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Abstract

Converging cross-linguistic evidence suggests that that human vocabularies are
shaped for efficient communication, but we know little about the agent-based
dynamics that could explain their evolution. In this paper, we show that very general
population dynamics of signaling games lead to the emergence of information-
theoretically efficient meaning systems. In numerical simulations, we observe that
noisy perception of meaning can result in evolved systems with higher efficiency.

1 Introduction

A prominent idea in semantic typology is that human vocabularies categorize the world efficiently, by
optimally balancing the costs of mental representation with the need to communicate accurately [19,
20, 23]. The intuition behind this idea is that out of the logically possible languages, natural languages
are near-optimal solutions to the problem of trading off complexity and accuracy. Empirically, there
is robust support for various formulations of this view across many diverse semantic domains
[19, 33, 48, 45, 46, 50, 38, 39, 25, 44, 51, 12, 13, 16, 8], indicating that shared properties of human
meaning systems emerge naturally from pressures for efficient communication.

However, as an explanation about how languages evolve under external constraints, the communica-
tive efficiency account is incomplete. We do not yet have a clear agent-based explanation of the
mechanisms that drive efficiency for linguistic communities in evolutionary time. Zaslavsky et al.
[48] argued that lexica evolve along efficient trajectories along the theoretical bound of efficiency,
defined by the Information Bottleneck (IB) tradeoff [41] between the complexity and accuracy of
the lexicon, and this idea has been supported empirically using both synchronic [48, 50, 51, 25] and
diachronic data [52]. However, this account does not provide an agent-based mechanistic explanation.
A few studies have explored agent-based simulations in the context of efficient communication,
leveraging deep reinforcement learning [7, 3, 22, 42, 43] and Bayesian iterated learning paradigms
[6, 21, 5, 4]. However, the precise link between the agent-based population dynamics and the effi-
ciency of emergent lexica is still largely unknown. Here, we ask: can languages achieve efficient
trajectories from general, independently motivated population dynamics?

Specifically, we draw on a population dynamics of behavioral imitation that is derived from the
well-known replicator equation [40, 34], which has previously been applied to language evolution [37,
27, 29] and has its origins in the signaling games literature to explain the emergence of vagueness in
language [9]. We show how this dynamical model may be related to the IB principle, following recent
work quantifying the efficiency of emergent semantic systems using the IB framework [42, 43, 4]. In
numerical simulations, we observe that speakers and listeners converge to lexicons that are near the
IB theoretical bounds of compression, and that noisy perception of meanings leads to more efficient
meaning systems.
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Figure 1: A round of play in the signaling game with confusability (noise) of states.

2 Evolutionary model

Our dynamics is an aggregate, population-level description of how behaviors optimize for commu-
nicative success in the presence of perceptual noise [9]. It describes the most likely evolutionary
path of agents optimizing (via learning, imitation, or some other mechanism) strategies, but confuse
similar perceptual states for one another [14]. The core of our model is a sim-max game which
describes communication in terms of strategic interactions between a Sender and Receiver (depicted
in Fig. 1) [24, 37, 17, 18, 30] as follows. First, nature randomly selects a state of the world x ∈ X
to present to Sender S. Depending on Sender’s level of perceptual certainty, Sender then observes
this state or a similar one y ∈ X , and chooses a signal w ∈ W to send to Receiver, who can only
observe the signal. Upon observing this signal, Receiver chooses an interpretation ŷ ∈ X , which
may possibly be confused as state x̂. Nature awards payoff to both players to the extent that the
interpretation ŷ is similar to state y. We model evolution in a version of the discrete-time replicator
dynamics (see Appendix A.2). Formally, the behavioral updates to the average sender S and average
receiver R are given by the following1:

S′(w | x) ∝
∑
y∈X

C(y | x) · S(w | y) · fS(w, y) (1)

R′(x̂ | w) ∝
∑
ŷ∈X

C(ŷ | x̂) ·R(ŷ | w) · fR(w, ŷ), (2)

where the probability of confusing state z for state z′ is defined by their (symmetric) similarity:

Cα(z
′ | z) ∝ similarityα(z, z

′), (3)

and
∀z, z′ ∈ X similarityγ(z, z

′) = exp(−γ (z − z′)2). (4)

Discriminative Need For our model of perceptual similarity, we follow [14, 33] in using an
independently motivated model from mathematical psychology [36, 26]. In Eq. 4, γ is an inverse
temperature parameter representing a tolerable level of pragmatic slack, playing a similar role to
the concept of discriminative need deployed by [7]. The minimum discriminative need is assumed
when γ = 0, which lets any pair of Sender and Receiver meanings receive identical payoff. Perfect
discrimination between states is enforced when γ → ∞, in which only perfect guesses by Receiver
yield nonzero payoff.

