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Abstract
Recently, a plethora of works have proposed
inference-time algorithms (e.g. best-of-n), which
incorporate verifiers to assist the generation pro-
cess. Their quality-efficiency trade-offs have been
empirically benchmarked on a variety of con-
strained generation tasks, but the algorithmic de-
sign landscape is still largely poorly understood.
In this paper, we develop a mathematical frame-
work for reasoning about constrained generation
using a pre-trained language model generator or-
acle and a process verifier—which can decide
whether a prefix can be extended to a string which
satisfies the constraints of choice. We show that
even in very simple settings, access to a verifier
can render an intractable problem (information-
theoretically or computationally) to a tractable
one. In fact, we show even simple algorithms,
like tokenwise rejection sampling, can enjoy sig-
nificant benefits from access to a verifier. Em-
pirically, we show that a natural modification of
tokenwise rejection sampling, in which the sam-
pler is allowed to “backtrack” (i.e., erase the final
few generated tokens) has robust and substantive
benefits over natural baselines (e.g. (blockwise)
rejection sampling, nucleus sampling)—both in
terms of computational efficiency, accuracy and
diversity. 1

1. Introduction
The fast-evolving area of inference-time algorithms con-
cerns itself with leveraging the already-impressive capabil-
ities of language models (Raffel et al., 2020; Brown et al.,
2020; Touvron et al., 2023), together with a verifier which
can score generations of the language model. In the sim-
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plest form, called best-of-N, the language model generates
N candidate responses, which are then scored by the verifier,
and the highest-scored candidate response is chosen as the
output of the inference process (Cobbe et al., 2021; Nakano
et al., 2022). If the verifier can score partial generations
(sometimes called process reward), the space for inference-
time algorithms gets much richer: e.g., the final answer
can be generated incrementally, using the verifier to guide
the process (e.g., by incremental (blockwise) best-of-N, or
more complicated strategies like Monte-Carlo-Tree-Search
(Browne et al., 2012; Hao et al., 2023)). Importantly, though
a flurry of recent papers consider “scaling laws” of natu-
ral strategies, the algorithm design space of verifier-aided
inference-time algorithms is still opaque. In particular, the
value of a verifier—and the relationship it needs to have to
the generator is not well understood.

In this paper, we show that a good verifier can substantially
(both in theory and in practice) decrease the computational
cost of natural generation tasks, using a pre-trained language
model as an oracle. In particular, we show that:

• Even simple constrained generation tasks—where we
are trying to generate a string in the support of a lan-
guage oracle, subject to some structural constraint (e.g.
describable as a simple formal language, like a regular
language)—can be computationally intractable in the
absence of a verifier.

• Conversely, access to a good process verifier, one
that can decide whether a prefix can be completed
to a constraint-satisfying string, can remove these in-
tractabilities. Moreover, even simple algorithms like
tokenwise rejection sampling—wherein we generate
the string one token at a time, using the process verifier
as a means to accept or reject—can have substantive
computational benefits over the baseline of rejection
sampling.

• Finally, on natural constrained generation tasks—
namely, generating test cases for Python functions with
a pretrained CodeLlama (Roziere et al., 2023)—a ver-
ifier can be trained, such that a simple, but natural
generalization of tokenwise rejection sampling which
is allowed to “backtrack” the last few generated to-
kens, achieves substantial benefits in computational
efficiency, accuracy, and diversity of the generations.
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2. Setup and notation
Throughout, we let Σ be a nonempty finite set, denoting the
vocabulary. We denote as Σi the set of strings of length i
and by Σ∗ = ∪i∈NΣ

i the set of all finite strings on Σ. Given
a string s ∈ Σ∗ , we denote as si its i-th element and as
si:j the substring of s starting at its i-element and ending
at its j-element, included. We use |s| to denote the length
of string s and ϵ to denote the empty string. Finally, we let
x◦y denote the concatenation of string x followed by string
y.
Definition 1 (Autoregressive oracle). An autoregressive
oracle O takes as input a string s ∈ Σ∗ and returns a
sample from a next-token distribution O(s) : Σ→ R+.

We will denote the corresponding joint distribution over
strings s ∈ Σ∗ as pO : Σ∗ → R+. Correspondingly, ∀s ∈
Σ∗, let pO(· | s) denote the distribution over completions of
s predicted by O.
Definition 2 (Constrained generation). Constrained gener-
ation with respect to an oracleO, a constraint set A, and vo-
cabulary Σ is the task of producing an element s ∈ A ⊆ Σ∗

such that pO(s) > 0. If no such s exists, the algorithm
needs to output FAIL.

When not clear from context, we will specify instances of
this task by the triple (Σ, A,O). Under suitable choices of
the vocabulary Σ and the target domain A, one recovers
several language modeling tasks of theoretical and practical
relevance as special cases of constrained generation. Specif-
ically, our experiments consider the tasks of generating (i)
valid strings under the Dyck grammar (Section 5.1) and
(ii) valid test cases for a given Python functions (Section
5.2), where the oracles return samples from an appropriately
pretrained language model. We recover these tasks from
Definition 2 by setting:

• (i) Σ as the set of open and close parentheses, and A
as the set of valid sequences of given length.

• (ii) Σ as a set of characters from the Unicode standard
(possibly after tokenization) and A as the set of strings
that are valid test cases for an input function in the
Python programming language.

Note that this task is easier than the task of sampling accord-
ing to the restricted distribution p(s) ∝ 1(s ∈ A)pO(s),
which asks that the relative weights of the strings s ∈ A
that are generated match the probabilities assigned by pO.
However, in many settings—e.g., generating a proof of a
mathematical problem, or code that performs some intended
functionality—we merely care about producing one good
sample.

We will be considering “process verifiers” that take as input
a prefix s, and output whether or not such a prefix can

be completed to a string s ◦ s′ ∈ A. This is a natural
formalization of a “process reward”, as it assigns a belief
to a partial generation. In the theoretical results (Section 3
and 4), we’ll assume access to such an idealized verifier.
In the empirical results (Section 5), such a verifier will be
trained and will output a value between 0 and 1, which can
be naturally interpreted as a probability that the prefix s is
completable to a string s ◦ s′ ∈ A.

Definition 3 (Process verifier). Given a constraint set A, a
verifier is a function V : Σ∗ → {0, 1} such that ∀s ∈ Σ∗,
V (s) = 1 if and only if ∃s′ ∈ Σ∗ such that s ◦ s′ ∈ A.

Designing algorithms given access to oracles which perform
certain tasks, is a classical tool in computer science (this is
the basis of Turing reductions in computational complexity),
as well as optimization (e.g., zero-order optimization as-
sumes a value oracle for a function, first-order optimization
a gradient oracle, etc.) In the context of generative model-
ing, analyses based on oracle complexity have been carried
out in the settings of diffusion models, where sampling
algorithms rely on score oracles (Chen et al., 2022).

We will consider several natural algorithms that use an au-
toregressive oracle and a (process) verifier:

Definition 4 (Rejection sampling). Rejection sampling
works by repeatedly generating a string s according to
pO, then running a verifier V on the complete string—and
accepting when the verifier outputs V (s) = 1.

Note, this algorithm only needs a verifier that decides the
membership in A, rather than a process verifier. On the
other hand, because the entire string needs to be generated
first before being verified—the number of generations until
the verifier accepts is likely very large.

Definition 5 (Tokenwise rejection sampling). Tokenwise
rejection sampling works by generating a string one token
at a time. To generate the next token t, given a prefix s, we
sample t ∼ O(s), and run the process verifier on V (s ◦ t).
We repeat this, until V (s ◦ t) = 1, then proceed to the next
token.

This algorithm requires a process verifier. However, since a
partial string is accepted only if the process verifier accepts,
the number of generations needed is likely to be smaller. In
fact, we provide a very simple example in Section 4.

Finally, we consider a “backtracking” strategy, in which the
model is allowed to erase some of its generations. The rea-
sons to consider such a strategy is to allow the model to get
“unstuck”: if the process verifier decides the current prefix
cannot be completed to a valid string in A, it is possible
that erasing the last few tokens will make it easier for the
model to correct its mistake, compared to erasing just the
last token. More formally, the framework of our algorithm
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is given by Algorithm 1 below. 2

Algorithm 1 Tokenwise rejection sampling with backtrack-
ing

1: Input: Prompt x, generator O, verifier V, length D ∈
N+, backtrack quota Q ∈ N, backtrack stride B ∈ N+

2: s← ϵ
3: while |s| < D and s|s| ̸= <eos> do
4: Sample ŝ ∼ O(x ◦ s)
5: s← s ◦ ŝ
6: if Q > 0 and V(x ◦ s) = 0 then
7: s← s1:|s|−B

8: Q← Q− 1
9: for i in 1 · · ·B do

10: Choose ŝ ∈ argmaxO(x ◦ s)
11: s← s ◦ ŝ
12: end for
13: end if
14: end while

When arguing about lower bounds, a natural lower bound on
the complexity of an algorithm is the number of oracle calls
needed3, particularly so when this dominates the cost of the
algorithm, as is frequently the case for language models:

Definition 6 (Oracle complexity). Given a (possibly ran-
domized) algorithm A that solves the constrained gener-
ation instance (Σ, A,O), the oracle complexity of A is
defined as the expected number of calls to the oracle made
by A to solve (Σ, A,O), namely:

C(A) = E[#calls to O made by running A],

where the expectation is taken over the randomness of the
oracle O and the randomness of the algorithm A.

