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Abstract

Automatic open-domain dialogue evaluation001
has attracted increasing attention, yet remains002
challenging due to the complexity of assessing003
response appropriateness. Traditional evalua-004
tion metrics, typically trained with true posi-005
tive and randomly selected negative responses,006
tend to assign higher scores to responses that007
share greater content similarity with contexts.008
However, adversarial negative responses, de-009
spite possessing high lexical overlap with con-010
texts, can be semantically incongruous. Con-011
sequently, existing metrics struggle to evalu-012
ate such responses effectively, resulting in low013
correlations with human judgments. While re-014
cent studies have demonstrated the effective-015
ness of Large Language Models (LLMs) for016
open-domain dialogue evaluation, they still017
face challenges in handling adversarial neg-018
ative examples. We propose a novel evalua-019
tion framework that integrates Abstract Mean-020
ing Representation (AMR) enhanced domain-021
specific language models (SLMs) with LLMs.022
Our SLMs explicitly incorporate AMR graph023
information through a gating mechanism for en-024
hanced semantic representation learning, while025
both SLM predictions and AMR knowledge are026
integrated into LLM prompts for robust evalu-027
ation. Extensive experiments on open-domain028
dialogue evaluation tasks demonstrate the su-029
periority of our method compared to state-of-030
the-art baselines, particularly in discriminating031
adversarial negative responses. Our framework032
achieves strong correlations with human judg-033
ments across multiple datasets, establishing a034
new benchmark for dialogue evaluation. Our035
code and data are publicly available.036

1 Introduction037

Open-domain dialogue systems have garnered sub-038

stantial attention owing to their broad applicabil-039

ity (Zhang et al., 2021; Liu et al., 2023) across040

various domains, including personal medical as-041

sistance and biomedical telecommunications (Sai042
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Figure 1: AMR graphs for the conversational context
and response. The semantic relationship of the word
“worth” appearing in both context and response is cap-
tured through distinct colored representations in their
respective AMR graphs.

et al., 2020; Yang et al., 2024). Traditional evalua- 043

tion approaches, such as n-gram-based metrics (Pa- 044

pineni et al., 2002; Lin, 2004; Banerjee and Lavie, 045

2005) and embedding-based metrics (Zhang et al., 046

2020), assess the semantic similarity between re- 047

sponse candidates and gold references. these meth- 048

ods correlate poorly with human evaluation due to 049

their limited capacity to incorporate conversational 050

context (Liu et al., 2016). 051

While recent advances in trainable evaluation 052

frameworks (Lowe et al., 2017; Tao et al., 2018) 053

have improved context-response relationship mod- 054

eling, they face fundamental limitations stemming 055

from their training . These models, typically trained 056

with true positive and randomly sampled nega- 057

tive examples, tend to assess responses primarily 058

through surface-level content similarity. Although 059
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some approaches have attempted to address this060