Noise / Perceptual certainty Following [14], we assume that the probability of confusing states
depends on their similarity (Eq. 3). To do this, we supply the similarity function (Eq. 4) with a
perceptual certainty parameter α, and manipulate the level of ‘noise’ in the game dynamics. Note
that fitness (via discriminative need) and perceptual noise use the same similarity function, but their
inverse temperature parameters (γ and α, respectively) vary independently.

Fitness As an instantiation of the replicator dynamics, our model assumes that the frequency of
a signaling behavior evolves according to its current frequency and its fitness, and that evolution is
driven by the fact that successful behaviors become more frequent. The fitnesses fR, fS of Sender and
Receiver’s strategies are defined respectively in terms of how well the strategies maximize similarity
between states y, ŷ ∈ X :

fS(w, y) =
∑
ŷ

R(ŷ | w) · similarityγ(y, ŷ), (5)

fR(w, ŷ) =
∑
y

Pr(y) · S(w | y) · similarityγ(y, ŷ). (6)

1We omit only the normalizing constants in Eqs. 1, 2, and 3, hence the proportionalities.
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Each Sender S and Receiver R are defined by a set of deterministic strategies, so that population
averages describe probabilistic strategies. Thus, in Eq. 1, S(w | x) denotes the probability that
a randomly sampled sender signals w ∈ W to communicate state y ∈ X , and in Eq. 2 R(ŷ | w)
denotes the probability that a randomly sampled receiver chooses to interpret signal w to mean world
state ŷ. We also need to specify a prior over meanings, Pr(·), which reflects how often language
users need to communicate about particular states of the world. To begin to explore the efficiency of
this dynamical process, we consider a very simple setting in which the world states for Sender and
Receiver is a set of n contiguous integers X = {0, 1, . . . , n}, to model a situation in which states of
the environment stand in minimally interesting physical distance relations.

3 Measuring efficiency of emergent semantic systems

To explain the evolution of efficient meaning systems, we require a domain-agnostic method of
quantifying the complexity/accuracy trade-off for semantic systems. Following [48, 47], we measure
the trade-off in terms of the Information Bottleneck (IB) Framework. IB is a special case of
Rate-Distortion Theory (RDT), the branch of information theory concerned with optimizing data
compression under bounded resources [35, 11]. In information-theoretic terms, languages minimize
both rate (the resources necessary to compress a thought into a word, quantified in bits) and distortion
(the error a listener makes in reconstructing a speaker’s intention). Here we briefly describe the
IB objective, keeping the same notation as [48]. Consider a language equipped with words W to
communicate about meanings M, which are modeled as distributions p(u | m) over world states U .
This language can be represented by an aggregate (stochastic) speaker q(w | m), the encoder. The
language’s semantic system is efficient to the extent that q minimizes:

Fq(w|m) = I(M ;W )− βI(W ;U) s.t. β ≥ 1. (7)

The information rate I(M ;W ) quantifies the complexity of the encoder, and is to be minimized.
Maximizing accuracy, quantified by I(W ;U), amounts to minimizing the distortion between speaker
and listener meanings, i.e. the KL-divergence DKL

[
M∥M̂

]
. In our game setting, the confusability

of states C (Eq. 3) corresponds to the perceptually uncertain meaning distributions M . The states
of the signaling game (X ) are straightforwardly identified with world states in the IB framework
(U), and similarly words and signals (W) play identical roles. A Sender S(w | m) in the sim-max
game corresponds to an encoder q(w | m) in the IB framework; we therefore identify each emergent
semantic system with aggregate Sender population behavior.

