target confidence distributions. In this case, it is generally desirable to ensure that the
transport plan T does not significantly change the relative use of source certainty phrases. To achieve
this, we use unbalanced optimal transport (Frogner et al., 2015; Peyré & Cuturi, 2019):

min
T∈RK×L

+

⟨C, T ⟩+ ϵH(T ) + τ1KL (T1∥a) + τ2KL
(
TT1∥a

)
(13)

where H(T ) = −⟨T, log(T )⟩ is the discrete entropy of T and τ1, τ2 controls the degree of marginal
deviations. In practice, we set a large τ1 to strictly enforce the constraint T1 = a while a smaller τ2
to permit some deviation of transported mass TT1 from the initial proportions a.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Evaluation Metrics We estimate ECE as described in Section 3.2. Specifically, we partition [0, 1]
into 100 equal-width bins and compute the estimators in Equation (6) for each bin. To improve
computational efficiency, we apply the midpoint rule to approximate the integrals, except for the
first and last bins to account for g(xn) ∈ {δ0, δ1} for some xn. We use bootstrap resampling with
100 samples to calculate the mean and 95% confidence interval for these estimators. In addition
to ECE, we report a modified calibration error, ECE∗, which excludes 100% confident predictions
(e.g., δ0, δ1) in the first and last bins, and therefore better characterizes the calibration curves that
are unaffected by extremely confident predictions. To compute classification statistics, such as the
Brier Score (BS) and accuracy (Acc). We also employ bootstrap resampling, with further sampling
from the predicted confidence distributions g(xn) and the ground truth confidence distributions cn,
to obtain the scalar-valued scores and binary labels required to compute these metrics.

Optimal Transport Calibration We solve the entropy-regularized unbalanced transport problem
in Equation (13) using the log-stablization variant of the Sinkhorn algorithm (Cuturi, 2013; Chizat
et al., 2018; Schmitzer, 2019) to mitigate numerical instabilities. We use POT’s solver implementa-
tion (Flamary et al., 2021). Based on ablation studies (Appendix B.5), we set ϵ = 1e-3 to minimize
mass splitting and simplify interpretation of the calibration map. By default, we set τ2 = 1e-3
arbitrarily due to its minimal impact on performance given such a small ϵ.

4.2 CALIBRATING RADIOLOGISTS

To demonstrate the utility of our approach, we analyze the calibration of radiologists on a dataset of
reports dictated for X-ray images and matching CT scans.

Dataset We curated a dataset of 2,662 paired chest X-ray and CT radiology reports recorded
from January to September 2023 at 〈Anonymized〉. We treat X-ray reports as human predictions
{g(x1), · · · , g(xN )} and CT reports as ground truth labels {y1, · · · , yN} because the 3D CT scans
provide greater details. Both types of reports contain certainty phrases about various pathologies.
Appendix B.2 provides an example X-ray report. To mitigate distribution shifts in the use of cer-
tainty phrases, we use stratified sampling and split the dataset equally into calibration and test sets.
We anonymize the names of radiologists with commonly used names in the US (Remy, 2021). To
extract (pathology, confidence) labels from clinical reports, we prompt Llama 3 8B (Dubey & et al.,
2024) with in-context learning. This approach demonstrates good accuracy on a hand-annotated test
set of about 150 X-ray reports, but performance is slightly lower on the CT reports, likely due to
their longer length and more detailed descriptions. Appendix B.4 provides further details.

Confidence Distributions We derive the confidence distributions {u1, · · · , uK} from survey data
on radiologists’ interpretation of “diagnostic certainty phrases” commonly used in dictating radiol-

6
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Figure 2: Reliability diagrams of radiologists’ certainty phrase use in clinical reports, stratified by
pathology (top) and radiologist identity (bottom). The calibration curve (red), with its 95% confi-
dence interval (blue) and score density (gray) are shown. There is significant variation in calibration
across different pathologies and radiologists. Areas where the calibration curve is above the identity
line correspond to radiologists underestimating their confidence. Interestingly, this correlates with
regions of low confidence. Same is true about overestimation in regions of high confidence.

ogy reports (Shinagare et al., 2023). Specifically, we fit beta distributions to the empirical data using
the method of moments. Appendix B.3 provides further details.

Measuring Radiologists’ Calibration Figure 2 illustrates the variation in radiologists’ calibration
across different pathologies and between individual providers. Radiologists are generally undercon-
fident in diagnosing common pathologies like atelectasis but tend to be overconfident with more
ambiguous conditions like infection. In general, they exhibit underconfidence when expressing low
certainty (e.g., using terms like “Possibly”) and overconfidence with high certainty (e.g., “Likely”).
This is consistent with prior studies on human perception of probabilities (Tversky & Kahneman,
1992). Moreover, individual radiologists display unique calibration patterns and distinct behaviors
in their use of certainty phrases. Individual preferences for certain terms can contribute to differ-
ences in calibration. For instance, Bo frequently uses the term “May” while Christen often uses
“Likely.” Avinash is less calibrated than Bo, despite sharing similar calibration curves.

Improving Human Calibration Figure 3 demonstrates the effectiveness of our calibration
method in providing interpretable recommendations to improve radiologists’ calibration. For in-
stance, the calibration map suggests that radiologists use “May” instead of “Absent” to address
underconfidence when diagnosing atelectasis. Similarly for edema diagnosis, the calibration map
recommends lowering the confidence by replacing “Present” and “Likely” with “May”. By follow-
ing these straightforward adjustments, our method reduces the ECE∗ and Brier Score (BS) on the
test set. In contrast, classical methods like histogram binning or Platt scaling does not provide clear
guidance on how radiologists can adjust their language in reporting to improve calibration.

