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Abstract. Multi-output time series, and spatio-temporal graphs in par-
ticular, are powerful modelling tools for a variety of real-world scenarios.
Gaussian processes linear mixing models are a common way to address
these tasks, modelling both correlations in time and between time se-
ries by correlating a small number of latent processes using a mixing
matrix. However, existing methods can suffer from overfitting and are
difficult to combine with additional graph structure information in case
of spatio-temporal graphs. In this short paper, we propose a novel, more
parameter-efficient parameterisation of the mixing matrix by representing
processes by states in a latent space and deriving correlations between
processes from their relative positions. This formulation allows us to
incorporate adjacency information between the time series by placing a
prior on the process states and smoothing them using a low-pass graph
filter. We show that our approach improves on existing GP mixing models
on two traffic forecasting data sets by reducing overfitting and improving
inductive bias.

1 Introduction

Gaussian process (GP) models are a common first-choice solution for time
series modelling tasks, owing to a variety of strong characteristics. Their prior
specification allows incorporating existing knowledge, such as periodicity or
smoothness, in an elegant and interpretable fashion. Moreover, they are amenable
to Bayesian inference, allowing accounting for uncertainty in time series prediction,
which is crucial in a wide range of applications. Finally, their non-parametric
nature provides partial protection against overfitting.

A particular challenge for GPs are multi-output time series tasks, as they arise
in a variety of real-world scenarios including in geostatistics [8,13] or latent force
models [16]. Here, the model is not only required to capture the relations between
the different time points but also between each of the time series. Difficulties arise
in overcoming the high computational complexity of inference in the multi-output
GP (MOGP) model. Performing inference for p time series of n time steps each
requires O(n3p3) time and O(n2p2) memory.

Work by Bruinsma et al. [2] introduced a formulation of a MOGP that
achieves scaling linear in the number of time series p both for computation and
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memory by exploiting structure in the model setup. It employs free-form matrix
optimisation to learn correlations between time series. Particularly in cases where
a large number of time series are modelled, this can lead to overfitting. In this
work, we introduce an alternative, more parameter-efficient parameterisation by
representing time series with vectors (or states) in a latent space and deriving
correlations between time series from the relative positions of their states.

Moreover, we study spatio-temporal graphs as special cases of multi-output
time series where graph structure information is available. Each time series is
uniquely associated with a node, and nodes are connected amongst each other to
form a graph. Viewed differently, a spatio-temporal graph is a graph whose node
attributes (i.e. values associated with nodes) change over time while the graph
structure remains the same. We show that model fit improves when encoding
graph structure in the latent space by choosing an appropriate prior distribution
for the states.

We provide an introduction to multi-output Gaussian process models and
graph signal priors in Section 2, before discussing the latent space parameterisation
and spatio-temporal graph prior in Section 3. Section 4 provides experimental
results on two traffic forecasting data sets.

2 Preliminaries

2.1 Multi-output Gaussian process model

Multi-output Gaussian Process models for time series tasks make the assumption
that any set of data points across time series and time steps follow a multivariate
Gaussian distribution. A popular subclass of MOGPs are Instantaneous Linear
Mixing Models (ILMM), which follow a generative process as follows:

x(t) ∼ GP (m(t),k(t, t′)) (latent processes)
f(t) |H,x(t) = Hx(t) (mixing mechanism)

y(t) | f(t) ∼ GP (f(t), δ[t− t′]Σ) . (noise model)

The model maps a set of m independent latent processes x(t) to the output (or
observed) processes y(t) via a mixing matrix H ∈ Rp×m. Bruinsma et al. [2]
have shown that inference in this model is possible by conditioning on a sufficient
statistic Ty(t) = (H⊤Σ−1H)−1H⊤Σ−1y(t) for x(t) rather than conditioning on
the original outputs y(t), where Ty(t) is a projection of y(t) (see [2, Lemma 1]
for details). The projected observations follow the prior

Ty(t) ∼ GP (x(t), δ[t− t′]ΣT ) , (1)

with projected noise ΣT = (H⊤Σ−1H)−1. Performing inference by conditioning
on the projected observations, i.e. computing p(x(t) |Ty(t)), is cheaper than
conditioning on the original observations, i.e. computing p(x(t) |y(t)) when the
number of latent processes is chosen to be smaller than the number of output
processes, meaning m < p, reducing time and memory cost to O(n3m3) and
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O(n2m2) respectively. However, this can still be prohibitive in cases where the
data mandates a larger number of latent processes.