4 Simulation Results

We simulated evolution in the noisy sim-max game for a variety of parameter configurations and
measured the efficiency of the resulting systems with respect to the IB theoretical bound, which we
estimated using the IB-method algorithm [41]. Specifically, we simulate the population dynamics
for up to 200 time steps, varying discriminative need, the degree of perceptual noise, and random
initialization of agent populations, resulting in 343 distinct runs. We fix the signaling game and IB
bound resulting from |U| = |W| = 100 world states and signals, a uniform prior over meanings, and
setting the meaning distributions p(u | m) = Cα(u | m) for α = 1.0 (Eq. 3) for all simulations. We
report the results of evolution after 200 time steps; most runs converged early.

The outcomes of our simulations are displayed in Figs. 2, 3 (See Appendix B.1 for more details of
our parameter sweep). We catalogue two main empirical findings. First, most emergent systems
converge close to the IB theoretical limit, spaning a diverse set of near-optimal solutions. Second,
the complexity of emergent systems is predicted by the degree of perceptual noise (R2 = 0.66,
p ≈ 0). We observe that (i) with no noise in the dynamics, many higher complexity systems have low
efficiency; (ii) with some noise, systems all achieve high efficiency and the complexity and accuracy
is bounded from above; (iii) with a high degree of noise, systems evolve to be among the simplest
possible, including systems with one word for all 100 meanings.
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Figure 2: Emergent semantic systems from evo-
lutionary dynamics of sim-max games with 100
states and signals. Black line: the information
curve, i.e. the set of optimal solutions to the IB
objective (Eq. 7). Circles: emergent systems.
Color: perceptual certainty parameter control-
ling the probability of confusing similar states.

Figure 3: The simulated evolutionary trajectory
of one semantic system in a sim-max game with
γ = 0.01 and α = 1000. Circles: the semantic
category system at one time step. Color: the
discrete time step in evolution, from 1 − 200.
Most simulations had similar trajectories.

5 Discussion

The emergent systems span a large range of near-optimal solutions. Regularizing noise in the
perception and interpretation of meaning, however, appears to constrain this variation and increase
efficiency. In actual linguistic communities, this noise may result from specific cognitive architectures
and learning biases, or other sources of randomness in the replication of behavior. This prediction,
that noisy perception of meaning can drive efficiency in the lexicon, echoes results in the literature,
that transmission errors in (iterated) language learning can drive simplicity [4, 5]. Our predictions are
also consistent with the perspective of the IB framework, which takes meanings to be probabilistic.
Additionally, the evolutionary paths we observe (Fig. 3) are compatible with the proposal that
annealing processes well-describe the trajectories of systems along the information plane [48, 49].
There are several limitations of the current study. First, focusing on how noise (α) can drive language
efficiency assumes that language must co-evolve with perception. Future work may address this
limitation by formulating a version of the dynamics that does not identify α directly with perception,
or by manipulating only discriminative need (γ). Also, our dynamics yields systems at unnatural
extremes of complexity, a limitation that some previous work does not suffer from [7, 4, 42, 43].
However, the diversity of emergent optimal systems is intrinsically interesting. It invites questions
about possible connections between game theory and IB; e.g., are there relationships between Nash
equilibria in sim-max games, and rate-distortion optima? Another limitation of our work is that
we focused on a simple, 1D semantic space, but future work could easily explore real domains (as
in [10]). Lastly, our evolutionary model assumes two disjoint, infinite populations, and changes
that occur at abrupt, evenly spaced, countable time intervals. While unrealistic, our model follows
much prior work in game theory in these idealizing assumptions, which sometimes lead to easier
mathematical investigation into precise, general results.

6 Conclusion

Using evolutionary game theory, we have explored a simple, general process by which meaning
systems can evolve in a population along the solutions to an information-theoretic efficiency objective.
In simulations, we find that noise in the perception of meaning can drive optimal complexity/accuracy
trade-offs. Our results suggest promising connections between two influential ideas in language
evolution: efficiency in the Information Bottleneck and the replicator dynamics of signaling games.
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[13] Milica Denić, Shane Steinert-Threlkeld, and Jakub Szymanik. Indefinite Pronouns Optimize the
Simplicity/Informativeness Trade-Off. Cognitive Science, 46(5):e13142, 2022. doi: 10.1111/
cogs.13142.