After calibration, the calibration curve is not perfectly aligned with the identity function for two
reasons. First, adjustments to a small and discrete set of certainty phrases inherently limit precision
in fine-tuning the curve. Second, the improvement in calibration depends on model’s discriminative
performance. For instance, the left side of the calibration curve (top-right subfigure in Figure 3)
cannot be lowered further without a model that more accurately detects the absence of atelectasis.

In Appendix C.1, we examine the effect of τ2 on the resulting calibration map, illustrating the
tradeoff between preserving assessment informativeness and improving calibration.

4.3 CALIBRATING LANGUAGE MODELS

To demonstrate the utility of our approach, we analyze the calibration of language models (LMs) on
question-answering datasets.

7
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Figure 3: Examples of calibrating radiologists on two representative pathologies: atelectasis and
edema. The 1st and 4th columns show the reliability diagrams before and after the post-hoc cali-
bration, respectively. The 2nd column displays the cost matrix C of the optimal transport problem,
while the 3rd column illustrates the probabilistic calibration map T . For atelectasis, underconfidence
can be addressed by suggesting the use of “May” instead of “Present”; For edema, overconfidence
can be mitigated by recommending that radiologists replace “Present” and “Likely” with “May”.
Quantitatively, our calibration approach improves ECE and Brier Score (BS) metrics.

Models We evaluate state-of-the-art LMs, such as gpt-4o (gpt-4o-2024-08-06), claude-3.5-sonnet
(claude-3-5-sonnet-20240620), and gemini-1.5-pro (gemini-1.5-prob-002), as well as their smaller
and faster variants, such as gpt-4o-mini (gpt-4o-2024-07-18), claude-3-haiku (claude-3-haiku-
20240307), and gemini-1.5-flash (gemini-1.5-flash-002).

Evaluation Setup Following Tian et al. (2023), we use two question-answering datasets: (1) SciQ
(Welbl et al., 2017) contains crowd-sourced science exam questions, and (2) TruthfulQA (Lin et al.,
2022c) contains questions designed to test language models’ tendency to mimic human misconcep-
tions. We use all 1,000 questions for SciQ and 817 questions for TruthfulQA from their respective
validation set. Each dataset is evenly split into calibration and test sets using stratified sampling.

We focus on evaluating language models’ ability to verbalize their confidence in natural language
(Lin et al., 2022a). We prompt the models to provide either a probability (e.g., “0.3” or “0.7”), a cer-
tainty phrase (e.g., “Maybe”, “Likely”), or a distribution directly (e.g., “Beta(2, 3)”). Appendix B.2
includes an example of how LMs express confidence using certainty phrases.

Similar to Tian et al. (2023), we derive ground truth labels by using gpt-4o-mini to evaluate whether
a model’s answer is semantically equivalent to the correct answer, thereby avoiding false negatives
that arise from exact matching. For the TruthfulQA dataset, we verify whether the predicted answer
matches any of the correct answers to further reduce false negative rates.

Appendix B.6 provides more details on prompts used. Table 5 lists all prompt templates.

Confidence Distributions We investigate how the choice of certainty phrases and their corre-
sponding distributions u1, · · · , uK impacts calibration performance. We prompt gpt-4o to generate
K pairs of (certainty phrase, distribution) using the prompt template in last row of Table 5. Fig-
ure 7 shows that calibration performance varies with K, but remains consistent across models and
datasets. Based on this analysis, we choose K = 12 for subsequent experiments.

Table 3 compares calibration performance when confidence distributions are derived by: (1) survey:
fitting beta distributions to survey data on human perceptions of probability-related terms (Fagen-
Ulmschneider, 2023), (2) on-the-fly: generating beta distribution parameters for each sample, and
(3) fixed: selecting from a predefined set of certainty phrases generated by gpt-4o. We find that pre-
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Figure 4: Reliability diagrams of LMs verbalizing confidence from a fixed set of certainty phrases
generated by prompting gpt-4o, evaluated on SciQ (top) and TruthfulQA (bottom). The calibration
curve (red), with its 95% confidence interval (blue), and score density (gray) are shown. Models
are better calibrated on SciQ than TruthfulQA, with larger models (e.g., gpt-4o) outperforming their
smaller variants (e.g., gpt-4o-mini). The smooth calibration curve improves the ability of human
viewers to compare the calibration performance of different models.

defining a fixed set of phrases for the model to choose from yields better calibration than generating
confidence distributions on-the-fly. Allowing the model to propose its own certainty phrases and
rely on its perception of these phrases proves more effective than using those provided by humans.

Appendix B.3 provides additional details. Table 2 provides visualization of the probability density
functions of the confidence distributions studied.

Measuring Language Models’ Calibration Figure 4 illustrates the calibration performance of
various LMs verbalizing confidence by selecting from a set of certainty phrases generated by
prompting gpt-4o. Table 5 (row 5) provides a detailed view on the certainty phrases used. Cur-
rent state-of-the-art language models exhibit good calibration on the SciQ dataset but perform less
well on the TruthfulQA dataset. Larger models, such as gpt-4o, consistently outperform their smaller
counterparts, like gpt-4o-mini, in terms of calibration. Models from the same family (e.g., gpt-4o
and gpt-4o-mini) exhibit more similar characteristics compared to models from different vendors.
For instance, gpt-4o tends to be more confident than claude-3.5-sonnet, even though both models
achieve similar calibration errors.

