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Abstract

Automatic open-domain dialogue evaluation
has attracted increasing attention, yet remains
challenging due to the complexity of assessing
response appropriateness. Traditional evalua-
tion metrics, typically trained with true posi-
tive and randomly selected negative responses,
tend to assign higher scores to responses that
share greater content similarity with contexts.
However, adversarial negative responses, de-
spite possessing high lexical overlap with con-
texts, can be semantically incongruous. Con-
sequently, existing metrics struggle to evalu-
ate such responses effectively, resulting in low
correlations with human judgments. While re-
cent studies have demonstrated the effective-
ness of Large Language Models (LLMs) for
open-domain dialogue evaluation, they still
face challenges in handling adversarial neg-
ative examples. We propose a novel evalua-
tion framework that integrates Abstract Mean-
ing Representation (AMR) enhanced domain-
specific language models (SLMs) with LLMs.
Our SLMs explicitly incorporate AMR graph
information through a gating mechanism for en-
hanced semantic representation learning, while
both SLM predictions and AMR knowledge are
integrated into LLM prompts for robust evalu-
ation. Extensive experiments on open-domain
dialogue evaluation tasks demonstrate the su-
periority of our method compared to state-of-
the-art baselines, particularly in discriminating
adversarial negative responses. Our framework
achieves strong correlations with human judg-
ments across multiple datasets, establishing a
new benchmark for dialogue evaluation. Our
code and data are publicly available.

1 Introduction

Open-domain dialogue systems have garnered sub-
stantial attention owing to their broad applicabil-
ity (Zhang et al., 2021; Liu et al., 2023) across
various domains, including personal medical as-
sistance and biomedical telecommunications (Sai
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Figure 1: AMR graphs for the conversational context
and response. The semantic relationship of the word
“worth” appearing in both context and response is cap-
tured through distinct colored representations in their
respective AMR graphs.

et al., 2020; Yang et al., 2024). Traditional evalua-
tion approaches, such as n-gram-based metrics (Pa-
pineni et al., 2002; Lin, 2004; Banerjee and Lavie,
2005) and embedding-based metrics (Zhang et al.,
2020), assess the semantic similarity between re-
sponse candidates and gold references. these meth-
ods correlate poorly with human evaluation due to
their limited capacity to incorporate conversational
context (Liu et al., 2016).

While recent advances in trainable evaluation
frameworks (Lowe et al., 2017; Tao et al., 2018)
have improved context-response relationship mod-
eling, they face fundamental limitations stemming
from their training . These models, typically trained
with true positive and randomly sampled nega-
tive examples, tend to assess responses primarily
through surface-level content similarity. Although



some approaches have attempted to address this
by incorporating adversarial examples (Sai et al.,
2020; Gupta et al., 2021), they either require exten-
sive pre-training on large-scale conversational cor-
pora or demand adaptation to specific datasets, in-
curring substantial computational overhead. More-
over, their exclusive reliance on surface-form fea-
tures compromises robustness when evaluating ad-
versarial examples that deviate from the training
distribution.

The vulnerability to adversarial attacks further
compounds this challenge. Jin et al. (2019) demon-
strated that even simple synonym substitutions can
lead to misclassification in text analysis tasks. For
instance, a positive review stating “The characters,
cast in impossibly contrived situations, are totally
estranged from reality” would be misclassified as
negative when minimally modified to “The charac-
ters, cast in impossibly engineered circumstances,
are fully estranged from reality”, despite maintain-
ing semantic equivalence.