[14] Michael Franke and José Pedro Correia. Vagueness and Imprecise Imitation in Signalling
Games. The British Journal for the Philosophy of Science, 69(4):1037–1067, December 2018.
ISSN 0007-0882. doi: 10.1093/bjps/axx002. URL http://www.journals.uchicago.edu/
doi/full/10.1093/bjps/axx002. Publisher: The University of Chicago Press.

[15] Imel. The evolution of efficient compression in signaling games. In Proceedings of the 45th
Annual Meeting of the Cognitive Science Society, 2023. to appear.

[16] Nathaniel Imel and Shane Steinert-Threlkeld. Modal semantic universals optimize the sim-
plicity/informativeness trade-off. In Proceedings of semantics and linguistic theory (SALT 32),
2022.

[17] Gerhard Jäger. The evolution of convex categories. Linguistics and Philosophy, 30(5):551–
564, October 2007. ISSN 1573-0549. doi: 10.1007/s10988-008-9024-3. URL https:
//doi.org/10.1007/s10988-008-9024-3.

[18] Gerhard Jäger, Lars P. Metzger, and Frank Riedel. Voronoi languages: Equilibria in cheap-
talk games with high-dimensional types and few signals. Games and Economic Behavior,
73(2):517–537, November 2011. ISSN 0899-8256. doi: 10.1016/j.geb.2011.03.008. URL
https://www.sciencedirect.com/science/article/pii/S0899825611000595.

[19] Charles Kemp and Terry Regier. Kinship categories across languages reflect general
communicative principles. Science (New York, N.Y.), 336(6084):1049–1054, 2012. doi:
10.1126/science.1218811.

[20] Charles Kemp, Yang Xu, and Terry Regier. Semantic typology and efficient communication. An-
nual Review of Linguistics, pages 1–23, 2018. doi: 10.1146/annurev-linguistics-011817-045406.

[21] Simon Kirby, Monica Tamariz, Hannah Cornish, and Kenny Smith. Compression and
communication in the cultural evolution of linguistic structure. Cognition, 141:87–102,
August 2015. ISSN 0010-0277. doi: 10.1016/j.cognition.2015.03.016. URL https:
//www.sciencedirect.com/science/article/pii/S0010027715000815.

[22] Mikael Kågebäck, Emil Carlsson, Devdatt Dubhashi, and Asad Sayeed. A reinforcement-
learning approach to efficient communication. PLOS ONE, 15(7):e0234894, July 2020.
ISSN 1932-6203. doi: 10.1371/journal.pone.0234894. URL https://journals.plos.
org/plosone/article?id=10.1371/journal.pone.0234894. Publisher: Public Library
of Science.

[23] Stephen C. Levinson. Kinship and Human Thought. Science (New York, N.Y.), 336(6084):
988–989, 2012. doi: 10.1126/science.1222691. URL https://www.science.org/doi/
abs/10.1126/science.1222691.

[24] David Kellogg Lewis. Convention: A philosophical study. Cambridge, MA, USA: Wiley-
Blackwell, 1969.

[25] Francis Mollica, Geoff Bacon, Noga Zaslavsky, Yang Xu, Terry Regier, and Charles Kemp. The
forms and meanings of grammatical markers support efficient communication. Proceedings
of the National Academy of Sciences, 118(49):e2025993118, December 2021. doi: 10.1073/
pnas.2025993118. URL http://www.pnas.org/doi/full/10.1073/pnas.2025993118.
Publisher: Proceedings of the National Academy of Sciences.

[26] Robert M. Nosofsky. Attention, similarity, and the identification–categorization relationship.
Journal of Experimental Psychology: General, 115:39–57, 1986. ISSN 1939-2222. doi:
10.1037/0096-3445.115.1.39. Place: US Publisher: American Psychological Association.

[27] Martin A. Nowak. Evolutionary Dynamics: Exploring the Equations of Life. Harvard University
Press, 2006. ISBN 978-0-674-02338-3. doi: 10.2307/j.ctvjghw98. URL https://www.jstor.
org/stable/j.ctvjghw98.