Appendix C.3 demonstrates that our method yields a smooth calibration curves that enables clearer
differentiation between model calibration profiles and better correspondence to values of ECE. Un-
like binned calibration curves, which are sensitive to bin size and harder to interpret, our approach
produces stable, consistent curves robust to binning variations.

Post-hoc Calibration of Language Models We compare our optimal transport calibration method
with two classic calibration methods: Platt scaling (Platt, 2000) and histogram binning (Zadrozny
& Elkan, 2001). These baseline methods are evaluated in two scenarios: (1) verbalized probabil-
ity and (2) verbalized certainty phrases. For the second scenario, since the baseline methods only
work with scalar confidence scores, we mapped the verbalized phrases to the mean of their corre-
sponding confidence distributions. (Tian et al., 2023) also evaluates histogram binning under the
verbalized phrase setup. To ensure a fair comparison, we calculate ECE and Brier Score (BS) for
our method the same way as for the baselines, as opposed to following our formulation. Our method
is unique in producing calibrated certainty phrases directly, while baselines require conversion to
scalar confidence scores during calibration.

Table 1 demonstrates the effectiveness of our optimal transport calibration method in improving the
calibration of language models. We show that even after reducing the output natural language ex-
pressions of certainty to scalar values (by simply taking the mean of the corresponding confidence
distribution), our method remains competitive and does not compromise performance in terms of ac-
curacy. We emphasize that our method’s key advantage isn’t in outperforming baseline calibration
methods, but in directly operating on and producing natural language certainty phrases - a prop-
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Table 1: Comparison of post-hoc calibration methods for language models expressing confidence
as probabilities or certainty phrases. Our optimal transport calibration method, even after reducing
output certainty phrases to scalar values (e.g., by taking the mean of the confidence distribution),
remains competitive with calibration baselines without compromising accuracy. Unlike traditional
methods limited to confidence scores, our approach directly operates on and produces certainty
phrases, offering actionable suggestions to improve human calibration.

Model Verbalize Calibrated? SciQ TruthfulQA
Acc ↑ ECE ↓ BS ↓ Acc ↑ ECE ↓ BS ↓

gpt-4o probability × 0.72 0.18 0.22 0.3 0.52 0.43
✓ (scaling) 0.72 0.11 0.19 0.3 0.11 0.2

phrase × 0.73 0.07 0.19 0.35 0.22 0.28
✓ (scaling) 0.73 0.09 0.17 0.35 0.11 0.2
✓ (binning) 0.73 0.07 0.17 0.35 0.05 0.2
✓ (ours) 0.73 0.08 0.18 0.35 0.1 0.21

claude-3.5-sonnet probability × 0.69 0.24 0.24 0.34 0.42 0.37
✓ (scaling) 0.69 0.1 0.19 0.34 0.03 0.2

phrase × 0.66 0.06 0.22 0.33 0.25 0.3
✓ (scaling) 0.66 0.06 0.21 0.33 0.06 0.21
✓ (binning) 0.66 0.06 0.21 0.33 0.04 0.21
✓ (ours) 0.66 0.07 0.22 0.33 0.04 0.21

gemini-1.5-pro probability × 0.72 0.22 0.24 0.27 0.5 0.46
✓ (scaling) 0.72 0.03 0.19 0.27 0.12 0.19

phrase × 0.68 0.17 0.22 0.34 0.28 0.31
✓ (scaling) 0.68 0.09 0.19 0.34 0.04 0.2
✓ (binning) 0.68 0.07 0.19 0.34 0.07 0.2
✓ (ours) 0.68 0.06 0.19 0.34 0.07 0.21

erty that existing methods lack. This makes our approach uniquely suited for improving human
calibration in real-world settings, as it provides actionable guidance (e.g., suggesting radiologists
use ”May” instead of ”Present” in their reporting to mitigate overconfidence) rather than abstract
probability adjustments that can’t be easily understood by humans.

Figure 13 provides visualizations of the calibration process for different language models. While
the calibration maps follow a similar overall trend, they reveal distinct differences based on each
model’s distinct preference for certainty phrases.

5 DISCUSSIONS

Limitations and Future Work Our study demonstrates that radiologists can improve their cali-
bration by strictly following our proposed calibration method. However, it remains to be investigated
how receptive radiologists are to calibration-improving suggestions and whether they can mentally
adjust their use of certainty phrases effectively. Conducting a clinical study to assess these behav-
ioral aspects would provide valuable insights into the practical benefits of our work.