by incorporating adversarial examples (Sai et al.,061

2020; Gupta et al., 2021), they either require exten-062

sive pre-training on large-scale conversational cor-063

pora or demand adaptation to specific datasets, in-064

curring substantial computational overhead. More-065

over, their exclusive reliance on surface-form fea-066

tures compromises robustness when evaluating ad-067

versarial examples that deviate from the training068

distribution.069

The vulnerability to adversarial attacks further070

compounds this challenge. Jin et al. (2019) demon-071

strated that even simple synonym substitutions can072

lead to misclassification in text analysis tasks. For073

instance, a positive review stating “The characters,074

cast in impossibly contrived situations, are totally075

estranged from reality” would be misclassified as076

negative when minimally modified to “The charac-077

ters, cast in impossibly engineered circumstances,078

are fully estranged from reality”, despite maintain-079

ing semantic equivalence.080

Recent advances in Large Language Models081

(LLMs) have shown promise in dialogue evalua-082

tion (Liu et al., 2023; Kocmi and Federmann, 2023;083

Chiang and yi Lee, 2023). However, these models084

still exhibit suboptimal performance when evalu-085

ating adversarial negative responses. To address086

these limitations, we propose integrating LLMs087

with domain-specific language models (SLMs)088

enhanced by Abstract Meaning Representation089

(AMR) graph information, specifically aimed at090

improving evaluation robustness for adversarial091

examples. AMR graphs serve as powerful tools092

for capturing dialogue system states and provid-093

ing complementary semantic knowledge (Bai et al.,094

2021; Bonial et al., 2020). Consider the follow-095

ing example: given the context “Would you rec-096

ommend some places for sightseeing? How about097

great canyon? Is it worth seeing?”, and an ad-098

versarial negative response “The movie was really099

good, it was worth watching it”, existing metrics100

might erroneously classify this as positive due to101

lexical overlap. AMR graphs help address this by102

modeling semantic relationships between concepts103

(e.g., “worth” and “canyon”) through explicit edge104

relations (e.g., “:mod” and “:ARG1”).105

Our approach introduces an AMR graph-106

enhanced SLM that effectively identifies adversar-107

ial negative examples in open-domain dialogue.108

The framework integrates both the SLM’s predic-109

tions and AMR graph information into the LLM’s110

prompt, creating a robust automatic evaluator that111

leverages domain-specific knowledge during infer- 112

ence. The SLM architecture comprises two key 113

components: sentence and graph encoders. The 114

sentence encoder processes surface-form knowl- 115

edge from conversational contexts and responses, 116

while the graph encoder models AMR structural in- 117

formation, capturing both conceptual elements and 118

their interrelations. These complementary represen- 119

tations are unified through a sophisticated gating 120

mechanism and optimised via contrastive learning, 121

encouraging alignment between textual and struc- 122

tural features for positive context-response pairs. 123

The final evaluation integrates both the SLM’s pre- 124

diction score and AMR graph information into the 125

LLM’s prompt. 126

Comprehensive empirical evaluation across 127

three public datasets demonstrates our model’s su- 128

perior performance compared to state-of-the-art 129

baselines, including LLM-based methods. Our key 130

contributions include: 131

Our contributions can be summarised as follows: 132

• The framework to integrate AMR graph in- 133

formation into open-domain dialogue evalua- 134

tion through a novel combination of enhanced 135

SLMs and LLMs. 136

• A dual-representation approach that leverages 137

both surface-form and semantic graph infor- 138

mation, with LLM capabilities enhanced by 139

SLM predictions and AMR knowledge. 140

• Comprehensive experimental results demon- 141

strating substantial improvements over exist- 142

ing methods, particularly in evaluating chal- 143

lenging adversarial negative responses. 144

2 Related Work 145

Dialogue Evaluation Metrics. Traditional n- 146

gram-based metrics, including BLEU (Papineni 147

et al., 2002), ROUGE (Lin, 2004), and ME- 148

TEOR (Banerjee and Lavie, 2005), compute lexical 149

overlap between response candidates and gold ref- 150

erences. More sophisticated embedding-based met- 151

rics, such as Extrema (Forgues and Pineau, 2014) 152

and BERTScore (Zhang et al., 2020), first project 153

responses and references into high-dimensional 154

semantic spaces before calculating their similar- 155

ity. However, both approaches have shown limited 156

efficacy in evaluating open-domain dialogue sys- 157

tems (Liu et al., 2016). 158

Regarding trainable metrics, RUBER (Tao et al., 159

2018) evaluates response quality by measuring se- 160
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mantic similarity between the generated response,161