Inference cost can be further reduced to be linear in the number of latent
processes m if the mixing matrix H in the generative model above is chosen
to be an orthogonal matrix. The model is then called an Orthogonal Instan-
taneous Linear Mixing Model (OILMM) [2]. The reduction in inference time
complexity, as well as for training and prediction, stem from the fact that if H is
orthogonal, the projected noise ΣT becomes diagonal. As a result, the posterior
p(x(t) |Ty(t)) factorises over the m latent processes, allowing inference to be
performed independently for each latent process xi(t) by conditioning on (Ty)i(t)
for i = 1, . . . ,m.

Under the OILMM, the mixing matrix H can be learnt via maximum likeli-
hood estimation (MLE) using a parameterisation that guarantees orthogonality.
Depending on the number of observed processes p and latent processes m, the
OILMM requires finding point estimates for pm parameters of the model, which
can easily lead to overfitting. If we would like to model 200 observed time series
with 20 latent processes, this amounts to 4, 000 parameters. In Section 3, we
present a parameterisation that requires only O(m+ p) parameters, reducing the
number of parameters by an order of magnitude, and show that this improves
model fit by reducing overfitting.

2.2 Priors over graph signals

An undirected, weighted graph of N nodes is a tuple G = (V,E,w) consisting
of a set of nodes V = {v1, v2, . . . , vN}, a set of edges E ⊆ V × V and a weight
assignment w : V × V → R, which assigns a weight to all edges in the graph
and 0 to all other node pairs. For undirected graphs, (vi, vj) ∈ E always implies
(vj , vi) ∈ E. Graph G can be equivalently represented by its adjacency matrix
A ∈ RN×N , where Aij = w(vi, vj) if (vi, vj) ∈ E and 0 otherwise. The adjacency
matrix establishes a canonical ordering of nodes for convenience.

A multi-dimensional graph signal x : V → RD is a function mapping nodes
to vectors in RD. An equivalent representation is a matrix X ∈ RN×D, which
stacks the vectors of each node following the same canonical ordering of nodes as
the adjacency matrix.

A wide range of real-world graph signals fulfil the homophily assumption,
which states that signal values of two nodes are more likely to be similar if those
nodes are closer together in the graph [10] and, consequently, homophilous signals
tend to vary smoothly across the graph. Closeness on the graph is measured
by the geodesic distance (the smallest number of edges connecting two nodes)
and adopted as the node closeness metric in the remainder of this work. Results
from graph signal processing (see for example [11]) show that we can derive
low-pass filters for graph signals, which can further filter for homophilous signals.
A common choice for a low-pass filter is defined as S = D− 1

2 (I+A)D− 1
2 , where

D = diag(
∑N

j=1 Aij) is the diagonal degree matrix [4,14] and the filtered graph
signal is then given by SX.
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3 Methodology

In the following, we introduce a variant of the OILMM, referred to as Latent
Space OILMM (LS-OILMM), that parameterises the mixing matrix using states
in a latent space, while retaining fast and memory efficient inference. We aim
to make two improvements over the vanilla OILMM design. Firstly, LS-OILMM
has fewer parameters per output time series, hence potentially reducing the risk
of overfitting to the training data. Secondly, LS-OILMM introduces structure
into the parameterisation of the mixing matrix, which is amenable to introducing
prior assumptions. We show how graph structure information can be incorporated
by choosing suitable prior distributions for the process states.

3.1 Latent space linear mixing model

At the core of the LS-OILMM is a specific parameterisation of the mixing matrix
H. We define a latent space M that will commonly be a real D-dimensional
space, meaning M := RD. We define two sets of process states living in this
latent space, the output (process) states {zout

i ∈ M}i=1,...,p and the latent
(process) states {zlat

j ∈ M}j=1,...,m. Both sets of states can be stacked to form
Zout ∈ Rp×D and Zlat ∈ Rm×D. For clarity, note that, depending on context,
latent (meaning unobserved) may describe the processes x(t), as in latent process
states, or the space that both latent and output process states lie in. Moreover,
we emphasise that the process states are learned parameters of the models rather
than embeddings derived from the input time series.

The mixing weight Hij between output process i and latent process j is now
determined by the relationship between the two associated process states and is
given by

Hij = g(zout
i , zlat

j ), (2)

where g(·, ·) is referred to as the latent similarity measure. Intuitively, g outputs
larger values for states closer together in the latent space. For the mixing matrix
as a whole, we can now write H = g(Zout,Zlat). Compared to the free-form
matrix optimisation used by the OILMM with O(mp) MLE parameters, this
parameterisation requires only O(m + p) MLE parameters, thus potentially
reducing the risk of overfitting.