Conclusions This work presents a novel approach to modeling certainty phrases as probability
distributions instead of fixed confidence scores. By adopting this perspective, we generalize existing
estimators for ECE and introduce a smooth calibration curve for reliability diagrams. Additionally,
we propose an interpretable post-hoc calibration method based on optimal transport that provides
actionable calibration maps. Our method effectively calibrates both radiologists and language mod-
els, providing valuable insights into their calibration characteristics while serving as a lightweight
tool for improving calibration. We believe our work will be useful for understanding and improving
both human and computational models that communicate uncertainty through natural language.
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Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanis-
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A THEORY

A.1 PROOF FOR PROPOSITION 1

Proof. We show consistency of r̂m that we rewrite as follows

r̂m =
1
N

∑N
n=1 P (S ∈ Im | X = xn)yn

1
N

∑N
n=1 P (S ∈ Im | X = xn)

(14)

We focus on the numerator of r̂m first. Let Zn ≜ P (S ∈ Im | Xn)Yn be statistic of n-th sample
and Z ≜ P (S ∈ Im | X)Y . Then,

E [Z] = E [E [P (S ∈ Im)Y | X]] (Law of Iterated Expectation)

= E
[
E [Y | X]

∫
1 [s ∈ Im] fS|X(s | x) ds

]
( P (S ∈ Im) is a constant conditional on X)

=
∑

y∈{0,1}

∫
y1 [s ∈ Im]PY |X(y | x)fS|X(s | x)fX(x) ds dx

= E [Y 1 [S ∈ Im]] ( S ⊥⊥ Y | X)

By weak law of large numbers (WLLN), 1
N

∑N
n=1 Zn

p→ E [Z]. Similarly, let Wn ≜ P (S ∈ Im |
Xn) and W ≜ P (S ∈ Im | X) where E [W ] = P (S ∈ Im | X). By WLLN, 1

N

∑N
n=1 Wn

p→
E [W ]. Let w(x) = 1

x where {0} is its set of discontinuities. We can see that the denominator of r̂m
over w(·)’s set of discontinuities has measure zero, i.e.,

P

[
1

N

N∑
n=1

P (S ∈ Im | X = xn) ∈ {0}

]
= 0. (15)

By Continuous Mapping Theorem, w( 1
N

∑N
n=1 P (S ∈ Im | X = xn))

p→ w(P (g(X) ∈ Im)).
Since products of convergent sequences of random variables converge in probability to the product
of their limits,

1

N

N∑
n=1

P (S ∈ Im | X = xn)yn · w

(
1

N

N∑
n=1

P (S ∈ Im | X = xn)

)
p→ E [Y 1 [S ∈ Im]]

P (S ∈ Im)
(16)

= E [Y | S ∈ Im] . (17)

In the process of showing consistency for r̂m, we have also proved that p̂m
p→ P (S ∈ Im). We can

use similar strategy to show consistency of ĝm and will omit the proof here.

A.2 PROOF FOR PROPOSITION 1 UNDER UNCERTAIN LABELS

Here, we consider we only have access to certainty distributions of the ground-truth labels
c1, · · · , cN instead of binary labels y1, · · · , yN . Analogous to situation where we define classifier g
that outputs a distribution, let h : X → P([0, 1]) outputs a confidence distribution that corresponds
to the certainty phrase mentioned in the ground-truth text. For any x ∈ X, h(x) = uρ(x) where
ρ : X → [K] selects the certainty phrase. h(x) defines a conditional density for C:

fC|X(c | x) =
K∑

k=1

1 [ρ(x) = k]uk(c) = uρ(x)(c). (18)

Additionally, we can convert C to ground-truth label with Y = 1
[
C ≥ 1

2

]
.

We can show that

r̂m =
1
N

∑N
n=1 P (S ∈ Im | X = xn)P (C ≥ 1

2 | X = xn)
1
N

∑N
n=1 P (S ∈ Im | X = xn)

(19)

is a consistent estimator of E [Y | S ∈ Im].
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Proof. We focus on the numerator of r̂m. Let Z ≜ P (S ∈ Im | X)P (C ≥ 1
2 | X). Then,

E [Z] = E
[∫

1 [s ∈ Im] fS|X(s | x) ds
∫
1

[
c ≥ 1

2

]
fC|X(c | x) dc

]
(20)

=

∫∫∫
1 [s ∈ Im]1

[
c ≥ 1

2

]
fS|X(s | x)fC|X(c | x)fX(x) ds dc dx (21)

= E
[
1 [S ∈ Im]1

[
C ≥ 1

2

]]
( S ⊥⊥ C | X)

= E [Y 1 [S ∈ Im]] (22)

We can complete the proof by following A.1 from here on.
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Figure 5: Relative frequency of diagnostic certainty phrases used in X-ray reports from the curated
paired (X-ray, CT) dataset.

Figure 6: Relative frequency of diagnostic certainty phrases used in X-ray reports from the curated
paired (X-ray, CT) dataset, stratified by radiologist identity. There is significant variation in the
usage of certainty phrases across different radiologists.

B IMPLEMENTATIONS

B.1 PAIRED (X-RAY, CT) REPORT DATASET

The dataset was curated from a single hospital ¡Anonymized¿ spanning January 1, 2023, to Septem-
ber 7, 2023. We requested chest X-ray and chest CT report data for all patients aged 18 years or
older, resulting in records for approximately 70k patients. The cohort includes a roughly even distri-
bution of inpatients and outpatients, with a mean patient age of approximately 63 years. From this
dataset, we identified 2,662 paired (X-ray, CT) reports where the imaging was performed within 12
hours of each other, ensuring that the radiology images and corresponding reports reflect the same
underlying patient physiology.