dialogue context, and ground truth reference. Sai162

et al. (2020) introduced DEB, which leverages163

a BERT model pre-trained on large-scale Reddit164

conversations. While effective, the computational165

cost of pre-training on extensive datasets makes166

this approach less practical. Similarly, Mask-and-167

fill (Gupta et al., 2021) employs a Speaker-Aware168

BERT architecture (Gu et al., 2020) to enhance169

dialogue understanding, though it requires dataset-170

specific adaptation before fine-tuning. Zhang et al.171

(2021) developed MDD-Eval for cross-domain dia-172

logue evaluation, but this method necessitates hu-173

man annotations and additional training data while174

failing to address adversarial negative examples.175

LLM-based Evaluators. The emergence of Large176

Language Models (LLMs) has enabled new ap-177

proaches to dialogue evaluation. Fu et al. (2023)178

developed GPTScore, leveraging pre-trained lan-179

guage models for multi-aspect, customizable eval-180

uation without task-specific training. Wang et al.181

(2023) empirically validated the effectiveness of182

LLM-based evaluation approaches. Kocmi and Fe-183

dermann (2023) demonstrated the utility of GPT184

models in machine translation evaluation. Liu et al.185

(2023) introduced G-Eval, employing GPT-4 across186

multiple generation tasks including dialogue re-187

sponse, text summarization, data-to-text genera-188

tion, and machine translation. Chan et al. (2023)189

proposed ChatEval, a multi-agent debate frame-190

work that surpasses single-LLM evaluators in per-191

formance. However, these LLM-based approaches192

have yet to be applied to evaluating adversarial neg-193

ative responses incorporating non-textual domain194

knowledge.195

3 Methodology196

3.1 Task Description197

Our model operates on input tuples consisting of198

a dialogue context C, a response R, and their cor-199

responding AMR graphs GC and GR. The primary200

objective of the SLM component is to perform bi-201

nary classification, predicting a label Y ∈ {0, 1}202

for each response, where 0 and 1 denote negative203

and positive responses, respectively.204

The SLM generates a classification confidence205

score defined as:206

ScoreSLM = P (Y | C,R,GC ,GR) (1)207

The derived confidence score, in conjunction208

with the semantic structural information encoded209

in AMR graphs GC and GR, is incorporated into the 210

LLM’s prompt. This integration enables the LLM 211

to leverage both statistical confidence and explicit 212

semantic knowledge for more robust open-domain 213

dialogue evaluation. 214

3.2 Overall Architecture 215

Figure 2 illustrates the comprehensive architecture 216

of our proposed framework, which seamlessly in- 217

tegrates SLM and LLM components. The SLM 218

architecture incorporates a dual-encoder design: a 219

sequence encoder for processing textual informa- 220

tion and a graph encoder specialized in AMR graph 221

representation learning. The complementary rep- 222

resentations from these encoders are dynamically 223

balanced through an adaptive gating mechanism, 224

which modulates the information flow from both 225

sources. 226

To optimise the alignment between textual and 227

structural representations, particularly for positive 228

response pairs, we employ a contrastive learning 229

strategy during the training phase. This approach 230

minimizes the representational distance between 231

sentence and graph embeddings for semantically 232

coherent pairs, while maintaining appropriate sepa- 233

ration for negative examples. 234

The final evaluation framework leverages 235

both the SLM’s classification confidence score 236

ScoreSLM and the structured AMR graph infor- 237

mation, which are systematically integrated into 238

the LLM’s prompt through a carefully designed 239

template. This multi-modal integration enables the 240

LLM to synthesize both statistical and semantic 241

evidence for more robust dialogue evaluation. 242

3.3 Sequence Encoder 243

The sequence encoder employs a standard Trans- 244

former architecture (Vaswani et al., 2017) to pro- 245

cess the input dialogue components. Given a di- 246

alogue context Ci = {w1, w2, . . . , wC} and a re- 247

sponse Ri = {w1, w2, . . . , wR}, where wi denotes 248

the i-th token and C, R represent respective se- 249

quence lengths, the encoder generates a sentence 250

representation HS . The encoding process can be 251

formally expressed as: 252

HS = SeqEncoder(C,R) (2) 253

hi =
C+R∑
j=1

αij

(
WHhj

)
(3) 254

αij = Attention (hi, hj) (4) 255
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Figure 2: The architecture of the proposed model. The left part is the SLM architecture, containing two encoders and
the gate mechanism for encoding and fusing the sequence and AMR graph information of context-response pairs.
The right part is the LLM where the prompt contains the prediction score of the SLM and AMR graph information.

where HS = {h1, h2, . . . , hC+R} represents the256

sequence of hidden states and WH denotes the257

transformation matrix.258

3.4 Graph Encoder259

For modeling AMR graph structures, we utilise the260

Graph Transformer (Zhu et al., 2019), an exten-261

sion of the standard Transformer that specialises in262

graph-structured data. An AMR graph G = ⟨V, E⟩263

comprises nodes V and edges E , where each edge264

e ∈ E is represented as a triple ⟨ni, rij , nj⟩ denot-265

ing the relation rij between nodes ni and nj . The266

graph encoding process is defined as:267

HA = GraphEncoder(V, E) (5)268

h′i =

M∑
j=1

α̂ij

(
W V h′j +WRrij

)
(6)269

where HA = {h′1, h′2, . . . , h′M} represents the270

graph embeddings, and W V , WR are learnable271

transformation matrices.272

The graph attention mechanism, which distin-273

guishes the Graph Transformer from standard274

Transformers, is computed as:275

α̂ij =
exp (êij)∑M

m=1 exp (êim)
276

êij =

(
WQh′i

)T (
WKh′j +WRrij

)
√
d

(7)277

where WQ, WK are transformation matrices278

and d is the dimensionality of the hidden states.279

3.5 Aggregation Gate 280

To effectively combine the complementary infor- 281

mation from both sequence and graph representa- 282

tions, we implement an adaptive gating mechanism. 283

Given the sentence representation HS and graph 284

representation HA, the gate value gi is computed 285

as: 286

gi = σ
(
WGHS + bg

)
(8) 287

Ĥ = giHS + (1− gi)HA (9) 288

where WG, bg are learnable parameters, and Ĥ 289

represents the final fused representation. 290

3.6 Training objectives and Evaluation 291

The fused representation Ĥ is used to predict the 292

classification probability for the context-response 293

pair: 294

ScoreSLM = softmax
(
WF Ĥ+ bf

)
(10) 295

The training objective combines classification 296

and contrastive learning: 297

L = Lcls + LC (11) 298

Lcls = −logP (Y = 1 | Ĥ) (12) 299

The contrastive loss LC , inspired by Henderson 300

et al. (2017), facilitates alignment between sen- 301

tence and graph representations: 302
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LC = − 1