Finally, we recall the classical knapsack problem, which will
be used in a reduction to prove computational intractability
results for the constrained generation task:

Definition 7 (Knapsack problem). Given a set of weights
{Xi ∈ Z≥0 | i ∈ [D]} and c ∈ Z≥0, the knapsack problem

2The algorithm is a bit more involved, so we will describe it
in pseudocode rather than text. Besides the notations in Section 2,
Algorithm 1 uses the following additional common conventions:
<eos> denotes the end-of-sequence token; s|s| ̸= <eos> is
understood as True when s = ε; for any starting index i and
ending index j, if i > j, then si:j = ε. In line 10, why redoing the
erased positions using argmax: our results in Section 5.1.1 suggests
that out-of-distribution prefix is a cause of generator mistakes. As
a remedy, redoing the erased positions using argmax is intended
to increase the generator-predicted probability of the currently
sampled prefix. We include an ablation study in Appendix B.3
verifying that this improves the accuracy.

3In our case, the number of calls is a randomized quantity, so a
natural quantity to consider is the expected number of oracle calls.
It is of course reasonable to consider finer-grained notions like tail
bounds on the number of calls.

seeks an assignment of the variables (ai)
D
i=1, with ai ∈

{0, 1} ∀i ∈ [D] such that c =
∑D

i=1 aiXi.

The problem is (weakly) NP-hard, even for some very spe-
cial choices of c,Xi.

3. Constrained generation is hard without a
verifier

First, we show that the constrained generation task (Def-
inition 2), without access to a process verifier can be
intractable—even if the constraint set A is extremely simple
(e.g. the parity of a binary string).

The source of intractability can be information-theoretic:
namely, if the oracle does not have a succinct description,
the algorithm may need to query it prohibitively many times
to identify what oracle it’s interacting with. We view this as
a plausible obstruction in practice as well: language mod-
els frequently behave unpredictably “in-the-tails”, which
becomes increasingly more likely when generating long
strings. Thus, to inspect the behavior of the model on long
strings, many queries are needed.

The source of the intractability can also be computational:
namely, even if the oracle is very simple (e.g., a uniform
distribution), generating a member of A can be NP-hard,
even if checking membership in A can be done efficiently.
Perhaps this should not come as a surprise: after all, easy
verification of membership, but hard generation, is the hall-
mark of NP-hard problems.

Proceeding to the first result, we show the following:

Theorem 1. There exists a constrained generation task
(Σ, A,O) for which Σ = {0, 1}, A ⊆ ΣD, and O is an (un-
known) member of a set of 2D−1 possible oracles, such that
any (possibly randomized) algorithm A has an (expected)
oracle complexity of at least 2D−1.

Intuitively, the lower bound is shown by engineering a sce-
nario such that the behavior of the oracle on long strings is
unknown to the algorithm—but success of the generation
task relies on “guessing” this behavior correctly.

Proof. Consider the constrained generation task (Σ, A,Oŝ),
such that Σ := {0, 1}, A := {s ∈ ΣD :

∑D
i=1 si

mod 2 = 0} for some fixed D ∈ Z+. Moreover, the oracle
Oŝ is indexed by an (unknown to the algorithm) ŝ ∈ ΣD−1,
and it specifies the autoregressive distribution defined s.t.
∀s ∈ Σ∗, |s| < D − 1, we have pOŝ

(1|s) = pOŝ
(0|s) =

1/2; while for s ∈ Σ∗, |s| = D − 1, it satisfies:
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∀s ̸= ŝ ∈ ΣD−1, sD ∈ {0, 1}, we have:

pOŝ
(sD | s) =

{
1, if

(∑D−1
j=1 sj + sD

)
mod 2 = 1

0, otherwise
(1)

For s = ŝ, sD ∈ {0, 1}, we have:

pOŝ
(sD | s) =

{
1, if

(∑D−1
j=1 sj + sD

)
mod 2 = 0

0, otherwise
(2)

Suppose first that the algorithm is deterministic, and we
choose the prefix ŝ uniformly at random. Let us denote by
x1, x2, x3, . . . , xq ∈ Σ∗ the queries to O generated by the
algorithm. The claim is that expected number of queries
q needed to ensure at least one xi, i ∈ [q] is in A is 2D−1.
Indeed, the xi s.t. |xi| < D− 1 reveal no information about
ŝ: the output of O is a uniform Bernoulli random variable
regardless of the value of ŝ. On the other hand, if at some
point the algorithm has queried a set S of xi of length D−1,
the probability over ŝ is uniform over ΣD−1 \ S. Hence,
the expected number of queries q (expectation being over
the choice of ŝ) a deterministic algorithm needs is lower
bounded by 2n−1.

By Yao’s minimax lemma (Yao, 1977), this means that for
any (even possibly randomized) algorithm A, there exists
ŝ on which the algorithm makes at least 2n−1 queries in
expectation. 4

Proceeding to the computational lower bound, the theorem
we show is as follows:

Theorem 2. There exists a constrained generation task
(Σ, A,O) for which Σ = {0, 1}, membership in A ⊆ ΣD

can be checked in time polynomial in D, and O is such that
∀s ∈ {0, 1}D, pO(s) > 0, the generation task is NP-hard.

Proof. We construct a reduction from the knapsack prob-
lem (Definition 7). Let the set {X1, . . . , XD} and the in-
teger c specify an arbitrary instance of the knapsack prob-
lem. Consider the constrained generation task specified
by Σ := {0, 1}, A := {s ∈ ΣD : ∀i ∈ [D], si ∈
{0, 1};

∑D
i=1 siXi = c}. Membership in this A can be

clearly verified in polynomial time. Suppose we have a
poly-time algorithm that generates a solution ŝ to (Σ, A,O).
Since ∀s ∈ ΣD, pO(s) > 0, ŝ provides a solution to the
knapsack problem, as we needed.

4We discuss additional intuitions for understanding our proof
in Remark 2 in Appendix A.3.

4. Constrained generation with process verifier
gets easier

While pessimistic, the message of Section 3 agrees with re-
cent developments in inference-time scaling: namely, many
natural tasks of interest seem to require a verifier to be
solved.

First, we show that the simplest “natural” algorithm with a
process verifier, tokenwise rejection sampling (Definition 5),
can be much more efficient (exponentially so) in terms of or-
acle complexity compared to the trivial baseline of rejection
sampling (Definition 4).

Proposition 1. Consider the constrained generation task
(Σ, A,O), s.t. Σ = {0, 1}, A = {0D} and O is uniform
over ΣD. Then:

1. The expected oracle complexity of rejection sampling
(Definition 4) is 2DD.

2. The expected oracle complexity of tokenwise rejection
sampling (Definition 5) with a perfect process verifier
is 2D.

Proof. Both claims are straightforward. (1) follows as gen-
erating one guess for the string s takes D oracle calls. More-
over, the probability of the full string matching the only
string in A (i.e., 0D) is 1/2D. As the number of calls to
generate 0D is a geometric random variable, the expected
number of full string generations is 2D.

For (2), since O is uniform, at each token, the probability
of drawing 0 is 1/2. Hence, the expected number of calls
per coordinate needed is 2 — making the total number of
expected calls for the entire string 2D.

This proposition underscores the power of a process verifier
— even in extremely simple settings, and even when used in
conjunction with a very simple algorithm.

In fact, one can easily see that with a perfect process verifier,
one can easily solve the constrained generation task with
|Σ|D calls: at each position, one queries the process verifier
for each possible continuation of the string, and accepts only
if the process verifier accepts. Of course, in practice, the
verifier is not perfect, and its accuracy likely depends on
how “out-of-distribution” the prefix it’s queried on is (See
Section 5.1.5 and Appendix B.2.6)

We finally remark that a process verifier, as we defined it,
is clearly useful to solve the generation task. If we instead
wanted to sample from the restricted distribution p(s) ∝
1(s ∈ A)pO(s), it’s not clear how useful the process verifier
is. For instance, if we use the simple tokenwise rejection
sampling (Definition 5), it’s easy to see that the distribution
we produce samples from is not the restricted distribution:
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Proposition 2. Consider the constrained generation task
(Σ, A,O), s.t. Σ = {0, 1}, A = {s ∈ ΣD : ∃i ∈ [D], si =
0} and O is uniform over ΣD. Then, tokenwise rejection
sampling does not produce samples from p(s) ∝ 1(s ∈
A)pO(s).

Proof. By Definition 5, until the last token is being gener-
ated, the process verifier will always accept (as there exists
a string with at least one 0 coordinate in the coordinates
that haven’t yet been sampled). Now, for the prefix 1D−1,
the only completion that is in A is 1D−1 ◦ 0. This means
that 1D−1 ◦ 0 is assigned probability mass 1

2D−1 under the
tokenwise rejection sampling schema. All other strings
in ΣD are assigned a probability 1

2D
. On the other hand,

p(s) ∝ 1(s ∈ A)pO(s) assigns uniform mass on all strings
in A — proving the claim of the proposition.

5. Backtracking: a surprisingly effective
rejection sampling strategy

The flexibility of the tokenwise rejection sampling with
backtracking (Algorithm 1) makes it a very natural strategy
to use in conjunction with trained verifiers. We perform
a thorough empirical investigation into the applicability
of Tokenwise rejection sampling with backtracking in con-
strained language generation, and benchmark it against com-
mon baselines, including rejection sampling (Definition 4),
nucleus sampling (Holtzman et al., 2020), temperature scal-
ing, and “block best-of-N” (Appendix B.2.3) sampling, on
both synthetic data (Section 5.1) and more realistic data
(Section 5.2). We observe that across various settings, To-
kenwise rejection sampling with backtracking reduces query
complexity, improves accuracy, and does not hurt diversity.