Different choices for the latent similarity measure are possible. One such
option is to choose a kernel (a positive definite function), such as the radial
basis function (RBF) kernel, setting g(z, z′) = exp

(
−∥z− z′∥2/(2σ2)

)
. The RBF

kernel maps the process states to an infinite-dimensional Hilbert space (see [7,12])
before computing their inner product, while retaining the low parameter count.
The RBF kernel is particularly suitable for applications that give rise to data with
a strictly positive empirical covariance matrix. In case where negative covariances
do occur, we can choose alternative similarity measures, for example kernels that
can map to negative values.

Choosing a similarity measure to parameterise the mixing matrix allows
interpreting the relative positions of process states. The closer an output state i
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Fig. 1: Visualisation of the latent space M with the two groups of process states.
The mixing weight between output process i and latent process j is governed by
the kernel distance between output state zout

i and latent state zlat
j . As a result,

output processes whose states are closer together in M will be more similar.

is to a latent state j relative to another latent state k, the larger will be entry
Hij compared to Hik. As the output processes are weighted linear combinations
of the latent processes, output process i will be more similar to latent process
j than latent process k. Following the same reasoning, if two output states are
close together in latent space, their corresponding processes will be similar as
they will both have a similar weighting of latent processes. This property of the
latent space is visualised in Figure 1. Output state zout

0 is closer to zlat
0 than is

zout
3 and therefore output process y0(t) bears slightly more resemblance to the

periodic latent process x0(t) than does y3(t).

As for the OILMM, we can achieve time and memory complexity linear
in m if the mixing matrix is constrained to be orthogonal. Importantly, the
orthogonalisation needs to be a function continuous in the unconstrained matrix,
as we do not want small changes in the process states and hence the unconstrained
mixing matrix to lead to big changes in the orthogonal mixing matrix. This
intuitively retains the interpretability of the latent space even after orthogonalising
the mixing matrix. Such a continuous orthogonalisation can be achieved by
computing the singular value decomposition of the unconstrained parameter
H = UΣV⊤ with U and V containing only the leading m singular vectors.
We then redefine the mixing matrix, previously defined in Equation 2, to H =
Orthogonalise(H) := UV⊤. Hence, the final mixing matrix is computed as

H = Orthogonalise
(
g(Zout,Zlat)

)
. (3)

Its continuity stems from the fact that it maps the unconstrained matrix to the
closest orthogonal matrix [15, Theorem 4], which naturally does not change much
for small deviations to the input matrix.
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3.2 Incorporating graph structure information

When the time series live on a graph, i.e. for spatio-temporal graphs, we wish to
incorporate the adjacency information into the prior of our model to improve
its inductive bias. For the original OILMM model, a possible approach is to
assign a prior to the mixing matrix H and compute its maximum a posteriori
(MAP) estimate instead of the MLE. In practice, however, it is not obvious how
to construct a prior for the mixing matrix. In contrast, for the LS-OILMM, we
can straightforwardly build on the latent space interpretation described in the
previous section.

In a first step, we assign isotropic normal priors to all components of the
output states, meaning Zout

:i ∼ N (0, Ip) for i = 1, . . . , D. To incorporate graph
structure, we smoothen the output states using a low-pass graph signal filter S
as described in Section 2.2. The smoothed output states follow the prior

SZout
:i ∼ N

(
0,SST

)
. (4)

Intuitively, this prior correlates output states that correspond to neighbouring
nodes in the graph. When used as part of the loss function when computing MAP
estimates, it acts as “rubber bands” between the output states, pulling closer
together those states that are closer in the graph. Consequently, this choice of
prior encodes a homopholy assumption for spatio-temporal graphs: Two time
series that belong to two nodes closer together in the graph will be more strongly
correlated than time series of two nodes with many hops between them.

4 Experiments

We conduct experiments on two traffic forecasting data sets to examine the
properties of the proposed models. The METR-LA data set [3,5] consists of 207
nodes corresponding to traffic measurement stations in Los Angeles County. Each
node is associated with a time series of car speed measurements in 5-minute
intervals. The PEMS-BAY [5] data set follows the same format but consists of 325
measurement stations in the Bay Area. Both data sets come with an underlying
graph constructed by thresholding the road distance between nodes.

For both data sets, we choose the first 1000 time steps for our experiments.
Time series are divided into a training interval, consisting of the first 70% of
time steps, and a test interval, consisting of the remaining time steps. Moreover,
a subset of 21 and 33 test nodes are selected for the two data sets respectively;
the remaining nodes form the training set. For the training nodes, the whole
time series, both training and test interval, is available as training data. For the
test nodes, only the training interval is available as training data. The model is
tasked with reconstructing the test interval for the test nodes given the training
data. Note that the test interval comes strictly after the training interval, hence
the model is required to extrapolate on the test nodes.