6

http://www.journals.uchicago.edu/doi/full/10.1093/bjps/axx002
http://www.journals.uchicago.edu/doi/full/10.1093/bjps/axx002
https://doi.org/10.1007/s10988-008-9024-3
https://doi.org/10.1007/s10988-008-9024-3
https://www.sciencedirect.com/science/article/pii/S0899825611000595
https://www.sciencedirect.com/science/article/pii/S0010027715000815
https://www.sciencedirect.com/science/article/pii/S0010027715000815
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234894
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234894
https://www.science.org/doi/abs/10.1126/science.1222691
https://www.science.org/doi/abs/10.1126/science.1222691
http://www.pnas.org/doi/full/10.1073/pnas.2025993118
https://www.jstor.org/stable/j.ctvjghw98
https://www.jstor.org/stable/j.ctvjghw98


[28] Martin A. Nowak and David C. Krakauer. The evolution of language. Proceedings of the Na-
tional Academy of Sciences, 96(14):8028–8033, July 1999. doi: 10.1073/pnas.96.14.8028. URL
https://www.pnas.org/doi/full/10.1073/pnas.96.14.8028. Publisher: Proceedings
of the National Academy of Sciences.

[29] Martin A. Nowak, Natalia L. Komarova, and Partha Niyogi. Evolution of Universal Gram-
mar. Science, 291(5501):114–118, January 2001. doi: 10.1126/science.291.5501.114. URL
https://www.science.org/doi/10.1126/science.291.5501.114. Publisher: Ameri-
can Association for the Advancement of Science.

[30] Cailin O’Connor. The Evolution of Vagueness. Erkenntnis, 79(4):707–727, April 2014.
ISSN 1572-8420. doi: 10.1007/s10670-013-9463-2. URL https://doi.org/10.1007/
s10670-013-9463-2.

[31] Karen M.. Page and Marting A. Nowak. Unifying Evolutionary Dynamics. Journal of Theoreti-
cal Biology, 219(1):93–98, November 2002. ISSN 0022-5193. doi: 10.1006/jtbi.2002.3112.
URL https://www.sciencedirect.com/science/article/pii/S0022519302931127.

[32] Christina Pawlowitsch. Why evolution does not always lead to an optimal signaling sys-
tem. Games and Economic Behavior, 63(1):203–226, May 2008. ISSN 0899-8256. doi:
10.1016/j.geb.2007.08.009. URL https://www.sciencedirect.com/science/article/
pii/S0899825607001480.

[33] Terry Regier, Charles Kemp, and Paul Kay. Word meanings across languages support efficient
communication Informativeness and simplicity as competing principles. In Brian MacWhinney
and William O’Grady, editors, The Handbook of Language Emergence, pages 237–263. Wiley,
2015.

[34] Peter Schuster and Karl Sigmund. Replicator dynamics. Journal of Theoretical Biology, 100
(3):533–538, February 1983. ISSN 0022-5193. doi: 10.1016/0022-5193(83)90445-9. URL
https://www.sciencedirect.com/science/article/pii/0022519383904459.

[35] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379–423, July 1948. ISSN 0005-8580. doi: 10.1002/j.1538-7305.1948.tb01338.x.
Conference Name: The Bell System Technical Journal.

[36] Roger N. Shepard. Stimulus and response generalization: A stochastic model relating generaliza-
tion to distance in psychological space. Psychometrika, 22(4):325–345, December 1957. ISSN
1860-0980. doi: 10.1007/BF02288967. URL https://doi.org/10.1007/BF02288967.

[37] Brian Skyrms. Signals: Evolution, Learning, and Information. Oxford University Press,
Oxford, 2010. ISBN 978-0-19-958082-8. doi: 10.1093/acprof:oso/9780199580828.001.
0001. URL https://oxford.universitypressscholarship.com/10.1093/acprof:
oso/9780199580828.001.0001/acprof-9780199580828.

[38] Shane Steinert-Threlkeld. Quantifiers in natural language optimize the Simplic-
ity/Informativeness trade-off. In Julian J Schl\"{o}der, Dean McHugh, and Floris Roelofsen,
editors, Proceedings of the 22nd Amsterdam Colloquium, pages 513–522, 2020.

[39] Shane Steinert-Threlkeld. Quantifiers in Natural Language: Efficient Communication and
Degrees of Semantic Universals. Entropy. An International and Interdisciplinary Journal of
Entropy and Information Studies, 23(10):1335, 2021. doi: 10.3390/e23101335.