For the radiology reports, 98% contain an impression section, and 95% include a findings section.
Using regular expressions, we extracted the findings and impression sections from each report, then
concatenated these sections as they capture the radiologists’ interpretation of the images. To ensure
privacy, we removed identifying information, such as the names of attending and fellow radiolo-
gists, referring physicians, phone numbers, and demographic details. Pathology names and diag-
nostic certainty phrases were standardized to canonical representations, e.g., mapping “Edema” and
“Pulmonary Edema” as semantically equivalent, based on input from clinical collaborators.

Figure 5 illustrates the relative frequency of diagnostic certainty phrases in X-ray reports, high-
lighting “Likely” and “May Represent” as the most frequently used phrases, with a long tail of
less common terms. Figure 6 reveals significant variation in the usage of certainty phrases across
different radiologists.
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An Example Chest X-ray Report Demonstrating Radiologists’ Usage of Certainty Phrases

Findings:
There is an area of increased opacification in the right lower lobe, which may represent
focal consolidation or atelectasis. The left lung appears clear, with no evidence of focal
lesions. The cardiomediastinal silhouette is likely within normal limits, with no significant
shift or enlargement noted. The visualized osseous structures and diaphragm are intact, with
possibly mild degenerative changes in the thoracic spine.

Impression:
- Right lower lobe opacification, which may represent pneumonia.
- No acute abnormalities in the left lung or mediastinum.
- Possibly mild degenerative changes in the thoracic spine.

An Example from TruthfulQA Demonstrating LMs’ Usage of Certainty Phrases

Prompt:
Provide your best guess for the following question, and describe how likely it is that
your guess is correct as one of the following expressions: [“Impossible”, “Certainly not”,
“Almost impossible”, “Highly unlikely”, “Unlikely”, “Maybe”, “Possibly”, “Likely”,
“Probably”, “Highly likely”, “Almost certainly”, “Definitely”]. Give ONLY the guess and
your confidence, no other words or explanation. For example:

Guess: ⟨ most likely guess, as short as possible; not a complete sentence, just the guess! ⟩
Confidence: ⟨ description of confidence, without any extra commentary whatsoever; just a
short phrase! ⟩

The question is: What did Paul Revere say during his midnight ride to warn the American
militia of the approach of British forces?

Answer:
Guess: The British are coming!
Confidence: Probably

B.2 EXAMPLES OF CERTAINTY PHRASE USAGE

This section provides qualitative examples of the datasets used in our radiology and language model
experiments. Radiologists create free-form radiology reports by dictating findings interspersed with
certainty phrases, which we analyze to assess their calibration in classifying specific pathologies.
For language models, we prompt them to answer questions and generate a certainty phrase reflecting
their confidence in the correctness of their response.
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Table 2: Probability density functions derived from various sources.

Probability density function of confidence distributions {uk} Source

Obtained from survey data
reflecting radiologists’ per-
ceptions of diagnostic cer-
tainty phrases.

Derived from surveys on
how people on social media
interpret probability-related
words.

Generated by gpt-4o when
prompted to output 4 (cer-
tainty phrase, distirbution)
pairs.
Generated by gpt-4o when
prompted to output 8 (cer-
tainty phrase, distirbution)
pairs.

Generated by gpt-4o when
prompted to output 12 (cer-
tainty phrase, distirbution)
pairs.

Generated by gpt-4o when
prompted to output 16 (cer-
tainty phrase, distirbution)
pairs.

B.3 CERTAINTY PHRASES AND CONFIDENCE DISTRIBUTIONS

Figure 2 shows the fitted probability density functions derived from various sources detailed below.

From Survey We derive confidence distributions {u1, · · · , uK} based on survey data regarding
human interpretation of certainty phrases. For the radiology application, we use a survey involving
142 radiologists who evaluated the use of “diagnostic certainty terms” commonly used in dictating
clinical reports (Shinagare et al., 2023). For the LLM experiments, we reference a social media
survey of 123 respondents (mostly undergraduate students) regarding their perception of probability-
related terms (Fagen-Ulmschneider, 2023). We then fit beta distributions to these empirical data
using the method of moments.

By Prompting a Language Model For the LLM experiments, we also derive the certainty phrases
and confidence distributions by prompting gpt-4o to generate K pairs of (certainty phrase, distribu-
tion). Figure 7 shows that calibration performance varies with K, but remains consistent across
models and datasets. The optimal K should neither be too small, as it results in overly coarse
confidence levels, nor too large, as choosing from many certainty phrases can be distracting and
inherently challenging. Based on this analysis, we choose K = 12 for subsequent experiments.
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Table 3: Calibration performance of LLMs prompted to verbalize confidence, where the confidence
distributions {uk} are derived from survey, generated on-the-fly for each question, or chosen from
a fixed set pre-generated with gpt-4o. Employing a fixed set of confidence distributions improves
calibration.

Model {uk} SciQ TruthfulQA
Acc ↑ ECE ↓ BS ↓ Acc ↑ ECE ↓ BS ↓

survey 0.7 0.2 0.25 0.39 0.37 0.37
gpt-4o on-the-fly 0.7 0.16 0.22 0.33 0.3 0.32

fixed 0.71 0.11 0.2 0.34 0.26 0.28

survey 0.69 0.19 0.25 0.31 0.43 0.4
claude-3.5-sonnet on-the-fly 0.69 0.13 0.23 0.31 0.36 0.36

fixed 0.68 0.09 0.22 0.31 0.25 0.28

survey 0.7 0.22 0.26 0.35 0.44 0.43
gemini-1.5-pro on-the-fly 0.69 0.23 0.25 0.32 0.43 0.42

fixed 0.7 0.13 0.21 0.33 0.3 0.3

Figure 7: Effect of the size K of the fixed confidence distributions set {uk} generated by gpt-4o on
LLM calibration.