N

N∑
i=1

esim(H
+
S ,H+

A)∑
j e

sim(H−
S ,H−

A)
(13)303

where H+
S , H+

A denote positive pair representa-304

tions and H−
S , H−

A represent negative pairs.305

The final evaluation score integrates the SLM306

prediction score ScoreSLM and AMR graph infor-307

mation G through the LLM’s prompt.308

Score = LLMs(ScoreSLM,G) (14)309

4 Experiments310

4.1 Dataset311

We conduct experiments on three widely-312

recognised open-domain dialogue datasets: Daily-313

Dialog++ (Sai et al., 2020), PersonaChat (Zhang314

et al., 2018), and TopicalChat (Gopalakrishnan315

et al., 2019). DailyDialog++ is particularly316

noteworthy as it is the sole publicly available317

dataset containing human-crafted adversarial318

negative responses. Each context is paired with319

three types responses: five positive responses, five320

random negative responses, and five adversarial321

negative responses.322

For PersonaChat and TopicalChat, which lack323

human-created adversarial responses in their orig-324

inal forms, we utilise the augmented datasets325

from (Zhao et al., 2024). These enhanced datasets326

feature 2,000 conversational contexts, each accom-327

panied by five positive responses and adversarial328

negative counterparts.329

4.2 Experimental Settings330

The preprocessing of AMR graph structures in-331

volves multiple stages. Initially, we employ the332

amrlib library (Cai and Lam, 2020) to transform333

each context-response pair into its corresponding334

AMR graph representation. Following the method-335

ology outlined in (Song et al., 2020), we subse-336

quently process these graphs using the AMR simpli-337

fier (Konstas et al., 2017). This procedure include338

the error-checking and therefore yields refined and339

accurate AMR graphs. For the LLM component,340

we utilise GPT-3.5-turbo and GPT-4-1106.341

4.3 Baselines342

For the word-overlap and embedding-based met-343

rics, we select widely used ones in generative dia-344

logue systems, including BLEU (Papineni et al.,345

2002), ROUGE (Lin, 2004), METEOR (Baner- 346

jee and Lavie, 2005), and BERTScore (Zhang 347

et al., 2020). For the learning-based metrics, 348

We compare our method with DEB (Sai et al., 349

2020), USR (Mehri and Eskenazi, 2020), Mask- 350

and-fill (Gupta et al., 2021), and MDD-Eval (Zhang 351

et al., 2021). Additionally, we select G-Eval (Liu 352

et al., 2023) and LLM-Eval (Lin and Chen, 2023) 353

as the LLM-based baseline metrics. 354

4.4 Evaluation Set and Human Annotation 355

To rigorously assess our proposed metric, we es- 356

tablish a comprehensive evaluation protocol com- 357

prising two distinct sets: a Standard Set and an 358

Adversarial Set. 359

Dataset Construction The Standard Set encom- 360

passes positive and random negative responses, 361

with 400 context-response pairs sourced from each 362

of DailyDialog++, PersonaChat, and TopicalChat 363

datasets, totalling 1,200 samples. The random neg- 364

ative responses are selected from different dialogue 365

turns to ensure contextual diversity. The Adver- 366

sarial Set, designed to evaluate robustness against 367

challenging examples, contains an additional 400 368

context-response pairs per dataset, featuring pos- 369

itive and adversarial negative responses. In ag- 370

gregate, our evaluation corpus comprises 2,400 371

context-response pairs. 372

Evaluation Criteria Following the metrics pro- 373

posed by Zhong et al. (2022), we assess responses 374

across four dimensions: (1) Naturalness: The de- 375

gree to which a response is naturally written; (2) 376

Coherence: The extent to which the content of 377

the output is well-structured, logical, and meaning- 378

ful; (3) Engagingness: The degree to which the 379

response is engaging; and (4) Groundedness: The 380

extent to which a response is grounded in facts 381

present in the context. 382

Human Annotation Three qualified human eval- 383

uators, each holding at least a master’s degree 384

in Computer Science and demonstrating full pro- 385

fessional English proficiency, independently rated 386

each context-response pair. Assessments were con- 387

ducted using a 5-point Likert scale, where higher 388

scores indicate superior quality. The final human 389

annotation score for each aspect was derived by 390

averaging across all evaluators. To ensure annota- 391

tion reliability, we computed the Inner-Annotator 392

Agreement (IAA) using Cohen’s Kappa coeffi- 393

cient (Cohen, 1960). The achieved average IAA 394

score of 0.64 between annotator pairs indicates 395

substantial agreement (0.6-0.8), validating the ro- 396
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Standard Set Adversarial Set
Metrics Pearson’s ρ Spearman’s τ Pearson’s ρ Spearman’s τ

BLEU-1 0.1841 (0.1620) 0.1825 (0.1623) 0.2064 (0.1321) 0.2102 (0.9274)
BLEU-2 0.1881 (0.1928) 0.1772 (0.3928) 0.1540 (0.3937) 0.1969 (0.3921)
BLEU-3 0.1847 (0.4265) 0.1835 (0.3521) 0.1543 (0.4336) 0.1973 (0.2292)
BLEU-4 0.1980 (0.2552) 0.1787 (0.8398) 0.1598 (0.6175) 0.1844 (0.7698)
ROUGE-1 0.2183 (0.4698) 0.2026 (0.7390) 0.2305 (0.9120) 0.2141 (0.4276)
ROUGE-2 0.2055 (0.9153) 0.1911 (0.1263) 0.1516 (0.5291) 0.1693 (0.5201)
ROUGE-L 0.2183 (0.1028) 0.2034 (0.1928) 0.2377 (0.0183) 0.2271 (0.1912)
METEOR 0.1804 (0.1018) 0.1561 (0.1793) 0.1342 (0.1123) 0.1034 (0.5443)
BERTScore 0.2517 (0.3556) 0.2658 (0.2369) 0.2016 (0.3430) 0.2230 (0.2561)