Recent advances in Large Language Models
(LLMs) have shown promise in dialogue evalua-
tion (Liu et al., 2023; Kocmi and Federmann, 2023;
Chiang and yi Lee, 2023). However, these models
still exhibit suboptimal performance when evalu-
ating adversarial negative responses. To address
these limitations, we propose integrating LLMs
with domain-specific language models (SLMs)
enhanced by Abstract Meaning Representation
(AMR) graph information, specifically aimed at
improving evaluation robustness for adversarial
examples. AMR graphs serve as powerful tools
for capturing dialogue system states and provid-
ing complementary semantic knowledge (Bai et al.,
2021; Bonial et al., 2020). Consider the follow-
ing example: given the context “Would you rec-
ommend some places for sightseeing? How about
great canyon? s it worth seeing?”, and an ad-
versarial negative response “The movie was really
good, it was worth watching it”, existing metrics
might erroneously classify this as positive due to
lexical overlap. AMR graphs help address this by
modeling semantic relationships between concepts
(e.g., “worth” and “canyon”) through explicit edge
relations (e.g., ““mod” and “:ARG1”).

Our approach introduces an AMR graph-
enhanced SLM that effectively identifies adversar-
ial negative examples in open-domain dialogue.
The framework integrates both the SLM’s predic-
tions and AMR graph information into the LLM’s
prompt, creating a robust automatic evaluator that

leverages domain-specific knowledge during infer-
ence. The SLM architecture comprises two key
components: sentence and graph encoders. The
sentence encoder processes surface-form knowl-
edge from conversational contexts and responses,
while the graph encoder models AMR structural in-
formation, capturing both conceptual elements and
their interrelations. These complementary represen-
tations are unified through a sophisticated gating
mechanism and optimised via contrastive learning,
encouraging alignment between textual and struc-
tural features for positive context-response pairs.
The final evaluation integrates both the SLM’s pre-
diction score and AMR graph information into the
LLM’s prompt.

Comprehensive empirical evaluation across
three public datasets demonstrates our model’s su-
perior performance compared to state-of-the-art
baselines, including LLM-based methods. Our key
contributions include:

Our contributions can be summarised as follows:

* The framework to integrate AMR graph in-
formation into open-domain dialogue evalua-
tion through a novel combination of enhanced
SLMs and LLMs.

* A dual-representation approach that leverages
both surface-form and semantic graph infor-
mation, with LLM capabilities enhanced by
SLM predictions and AMR knowledge.

* Comprehensive experimental results demon-
strating substantial improvements over exist-
ing methods, particularly in evaluating chal-
lenging adversarial negative responses.

2 Related Work

Dialogue Evaluation Metrics. Traditional n-
gram-based metrics, including BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005), compute lexical
overlap between response candidates and gold ref-
erences. More sophisticated embedding-based met-
rics, such as Extrema (Forgues and Pineau, 2014)
and BERTScore (Zhang et al., 2020), first project
responses and references into high-dimensional
semantic spaces before calculating their similar-
ity. However, both approaches have shown limited
efficacy in evaluating open-domain dialogue sys-
tems (Liu et al., 2016).

Regarding trainable metrics, RUBER (Tao et al.,
2018) evaluates response quality by measuring se-



mantic similarity between the generated response,
dialogue context, and ground truth reference. Sai
et al. (2020) introduced DEB, which leverages
a BERT model pre-trained on large-scale Reddit
conversations. While effective, the computational
cost of pre-training on extensive datasets makes
this approach less practical. Similarly, Mask-and-
fill (Gupta et al., 2021) employs a Speaker-Aware
BERT architecture (Gu et al., 2020) to enhance
dialogue understanding, though it requires dataset-
specific adaptation before fine-tuning. Zhang et al.
(2021) developed MDD-Eval for cross-domain dia-
logue evaluation, but this method necessitates hu-
man annotations and additional training data while
failing to address adversarial negative examples.
LLM-based Evaluators. The emergence of Large
Language Models (LLMs) has enabled new ap-
proaches to dialogue evaluation. Fu et al. (2023)
developed GPTScore, leveraging pre-trained lan-
guage models for multi-aspect, customizable eval-
uation without task-specific training. Wang et al.
(2023) empirically validated the effectiveness of
LLM-based evaluation approaches. Kocmi and Fe-
dermann (2023) demonstrated the utility of GPT
models in machine translation evaluation. Liu et al.
(2023) introduced G-Eval, employing GPT-4 across
multiple generation tasks including dialogue re-
sponse, text summarization, data-to-text genera-
tion, and machine translation. Chan et al. (2023)
proposed ChatEval, a multi-agent debate frame-
work that surpasses single-LL.M evaluators in per-
formance. However, these LLM-based approaches
have yet to be applied to evaluating adversarial neg-
ative responses incorporating non-textual domain
knowledge.