[40] Peter D. Taylor and Leo B. Jonker. Evolutionary stable strategies and game dynamics.
Mathematical Biosciences, 40(1):145–156, July 1978. ISSN 0025-5564. doi: 10.1016/
0025-5564(78)90077-9. URL https://www.sciencedirect.com/science/article/
pii/0025556478900779.

[41] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottlneck method. Pro-
ceedings of the 37th Annual Allerton Conference on Communication, Control and Computing,
pages 368–377.

7

https://www.pnas.org/doi/full/10.1073/pnas.96.14.8028
https://www.science.org/doi/10.1126/science.291.5501.114
https://doi.org/10.1007/s10670-013-9463-2
https://doi.org/10.1007/s10670-013-9463-2
https://www.sciencedirect.com/science/article/pii/S0022519302931127
https://www.sciencedirect.com/science/article/pii/S0899825607001480
https://www.sciencedirect.com/science/article/pii/S0899825607001480
https://www.sciencedirect.com/science/article/pii/0022519383904459
https://doi.org/10.1007/BF02288967
https://oxford.universitypressscholarship.com/10.1093/acprof:oso/9780199580828.001.0001/acprof-9780199580828
https://oxford.universitypressscholarship.com/10.1093/acprof:oso/9780199580828.001.0001/acprof-9780199580828
https://www.sciencedirect.com/science/article/pii/0025556478900779
https://www.sciencedirect.com/science/article/pii/0025556478900779


[42] Mycal Tucker, Roger P. Levy, Julie Shah, and Noga Zaslavsky. Trading off utility, informative-
ness, and complexity in emergent communication. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in neural information processing systems,
2022. URL https://openreview.net/forum?id=O5arhQvBdH.

[43] Mycal Tucker, Roger P. Levy, Julie Shah, and Noga Zaslavsky. Generalization and Translatability
in Emergent Communication via Informational Constraints. In NeurIPS 2022 Workshop on
Information-Theoretic Principles in Cognitive Systems, 2022. URL https://openreview.
net/forum?id=yf8suFtNZ5v.

[44] Wataru Uegaki. The informativeness / complexity trade-off in the domain of Boolean connec-
tives. Linguistic Inquiry, 2021.

[45] Yang Xu and Terry Regier. Numeral systems across languages support efficient communication:
From approximate numerosity to recursion. In Cognitive science society (cogsci-2014), pages
1802 – 1807, 2014.

[46] Yang Xu, Terry Regier, and Barbara C. Malt. Historical Semantic Chaining and Efficient Com-
munication: The Case of Container Names. Cognitive Science, 40(8):2081–2094, November
2016. ISSN 0364-0213. doi: 10.1111/cogs.12312.

[47] Noga Zaslavsky. Information-Theoretic Principles in the Evolution of Semantic Systems. Ph.D.
Thesis, The Hebrew University of Jerusalem, 2020.

[48] Noga Zaslavsky, Charles Kemp, Terry Regier, and Naftali Tishby. Efficient compression in
color naming and its evolution. Proceedings of the National Academy of Sciences, 115(31):
7937–7942, 2018. doi: 10.1073/pnas.1800521115.

[49] Noga Zaslavsky, Karee Garvin, Charles Kemp, Naftali Tishby, and Terry Regier. Evolution and
efficiency in color naming: The case of Nafaanra. In CogSci, page 68, 2019.

[50] Noga Zaslavsky, Terry Regier, Naftali Tishby, and Charles Kemp. Semantic categories of
artifacts and animals reflect efficient coding. In 41st Annual Meeting of the Cognitive Science
Society, 2019.

[51] Noga Zaslavsky, Mora Maldonado, and Jennifer Culbertson. Let’s talk (efficiently) about us:
Person systems achieve near-Optimal compression. In Proceedings of the 43rd Annual Meeting
of the Cognitive Science Society, 2021.

[52] Noga Zaslavsky, Karee Garvin, Charles Kemp, Naftali Tishby, and Terry Regier. The evolution
of color naming reflects pressure for efficiency: Evidence from the recent past. Journal of
Language Evolution, page lzac001, April 2022. ISSN 2058-458X. doi: 10.1093/jole/lzac001.
URL https://doi.org/10.1093/jole/lzac001.

A Additional modeling details

A.1 Reproducing results

A script for reproducing all simulation results and figures can be found at https://github.com/
nathimel/ibsg. This script was run on a 8 CPU core laptop in a matter of hours.