DEB 0.3236 (0.0630) 0.2856 (0.2382) 0.3492 (0.0622) 0.3406 (0.8098)
USR 0.2636 (0.0206) 0.2482 (0.8432) 0.2297 (0.0624) 0.2760 (0.1892)
Mask-and-fill 0.1904 (0.1732) 0.2056 (0.0975) 0.2604 (0.1320) 0.2895 (0.0460)
MDD-Eval 0.2813 (0.0610) 0.2424 (0.8223) 0.2982 (0.4162) 0.2792 (0.0218)

G-Eval (GPT-3.5) 0.3418 (0.0106) 0.3325 (0.0190) 0.3294 (0.2327) 0.3412 (0.2272)
G-Eval (GPT-4) 0.4321 (0.0001) 0.4312 (0.0071) 0.4298 (0.0225) 0.4528 (0.0021)
LLM-Eval (GPT-3.5) 0.3548 (0.0211) 0.3723 (0.0190) 0.3501 (0.3712) 0.3421 (0.0762)
LLM-Eval (GPT-4) 0.4315 (0.0206) 0.4621 (0.0172) 0.4691 (0.2355) 0.4528 (0.5632)

Ours(w/o LLM) 0.3575 (0.0442) 0.3646 (0.0347) 0.3492 (0.0620) 0.3545 (0.0215)
Ours (GPT-3.5 w/o AMR) 0.4590 (0.0241) 0.4592 (0.0539) 0.4623 (0.2327) 0.4745 (0.2342)
Ours (GPT-3.5 w/o SLM) 0.4782 (0.1242) 0.4723 (0.0119) 0.4898 (0.2237) 0.4902 (0.0938)
Ours (GPT-3.5) 0.4890 (0.0001) 0.4873 (0.0019) 0.4955 (0.1237) 0.4920 (0.0462)
Ours (GPT-4 w/o AMR) 0.5290 (0.2421) 0.5392 (0.0129) 0.5212 (0.2375) 0.5522 (0.5632)
Ours (GPT-4 w/o SLM) 0.5426 (0.0106) 0.5701 (0.0019) 0.5521 (0.8375) 0.5209 (0.9472)
Ours (GPT-4) 0.5693 (0.0021) 0.5927 (0.0043) 0.5628 (0.0116) 0.5826 (0.0025)

Table 1: Pearson and Spearman correlations with human judgments on the DailyDialog++ dataset. The number
figures in parentheses are p-values.

Standard Set Adversarial Set
Metrics Pearson’s ρ Spearman’s τ Pearson’s ρ Spearman’s τ

BLEU-1 0.2063 (0.9228) 0.2152 (0.6538) 0.1764 (0.2243) 0.1663 (0.0335)
BLEU-2 0.1951 (0.7401) 0.1823 (0.1361) 0.1405 (0.3621) 0.1619 (0.1422)
BLEU-3 0.1680 (0.3465) 0.1941 (0.8264) 0.1375 (0.2103) 0.1676 (0.3456)
BLEU-4 0.2002 (0.2836) 0.1930 (0.1712) 0.1253 (0.0924) 0.1543 (0.8927)
ROUGE-1 0.2130 (0.4942) 0.2159 (0.3892) 0.2075 (0.5918) 0.2198 (0.1984)
ROUGE-2 0.2016 (0.0183) 0.2023 (0.9172) 0.1832 (0.1830) 0.2073 (0.1983)
ROUGE-L 0.2103 (0.9028) 0.2034 (0.9283) 0.2027 (0.9278) 0.2236 (0.9183)
METEOR 0.1997 (0.0183) 0.1768 (0.0918) 0.1439 (0.9214) 0.1705 (0.4028)
BERTScore 0.2865 (0.2357) 0.2721 (0.2568) 0.2254 (0.5914) 0.2643 (0.6019)

DEB 0.3653 (0.0241) 0.3434 (0.8346) 0.3512 (0.0301) 0.3706 (0.8398)
USR 0.3466 (0.0392) 0.3456 (0.1343) 0.3681 (0.0462) 0.3859 (0.1846)
MDD-Eval 0.3481 (0.0619) 0.3410 (0.1802) 0.3735 (0.1503) 0.3601 (0.9348)
Mask-and-fill 0.3093 (0.1812) 0.3105 (0.8013) 0.3764 (0.3153) 0.3613 (0.2203)

G-Eval (GPT-3.5) 0.4891 (0.0923) 0.4874 (0.0122) 0.4551 (0.0410) 0.4610 (0.0512)
G-Eval (GPT-4) 0.5241 (0.0131) 0.5313 (0.0424) 0.5123 (0.0112) 0.5513 (0.0253)
LLM-Eval (GPT-3.5) 0.4648 (0.1821) 0.4573 (0.9181) 0.4450 (0.7163) 0.4614 (0.7817)
LLM-Eval (GPT-4) 0.5321 (0.8127) 0.5392 (0.7161) 0.5269 (0.9221) 0.5258 (0.9271)