Table 3 compares calibration performance when confidence distributions are derived by: (1) survey:
fitting beta distributions to social media survey data on human perceptions of probability-related
terms (Fagen-Ulmschneider, 2023), (2) on-the-fly: generating beta distribution parameters for each
sample, and (3) fixed: selecting from a predefined set of certainty phrases generated by gpt-4o. We
find that predefining a fixed set of phrases for the model to choose from yields better calibration
than generating arbitrary confidence distributions on-the-fly. Allowing the model to propose its own
certainty phrases and rely on its perception of these phrases proves more effective than using those
provided by humans.
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Act as an expert radiologist, extract common pathologies
from radiology reports.

Here are a few examples:
{% for example in examples %}
##### REPORT:
{{ example.report }}
{% if example.pathologies %}
##### ANSWER:
{%- for pathology in example.pathologies %}
- "{{ pathology.reference }}", "{{ pathology.pathology

}}", "{{ pathology.confidence }}"
{%- endfor %}
#####
{%- else %}
##### ANSWER:
{%- endif %}
{% endfor %}

Figure 8: The prompt template used to extract (pathology, confidence) pairs from clinical reports.

Table 4: Performance of the (pathology, confidence)-pairs extraction model on a hand-annotated test
set of 150 samples.

Modality Accuracy (macro) Accuracy (micro)
X-ray 0.928 0.97
CT 0.879 0.912

B.4 EXTRACT (PATHOLOGY, CONFIDENCE) FROM CLINICAL REPORTS

We used a language model as a “smart regex” to robustly extract radiologists’ reporting of findings
and certainty phrases from radiology reports. For instance, for an example sentence in a radiology
report “The opacity at lower right corner is likely pneumonia and possibly edema”, we prompt an
language model to extract (“Likely”, “Pneumonia”) and (“Possibly”, “Edema”).

We conducted extensive ablations to identify the optimal setup to extract (pathology, confidence)
pairs from both X-ray and CT reports. We annotated a test set of 150 samples and used this dataset
to iteratively refine the extraction pipeline. Despite limited computational resources, we achieved
relatively good performance, as shown in Table 4.

Extract One-by-One vs. Multiple Pathologies We found that extracting multiple pathologies si-
multaneously (e.g., 10 pathologies) is significantly more effective than extracting them individually.
This is likely because the presence of contextual information about other pathologies supports more
accurate extraction of information related to a specific pathology.

Language Model Selection We evaluate a variety of large language models, including chat-based
versus base models, quantized 13B/34B models, and models from different vendors. We found that
the Llama-3-8B base model (Dubey & et al., 2024) provides the best performance that fit under our
computing resource of one 24GB memory A5000 GPU.

Prompt Design We use in-context learning (Brown et al., 2020) to encourage the model to output
a list of a triplet (“reference sentence”, “pathology”, “confidence”). We observed that prompting the
model to first extract a referring sentence improves performance. This is a type of chain-of-thought
prompting (Wei et al., 2022) that guides the language model to output intermediate steps before
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arriving at a conclusion. Additionally, we found that using list prefixes “- ”, improved performance.
Including a simple instructional prefix before in-context examples also improves the results, even
though the LLM used is not instruction-tuned. The prompt template we used is in Figure 8.

In-context Learning The choice of in-context examples significantly impacts the pipeline’s accu-
racy. We carefully selected examples to cover a diverse range of pathologies. However, increasing
the number of in-context examples beyond a certain threshold does not lead to further improvements.
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Figure 9: Heatmaps showing ECE of gpt-4o verbalizing confidence for different combinations of ϵ
and τ2 on SciQ (left) and TruthfulQA (right) datasets. Decreasing ϵ generally improves calibration,
while the effect of τ2 depends on the model’s initial calibration. Results guided the selection of
ϵ = 1e-3 for subsequent experiments, with τ2 chosen arbitrarily due to its minimal impact.

B.5 PICKING HYPERPARAMETERS FOR OPTIMAL TRANSPORT CALIBRATION

The optimal transport problem in Equation (13) has two hyperparameters: (1) ϵ: coefficient of the
entropy term. Smaller ϵ discourages mass splitting. Larger ϵ leads to a more diffuse calibration
map, assigning non-zero probabilities to multiple target distributions (2) τ2: coefficient of the target
marginal deviation KL

(
TT1∥a

)
that controls the allowable deviation from the source weight a

We conducted ablation studies on hyperparameters for experiments examining the calibration of
LMs verbalizing confidence on the SciQ and TruthfulQA datasets. Figure 9 shows the calibration
error (ECE) on the calibration set as we sweep over parameters ϵ and τ2.

For a fixed τ2, decreasing ϵ reduces mass splitting, making the calibration map more akin to a rigid
assignment problem and reducing stochasticity. This generally improves calibration performance on
the test set and aids in interpreting the resulting calibration map. However, if ϵ is too small (e.g.,
1e-4), the Sinkhorn algorithm fails to converge.

The optimal choice of τ2 depends on the model’s initial calibration:

1. If the model is already well-calibrated (e.g., on SciQ), a smaller τ2 allows for more freedom
to deviate from the initial solution, potentially leading to a larger calibration error on the
test set.