A.2 The replicator dynamics

The standard replicator dynamics describes change in mean behavior in a population of game players.
Change in proportion xi of strategy i is defined by the differential equation in Eq. 8 and one of its
discretizations in Eq. 9:

ẋi = xi[fi(x)− ϕ(x)], (8)

x′
i = xi

[
(f(x))i
ϕ(x)

]
. (9)
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The continuous time formulation is mathematically equivalent to a number of equations from evo-
lutionary theory [31, 1, 2]. The discrete-time version is easier to work with in simulations. In both
Eqs. 8 and 9, x ∈ Rn is a vector of the distribution of n possible types in the population, xi is the
proportion of type i ∈ [n] in the population, fi(x) is the fitness of this type (relative to the population),
and ϕ(x) =

∑n
j=1 xjfj(x) represents the average fitness of the population.

In contrast to [28, 32], we allow for changes at individual choice-points, rather than requiring changes
at the level of entire contingency plans. In this way, our approach is more compatible with ideas
of imitation and learning than with biological evolution among agents predisposed to inflexibly
execute their native behavior. Therefore, in Eq. 9, xi represents the frequency of a signaling behavior,
corresponding to a particular strategy, e.g. for S to send w in state x or R to interpret w as x̂. The
analogous discrete-time updates used in this work (adding detail to Eqs. 1, 2) are:

S′(w | y) =
∑
x∈X

C(y | x) · S(w | x) · fS(w, x)∑
w∈W S(w | x) · fS(w, x)

(10)

R′(ŷ | w) =
∑
x̂∈X

C(ŷ | x̂) · R(x̂ | w) · fR(w, x̂)∑
w∈W R(w | x̂) · fR(w, x̂)

(11)

For a derivation of the dynamics we deploy (Eqs. 10, 11) from Eq. 9, we refer readers to Section
5.2 of [9]. See [14] for discussion of how the current dynamics are related to, but distinct from, the
famous replicator-mutator dynamics [31, 27].

A.2.1 Vectorized dynamics

For ease of replication, we include the simple form of the vectorized discrete-time update steps in
Eqs. 1, 2. Let S,R represent the conditional distributions for Sender and Receiver, respectively, C
represent the transition matrix describing the probability of confusing one state with another, FS , FR

the fitness matrices for Sender and Receiver, respectively, and pr ∈ R|W|×|U| a matrix consisting
of |W| row-wise concatenations of the stochastic vector corresponding to the communicative need
distribution. The update steps for the Sender and Receiver populations can be expressed as:

S′ = CS ⊙ (RFS)
⊤ (12)

R′ = R⊙ pr ⊙ (FRS)
⊤C (13)

After each step, the rows of S and R need to be normalized so that they sum to 1.

A.3 Quantifying efficiency loss

We follow [48] in quantifying the inefficiency of an emergent semantic system in terms of its
efficiency loss, ϵ, which is the difference between the value of the IB objective function for the
emergent system’s associated aggregate Sender q = S(w|m) and that of the nearest optimal encoder
q∗(w|m) lying on the theoretical limit:

ϵ = ∆Fq = Fq −Fq∗ (14)

and define the nearest optimal encoder to a given Sender as:

1− min
q∗∈Q∗

gNID(q, q∗), (15)

out of the set of all optimal encoders Q∗ . Here, gNID is a generalization of the Normalized Infor-
mation Distance to unimodal, soft probabilistic partitions. We refer readers to [48], Supplementary
Information, Section 3 for full definition and details of gNID.

B Simulation parameter sweep

In addition to the level of perceptual noise in the dynamics, we explored several other factors
commonly assumed to be important in language evolution play a shaping role in the efficiency of
emergent systems; namely, the initial distribution of Sender and Receiver strategies in the population
and discriminative need (Eq. 4).

9



We randomly initialize the populations of Senders and Receivers for the beginning of each simulation
using an energy-based initialization:

S = softmax(δ ·N) with N ∈ R|W|×|M|, (16)

R = softmax(δ ·N) with N ∈ R|M|×|W|. (17)

where N is a matrix of numbers sampled from the standard normal distribution N (0, 1) and δ is
a parameter for controlling how uniformly the population initial strategies will be distributed; as
δ → −∞, the population will be initialized uniformly; as δ → ∞ the population will begin with a
fully deterministic category system.