5.1. Language models trained on synthetic data

5.1.1. DYCK GRAMMAR AS A SANDBOX

Real-world LLM pretraining data (Li et al., 2024a) typically
involves many diverse structures, so when an LLM algo-
rithm outperforms baselines on a benchmark, it is generally
challenging to precisely identify which component of the
algorithm improved the handling of which structures of the
data.

To have a quantitative control over the structure in the pre-
training data distribution, and to derive fine-grained observa-
tions about the effects of Tokenwise rejection sampling with
backtracking , we synthetically generate the pretraining data
based on the Dyck grammar (Schützenberger, 1963), a clas-
sic formal language (context-free grammar) consisting of
balanced parentheses of multiple types (for example, “[()]”
is valid but “([)]” is not). Dyck serves as a useful sandbox,
as it typifies features such as long-range dependencies and a
hierarchical, tree-like structure—characteristics often found

in both natural and programming language syntax—and has
been a subject of interest in numerous theoretical studies
on Transformers (Yao et al., 2021; Liu et al., 2022; 2023b;
Wen et al., 2023). More formally:

Definition 8 (Dyck distribution). DyckD denotes the Dyck
language 5 of length D defined over the vocabulary Σ =
{[,],(,)}, whose length-N prefix set is denoted as
DyckN ,∀N ∈ [D]. For a valid prefix w1:N ∈ DyckN ,
the depth of w1:N is

d(w1:N ) = #Open Brackets in w1:N

−#Close Brackets in w1:N .

The distribution DDyck over DyckN , (parameterized by
p, q ∈ (0, 1)) is defined such that ∀w1:N ∈ DyckN ,

P(w1:N ) ∝ p|{i|wi=[,d(w1:i)=1}| · (1− p)|{i|wi=(,d(w1:i)=1}|

(3)

· (pq)|{i|wi=[,d(w1:i)>1}| · ((1− p)q)|{i|wi=(,d(w1:i)>1}|

(4)

· (1− q)|{i|wi∈{],)},d(w1:i)≤D−i}|.

Remark 1. Equation (3) defines an intuitive autoregressive
generative process for DyckD: if the current depth is 0, then
sample the next token from [ and ( with probability p and
1 − p respectively; else if the current depth is D − i + 1,
implying that all the remaining positions have to be closing
brackets, then deterministically close the last unmatched
open bracket 6; else, sample the next token from open or
close brackets with probability q and 1− q respectively. In
other words, p controls the proportion of square vs. round
brackets, while q controls the tendency to predict an open
bracket when possible (a large q may result in a large depth
at some position).

In our experiments, we pretrain autoregressive Transformer
(Vaswani et al., 2017) Language models (6 layers, 8 heads
per layer, hidden dimension 512) from scratch on data sam-
pled from DDyck with D = 32, p = 0.2, q = 0.5. We use
batch size 32, weight decay 0.1, learning rate 3e-4 with 100
warmup steps, and follow Block et al. (2024) to use expo-
nential moving average to stabilize training. We reached
100% training and (in-distribution) validation accuracy.

To search for stronger signals in benchmarking the accuracy
of the trained model, we will prompt it using the following
type of out-of-distribution prompts. Note that since p < 0.5,
the training data contains less square brackets than round
brackets, so long prefixes with many square brackets will be
out-of-distribution prompts for the trained model. We gen-
erated a set of such out-of-distribution prompts DyckOOD

5We follow a simplified version of Wen et al. (2023) in defining
a probability distribution over strings in a Dyck language.

6 At any position, there is at most one valid closing bracket.
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from DyckN with p = 0.8 where the prefix length N is uni-
formly randomly sampled from 25 ≤ N ≤ 31. We let the
trained language model complete these prompts and check
whether the completed string is in DyckD. Quantitatively:
Definition 9 (Prompt completion accuracy). Given an au-
toregressive oracle O (Definition 1) and a set of prefix
prompts X , the accuracy of O in completing X is:

Acc(O, X) =
1

|X|
∑

x∈X,y∼pO(·|x)

1x◦y∈DyckD

We construct the autoregressive oracle Onucleus which pre-
dicts the next-token distribution based on our trained model
with nucleus sampling (Holtzman et al., 2020) top p set to
0.9. We observed that Acc(Onucleus,DyckOOD) = 94.23%.
We will show that Overifier backtracking based on Algorithm 1
can significantly reduce the remaining error rate.

5.1.2. TRAINING THE VERIFIER

We collect a set of 441 prompts in DyckOOD in which
the trained model (denoted as LM) made mistakes when
completing them. We implement a rule-based error parser
according to the grammars of DyckD which identifies the
first position of error in each model completion. Applying
this parser to the model mistakes, we obtain a set of model-
generated strings Xerror ⊂ Σ∗ which contain errors. By
contrast, we sample another set of 441 strings Xcorrect ∼
DyckOOD such that Xerror and Xcorrect have the same length
distribution. We train a lightweight neural network verifier
to distinguish Xerror from Xcorrect.

Concretely, to maximally exploit the representations learned
by LM, we train a 1-linear-layer verifier V whose features
are the last-layer-last-position representations by LM of
strings in Xerror ∪ Xcorrect, and labels are 0 for strings in
Xerror and 1 for strings in Xcorrect. Consequently, the train-
able parameters of V are a single matrix of dimensionality
512 by 2. Among the 882 strings in Xerror ∪ Xcorrect, we
use 792 samples for training, and 90 samples for validation.
Despite being slightly over-parameterized, this minimal ver-
ifier V achieved on average 93% (with standard error 3.9%)
validation accuracy across 10 repetitions. Figure 1 in Ap-
pendix B.1.1 illustrates the intuition of why a lightweight
verifier may be surprisingly effective with a small number
of labeled samples. We next verify that forcing a back-
tracking at prefixes where the model made mistakes can
effectively improve the completion accuracy (Section 5.1.3),
and that the trained verifier in this section can mostly catch
those mistakes and thus mostly retaining the accuracy gain
(Section 5.1.4).

5.1.3. BACKTRACKING EFFECTIVELY REDUCES ERRORS

The trained language model LM made a mistake at the last
position of each string x ∈ Xerror. We therefore use “error-

inducing prefixes” Xerror-inducing to denote {x1:|x|−1 | x ∈
Xerror}. Table 1 shows that at prefixes in Xerror-inducing, if
we backtrack only once for a small backtrack stride B, and
continue the autoregressive sampling process, the error rate
can be significantly reduced.

generation configuration accuracy
baseline: nucleus sampling top p = 0.9 0.331
baseline: greedy argmax sampling 0.334
B = 1, then nucleus sampling top p = 0.9 0.366
B = 2, then nucleus sampling top p = 0.9 0.438
B = 4, then nucleus sampling top p = 0.9 0.591
B = 8, then nucleus sampling top p = 0.9 0.790

Table 1. At error-inducing prefixes, a larger backtrack stride B
significantly improves completion accuracy (Definition 9).

5.1.4. VERIFIER EFFECTIVELY REDUCES ERRORS

In Section 5.1.3, the sampling process forced a backtracking
at error-inducing prefixes Xerror-inducing. Can the error reduc-
tion effect be retained by a trained lightweight single-layer
verifier V in Section 5.1.2? Table 2 shows that Tokenwise
rejection sampling with backtracking (Algorithm 1) using
the trained verifier is remarkably effective. Moreover, in
Appendix B.1.2, we verify that the predicted backtracks
were necessary.

Q B accuracy
1 2 0.421

4 0.500
6 0.604

2 2 0.457
4 0.634
6 0.762

4 2 0.518
4 0.762
6 0.921

baseline: nucleus sampling top p = 0.9 0.331
baseline: greedy argmax sampling 0.334

sampling

Table 2. When the prompts are error-inducing prefixes, a single-
layer trained verifier significantly improves completion accuracy
using Tokenwise rejection sampling with backtracking (Algo-
rithm 1). A larger backtrack quota Q and a larger backtrack stride
B are both helpful.

5.1.5. TOKENWISE REJECTION SAMPLING WITH
BACKTRACKING REDUCES COMPLETION ERRORS
ON UNSEEN OOD PREFIXES

Table 2 in Section 5.1.4 reported a significant improvement
of accuracy by Tokenwise rejection sampling with back-
tracking (Algorithm 1) when the prompts are Xerror-inducing,
for which the language model LM made mistakes during
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completion. Is the verifier V overfitted to these type of error-
inducing prompts? Can the accuracy improvement general-
ize to (average-case) out-of-distribution (OOD) prefixes, i.e.
independently sampled strings of the same distribution as
DyckOOD (Section 5.1.1)?

We independently sampled 10000 such out-of-distribution
prompts DyckunseenOOD , and benchmark the accuracy of To-
kenwise rejection sampling with backtracking (Algorithm 1)
against the baselines of nucleus sampling top p = 0.9 (Holtz-
man et al., 2020) and standard autoregressive sampling
(equivalent to top p = 1.0). Table 3 shows that Token-
wise rejection sampling with backtracking (Algorithm 1)
significantly reduces completion errors. Crucially, the im-
provement does not diminish on top of the commonly used
baseline of truncating the tail probabilities during sequence
sampling. This verifies the desirable property that Token-
wise rejection sampling with backtracking can be applied
in combination with such baselines to further improve ac-
curacy. We also verify that the accuracy improvement does
not hurt diversity (Appendix B.1.4).