We use the L-BFGS optimiser [6] to tune the hyperparameters, including
the process states in the case of the LS-OILMM and the unconstrained mixing
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METR-LA PEMS-BAY
PPLP MAE PPLP MAE

OILMM −2.00 ±0.07 6.56 ±0.22 −46.22 ±3.73 8.92 ±0.48
LS-OILMM −1.69 ±0.07 6.55 ±0.34 −13.62 ±1.56 5.46 ±0.45
LS-OILMM-adj −1.61 ±0.06 6.16 ±0.19 −10.39 ±0.94 4.78 ±0.16

Table 1: Experimental results comparing the baseline OILMM model with the
LS-OILMM that ignores graph structure and the LS-OILMM-adj, which incorpo-
rates graph structure information via its prior. Results given with one standard
deviation. Results significantly better (using Student t-test) than other results in
the same column are highlighted in boldface.

matrix in the case of OILMM. The latent space dimensionality is set to D = 3
and we use m = 10 latent processes. The RBF kernel is chosen as the latent
similarity measure. For the latent processes we use a composition of periodic and
smooth kernels that can be summarised as

Matern12()
+ RBF() · Periodic(Matern12(), period = 60/5 · 24)
+ RBF() · Periodic(Matern12(), period = 60/5 · 24 · 7). (5)

All experiments are implemented using Python 3.9 and the GPflow library [9]
with TensorFlow [1].

The goal of our experiments is twofold: Firstly, we examine the benefit of the
latent space parameterisation, proposed in this paper, over the free-form matrix
parameterisation, proposed in the original OILMM paper, by comparing the
LS-OILMM without the graph structure prior (hence using MLE) to the baseline
OILMM. Secondly, we assess the benefit of incorporating graph structure by
comparing the vanilla LS-OILMM with the LS-OILMM which employs the graph
structure prior and computes MAP estimates, referred to as LS-OILMM-adj.
Experimental results for all three models averaged over 10 parameter initialisations
are shown in Table 1. We report both the normalised posterior predictive log
probability (PPLP) and mean absolute error (MAE). The MAE is a metric taking
into account only the predictive mean, whereas the PPLP is also a function of
the predictive covariance.

We find that the LS-OILMM performs better than the OILMM both in
terms of PPLP and MAE on both data sets, indicating that the LS-OILMM
more accurately reconstructs the time series in the domain of the test set. The
improvement is particularly pronounced on the PEMS-BAY data set, which
has a larger number of output processes (325 vs. 207) and might therefore be
more susceptible to overfitting when using free-form matrix optimisation, which
requires about ten times as many parameters as the latent space parameterisation.
By design, the LS-OILMM aims to prevent overfitting to the training data by
reducing the number of point-estimated parameters. We verify that this hypothesis
holds by plotting the PPLP of the test set against the number of steps executed
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Fig. 2: Plot of the test set PPLP during training. The OILMM starts to overfit
after about 20 optimiser steps whereas the LS-OILMM continues to improve.

by the optimiser in Figure 2. We find that the PPLP reaches a similar level for
both the OILMM and LS-OILMM after at most 20 optimiser steps. However,
as the marginal likelihood is further maximised, the OILMM starts to overfit
whereas the LS-OILMM continues to improve in terms of test set predictions.

The LS-OILMM-adj again improves on the LS-OILMM both in terms of
PPLP and MAE on both data sets. Once more, the improvement is more marked
on the PEMS-BAY data set compared to the METR-LA data set. The results
suggest that incorporating graph structure via a prior that raises correlation
between nearby nodes increases the inductive bias of the model and improves its
predictive capabilities.

The results indicate that the more parameter-efficient mixing matrix param-
eterisation of the LS-OILMM prevents overfitting and still achieves an equally
good fit for the two data sets studied here. Furthermore, the graph-structured
prior on the process states made possible by the latent space formulation further
improves model fit for time series associated with graphs.

5 Conclusions

We have shown that representing time series by states in a low-dimensional latent
space yields a suitable parameterisation for covariances in a multi-output Gaussian
process model. This more parameter-efficient parameterisation compared to a
free-form matrix paramterisation leads to improved model fit on the test set by
reducing overfitting of the model on two traffic forecasting data sets. We have
further demonstrated how we can derive a prior over spatio-temporal graphs by
placing a normal prior that correlates neighbouring nodes on the output process
states and applying a low-pass graph filter, and computing MAP estimates.
Experimental results confirm that the graph-informed prior improves model fit
for the two traffic forecasting tasks. Future work could investigate how to relax
the setting to fully dynamic graphs for which not only the node attributes change
over time but also the graph structure itself.
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