Ours(w/o LLM) 0.3668 (0.0044) 0.3784 (0.0037) 0.3954 (0.0060) 0.3911 (0.0055)
Ours (GPT-3.5 w/o AMR) 0.5007 (0.0032) 0.4998 (0.0008) 0.5011 (0.0237) 0.5105 (0.0047)
Ours (GPT-3.5 w/o SLM) 0.5118 (0.0024) 0.5068 (0.0038) 0.5199 (0.0007) 0.5187 (0.0005)
Ours(GPT-3.5) 0.5517 (0.0044) 0.5209 (0.0002) 0.5204 (0.0053) 0.5225 (0.0057)
Ours (GPT-4 w/o AMR) 0.6199 (0.0001) 0.6127 (0.0004) 0.6178 (0.0017) 0.6004 (0.0028)
Ours (GPT-4 w/o SLM) 0.6267 (0.0021) 0.6299 (0.0003) 0.6245 (0.0047) 0.6309 (0.0145)
Ours (GPT-4) 0.6598 (0.0021) 0.6604 (0.0023) 0.6526 (0.0013) 0.6612 (0.0046)

Table 2: Pearson and Spearman correlations with human judgments on the PersonaChat dataset.
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Standard Set Adversarial Set
Metrics Pearson’s ρ Spearman’s τ Pearson’s ρ Spearman’s τ

BLEU-1 0.2102 (0.2993) 0.1982 (0.8628) 0.1444 (0.0203) 0.1553 (0.0032)
BLEU-2 0.1721 (0.7761) 0.1772 (0.3132) 0.1295 (0.4321) 0.1439 (0.5402)
BLEU-3 0.1577(0.1357) 0.1642 (0.1854) 0.1225 (0.0203) 0.1328 (0.0341)
BLEU-4 0.1482 (0.2901) 0.1503(0.1709) 0.1323 (0.0203) 0.1228 (0.3265)
ROUGE-1 0.2050 (0.4808) 0.2144 (0.0371) 0.1752 (0.2839) 0.1788 (0.6052)
ROUGE-2 0.2005 (0.0956) 0.2027 (0.1231) 0.1835 (0.4462) 0.2028 (0.2302)
ROUGE-L 0.2197 (0.4980) 0.2011 (0.3924) 0.1908 (0.2993) 0.2335 (0.7158)
METEOR 0.1857 (0.1314) 0.1576 (0.4371) 0.1518 (0.8903) 0.1685 (0.4094)
BERTScore 0.2555 (0.6227) 0.2542 (0.9268) 0.2194 (0.1936) 0.2558 (0.2032)

DEB 0.3255 (0.0152) 0.3306 (0.0470) 0.3419 (0.0158) 0.3668 (0.0812)
USR 0.3466 (0.0045) 0.3428 (0.1257) 0.3338 (0.0478) 0.1706 (0.0462)
MDD-Eval 0.3277 (0.0245) 0.3398 (0.2784) 0.3869 (0.3478) 0.3557 (0.0254)
Mask-and-fill 0.2998 (0.0458) 0.3052 (0.0025) 0.3668 (0.1069) 0.3627 (0.0044)

G-Eval (GPT-3.5) 0.4995 (0.0025) 0.4754 (0.0011) 0.4774 (0.0069) 0.4688 (0.0098)
G-Eval (GPT-4) 0.5314 (0.0028) 0.5055 (0.0015) 0.4995 (0.0057) 0.5022 (0.0064)
LLM-Eval (GPT-3.5) 0.4837 (0.0001) 0.4798 (0.0004) 0.4512 (0.0007) 0.4799 (0.0004)
LLM-Eval (GPT-4) 0.5008 (0.0022) 0.5096 (0.0036) 0.5178 (0.0019) 0.5257 (0.0007)

Ours(w/o LLM) 0.3602 (0.0011) 0.3599 (0.0004) 0.3611 (0.0017) 0.3587 (0.0023)
Ours (GPT-3.5 w/o AMR) 0.5022 (0.0001) 0.5120 (0.0009) 0.5118 (0.0025) 0.5099 (0.0002)
Ours (GPT-3.5 w/o SLM) 0.5172 (0.0025) 0.5099 (0.0065) 0.5112 (0.0004) 0.5101 (0.0051)
Ours(GPT-3.5) 0.5200 (0.0051) 0.5115 (0.0007) 0.5127 (0.0057) 0.5110 (0.0001)
Ours (GPT-4 w/o AMR) 0.6274 (0.0001) 0.6266 (0.0019) 0.6198 (0.1237) 0.5207 (0.0272)
Ours (GPT-4 w/o SLM) 0.6470 (0.0021) 0.6482 (0.0031) 0.6398 (0.0004) 0.6402 (0.0054)
Ours (GPT-4) 0.6641 (0.0002) 0.6603 (0.0002) 0.6598 (0.0007) 0.6674 (0.0003)

Table 3: Pearson and Spearman correlations with human judgments on the TopicalChat dataset.