Finally, provided with the verifier, why does the model still
make mistakes? We include additional error analysis in
Appendix B.1.3.

nucleus sampling top p Q B #errors ± std err
0.9 0 0 240.0 ± 5.177

4 4 179.4 ± 1.020
1.0 0 0 461.8 ± 8.304

4 4 200.0 ± 3.225

Table 3. Tokenwise rejection sampling with backtracking (Algo-
rithm 1) reduces completion errors on unseen out-of-distribution
(OOD) prefixes. Crucially, the improvement does not diminish on
top of commonly used baselines, including nucleus sampling top p
= 0.9. For each setting of top p, we compare Tokenwise rejection
sampling with backtracking (Algorithm 1) (using backtrack quota
Q = 4 and backtrack stride B = 4) with the baseline (using
backtrack quota Q = 0 and backtrack stride B = 0). We report
the number of completion errors that occur when completing an
unseen set of 10000 independently sampled out-of-distribution
prompts Dyckunseen

OOD . The experiment was repeated 5 times, and
we report the standard errors.

5.2. Generating test cases with pretrained CodeLlama

Motivated by our findings in Section 5.1, we apply essen-
tially the same recipe of Tokenwise rejection sampling with
backtracking (Algorithm 1) to a real-data use case, and show
that Algorithm 1 clearly improves the quality vs. query com-
plexity trade-off on top of commonly used baselines, such
as nucleus sampling (Holtzman et al., 2020), temperature
scaling, best-of-n rejection sampling, and block best-of-n
with process reward model.

5.2.1. TASK SETUP

A natural practical constrained generation task that requires
both accuracy and diversity is generating test cases for a
target function specified by the prompt. To have an un-
ambiguous notion of groundtruth regarding accuracy and
diversity, we control the target function to be a simple imple-
mentation of the append function for Python lists. Under
this setting, we wrote an evaluator script which analyzes
model generated completions, measuring the accuracy by
checking whether a test case correctly tests list append,
and measuring the diversity by checking how many distinct
test cases are generated. 7

We write a program to systematically generate task prompts,
randomizing over function names and demonstration ex-
amples. Each prompt includes 1 demonstration example
specifying the intended output format, followed by a target
function (implementing append), and finally requests 8
test cases be generated. Two examples of the prompt are
provided in Table 7, and correspondingly, two examples of
model completions of these prompts are provided in Table 8
in Appendix B.2.1.

Evaluation metrics The test prompts include 10 different
target function names that are unseen during training. Each
target function name is independently tested 10 times. Since
each prompt requests 8 test cases, the total number of test
cases requested for each run of a decoding algorithm is
8× 10× 10 = 800. We will measure the following metrics:

1. Ndistinct correct: the number of distinct correct test cases
generated. This metric naturally incorporates both ac-
curacy and diversity.

2. Accdistinct := Ndistinct correct/800.

3. C: the query complexity (analogous to Definition 6).
We measure the total number of queries made to the
generator LM when it completes the prompts. Each
completion allows at most 384 tokens to be generated,
so the max C is 384× 10× 10 = 38400 unless “block
best-of-n” (Appendix B.2.3) is used.

We use a pretrained CodeLlama (Roziere et al., 2023) as
the generator language model LM, which we freeze during
our experiments. We discuss common baselines in Ap-
pendix B.2.2. We follow almost the same approach as Sec-
tion 5.1.2 to train our verifier on this coding task. We next
present technical details and ablation experiments regarding
design choices of verifier training in Appendix B.2.3.

7Two test cases are different if and only if they test different
lists or different appended items.

7



On the Query Complexity of Verifier-Assisted Language Generation

Q B top p T block BoN Accdistinct ± std err
4 4 0.95 1.0 0.714 ± 0.011
0 0.95 1.0 2 0.684 ± 0.038
0 0.95 1.0 0.660 ± 0.042
0 0.95 1.0 4 0.623 ± 0.036
0 0.95 1.0 8 0.559 ± 0.038
4 4 1.0 1.0 0.639 ± 0.061
4 10 1.0 1.0 0.622 ± 0.046
0 1.0 1.0 0.504 ± 0.025
4 4 1.0 1.2 0.440 ± 0.026
0 1.0 1.2 0.269 ± 0.025
0 0.0 1.0 0.013 ± 0.000

Table 4. Tokenwise rejection sampling with backtracking (Algo-
rithm 1) improves accuracy and outperforms nucleus sampling
top p, temperature scaling T, and block best-of-n (BoN) (Ap-
pendix B.2.3). In this table, we divide the rows into groups, sep-
arated by double horizontal lines, such that each group uses the
same top p and temperature. The backtrack quota Q = 0 means
a baseline algorithm that does not use the verifier. Q > 0 means
Tokenwise rejection sampling with backtracking with the corre-
sponding Q and B. block BoN specifies the number of candidates
generated for each block; empty block BoN means not using block
best-of-n. In all groups, Tokenwise rejection sampling with back-
tracking leads to higher Accdistinct than all other methods. The
last group corresponds to argmax greedy decoding, which has
low Accdistinct due to low diversity. The experiment was repeated
5 times, and we report the standard errors. The complete set of
experiments are reported in a larger Table 13 in Appendix B.2.4.

5.2.2. TOKENWISE REJECTION SAMPLING WITH
BACKTRACKING IMPROVES ACCURACY

In this section, we show that Tokenwise rejection sampling
with backtracking (Algorithm 1) achieves higher Accdistinct
than all the baselines described in Appendix B.2.2. Similar
to our observations based on the synthetic Dyck grammar
data (Section 5.1.5), the improvement does not diminish
on top of commonly used baselines. This verifies the desir-
able property that Tokenwise rejection sampling with back-
tracking (Algorithm 1) can be applied in combination with
commonly used baselines to further improve accuracy. The
primary comparisons are reported in Table 4, and additional
results are in Table 13 in Appendix B.2.4. Moreover, in Ap-
pendix B.2.6, we show that analogous to our observations
on the synthetic Dyck grammar (Section 5.1.5), Tokenwise
rejection sampling with backtracking (Algorithm 1) gener-
alizes better to out-of-distribution prompts than baselines.

5.2.3. TOKENWISE REJECTION SAMPLING WITH
BACKTRACKING IS QUERY EFFICIENT

In this section, we show that Tokenwise rejection sampling
with backtracking (Algorithm 1) achieves a better trade-
off between Accdistinct and query efficiency C than all the
baselines described in Appendix B.2.2. The primary com-

parisons are visualized in Figure 3 and Figure 4 (in Ap-
pendix B.2.5). Numerical values of C are reported in Ta-
ble 13 in Appendix B.2.4.

6. Related work
Inference-time scaling for language models Practical
language generation tasks typically impose various task-
specific constraints in addition to the general grammatical
rules of language. One effective way to improve the chance
of satisfying such constraints is to increase the inference-
time compute through search and/or rejection sampling.
There has been a long history of prior works that employ
inference-time scaling in the language generation context,
dating as far back as beam search (Lowerre & Reddy, 1976;
Hayes-Roth et al., 1976; Ow & Morton, 1988; Jurafsky &
Martin, 2000; Graves, 2012). Much more recently, as re-
searchers develop the techniques for language models to
follow instructions (see the survey by Zhang et al. (2023b)
and references therein), more creative designs for inference-
time scaling algorithms have become viable (Wang et al.,
2022; Yao et al., 2023; Zhang et al., 2023a; Zhou et al.,
2023; Choi et al., 2023; Liu et al., 2024; Xie et al., 2024;
Snell et al., 2024; Zhao et al., 2024), and see Wu et al. (2024)
for a recent survey on cost-performance tradeoffs of these
approaches. Compared to these approaches in the litera-
ture, our Tokenwise rejection sampling with backtracking
(Algorithm 1) shares some features with lookahead search
(Snell et al., 2024) (specifically, the rejection decision at the
current position is based on the verifier decision at some
future position). However, two main differences are: (1) To-
kenwise rejection sampling with backtracking (Algorithm 1)
does not use a beam (i.e. does not need to generate mul-
tiple candidates, thus reducing query complexity), and (2)
Algorithm 1 uses a different sampling approach (namely
argmax) for the backtracked positions (we verify in Ap-
pendix B.3 that in some settings this significantly improves
the accuracy). It is a natural future research direction to
design inference algorithms that combine the advantages of
the two.

Incorporating a process reward model to assist language
generation Among the vast design space for inference-
time scaling, process reward modeling has been proven to
be an important component common to many LLM systems
(Polu & Sutskever, 2020; Uesato et al., 2022; Ma et al.,
2023; Lightman et al., 2023; Wang et al., 2024). The pro-
cess verifier which we study (Definition 3) is a special case
of such process reward model if we restrict the output to be
binary. However, there are still challenging open problems
around process reward modeling, such as how to properly
define the “blocks” (Guo et al., 2025) (see also our def-
initions in the “Block verifier” part of Appendix B.2.3).
Towards bringing more clarity to these open questions, our
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work develops a theoretical framework for reasoning about
the query complexity of process verifiers. Moreover, our
experiments suggest the potentials of a lightweight process
verifier in improving the query complexity, accuracy, and
diversity of constrained generation. In particular, our theory
and experiments suggest (1) the “blocks” do not necessarily
have to be carefully designed — setting each token as a
block might potentially suffice, at least in some more struc-
tured domains such as codes; (2) backtracking (Algorithm 1,
Section 5) is a robustly effective strategy that should be
applied in combination with process verifiers. A possible
extension of the type of verifier we study (Definition 3) is:
instead of outputting binary acceptance / rejection decisions,
the verifier could return a probability of accepting each
prefix (Yang & Klein, 2021). However, some tasks may re-
quire that the output distribution should match some target
distribution, and it may be challenging to ensure that the
acceptance probability is well-calibrated in order to satisfy
this requirement.