3 Methodology
3.1 Task Description

Our model operates on input tuples consisting of
a dialogue context C, a response R, and their cor-
responding AMR graphs G¢ and Gr. The primary
objective of the SLM component is to perform bi-
nary classification, predicting a label Y € {0,1}
for each response, where 0 and 1 denote negative
and positive responses, respectively.

The SLM generates a classification confidence
score defined as:

Scorestn = P(YV | C, R, Ge, GR) (1)

The derived confidence score, in conjunction
with the semantic structural information encoded

in AMR graphs G¢ and G, is incorporated into the
LLM’s prompt. This integration enables the LLM
to leverage both statistical confidence and explicit
semantic knowledge for more robust open-domain
dialogue evaluation.

3.2 Overall Architecture

Figure 2 illustrates the comprehensive architecture
of our proposed framework, which seamlessly in-
tegrates SLM and LLM components. The SLM
architecture incorporates a dual-encoder design: a
sequence encoder for processing textual informa-
tion and a graph encoder specialized in AMR graph
representation learning. The complementary rep-
resentations from these encoders are dynamically
balanced through an adaptive gating mechanism,
which modulates the information flow from both
sources.

To optimise the alignment between textual and
structural representations, particularly for positive
response pairs, we employ a contrastive learning
strategy during the training phase. This approach
minimizes the representational distance between
sentence and graph embeddings for semantically
coherent pairs, while maintaining appropriate sepa-
ration for negative examples.

The final evaluation framework leverages
both the SLM'’s classification confidence score
Scoregr v and the structured AMR graph infor-
mation, which are systematically integrated into
the LLM’s prompt through a carefully designed
template. This multi-modal integration enables the
LLM to synthesize both statistical and semantic
evidence for more robust dialogue evaluation.

3.3 Sequence Encoder

The sequence encoder employs a standard Trans-
former architecture (Vaswani et al., 2017) to pro-
cess the input dialogue components. Given a di-
alogue context C; = {wy,ws,...,we} and a re-
sponse R; = {w1, wa, ..., wr}, where w; denotes
the i-th token and C, R represent respective se-
quence lengths, the encoder generates a sentence
representation Hg. The encoding process can be
formally expressed as:

Hy = SeqBncoder(C,R) @)
C+R

hi= ) aij (Why) ®
7j=1

Q5 = Attention (hlv h]) (4)
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Figure 2: The architecture of the proposed model. The left part is the SLM architecture, containing two encoders and
the gate mechanism for encoding and fusing the sequence and AMR graph information of context-response pairs.
The right part is the LLM where the prompt contains the prediction score of the SLM and AMR graph information.

where Hg = {h1, ho, ..., hcytr } represents the
sequence of hidden states and W denotes the
transformation matrix.

3.4 Graph Encoder

For modeling AMR graph structures, we utilise the
Graph Transformer (Zhu et al., 2019), an exten-
sion of the standard Transformer that specialises in
graph-structured data. An AMR graph G = (V. &)
comprises nodes V and edges £, where each edge
e € £ is represented as a triple (n;, r;j, n;) denot-
ing the relation ;; between nodes n; and n;. The
graph encoding process is defined as:

H 4 = GraphEncoder(V, £) 5)
M

np=>ay (WYH;+ Whry) (6
j=1

where Hy = {Rh], R}, ..., b} represents the
graph embeddings, and WV, W are learnable
transformation matrices.