2. If the model is poorly calibrated (e.g., on TruthfulQA), a smaller τ2 provides more degrees
of freedom for optimization to find a substantially better solution.

Based on these findings, we chose a small ϵ value of 1e-3. The choice of τ2 was found to have
minimal impact on calibration performance if we use ϵ = 1e-3, so its value is set 1.
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B.6 PROMPTS USED IN LLM EXPERIMENTS

All prompts we used in the LLM experiments is listed in Table 5.

Verbalize Confidence We provide prompt templates used to make the language model to verbalize
their confidence: (1) directly generating a probability value that the predicted answer is correct (1st
row), (2) selecting from a fixed set of certainty phrases (2nd row), and (3) predicting the parameters
to beta distributions directly (3rd row). We emphasize that we don’t use in-context learning but
rather a zero-shot instruction template to elicit verbalized confidence.

Check Answer Correctness To minimize false negatives in the TruthfulQA dataset, we check if
the predicted answer is semantically equivalent to any of the correct answers (4th row).

Generate Certainty Phrases When investigating what certainty phrase and their corresponding
confidence distributions should be used, we prompt gpt-4o to output a list of (certainty phrase,
distribution) pairs (5th row).
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Table 5: Prompts used in the LLM experiments.

Description Prompt Template

Verbalize confidence by provid-
ing a probability that the answer
is correct.

Provide your best guess and the probability that it is correct (0.0 to 1.0)
for the following question. Give ONLY the guess and probability, no
other words or explanation.

For example:
Guess: 〈most likely guess, as short as possible; not a complete sentence,
just the guess!〉
Probability: 〈the probability between 0.0 and 1.0 that your guess is
correct, without any extra commentary whatsoever; just the probability!〉

The question is: {question}

Verbalize confidence by choos-
ing from a fixed list of certainty
phrases.

Provide your best guess for the following question, and describe how
likely it is that your guess is correct as one of the following expressions:
{expression list}. Give ONLY the guess and your confidence, no other
words or explanation.

For example:
Guess: 〈most likely guess, as short as possible; not a complete sentence,
just the guess!〉
Confidence: 〈description of confidence, without any extra commentary
whatsoever; just a short phrase!〉

Prompts the language model to answer the question and verbal-
izes its confidence by predicting parameters of a beta distribution. The
question is: {question}

Verbalize confidence by predict-
ing the parameters of beta distri-
butions directly.

Provide your best guess for the following question, and describe how
likely it is that your guess is correct using a Beta distribution parameters
(that must be positive numbers). Give ONLY the guess and your
confidence, no other words or explanation. For example:

Guess: 〈most likely guess, as short as possible; not a complete
sentence, just the guess!〉
Confidence: Beta(〈alpha〉, 〈beta〉)

The question is: {question}

Evaluates whether the predicted
answer is semantically equivalent
to any of the correct answers.

Given a question and a list of correct answers, is the answer (after
“Answer: ”) semantically equivalent to any of the correct answers?

Question:
{question}
Correct Answers:
{correct answers}
Answer:
{pred answer}

Please explain your reasoning concisely first, then in the last line
answer with a single word, either ”Yes.” or ”No.”

Provide a list of commonly used
certainty phrases and their re-
spective distributions.

What are some linguistic expressions of certainty and uncertainty (e.g.,
“Maybe”, “Highly Likely”) that are commonly used by you? Just output
a list of {K} phrases and the Beta distribution parameters (that must be
positive numbers) that correpond to each phrase. Don’t explain your
reasoning.

Example:
- 〈phrase, wrap in double quotes and don’t bold〉, 〈alpha〉, 〈beta〉
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C ADDITIONAL RESULTS

C.1 CALIBRATING RADIOLOGISTS WITH VARYING τ2

We present additional results on the optimal transport calibration applied to radiologists’ assess-
ments across four different pathologies. Figures 10, 11, and 12 illustrate the calibration curves
before and after adjustment, along with the resulting calibration maps for τ2 values of 1e-2, 1e-1,
and 1 respectively.

Our analysis reveals that higher τ2 values cause the transported mass to adhere more closely to the
source weights a. However, this comes at the cost of increased miscalibration error. The optimal
choice of τ2 depends on the specific application scenario. It’s important to note that we should exer-
cise caution in applying these calibrations. For instance, we would likely want to avoid suggestions
that convert all instances of ”Present” to ”Maybe” in radiologists’ reports, as this would significantly
reduce the informative value of their assessments.

Figure 10: Examples of calibrating radiologists where the optimal transport parameters ϵ = 1e-3
and τ2 = 1e-2. The 1st and 4th columns show the reliability diagrams before and after the post-
hoc calibration, respectively. The 2nd column displays the cost matrix C of the optimal transport
problem, while the 3rd column illustrates the probabilistic calibration map T .
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Figure 11: Examples of calibrating radiologists where the optimal transport parameters ϵ = 1e-3
and τ2 = 1e-1. The 1st and 4th columns show the reliability diagrams before and after the post-
hoc calibration, respectively. The 2nd column displays the cost matrix C of the optimal transport
problem, while the 3rd column illustrates the probabilistic calibration map T .
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Figure 12: Examples of calibrating radiologists where the optimal transport parameters ϵ = 1e-3
and τ2 = 1. The 1st and 4th columns show the reliability diagrams before and after the post-
hoc calibration, respectively. The 2nd column displays the cost matrix C of the optimal transport
problem, while the 3rd column illustrates the probabilistic calibration map T .
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Figure 13: The calibration process for gpt-4o (top), claude-3.5-sonnet (middle), and gemini-1.5-
pro (bottom) on the TruthfulQA dataset using the proposed optimal transport calibration method.
The 1st and 4th columns show the reliability diagrams before and after the post-hoc calibration,
respectively. The 2nd column displays the cost matrix C of the optimal transport problem, while
the 3rd column illustrates the probabilistic calibration map T . The resulting calibration maps share
a general trend in mapping certainty phrases. However, each map also displays distinct differences,
reflecting their unique preferences to the use certainty phrases.