Controlled synthetic data distribution as a sandbox for
studying language models Our Dyck grammar distribu-
tion most closely follows Wen et al. (2023) (though we
switched to a fixed-sequence-length setting, and used un-
balanced bracket type probability, instead of length extrap-
olation, to define the criteria for a prompt to be out-of-
distribution). Dyck grammar was also used in other prior
works (Hewitt et al., 2020; Ebrahimi et al., 2020; Yao et al.,
2021; Liu et al., 2022; 2023b) to study language models.
Dyck grammar can be seen as a special case of the task
(specifically context-free grammar) considered in SynCode
(Ugare et al., 2024). Other synthetic data distributions have
been used to study various aspects of language models in
prior works, including representational capability (Bhat-
tamishra et al., 2020; Li & Risteski, 2021; Zhang et al., 2022;
Zhao et al., 2023), statistical sample complexity (Edelman
et al., 2022), optimization process (Lu et al., 2021; Jelassi
et al., 2022; Li et al., 2023; Bietti et al., 2023), sampling
(Li et al., 2024b), and architectural limitations (Liu et al.,
2023a), and see references cited therein.

7. Conclusion
We introduce a new theoretical framework for elucidating
the design space of verifiers and correspondingly a simple
family of rejection-sampling-based inference algorithms.
In particular, our theory proves the computational benefits
of incorporating a process verifier, measured by the query
complexity of calling the generator. On the other hand, our
theory also reveals the subtleties: straightforwardly applying
a process verifier in a Tokenwise rejection sampling algo-
rithm may unintentionally re-weigh the distribution among
sequences that satisfy the constraints, which could be un-
desirable for settings that require a strong notion of dis-

tributional calibration. Empirically, through fine-grained
experiments on both synthetic and realistic data, we show
that the Tokenwise rejection sampling algorithm, when com-
bined with backtracking, is a robustly effective recipe for
reducing query complexity, improving accuracy, and main-
taining diversity. For future works, we hope the theoretical
framework and empirical observations can inspire system-
atic characterization of the strengths and weaknesses of the
diverse set of rejection-sampling-based inference-time al-
gorithms. Concrete open problems at the intersection of
theory and experiments include investigating the realistic
and necessary conditions on the verifiers for the inference-
time algorithm to achieve distributional calibration (e.g. it
is unrealistic in some language generation setting to assume
that a verifier returns the calibrated acceptance probability
in rejection sampling), and synergistically designing query-
efficient verifier-assisted generation algorithms.
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Supplementary Material

A. Discussions
A.1. Is query efficiency a reasonable notion of efficiency?

There are many reasonable efficiency metrics, and they do not always positively correlate with each other (Dehghani et al.,
2021).

Our paper focuses on query complexity (measured by the number of tokens generated by the language model to satisfactorily
complete the task 8 ), and we do not claim that the same conclusions apply when we switch out query complexity for other
metrics of efficiency, such as wall-clock time.

We think query complexity is one (but not necessarily the only, or the most) important aspect of efficiency due to the
following considerations:

• Many existing large language model (LLM) providers charge service fees to the users according to the number of
tokens generated by the language model for the user, i.e. query complexity.

• In the single sequence generation setting, controlling all other conditions to be held the same, query complexity
positively correlates with the size of computation (the number of decoder forward passes) and wall-clock time.

• In the batched generation setting, admittedly, the wall-clock time does not necessarily scale linearly with query
complexity 9 , meaning that the naive best-of-n rejection sampling is not as slow as query complexity would indicate
(if the LLM has sufficient bandwidth for it). However, in many realistic LLM inference settings, the LLM receives a
large number of query requests per second, so there is no additional idle availability 10 for duplicating each sequence
generation request by n.

Although, as mentioned above, query complexity is partially indicative of a few practically important efficiency metrics
(e.g. monetary cost or wall-clock time), there are aspects of these metrics that are not tracked by query complexity. For
example, different types of hardware and cache may have different efficiency best practices. In particular, on GPUs and
TPUs, algorithms that better exploit parallelization or tensorized computation tend to be more efficient. Therefore, an
important direction for future work is to design and analyze hardware-aware algorithms that incorporate these important
aspects of the inference setup.

8This definition is natural since generating one token involves one forward pass of the (decoder-only autoregressive) language model,
i.e. one query.

9For example, the wall-clock time of generating n candidate responses (with batch size n) might be less than n multiplying the
wall-clock time of generating 1 candidate response.

10Unless more GPUs/TPUs are allocated to serve this LLM.
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A.2. On the hardness of the knapsack problem

The hardness of the knapsack problem has been the subject of extensive study. Specifically, the decision version of this
problem has found applications in the context of secure cryptosystems (Odlyzko, 1998). Under no assumptions on the input
structure, the best known algorithm is based on dynamic programming (Kellerer et al., 2004) and runs in pseudo-polynomial
time. This algorithm is also used to obtain an FPTAS and its runtime is effectively polynomial if one further assumes that
the weights are polynomially bounded in D. More exact or approximate algorithms achieve polynomial runtime, under
specific input structures. Specifically, when the weights form a superincreasing sequence, that is,

Xi ≥
i−1∑
j=1

Xj ∀i ∈ [2, D] ∩ Z,

a greedy algorithm solves the knapsack decision problem (Odlyzko, 1998) in linear time. On the other hand, when the
density of the knapsack

D

log2(maxi{Xi}di=1)

is small enough, knapsack is approximately solved in polynomial time by lattice reduction algorithms (Plantard et al., 2013).
Our argument considers the most general setting, in which no assumptions are made on the structure of the inputs {Xi}ti=1,
c and the decision problem is NP-complete (Karp, 1972).

A.3. Proof intuition for Theorem 1

Remark 2. To help readers parse our proof above, we provide its informal intuition. The oracle Oŝ can be thought of as
hiding a secret message ŝ which is a binary sequence of length D − 1. Because of our construction in Equation (1), by
querying the oracle with any string s ̸= ŝ, the output of the oracle will not reveal any information about ŝ. Therefore, to
know anything about ŝ, the query s needs to exactly match ŝ. For any deterministic order of searching for ŝ over {0, 1}D−1,
the worst case is always that ŝ is the last item in the search order, causing runtime 2D−1.

Moreover, Theorem 1 generally applies to any algorithm A. In particular, A is even allowed to never query the generator
oracle at all. Intuitively, one candidate counter-example of our theory would be a simple algorithm A which always
outputs 0 at all positions (as this will obviously satisfy the counstraint A := {s ∈ ΣD :

∑D
i=1 si mod 2 = 0}). However,

recall that Definition 2 requires that the output must have nonzero probability under the generator oracle Oŝ. Note that
si = 0 ∀i ∈ [D] will not have nonzero probability under Oŝ, thus violating the constraints (unless ŝi = 0 ∀i ∈ [D − 1] ).
The intuitive reason why the above counter-example does not work is that, it is necessary to use the oracle Oŝ to know the ŝ
that it hides. Therefore, any algorithm A is governed by the above-mentioned lower bound of searching for ŝ by querying
Oŝ.
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B. Additional experimental results
We complement Section 5 by providing additional technical details.

B.1. Additional results about language models trained on synthetic data

B.1.1. VISUALIZING THE LANGUAGE MODEL REPRESENTATIONS OF CORRECT VS. INCORRECT SEQUENCES

Figure 1. TSNE plot for the LM last-layer-last-position representations of strings in Xerror ∪ Xcorrect. Red dots correspond to the
representations of incorrect strings, whereas gray dots correspond to the representations of correct strings of comparable lengths. We can
see that the representations of incorrect strings form just a few clusters. This intuitively justifies using a lightweight verifier on top of
these LM representations.
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B.1.2. THE PREDICTED BACKTRACKS WERE NECESSARY

During the experiment in Section 5.1.4, the trained verifier V predicted backtracks at many positions. Were they really
necessary? For each setting of backtrack quota Q and backtrack stride B, we collect the set of prefixes Xpredicted backtracks
where V predicted backtracks. Then, we let the language model LM complete each string in Xpredicted backtracks without any
backtracks, using common decoding techniques such as nucleus sampling top p = 0.9 (Holtzman et al., 2020) and argmax
greedy decoding. Table 5 shows that without backtracking, the completion accuracy is much lower than the accuracy
reported in Table 2. This implies that Xpredicted backtracks were indeed challenging prefixes for the LM, which verifies that the
backtracks predicted by verifier V were necessary.

Q B #backtracks accuracy without backtrack
nucleus sampling top p = 0.9 argmax

1 2 163 0.313 0.344
4 163 0.337 0.319
6 163 0.331 0.288

2 2 311 0.347 0.328
4 297 0.357 0.349
6 286 0.374 0.373

4 2 600 0.371 0.353
4 532 0.419 0.404
6 489 0.509 0.523

Table 5. Predicted backtracks were necessary. For each setting of backtrack quota Q and backtrack stride B, we report the number of
times that Tokenwise rejection sampling with backtracking (Algorithm 1) backtracked. Moreover, we report the completion accuracy of
letting the language model LM complete these backtracked prefixes without any backtrack. For each setting, the completion accuracy is
much lower than the accuracy reported in Table 2. This implies that these backtracked prefixes were indeed challenging prefixes for the
LM.
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B.1.3. ERROR ANALYSIS ON THE REMAINING MISTAKES

Given the improvement of accuracy (Section 5.1.5) as a result of our algorithm Tokenwise rejection sampling with
backtracking (Algorithm 1), why did the model still make mistakes?