The graph attention mechanism, which distin-
guishes the Graph Transformer from standard
Transformers, is computed as:

exp (€;5)
> =1 XD (éim)
(wen)* (WK M + Wij)
eij = \/g

where W®, WX are transformation matrices
and d is the dimensionality of the hidden states.

O%‘j =

(7N

3.5 Aggregation Gate

To effectively combine the complementary infor-
mation from both sequence and graph representa-
tions, we implement an adaptive gating mechanism.
Given the sentence representation Hg and graph
representation H 4, the gate value g; is computed
as:

gi =0 (W9Hg + b,) (8)

H=ygHs+(1-g)Hy )

where W&, b, are learnable parameters, and FI
represents the final fused representation.
3.6 Training objectives and Evaluation

The fused representation H is used to predict the
classification probability for the context-response
pair:

Scoregp,v = softmax (WFﬂ + bf) (10)

The training objective combines classification
and contrastive learning:

L= ﬁcls + £C
Les = —logP(y =1 ’ ﬁ)

(11)
(12)

The contrastive loss L¢, inspired by Henderson
et al. (2017), facilitates alignment between sen-
tence and graph representations:



where H;, Hj denote positive pair representa-
tions and Hg, H, represent negative pairs.

The final evaluation score integrates the SLM
prediction score Scoregry and AMR graph infor-
mation G through the LLM’s prompt.

Score = LLMs(Scoregrm, G) (14)

4 Experiments

4.1 Dataset

We conduct experiments on three widely-
recognised open-domain dialogue datasets: Daily-
Dialog++ (Sai et al., 2020), PersonaChat (Zhang
et al., 2018), and TopicalChat (Gopalakrishnan
et al., 2019). DailyDialog++ is particularly
noteworthy as it is the sole publicly available
dataset containing human-crafted adversarial
negative responses. Each context is paired with
three types responses: five positive responses, five
random negative responses, and five adversarial
negative responses.

For PersonaChat and TopicalChat, which lack
human-created adversarial responses in their orig-
inal forms, we utilise the augmented datasets
from (Zhao et al., 2024). These enhanced datasets
feature 2,000 conversational contexts, each accom-
panied by five positive responses and adversarial
negative counterparts.

4.2 Experimental Settings

The preprocessing of AMR graph structures in-
volves multiple stages. Initially, we employ the
amrlib library (Cai and Lam, 2020) to transform
each context-response pair into its corresponding
AMR graph representation. Following the method-
ology outlined in (Song et al., 2020), we subse-
quently process these graphs using the AMR simpli-
fier (Konstas et al., 2017). This procedure include
the error-checking and therefore yields refined and
accurate AMR graphs. For the LLM component,
we utilise GPT-3.5-turbo and GPT-4-1106.

4.3 Baselines

For the word-overlap and embedding-based met-
rics, we select widely used ones in generative dia-
logue systems, including BLEU (Papineni et al.,

2002), ROUGE (Lin, 2004), METEOR (Baner-
jee and Lavie, 2005), and BERTScore (Zhang
et al.,, 2020). For the learning-based metrics,
We compare our method with DEB (Sai et al.,
2020), USR (Mehri and Eskenazi, 2020), Mask-
and-fill (Gupta et al., 2021), and MDD-Eval (Zhang
et al., 2021). Additionally, we select G-Eval (Liu
et al., 2023) and LLM-Eval (Lin and Chen, 2023)
as the LLM-based baseline metrics.

4.4 Evaluation Set and Human Annotation

To rigorously assess our proposed metric, we es-
tablish a comprehensive evaluation protocol com-
prising two distinct sets: a Standard Set and an
Adversarial Set.

Dataset Construction The Standard Set encom-
passes positive and random negative responses,
with 400 context-response pairs sourced from each
of DailyDialog++, PersonaChat, and TopicalChat
datasets, totalling 1,200 samples. The random neg-
ative responses are selected from different dialogue
turns to ensure contextual diversity. The Adver-
sarial Set, designed to evaluate robustness against
challenging examples, contains an additional 400
context-response pairs per dataset, featuring pos-
itive and adversarial negative responses. In ag-
gregate, our evaluation corpus comprises 2,400
context-response pairs.