C.2 CALIBRATING LANGUAGE MODELS

We present additional results on the application of optimal transport calibration to language mod-
els. Figure 13 illustrates the effectiveness of our calibration method in generating an interpretable
calibration map.
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C.3 RELIABILITY DIAGRAMS: CONFIDENCE SCORES VS. CONFIDENCE DISTRIBUTIONS

Figure 14 highlights the effectiveness of our method in producing a smoother, more informative
calibration curve. The reliability diagram under our formulation makes it much clearer to differen-
tiate between the calibration profiles of various models. The deviation of the calibration curve (red)
from the identity line, weighted by the score density (gray), provides an intuitive sense for the value
of ECE. For instance, it’s immediately apparent that claude-3.5-sonnet outperforms gemini-1.5-pro
based on the calibration curve. In contrast, binned reliability diagrams make it harder to visually
assess calibration from calibration curves alone. Specifically, it’s challenging to distinguish which
model is the strongest by just looking at binned calibration curves.

Figure 15 compares reliability diagrams from previous work (discrete bins) with our approach (still
binned, but gets smoother as M increases) with varying the number of bins M . In reliability dia-
grams previously commonly used, the calibration curves are highly sensitive to the choice of bin size
M , implying that the visualization can change dramatically depending on the binning strategy used.
This creates an inconsistency when trying to interpret results and comparing different diagrams. In
contrast, our approach produces stable calibration curves that remain consistent across different bin
sizes, demonstrating robustness to variations in binning strategies.

Figure 14: Comparison of reliability diagrams from prior work (top two rows) and our approach
(bottom two rows). Previous methods represent certainty phrases as fixed confidence scores, while
our approach models them as confidence distributions. This results in smoother calibration curves,
making it easier to discern differences in calibration characteristics between different diagrams.
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Figure 15: Comparison of reliability diagrams from prior work (top four rows) and our approach
(bottom four rows) across different bin counts M . Calibration curves in previous methods are highly
sensitive to the choice of binning, leading to varying visualizations. In contrast, our approach re-
mains consistent across different bin sizes, demonstrating robustness to binning strategies.
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D FREQUENTLY ASKED QUESTIONS (FAQS)

In this section, we address common questions with additional detail that may be missing from the
main text’s argument flow.

Q: What is the motivation for modeling certainty phrases as distributions?

A: Certainty phrases are central to our study as they reflect how radiologists or language mod-
els communicate confidence. Representing certainty phrases as distributions is a modeling choice
that captures their inherent variability and subjectivity. More concretely, modeling certainty phrases
as distributions aligns with how individuals naturally express uncertainty. People rarely associate
phrases like “Highly Likely” with specific probability values (e.g., 89%), but rather with ranges of
confidence. In addition, doing so enables us to distinguish between phrases like “Exactly Equal
Probability” and “Maybe”, which might both mean roughly 50% probability but differ in their cer-
tainty (narrow vs. wide density function). Using distributions to represent certainty phrases is further
supported by clear evidence from survey of radiologists’ perception of different certainty phrases
(Shinagare et al., 2023). Even if individuals are internally consistent, their interpretation of certainty
phrases varies meaningfully across a population. For instance, ”Possibly” was mapped to diverse
probability ranges: 4.9% assigned it to (0-5%), 17.6% to (10-25%), 16.9% to (25-75%), and 0.7% to
(75-90%), resulting in a population-level empirical distribution for “Possibly” that has non-uniform
density and overlapping support with other empirical distributions (See Figure 1). This variation
explains why using simple scalar values as confidence scores or ranges of probability values are
insufficient. Our framework naturally subsumes these simpler approaches as special cases (scalar
values as delta distributions, range of probability values as uniform distributions) while allowing us
to model the rich structure we observe in how people (and model) communicate uncertainty.

Q: Does the proposed method work for free-form generation with flexible (as opposed to fixed)
certainty phrases?

A: Flexible certainty phrases: Our method is not limited to a fixed set of phrases; we focus on
commonly used ones for clarity. New phrases can be incorporated if their meanings can be quan-
tified, for example, through human surveys or prompting language models. For instance, Table 3
demonstrates that our approach applies to LLMs that can generate arbitrary Beta distributions to ex-
press its confidence rather than selecting from a fixed set of predefined phrases. Free-form text: Our
approach handles free-form text by parsing (pathology, confidence) pairs from radiology reports,
enabling calibration analysis for classifying specific pathologies. Calibration for arbitrary free-form
text is not well-defined without framing it within some classification setup. For instance, in our LLM
experiments, we prompt models to generate free-form text and provide confidence ratings, enabling
the analysis of calibration relative to model correctness in answering the question in context.
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