We conducted an error analysis which parses all mistakes into error types, and examine the generated token, the LM predicted
most probable token, their predicted probabilities, and a few intermediate variables during the course of our algorithm
Tokenwise rejection sampling with backtracking (Algorithm 1).

In summary, the findings are:

1. Among 225 generated mistakes, 222 correspond to predicting an incorrect closing bracket, and 3 correspond to
pre-maturely predicting the end-of-sequence <eos> token.

2. In all 225 cases, the final state of the algorithm has used up all the backtrack quota Q allocated to it, so even if the
error predictor was perfect, the algorithm would not have been had a chance to correct these mistakes. This suggests
that suitably increasing backtrack quota Q might be an effective approach in improving the accuracy (though there are
trade-offs with query efficiency).

A snapshot of our error analysis result is included in Figure 2. We have released our experimental codes, 11 which include
more error analyses.

Figure 2. Error analysis table for mistakes of language model trained on Dyck grammar and sampled using Tokenwise rejection sampling
with backtracking (Algorithm 1). The last column records the remaining backtrack quota Q at the time of generating the incorrect token.

11https://github.com/YuchenLi01/LM_Query_Complexity
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B.1.4. TOKENWISE REJECTION SAMPLING WITH BACKTRACKING MAINTAINS DIVERSITY

In this section, we show that the significant accuracy improvement is not at the cost of reducing diversity.

Our experiment freshly samples 100 prompts following the same distribution as DyckOOD (Section 5.1.1). For each
prompt, we let the trained LM independently sample 10 completions, using Tokenwise rejection sampling with backtracking
(Algorithm 1) or the baseline algorithm, and will compare how many (out of 10) samples were different, and report the
mean and standard error across the 100 prompts.

Table 6 shows that Tokenwise rejection sampling with backtracking (Algorithm 1) generates similarly diverse samples as the
baselines of nucleus sampling with top p = 0.9 or 1.0.

Q B top p diversity ± std err (out of 10)
4 4 1.0 5.52 ± 3.28
0 0 0.9 5.47 ± 3.06
0 0 1.0 5.84 ± 3.29

Table 6. Under the experiment setup described in Appendix B.1.4, Tokenwise rejection sampling with backtracking (Algorithm 1) is
similarly diverse as the baselines of nucleus sampling with top p = 0.9 or 1.0.
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B.2. Additional results about generating test cases with pretrained CodeLlama

This section complements our results in Section 5.2.

B.2.1. EXAMPLES OF PROMPTS AND MODEL COMPLETIONS

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(5, 5) == 10
assert f(1, 5) == 6
assert f(2, 8) == 10
assert f(6, 2) == 8
assert f(6, 9) == 15
assert f(4, 5) == 9
assert f(9, 6) == 15
assert f(6, 1) == 7

def knk(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function knk, one in each line:

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(5, 8) == 13
assert f(1, 5) == 6
assert f(8, 4) == 12
assert f(6, 2) == 8
assert f(3, 9) == 12
assert f(1, 7) == 8
assert f(5, 9) == 14
assert f(1, 7) == 8

def ovs(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function ovs, one in each line:

Table 7. Two example prompts for generating test cases for a simple implementation of the append function for Python lists. In
these examples, the following components are randomly generated and will be different for different prompts: (1) the numbers in the
demonstrations (e.g. assert f(5, 8) == 13) as long as they are correct for addition; (2) the name of the target function (e.g. knk,
ovs).
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assert knk([], 2) == [2]
assert knk([1], 2) == [1, 2]
assert knk([1, 3], 2) == [1, 3, 2]
assert knk([1, 3, 5], 2) == [1, 3, 5, 2]
assert knk([1, 3, 5, 7], 2) == [1, 3, 5, 7, 2]
assert knk([1, 3, 5, 7, 9], 2) == [1, 3, 5, 7, 9, 2]
assert knk([1, 3, 5, 7, 9, 11], 2) == [1, 3, 5, 7, 9, 11, 2]
def sum list(l):

return sum(l)
List 8 test cases of the above function sum list, one in each line:
assert sum list([]) == 0
assert sum list([1]) == 1
assert sum list([1, 3]) == 4
assert sum list([1, 3, 5]) == 9
assert sum list([1, 3, 5, 7]) == 16
assert sum list([1, 3, 5, 7, 9]) == 25
assert sum list([1, 3, 5, 7, 9, 11]) == 36
def sublist(l, sub):

assert type

assert ovs([], 1) == [1]
assert ovs([2], 1) == [1, 2]
assert ovs([1, 2], 1) == [1, 1, 2]
assert ovs([1, 2], 3) == [1, 2, 3]
assert ovs([1, 2], 0) == [0, 1, 2]
assert ovs([1, 2, 3], 4) == [1, 2, 3, 4]
assert ovs([], 0) == [0]
assert ovs([1, 2], 0) == [0, 1, 2]

Table 8. Two example generations by CodeLlama corresponding to the prompts in Table 7. Note that both generations are flawed: (1) the
model only generated 7 test cases instead of 8, even though the prompt requested 8. Then, it generated irrelevant contents, starting from
def sum list(l): (2) more than one generated test cases were wrong (e.g. in assert ovs([2], 1) == [1, 2], the correct
right-hand-side should be [2, 1]). More generally, we implemented a rule-based parser to analyze model generations and identify the
error type (if any), and locate the first position of error.
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B.2.2. BASELINES

We extensively tuned the hyperparameters in common baseline decoding algorithms, including

• nucleus sampling (Holtzman et al., 2020): we grid-searched top p ∈ [0.0, 0.7, 0.8, 0.9, 0.95, 1.0].

• argmax greedy decoding: equivalent to top p = 0.0.

• standard autoregressive sampling: equivalent to top p = 1.0.

• temperature scaling (Ackley et al., 1985): we grid-searched temperature ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2] (for each
top p).

Through the above grid search, we found that the best combination was top p = 0.95, temperature = 1.0.

Besides, we consider baselines based on the block-best-of-n rejection sampling approach to incorporate process rewards.
More details about this baseline are provided in the “Block verifier” part of Appendix B.2.3.

• block-best-of-n: we grid-searched n ∈ [2, 4, 8], fixing the best combination of top p and temperature found by the grid
search above.

We will show that Tokenwise rejection sampling with backtracking (Algorithm 1) clearly outperforms all these baselines in
terms of the quality vs. query complexity trade-off.
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layer index Accdistinct± std err
27 0.714 ± 0.011
28 0.711 ± 0.016
26 0.708 ± 0.018
30 0.706 ± 0.036
24 0.701 ± 0.033
31 0.688 ± 0.028
29 0.676 ± 0.021
25 0.672 ± 0.030
23 0.709 ± 0.017
3 0.700 ± 0.028
15 0.700 ± 0.028
19 0.692 ± 0.028
7 0.691 ± 0.031
11 0.650 ± 0.041
ablation: random verifier 0.663 ± 0.027
baseline: nucleus sampling + temperature scaling 0.660 ± 0.042

Table 9. Ablation: layer 27 representations of CodeLlama outperform layer 31 (the last layer) in terms of the quality of the error predictor
trained based on these features. We control all other setting to be the same as the top-performing settings of the baseline (nucleus sampling
top p = 0.95 (Holtzman et al., 2020) and temperature 1.0), whose performance is also included in the table. The other rows in this table
(layer 27 and layer 31) refer to applying Tokenwise rejection sampling with backtracking (Algorithm 1) using backtrack quota Q = 4,
backtrack stride B = 4, and verifiers trained on layers 24, ..., 31 of the generator (CodeLlama), respectively. The row ablation: random
verifier refers to a verifier that returns Uniform[0, 1], and uses the same Q, B as the above. The experiment was repeated 5 times, and we
report the standard errors. The rows are sorted by mean Accdistinct (Section 5.2.1).

B.2.3. TRAINING THE VERIFIER

We follow almost the same training approach as Section 5.1.2. The differences are described below. The generator language
model LM is a pretrained CodeLlama (Roziere et al., 2023) (7B parameters), which we freeze during our experiments.

An intermediate layer provides more informative representations for verifier training than the last layer. Instead
of training the verifier V on top of the last layer (i.e. layer 31) representations of LM, we instead treat the layer index as
a hyperparameter, and conducted a grid search over layer index ∈ {3, 7, 11, 15, 19, 23, 27, 31}. Among these candidates,
layer 27 representations resulted in the best accuracy. We therefore exclusively used layer 27 representations in subsequent
experiments, and finally conducted an ablation study on the top-performing setting of the baseline to back-test the impact
of using other layers. Table 9 shows that layer 27 outperforms layer 31. We conjecture that the layer 31 representations
may be too specific for the next-token prediction task, which is not necessarily the optimal for discriminating correct
prefixes vs. incorrect ones. 12 We also include results for a few other layers near the final layer. Note that even with a
sub-optimally chosen layer, the accuracy of Tokenwise rejection sampling with backtracking (Algorithm 1) still outperforms
the top-performing settings of the baseline found through grid search. 13

With limited backtrack quota, it is better to be conservative in its usage. The verifier V is trained with binary labels (1
if correct, 0 if wrong). Although there are a roughly equal number of training samples whose labels are 0 or are 1, using 0.5
as the error prediction threshold turned out to be suboptimal. Since our Tokenwise rejection sampling with backtracking
(Algorithm 1) only allows a small backtrack quota Q = 4, it makes sense to only use backtrack quota when the error
predictor is very confident that the current intermediate generation is wrong. Moreover, compared with our synthetic Dyck
grammar setting (target length = 32) (Section 5.1), our code generation setting allows much longer generations (up to 384),
which further justifies conservatively spending the small backtrack quota Q. Consequently, we consider decreasing the error
prediction threshold to 0.1. Table 10 shows that 0.1 is a better error prediction threshold than the default 0.5 in all settings
we tried.