Evaluation Criteria Following the metrics pro-
posed by Zhong et al. (2022), we assess responses
across four dimensions: (1) Naturalness: The de-
gree to which a response is naturally written; (2)
Coherence: The extent to which the content of
the output is well-structured, logical, and meaning-
ful; (3) Engagingness: The degree to which the
response is engaging; and (4) Groundedness: The
extent to which a response is grounded in facts
present in the context.

Human Annotation Three qualified human eval-
uators, each holding at least a master’s degree
in Computer Science and demonstrating full pro-
fessional English proficiency, independently rated
each context-response pair. Assessments were con-
ducted using a 5-point Likert scale, where higher
scores indicate superior quality. The final human
annotation score for each aspect was derived by
averaging across all evaluators. To ensure annota-
tion reliability, we computed the Inner-Annotator
Agreement (IAA) using Cohen’s Kappa coeffi-
cient (Cohen, 1960). The achieved average IAA
score of 0.64 between annotator pairs indicates
substantial agreement (0.6-0.8), validating the ro-



Standard Set

Adversarial Set

Metrics Pearson’s p Spearman’s 7 Pearson’s p Spearman’s 7

BLEU-1 0.1841 (0.1620)  0.1825 (0.1623) | 0.2064 (0.1321)  0.2102 (0.9274)
BLEU-2 0.1881 (0.1928)  0.1772 (0.3928) | 0.1540 (0.3937)  0.1969 (0.3921)
BLEU-3 0.1847 (0.4265)  0.1835(0.3521) | 0.1543 (0.4336) 0.1973 (0.2292)
BLEU-4 0.1980 (0.2552)  0.1787 (0.8398) | 0.1598 (0.6175)  0.1844 (0.7698)
ROUGE-1 0.2183 (0.4698)  0.2026 (0.7390) | 0.2305 (0.9120) 0.2141 (0.4276)
ROUGE-2 0.2055 (0.9153)  0.1911 (0.1263) | 0.1516 (0.5291)  0.1693 (0.5201)
ROUGE-L 0.2183 (0.1028)  0.2034 (0.1928) | 0.2377 (0.0183)  0.2271 (0.1912)
METEOR 0.1804 (0.1018)  0.1561 (0.1793) | 0.1342 (0.1123)  0.1034 (0.5443)
BERTScore 0.2517 (0.3556)  0.2658 (0.2369) | 0.2016 (0.3430)  0.2230 (0.2561)
DEB 0.3236 (0.0630)  0.2856 (0.2382) | 0.3492 (0.0622)  0.3406 (0.8098)
USR 0.2636 (0.0206)  0.2482 (0.8432) | 0.2297 (0.0624)  0.2760 (0.1892)
Mask-and-fill 0.1904 (0.1732)  0.2056 (0.0975) | 0.2604 (0.1320)  0.2895 (0.0460)
MDD-Eval 0.2813 (0.0610)  0.2424 (0.8223) | 0.2982 (0.4162) 0.2792 (0.0218)
G-Eval (GPT-3.5) 0.3418 (0.0106)  0.3325 (0.0190) | 0.3294 (0.2327) 0.3412 (0.2272)
G-Eval (GPT-4) 0.4321 (0.0001)  0.4312 (0.0071) | 0.4298 (0.0225) 0.4528 (0.0021)

LLM-Eval (GPT-3.5)
LLM-Eval (GPT-4)

0.3548 (0.0211)
0.4315 (0.0206)

0.3723 (0.0190)
0.4621 (0.0172)

0.3501 (0.3712)
0.4691 (0.2355)

0.3421 (0.0762)
0.4528 (0.5632)

Ours(w/o LLM)

Ours (GPT-3.5 w/0 AMR)
Ours (GPT-3.5 w/0 SLM)
Ours (GPT-3.5)