Recall from Section 2 that we vary discriminative need by varying the similarity parameter, γ:

similarityγ(x, x
′) = exp(−γ · (x− x′)2). (18)

We vary perceptual noise by varying the parameter α independently from γ, which in this case
represents perceptual certainty instead of discriminative need. The rows of the similarity matrix are
normalized to form a confusion matrix specifying the probability of confusing one world state for
another:

Cα(x
′|x) = similarityα(x, x

′)∑
y similarityα(x, y)

. (19)

B.1 Results
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Figure 4: Results of parameter sweep over initial population distributions, discriminative need, and
perceptual certainty on efficiency loss across 343 simulations. A line connecting each parameter
coordinate represents a single simulation. Parameter values are labeled on a log10 scale. Color of
lines represents the efficiency loss of the emergent semantic category system (Eq 14), with green
corresponding to lowest (0.0) values (better) and red corresponding to highest (0.91) efficiency loss.
The majority of simulations lead to low inefficiency (median ϵ = 0.07). Meanwhile, runs that (i) start
with very biased (non-uniform) initial population dispositions, (ii) involve very high discriminative
need in the signaling game, and (iii) assume no perceptual noise in the dynamics represent simulations
that lead to the most inefficient semantic systems.
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parameter β R2 p

initialization energy 0.01 0.046 5.50× 10−5

discriminative need 0.005 0.006 1.32× 10−1

perceptual certainty 0.02 0.175 5.09× 10−16

Table 1: OLS regression results of population initialization energy, discriminative need, and perceptual
certainty on efficiency loss (parameters in log scale).

Figure 5: OLS regression fits of population initialization energy, discriminative need, and perceptual
certainty on efficiency loss. x-axis in log scale.

Predicting efficiency For each of these factors, there are parameter values that lead to inefficiency as
quantified by Eq. 14, with the results depicted in Fig. 4. In particular, higher values of discriminative
need result in lower efficiency. This is somewhat intuitive and parallel to the trend with noise in the
dynamics: when payoffs are awarded only for perfectly precise communication, success is rarer;
furthermore, stimuli cannot be generalized based on similarity in order to lead to regular partitions
that support efficient compression. Initial entropy of the Sender and Receiver population distributions
also has a significant effect on efficiency, such that more uniform initial populations tend to result
mean systems with higher efficiency. The results of performing linear regressions of each factor
(individually) on efficiency loss are reported in Table 1 and Fig. 5.

B.1.1 Predicting complexity

When visualizing all systems on the complexity/accuracy plane, initialization and perceptual noise
appear to appear to constrain emergent complexity in a systematic way (Figures 7, 9), while the effects
of discriminative need are less obvious (Fig. 8). Linear regressions also revealed this relationships
numerically, reported in Table 2 and Fig. 6.

parameter β R2 p

initialization energy −0.21 0.04 2.66× 10−4

discriminative need 0.07 0.00 2.23× 10−1

perceptual certainty 0.89 0.66 4.04× 10−81

Table 2: Individual OLS regressions of population initialization energy, discriminative need, and
perceptual certainty on complexity (parameters in log scale).
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Figure 6: OLS regression fits of population initialization energy, discriminative need, and perceptual
certainty on complexity. x-axis in log scale.

Figure 7: Emergent systems on the complexity/accuracy plane, colored according to initialization
energy with blue being more random and yellow being deterministic. Initializations that are more
random tend to produce simpler, and more efficient systems.

Figure 8: Emergent systems on the complexity/accuracy plane, colored according to discriminative
need with blue corresponding to games with unlimited pragmatic slack, and yellow corresponding
to games with all-or-nothing payoffs. Complexity does not appear to systematically change with
discriminative need (at least when the other parameters are allowed to vary.)
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Figure 9: Emergent systems on the complexity/accuracy plane, colored according to perceptual
certainty (note this is Fig. 2 repeated with different legend). Here, blue systems result from
populations with very low certainty w.r.t. world state perception (i.e., a large amount of noise in the
dynamics) and yellow systems result from populations with very high certainty (no noise). Perceptual
noise tends to produce simpler, and more efficient systems.
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