12This is in line with some prior works that also observed that the final layers of language models tend to be more task-specific than the
intermediate layers (Liu, 2019; Kovaleva et al., 2019; Rogers et al., 2021).

13See Appendix B.2.2 for details about baselines.
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Q B top p temperature error prediction threshold Accdistinct ± std err
4 4 0.95 1.0 0.1 0.714 ± 0.011
4 4 0.95 1.0 0.5 0.676 ± 0.019
4 4 1.0 1.0 0.1 0.639 ± 0.061
4 4 1.0 1.0 0.5 0.604 ± 0.047
4 4 1.0 1.2 0.1 0.440 ± 0.026
4 4 1.0 1.2 0.5 0.334 ± 0.013
4 10 1.0 1.0 0.1 0.622 ± 0.046
4 10 1.0 1.0 0.1 0.604 ± 0.030

Table 10. Ablation: 0.1 is a better error prediction threshold than the default 0.5 in all settings we tried, including various nucleus
sampling (Holtzman et al., 2020) top p, temperature scaling, and backtrack stride B. In this table, we divide the rows into groups of 2,
separated by double horizontal lines, such that within each group, the only difference is the error prediction threshold. In all groups, 0.1
leads to higher Accdistinct than 0.5. The experiment was repeated 5 times, and we report the standard errors.

verifier # MLP layers verifier validation accuracy Accdistinct± std err
1 0.96 0.714 ± 0.011
4 0.97 0.699 ± 0.038
2 0.97 0.687 ± 0.035
8 0.97 0.684 ± 0.015
ablation: random verifier 0.50 0.663 ± 0.027
baseline: nucleus sampling + temperature scaling N/A 0.660 ± 0.042

Table 11. Ablation: Deeper verifiers do not outperform the 1-linear-layer verifier even though they can be trained to similar error-
predicting accuracies on held-old validation set. We control all other setting to be the same as the top-performing settings of the baseline
(nucleus sampling top p = 0.95 (Holtzman et al., 2020) and temperature 1.0), whose performance is also included in the table. The
other rows in this table refer to applying Tokenwise rejection sampling with backtracking (Algorithm 1) using backtrack quota Q = 4,
backtrack stride B = 4, and verifiers with 1, 2, 4, 8 layers, respectively. The row ablation: random verifier refers to a verifier that returns
Uniform[0, 1], and uses the same Q, B as the above. The experiment was repeated 5 times, and we report the standard errors. The rows
are sorted by mean Accdistinct (Section 5.2.1).

Block verifier. Our verifier applies to the token level, i.e. predicting an accept/reject action after the generator LM
generates each token. In many practical settings (including ours), it is natural to divide the generated output into blocks
(each block may contain multiple tokens), e.g. in writing math proofs, each block may correspond to one reasoning step; in
writing codes, each block may correspond to one line of codes. Recent works achieved strong empirical performance by
generating multiple candidates for each block of intermediate model generations, train process reward models that evaluate
each candidate, and select the best-scoring candidate (see e.g. Wu et al. (2024) and references therein). We refer to this as
the “block-best-of-n” approach. To compare with such “block-best-of-n” baselines, we train “block verifiers” Vblock which
scores prefixes that are full lines of model output for our task. We will show that this “block best-of-n” approach is helpful,
but is outperformed by our Tokenwise rejection sampling with backtracking (Algorithm 1) in terms of accuracy-efficiency
trade-off.

Does a deeper verifier perform better? The above experiments follow Section 5.1.2 in training a single-linear-layer
verifier. In this section, we test the effects of scaling up the verifier depth. Specifically, we test verifiers based on Multi-
Layer Perceptrons (Rosenblatt, 1958) of depths 2, 4, 8, with ReLU activations (Nair & Hinton, 2010) between adjacent
parameterized layers. Table 11 shows that more MLP layers did not outperform the 1-linear-layer verifier even though they
can be trained to similar error-predicting accuracies, measured by their accuracy in predicting whether a prefix is correct or
incorrect on a held-old validation set of prompts for our task (Section 5.2.1) followed by partial generations by CodeLlama.
In other sections of this paper, unless otherwise noted, we always use a single-linear-layer verifier for Tokenwise rejection
sampling with backtracking (Algorithm 1) (and of course, no verifier for baselines (Appendix B.2.2) ).

Where are the potentials for further improving Accdistinct? How optimal are our verifiers, and what are some ways to
further improve them? To probe these potentials, we wrote a rule-based groundtruth verifier for our task (Section 5.2.1) and
used it as a drop-in replacement of our trained verifier. Table 12 shows that the Accdistinct enabled by our trained verifier
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almost reached the Accdistinct enabled by the groundtruth verifier, showing that improving verifier training may not be the
most fruitful direction for further improvement. Interestingly, using a much larger Q or B (increasing from 4 to 10) does
not necessarily improve the accuracy (sometimes even decreasing the accuracy). We conjecture that in these experiments,
the (imperfect) generator oracle (CodeLlama), not the verifier, was the bottleneck for Accdistinct. As a result, unnecessarily
backtracking and forcing the model to re-generate more tokens may increase the chance that the model makes mistakes.

verifier type Q B Accdistinct ± std err
groundtruth 4 4 0.719 ± 0.022
groundtruth 10 4 0.717 ± 0.015
trained 4 4 0.714 ± 0.011
trained 10 4 0.692 ± 0.025
ablation: random verifier 4 4 0.663 ± 0.027
baseline: nucleus sampling + temperature scaling 0 0 0.660 ± 0.042
trained 4 10 0.622 ± 0.046

Table 12. Ablation: Our trained verifier approaches the accuracy of the groundtruth verifier, evaluated by their ability to assist CodeLlama
in completing our test case generation task (Section 5.2.1) using Tokenwise rejection sampling with backtracking (Algorithm 1). In these
experiments, we control the nucleus sampling (Holtzman et al., 2020) top p = 0.95 and temperature scaling = 1.0 which are the optimal
setting for baseline, found by grid search (Appendix B.2.2). The rows are sorted by Accdistinct. The row ablation: random verifier refers to
a verifier that returns Uniform[0, 1]. Interestingly, using a much larger Q or B does not necessarily improve the accuracy (sometimes
even decreasing the accuracy). We conjecture that the generator model, CodeLlama, is imperfect, so unnecessarily backtracking and
forcing the model to re-generate more tokens may increase the chance that the model makes mistakes. The experiment was repeated 5
times, and we report the standard errors.
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B.2.4. FULL RESULTS OF CODELLAMA EXPERIMENTS IN SECTION 5.2

Caption for Table 13 (on the next page). Tokenwise rejection sampling with backtracking (Algorithm 1) improves
accuracy and outperforms commonly used baselines, including nucleus sampling top p, temperature scaling (temp), and
block best-of-n (BBoN) (Appendix B.2.3). Baselines are extensively hyperparameter tuned (Appendix B.2.2). Backtrack
quota Q = 0 means a baseline without verifier. When Q > 0, the row denotes Algorithm 1 with the corresponding Q and
B. The column layer idx denotes which layer of CodeLlama provided the representations for training the verifier, and
err threshold denotes the cutoff below which the verifier output is interpreted as a rejection (both were experimented in
Appendix B.2.3). When BBoN is specified, the row denotes the number of candidates generated for each block; otherwise,
the row does not use block best-of-n. The rows are sorted by Accdistinct. Controlling top p and temperature, Algorithm 1
leads to better tradeoff between Accdistinct and query complexity C (both defined in Section 5.2.1) than all other methods.
The experiment was repeated 5 times, and we report the standard errors.
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Q B layer idx err threshold top p temp BBoN Accdistinct ± std err C
4 4 27 0.1 0.95 1.0 0.714 ± 0.011 39443 ± 235
4 4 31 0.5 0.95 1.0 0.688 ± 0.028 39629 ± 135
0 27 0.95 1.0 2 0.684 ± 0.038 39364 ± 1252
4 4 31 0.1 0.95 1.0 0.677 ± 0.033 39546 ± 98
4 4 27 0.5 0.95 1.0 0.676 ± 0.019 38555 ± 140
0 0.95 1.0 0.660 ± 0.042 38231 ± 165
4 4 27 0.1 1.0 1.0 0.639 ± 0.061 31274 ± 1559
0 0.9 1.0 0.634 ± 0.023 38393 ± 14
0 0.9 1.2 0.630 ± 0.028 38005 ± 232
0 0.8 1.2 0.627 ± 0.015 38343 ± 90
0 27 0.95 1.0 4 0.623 ± 0.036 65496 ± 7638
4 10 27 0.1 1.0 1.0 0.622 ± 0.046 32923 ± 1772
4 4 27 0.5 1.0 1.0 0.604 ± 0.047 31091 ± 968
4 10 27 0.5 1.0 1.0 0.604 ± 0.030 27287 ± 7580
0 0.95 1.2 0.584 ± 0.027 36601 ± 535
0 1.0 0.8 0.562 ± 0.021 36610 ± 669
0 27 0.95 1.0 8 0.559 ± 0.038 122933 ± 3832
0 0.7 1.2 0.531 ± 0.035 38400 ± 0
0 0.95 0.8 0.523 ± 0.029 38386 ± 28
0 0.8 1.0 0.511 ± 0.028 38400 ± 0
0 1.0 1.0 0.504 ± 0.025 30754 ± 1272
0 0.9 0.8 0.466 ± 0.032 38400 ± 0
4 4 27 0.1 1.0 1.2 0.440 ± 0.026 24916 ± 954
0 1.0 0.6 0.399 ± 0.070 38320 ± 73
0 0.7 1.0 0.353 ± 0.021 38400 ± 0
0 0.8 0.8 0.351 ± 0.039 38400 ± 0
0 0.95 0.6 0.337 ± 0.053 38400 ± 0
4 4 27 0.5 1.0 1.2 0.334 ± 0.013 24217 ± 1214
0 0.9 0.6 0.284 ± 0.044 38400 ± 0
0 1.0 1.2 0.269 ± 0.025 21906 ± 1780
0 0.7 0.8 0.239 ± 0.019 38400 ± 0
0 0.8 0.6 0.212 ± 0.011 38400 ± 0
0 1.0 0.4 0.207 ± 0.029 38400 ± 0
0 0.95 0.4 0.176 ± 0.013 38400 ± 0
0 0.9 0.4 0.147 ± 0.013 38400 ± 0
0 0.7 0.6 0.101 ± 0.028 38400 ± 0
0 1.0 0.2 0.080 ± 0.020 38400 ± 0
0 0.8 0.4 0.074 ± 0.027 38400 ± 0
0 0.95 0.2 0.057 ± 0.018 38400 ± 0
0 0.9 0.2 0.029 ± 0.015 38400 ± 0
0 0.7 0.4 0.025 ± 0.016 38400 ± 0
0 0.8 0.2 0.021 ± 0.014 38400 ± 0
0 0.7 0.2 0.018 ± 0.011 38400 ± 0
0 0.0 1.0 0.013 ± 0.000 38400 ± 0