Ours (GPT-4 w/0 AMR)
Ours (GPT-4 w/o0 SLM)
Ours (GPT-4)

0.3575 (0.0442)
0.4590 (0.0241)
0.4782 (0.1242)
0.4890 (0.0001)
0.5290 (0.2421)
0.5426 (0.0106)
0.5693 (0.0021)

0.3646 (0.0347)
0.4592 (0.0539)
0.4723 (0.0119)
0.4873 (0.0019)
0.5392 (0.0129)
0.5701 (0.0019)
0.5927 (0.0043)

0.3492 (0.0620)
0.4623 (0.2327)
0.4898 (0.2237)
0.4955 (0.1237)
0.5212 (0.2375)
0.5521 (0.8375)
0.5628 (0.0116)

0.3545 (0.0215)
0.4745 (0.2342)
0.4902 (0.0938)
0.4920 (0.0462)
0.5522 (0.5632)
0.5209 (0.9472)
0.5826 (0.0025)

Table 1: Pearson and Spearman correlations with human judgments on the DailyDialog++ dataset. The number
figures in parentheses are p-values.

Standard Set Adversarial Set

Metrics Pearson’s p Spearman’s T Pearson’s p Spearman’s T

BLEU-1 0.2063 (0.9228)  0.2152 (0.6538) | 0.1764 (0.2243)  0.1663 (0.0335)
BLEU-2 0.1951 (0.7401)  0.1823 (0.1361) | 0.1405 (0.3621)  0.1619 (0.1422)
BLEU-3 0.1680 (0.3465)  0.1941 (0.8264) | 0.1375(0.2103) 0.1676 (0.3456)
BLEU-4 0.2002 (0.2836)  0.1930 (0.1712) | 0.1253 (0.0924)  0.1543 (0.8927)
ROUGE-1 0.2130 (0.4942)  0.2159 (0.3892) | 0.2075 (0.5918) 0.2198 (0.1984)
ROUGE-2 0.2016 (0.0183)  0.2023 (0.9172) | 0.1832(0.1830)  0.2073 (0.1983)
ROUGE-L 0.2103 (0.9028)  0.2034 (0.9283) | 0.2027 (0.9278)  0.2236 (0.9183)
METEOR 0.1997 (0.0183)  0.1768 (0.0918) | 0.1439 (0.9214)  0.1705 (0.4028)
BERTScore 0.2865 (0.2357)  0.2721 (0.2568) | 0.2254 (0.5914)  0.2643 (0.6019)
DEB 0.3653 (0.0241)  0.3434 (0.8346) | 0.3512(0.0301)  0.3706 (0.8398)
USR 0.3466 (0.0392)  0.3456 (0.1343) | 0.3681 (0.0462)  0.3859 (0.1846)
MDD-Eval 0.3481 (0.0619)  0.3410 (0.1802) | 0.3735(0.1503)  0.3601 (0.9348)

Mask-and-fill

0.3093 (0.1812)

0.3105 (0.8013)

0.3764 (0.3153)

0.3613 (0.2203)

G-Eval (GPT-3.5)
G-Eval (GPT-4)
LLM-Eval (GPT-3.5)

0.4891 (0.0923)
0.5241 (0.0131)
0.4648 (0.1821)

0.4874 (0.0122)
0.5313 (0.0424)
0.4573 (0.9181)

0.4551 (0.0410)
0.5123 (0.0112)
0.4450 (0.7163)

0.4610 (0.0512)
0.5513 (0.0253)
0.4614 (0.7817)