bustness of our human evaluation framework.397

5 Results398

5.1 Evaluation Performance on Standard Set399

We evaluate our model against the baselines by400

analysing the correlation between automated eval-401

uation scores and human judgements across three402

datasets. The results presented in Table 1 to Table 3403

reveal that n-gram and embedding-based baselines,404

which compute word overlap or semantic similarity405

between gold references and responses, demon-406

strate weak positive correlations with human anno-407

tations across two datasets. Amongst the n-gram408

baselines, ROUGE-L exhibits the strongest correla-409

tion. The embedding-based approach, BERTScore,410

whilst outperforming the n-gram baselines, still411

achieves suboptimal performance when compared412

with more sophisticated metrics. Learning-based413

metrics, which consider the contextual relation-414

ship between dialogue pairs, demonstrate supe-415

rior overall performance. Specifically, Mask-and-416

fill and USR achieve better correlations than n-417

gram baselines, whilst DEB and MDD-Eval secure418

higher correlations among these approaches. Re-419

garding LLM-based methods, G-Eval and LLM-420

Eval demonstrate the strongest performance across421

all three datasets, establishing themselves as the422

leading baselines. 423

Our method in its basic configuration (Ours w/o 424

LLM) achieves moderately positive correlations 425

across the three datasets (less than 0.4). How- 426

ever, when integrating SLM with LLM, our ap- 427

proach achieves the highest overall performance 428

on both Pearson and Spearman correlations across 429

all datasets. Notably, our GPT-4 variant exhibits 430

superior performance compared to all baselines. 431

Through ablation studies examining the effective- 432

ness of SLM and AMR graphs, we observe that 433

Ours (w/o SLM) outperforms Ours (w/o AMR), 434

which combines only LLM and SLM components, 435

thereby validating the effectiveness of incorporat- 436

ing AMR graphs in open-domain dialogue evalua- 437

tion. 438

5.2 Evaluation Performance on Adversarial 439

Set 440

To evaluate our method’s capability in evaluating 441

adversarial negative examples, we conduct compar- 442

ative analyses against baseline approaches on the 443

adversarial set. Tables 1 to 3 present the correla- 444

tion results between automated metrics and human 445

judgements. 446

The n-gram and embedding-based metrics ex- 447

hibit weakly positive correlations with human 448
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judgements, primarily due to their inherent lim-449

itation of solely comparing gold references with450

response candidates, without considering the con-451

textual relationships that characterise adversarial452

examples. Regarding learning-based approaches,453

USR demonstrates limited robustness against adver-454

sarial negative examples, showing only weak posi-455

tive correlations with human judgements. In con-456

trast, MDD-Eval, Mask-and-fill, and DEB achieve457

notably stronger performance across both Pearson458

and Spearman correlations. LLM-based methods459

establish themselves as the strongest baseline ap-460

proaches, demonstrating superior performance in461

handling adversarial examples.462

Our proposed metric consistently surpasses all463

baseline approaches across both correlation metrics.464

Specifically, Ours(GPT-4) achieves strong correla-465

tions on the adversarial set, significantly outper-466

forming the strongest baseline G-Eval. Similar im-467

provements are observed in Spearman correlations468

across the three datasets. The ablation analysis469

further substantiates the benefits of our integrated470

approach: Ours(w/o AMR) shows notably lower471

correlations, demonstrating that the incorporation472

of AMR graph information significantly enhances473

the model’s ability to evaluate adversarial exam-474

ples. These results comprehensively validate the475

effectiveness of integrating AMR graph-enhanced476

SLM with LLMs for robust open-domain dialogue477

evaluation.478

Context:

Hi kevin, how was your year at college?
It was great! How was your year? It
was good. Do you have a girlfriend at
school?

Response: Are you still in touch with any of your
old school friends?

Context:
Would you recommend some places for
sightseeing? How about great canyon?
Is it worth seeing?

Response: Singapore is reportedly a very exciting
place to live.

Context:

I need change for the machines? You
need to put 50 cents into the washer ma-
chine and a dollar into the dryer. So
what do I need to do?

Response: In our factory, there are 50 electrical ma-
chines.

Table 4: Samples of context-response pairs. The bold
words represent the overlapping words.

5.3 Case Study479

To demonstrate the effectiveness of AMR graphs480

in identifying adversarial negative responses, we481

present several illustrative examples in Table 4.482

Model Accuracy

BERT Regressor 75.92
RUBER 76.50
DEB 82.04
Mask-and-fill 85.27

Ours (SLM)
Ours (- w/o GM)
Ours (- w/o CL)
Ours (- w/o GM, CL)

86.81
86.22
86.46
85.64

Graph Transformer 84.73
Sentence Transformer 83.81

Table 5: Ablation study on Dailydialog++ dataset.