Table 13. Tokenwise rejection sampling with backtracking (Algorithm 1) improves accuracy and outperforms
commonly used baselines, including nucleus sampling top p, temperature scaling (temp), and block best-of-n
(BBoN) (Appendix B.2.3). Due to space constraints, more detailed captions are in the beginning of this section.

To help readers parse these results, we included smaller tables, each analyzing a single aspect: please refer to Table 4 in
Section 5.2.2, Table 10 in Appendix B.2.3, Table 9 in Appendix B.2.3, and Figure 3 in Section 5.2.3.
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B.2.5. VISUALIZING THE QUERY EFFICIENCY OF TOKENWISE REJECTION SAMPLING WITH BACKTRACKING

This section complements the query efficiency visualization discussed in Section 5.2.3. 14

Figure 3. Tokenwise rejection sampling with backtracking (Algorithm 1) is query-efficient. The horizontal axis denotes query complexity
C, and the vertical axis denotes the number of distinct correct test cases generated Ndistinct correct, both defined in Section 5.2.1. Blue dashed
lines correspond to the baselines (described in Appendix B.2.2), whereas orange solid lines correspond to Tokenwise rejection sampling
with backtracking with various Q and B, both defined in Algorithm 1. Since the slopes of the orange curves are visibly greater than the
slopes of the blue curves, we conclude that Tokenwise rejection sampling with backtracking is more query-efficient than baselines. The
experiment was repeated 5 times, and each dot is the average metric of these 5 runs. The specific numbers and standard errors are reported
in Table 13. A more zoomed-in version of this plot is in Figure 4.

14This visualization here in Figure 3 slightly favors the “block best-of-n sampling” baseline, because its implementation stops the
decoding process once the requested number of test cases are generated, whereas when running our algorithm or non-best-of-n baselines,
the model is allowed to (and in fact does indeed) generate irrelevant tokens afterwards, which hurts query complexity. Even under this
disadvantage, Tokenwise rejection sampling with backtracking still outperforms the “block best-of-n sampling” baselines.
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Figure 4. Similar to Figure 3, just more zoomed-in, excluding block best-of-n baselines (Appendix B.2.3).
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B.2.6. TOKENWISE REJECTION SAMPLING WITH BACKTRACKING GENERALIZES BETTER TO OUT-OF-DISTRIBUTION
PROMPTS

In this section, we show that Tokenwise rejection sampling with backtracking (Algorithm 1) generalizes better to out-
of-distribution prompts than the best nucleus sampling and temperature scaling baseline in Appendix B.2.2. Unlike
the synthetic Dyck grammar setting, on real-world LLMs we do not have a precise quantitative control over how “out-
of-distribution” a prompt is for the LLM. We therefore assume that a sufficient condition for a prompt in our setup to
be out-of-distribution is that the name of the target function denotes some meaning which is different from the actual
implemented functionality (i.e. list append) (recall the task setup in Section 5.2.1). Two examples of such out-of-
distribution prompt are provided in Table 14. We validate this assumption by observing that the accuracy indeed degrades
on such “out-of-distribution” prompts, suggesting that the model is indeed confused by the inconsistency between the
function names and the function implementations. However, analogous to our observations on the synthetic Dyck grammar
(Section 5.1.5), Tokenwise rejection sampling with backtracking (Algorithm 1) again suffers much less reduction in accuracy
on these “out-of-distribution” prompts. The detailed comparisons are reported in Table 15.

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(6, 5) == 11
assert f(3, 2) == 5
assert f(5, 4) == 9
assert f(1, 5) == 6
assert f(5, 4) == 9
assert f(3, 5) == 8
assert f(5, 6) == 11
assert f(2, 6) == 8

def add(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function add, one in each line:

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(8, 7) == 15
assert f(8, 1) == 9
assert f(4, 7) == 11
assert f(8, 4) == 12
assert f(7, 4) == 11
assert f(8, 4) == 12
assert f(1, 1) == 2
assert f(5, 5) == 10

def exp(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function exp, one in each line:

Table 14. Two example out-of-distribution prompts for generating test cases for a simple implementation of the append function for
Python lists. Different from the prompts in Table 7, here the function names denote a clear meaning (e.g. add or exp), which, however,
is different from what the function implements (i.e. append).
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Q B err threshold in-distribution Accdistinct ± std err OOD Accdistinct ± std err
4 4 0.1 0.714 ± 0.011 0.710 ± 0.029
4 4 0.5 0.676 ± 0.019 0.687 ± 0.024
0 0.660 ± 0.042 0.606 ± 0.034

Table 15. Tokenwise rejection sampling with backtracking (Algorithm 1) generalizes better to out-of-distribution prompts than the best
nucleus sampling and temperature scaling baseline in Appendix B.2.2, which we identified by grid search (Table 13) to be top p = 0.95,
and temperature = 1.0. We manually pick 10 target function names according to Appendix B.2.6 which were unseen when training
the verifier (Appendix B.2.3). When backtrack quota Q = 0, the row denotes a baseline algorithm that does not use the verifier (and
consequently the backtrack stride B will not matter). The column err threshold denotes the cutoff below which the error predictor
output is interpreted as a rejection (Appendix B.2.3). When Q > 0, the row denotes Tokenwise rejection sampling with backtracking
(Algorithm 1) with the corresponding Q and B. Tokenwise rejection sampling with backtracking (Algorithm 1) suffered minor or no drop
between in-distribution and OOD Accdistinct, whereas the baseline suffered a drop by more than one standard error. The experiment was
repeated 5 times, and we report the standard errors.
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B.3. Additional ablation experiments on the Tokenwise rejection sampling with backtracking algorithm
(Algorithm 1)

Besides the ablation experiments in Appendix B.2.3 which probe various aspects of verifier training, in this section, we
focus on one algorithmic component.

Concretely, line 10 of Tokenwise rejection sampling with backtracking (Algorithm 1) re-generates the erased positions
using argmax. This was motivated by our results in Section 5.1.1 which suggest that out-of-distribution prefix is a cause of
generator mistakes. As a remedy, redoing the erased positions using argmax is intended to increase the generator-predicted
probability of the partially sampled generation, which (concatenated with the prompt) will be the prefix for subsequent
generation steps. We include an ablation study verifying that this improves the accuracy, significantly under the synthetic
data setting (Table 16), and only slightly (without hurting diversity) under the real data setting (Table 17).

sampling algorithm #errors ± std err
Algorithm 1 179.4 ± 1.020
ablation: no argmax 245.8 ± 8.658

Table 16. Re-generating the erased positions using argmax in Tokenwise rejection sampling with backtracking (Algorithm 1) reduces
completion errors on unseen out-of-distribution (OOD) prefixes in Dyck grammar. We fixed nucleus sampling (Holtzman et al., 2020)
top p = 0.9, backtrack quota Q = 4, and backtrack stride B = 4 (the best settings in Table 3). The row “ablation: no argmax” refers to
removing lines 9-12 in Algorithm 1. We report the number of completion errors that occur when completing an unseen set of 10000
independently sampled out-of-distribution prompts Dyckunseen

OOD . The experiment was repeated 5 times, and we report the standard errors.

sampling algorithm err threshold Accdistinct ± std err
Algorithm 1 0.1 0.714 ± 0.011
ablation: no argmax 0.1 0.711 ± 0.032
Algorithm 1 0.5 0.676 ± 0.019
ablation: no argmax 0.5 0.663 ± 0.023

Table 17. Re-generating the erased positions using argmax in Tokenwise rejection sampling with backtracking (Algorithm 1) slightly
improves the accuracy-diversity tradeoff (Section 5.2.1) in our test case generation task. We fixed nucleus sampling (Holtzman et al.,
2020) top p = 0.95, backtrack quota Q = 4, and backtrack stride B = 4 (the best settings in Table 13). The row “ablation: no argmax”
refers to removing lines 9-12 in Algorithm 1. The column err threshold denotes the cutoff below which the error predictor output is
interpreted as a rejection (Appendix B.2.3). The experiment was repeated 5 times, and we report the standard errors.
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