LLM-Eval (GPT-4) 0.5321 (0.8127)  0.5392 (0.7161) | 0.5269 (0.9221)  0.5258 (0.9271)
Ours(w/o LLM) 0.3668 (0.0044)  0.3784 (0.0037) | 0.3954 (0.0060) 0.3911 (0.0055)
Ours (GPT-3.5 w/o AMR)  0.5007 (0.0032)  0.4998 (0.0008) | 0.5011 (0.0237)  0.5105 (0.0047)
Ours (GPT-3.5 w/o SLM)  0.5118 (0.0024)  0.5068 (0.0038) | 0.5199 (0.0007) 0.5187 (0.0005)
Ours(GPT-3.5) 0.5517 (0.0044)  0.5209 (0.0002) | 0.5204 (0.0053)  0.5225 (0.0057)
Ours (GPT-4 w/o AMR)  0.6199 (0.0001)  0.6127 (0.0004) | 0.6178 (0.0017)  0.6004 (0.0028)
Ours (GPT-4 w/o SLM)  0.6267 (0.0021)  0.6299 (0.0003) | 0.6245 (0.0047)  0.6309 (0.0145)
Ours (GPT-4) 0.6598 (0.0021)  0.6604 (0.0023) | 0.6526 (0.0013)  0.6612 (0.0046)

Table 2: Pearson and Spearman correlations with human judgments on the PersonaChat dataset.



Standard Set

Adversarial Set

Metrics Pearson’s p Spearman’s 7 Pearson’s p Spearman’s 7

BLEU-1 0.2102 (0.2993)  0.1982 (0.8628) | 0.1444 (0.0203) 0.1553 (0.0032)
BLEU-2 0.1721 (0.7761)  0.1772 (0.3132) | 0.1295 (0.4321)  0.1439 (0.5402)
BLEU-3 0.1577(0.1357)  0.1642 (0.1854) | 0.1225(0.0203) 0.1328 (0.0341)
BLEU-4 0.1482 (0.2901)  0.1503(0.1709) | 0.1323 (0.0203)  0.1228 (0.3265)
ROUGE-1 0.2050 (0.4808)  0.2144 (0.0371) | 0.1752(0.2839) 0.1788 (0.6052)
ROUGE-2 0.2005 (0.0956)  0.2027 (0.1231) | 0.1835(0.4462) 0.2028 (0.2302)
ROUGE-L 0.2197 (0.4980)  0.2011 (0.3924) | 0.1908 (0.2993)  0.2335 (0.7158)
METEOR 0.1857 (0.1314)  0.1576 (0.4371) | 0.1518 (0.8903)  0.1685 (0.4094)
BERTScore 0.2555 (0.6227)  0.2542 (0.9268) | 0.2194 (0.1936)  0.2558 (0.2032)
DEB 0.3255 (0.0152)  0.3306 (0.0470) | 0.3419 (0.0158) 0.3668 (0.0812)
USR 0.3466 (0.0045)  0.3428 (0.1257) | 0.3338 (0.0478)  0.1706 (0.0462)
MDD-Eval 0.3277 (0.0245)  0.3398 (0.2784) | 0.3869 (0.3478)  0.3557 (0.0254)
Mask-and-fill 0.2998 (0.0458)  0.3052 (0.0025) | 0.3668 (0.1069)  0.3627 (0.0044)
G-Eval (GPT-3.5) 0.4995 (0.0025)  0.4754 (0.0011) | 0.4774 (0.0069)  0.4688 (0.0098)
G-Eval (GPT-4) 0.5314 (0.0028)  0.5055 (0.0015) | 0.4995 (0.0057)  0.5022 (0.0064)
LLM-Eval (GPT-3.5) 0.4837 (0.0001)  0.4798 (0.0004) | 0.4512 (0.0007)  0.4799 (0.0004)
LLM-Eval (GPT-4) 0.5008 (0.0022)  0.5096 (0.0036) | 0.5178 (0.0019)  0.5257 (0.0007)
Ours(w/o LLM) 0.3602 (0.0011)  0.3599 (0.0004) | 0.3611 (0.0017)  0.3587 (0.0023)
Ours (GPT-3.5 w/o AMR)  0.5022 (0.0001)  0.5120 (0.0009) | 0.5118 (0.0025) 0.5099 (0.0002)
Ours (GPT-3.5 w/o0 SLM)  0.5172 (0.0025) 0.5099 (0.0065) | 0.5112 (0.0004) 0.5101 (0.0051)
Ours(GPT-3.5) 0.5200 (0.0051)  0.5115 (0.0007) | 0.5127 (0.0057) 0.5110 (0.0001)
Ours (GPT-4 w/0 AMR) 0.6274 (0.0001)  0.6266 (0.0019) | 0.6198 (0.1237)  0.5207 (0.0272)
Ours (GPT-4 w/o0 SLM) 0.6470 (0.0021)  0.6482 (0.0031) | 0.6398 (0.0004)  0.6402 (0.0054)
Ours (GPT-4) 0.6641 (0.0002)  0.6603 (0.0002) | 0.6598 (0.0007) 0.6674 (0.0003)