These cases highlight instances where responses 483

were incorrectly classified as “positive” without 484

AMR graph information, but were accurately iden- 485

tified as “negative” when incorporating semantic 486

structural knowledge from AMR graphs. This anal- 487

ysis underscores the crucial role of AMR-derived 488

semantic information in enhancing the model’s dis- 489

criminative capability for challenging adversarial 490

examples. We also analyse the attention heatmap 491

of Graph Transformer and Sentence Transformer 492

in Appendix A.1 493

5.4 Ablation Study 494

We evaluate our SLM’s classification performance 495

on the DailyDialog++ testset. As shown in Table 5, 496

our SLM surpasses all baselines and demonstrat- 497

ing the effectiveness of incorporating AMR graph 498

information. Ablation studies reveal that removing 499

either the Graph Transformer or Sentence Trans- 500

former components of SLM leads to decreased per- 501

formance, with the Graph Transformer alone per- 502

forming marginally better than the Sentence Trans- 503

former. While removing the contrastive learning 504

(CL) or gating mechanism (GM) shows minimal 505

impact, the removal of AMR information results in 506

the most significant performance drop, highlighting 507

its crucial role in dialogue evaluation. 508

6 Conclusion 509

In this paper, we presents a novel evaluation frame- 510

work for open-domain dialogue systems that in- 511

tegrates AMR graph-enhanced SLMs with LLMs. 512

Comprehensive experimental results across multi- 513

ple datasets demonstrate that our method consis- 514

tently outperforms existing approaches, including 515

state-of-the-art LLM-based methods, in the chal- 516

lenging task of open-domain dialogue evaluation. 517
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Ethics Statement518

Our proposed evaluation metric enhances the as-519

sessment of open-domain dialogue systems through520

AMR integration and contrastive learning. While521

the framework effectively addresses the one-to-522

many nature of dialogue evaluation, it may oc-523

casionally assign high scores to inappropriate re-524

sponses. We recommend careful screening of train-525

ing data and implementation of content filters be-526

fore deployment.527

Limitations528

Despite demonstrating robust performance, our529

method primarily focuses on semantic dependen-530

cies between context and response. Following531

Howcroft et al. (2020), we acknowledge that hu-532

man evaluation encompasses multiple attributes533

beyond semantic relationships. Future work should534

explore disentangling these various attributes to535

enhance model interpretability and evaluation com-536

prehensiveness.537
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A More Experimental Results and706

Analysis707

A.1 Attention Visualisation Analysis708

We analyse the attention patterns of both Sentence709

and Graph Transformers of the SLM through visu-710

alisation of their attention heatmaps for the context-711

response pair shown in Figure 3.712

The Sentence Transformer exhibits strong atten-713

tion weights between overlapping tokens in con-714

text and response. As illustrated in Figure 3 (top),715

tokens such as “school” and “friend” in the re-716

sponse show high attention scores with their coun-717

terparts “school” and “girlfriend” in the context.718

In contrast, the Graph Transformer, which incor-719

porates entity relationships through AMR struc-720

tures, demonstrates different attention patterns. Fig-721

ure 3 (bottom) shows that these lexically similar722

tokens receive lower attention weights, indicating723

the model’s ability to capture semantic differences724

beyond surface-level similarities.725

B Prompt Templates726

B.1 Prompt for Engagingness evaluation727

Rate the dialogue response.728

Use the prediction probability from the729

SLMs and AMR graphs of the conversation730

pair to aid your judgment.731

Note: Please take the time to fully read732

and understand the dialogue response.733

How dull/interest is the text of the734

dialogue response? (on a scale of 1-5,735

with 1 being the lowest)736

Input:737

Conversation Context:738

Response:739

AMR Graph:740

SLM score:741

742

Evaluation Form (Score ONLY):743

Engagingness:744

745

B.2 Prompt for Naturalness evaluation746

Rate the dialogue response.747

Use the prediction probability from the748

SLMs and AMR graphs of the conversation749

pair to aid your judgment.750

Note: Please take the time to fully read751

and understand the dialogue response.752

To what extent the response is naturally753

written (on a scale of 1-5, with 1 being 754

the lowest) 755

Input: 756

Conversation Context: 757

Response: 758

AMR Graph: 759

SLM score: 760

761

Evaluation Form (Score ONLY): 762

Naturalness: 763

764

B.3 Prompt for Coherence evaluation 765

Rate the dialogue response. 766

Use the prediction probability from the 767

SLMs and AMR graphs of the conversation 768

pair to aid your judgment. 769

Note: Please take the time to fully read 770

and understand the dialogue response. 771

To what extent the response is 772

well-structured, logical, and meaningful 773

(on a scale of 1-5, with 1 being the 774

lowest) 775

Input: 776

Conversation Context: 777

Response: 778

AMR Graph: 779

SLM score: 780

781

Evaluation Form (Score ONLY): 782

Coherence: 783

784

B.4 Prompt for Groundedness evaluation 785

Rate the dialogue response. 786

Use the prediction probability from the 787

SLMs and AMR graphs of the conversation 788

pair to aid your judgment. 789

Note: Please take the time to fully read 790

and understand the dialogue response. 791

To what extent the response is grounded 792

in facts present in the context (on a 793

scale of 1-5, with 1 being the lowest) 794

Input: 795

Conversation Context: 796

Response: 797

AMR Graph: 798

SLM score: 799

800

Evaluation Form (Score ONLY): 801

Groundedness: 802

803

11



Figure 3: Attention pattern visualisation for context-response analysis. Top: Graph Transformer attention heatmap
showing semantic-aware attention distribution. Bottom: Sentence Transformer attention heatmap highlighting
lexical-level attention patterns. Overlapping tokens between context and response (friends and school) demonstrate
distinct attention behaviours in the two encoders.
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