Table 3: Pearson and Spearman correlations with human judgments on the TopicalChat dataset.

bustness of our human evaluation framework.

5 Results

5.1 Evaluation Performance on Standard Set

We evaluate our model against the baselines by
analysing the correlation between automated eval-
uation scores and human judgements across three
datasets. The results presented in Table 1 to Table 3
reveal that n-gram and embedding-based baselines,
which compute word overlap or semantic similarity
between gold references and responses, demon-
strate weak positive correlations with human anno-
tations across two datasets. Amongst the n-gram
baselines, ROUGE-L exhibits the strongest correla-
tion. The embedding-based approach, BERTScore,
whilst outperforming the n-gram baselines, still
achieves suboptimal performance when compared
with more sophisticated metrics. Learning-based
metrics, which consider the contextual relation-
ship between dialogue pairs, demonstrate supe-
rior overall performance. Specifically, Mask-and-
fill and USR achieve better correlations than n-
gram baselines, whilst DEB and MDD-Eval secure
higher correlations among these approaches. Re-
garding LLM-based methods, G-Eval and LLM-
Eval demonstrate the strongest performance across
all three datasets, establishing themselves as the

leading baselines.

Our method in its basic configuration (Ours w/o
LLM) achieves moderately positive correlations
across the three datasets (less than 0.4). How-
ever, when integrating SLM with LLM, our ap-
proach achieves the highest overall performance
on both Pearson and Spearman correlations across
all datasets. Notably, our GPT-4 variant exhibits
superior performance compared to all baselines.
Through ablation studies examining the effective-
ness of SLM and AMR graphs, we observe that
Ours (w/o SLM) outperforms Ours (w/o AMR),
which combines only LLM and SLM components,
thereby validating the effectiveness of incorporat-
ing AMR graphs in open-domain dialogue evalua-
tion.

5.2 Evaluation Performance on Adversarial
Set

To evaluate our method’s capability in evaluating
adversarial negative examples, we conduct compar-
ative analyses against baseline approaches on the
adversarial set. Tables 1 to 3 present the correla-
tion results between automated metrics and human
judgements.

The n-gram and embedding-based metrics ex-
hibit weakly positive correlations with human



judgements, primarily due to their inherent lim-
itation of solely comparing gold references with
response candidates, without considering the con-
textual relationships that characterise adversarial
examples. Regarding learning-based approaches,
USR demonstrates limited robustness against adver-
sarial negative examples, showing only weak posi-
tive correlations with human judgements. In con-
trast, MDD-Eval, Mask-and-fill, and DEB achieve
notably stronger performance across both Pearson
and Spearman correlations. LLM-based methods
establish themselves as the strongest baseline ap-
proaches, demonstrating superior performance in
handling adversarial examples.

Our proposed metric consistently surpasses all
baseline approaches across both correlation metrics.
Specifically, Ours(GPT-4) achieves strong correla-
tions on the adversarial set, significantly outper-
forming the strongest baseline G-Eval. Similar im-
provements are observed in Spearman correlations
across the three datasets. The ablation analysis
further substantiates the benefits of our integrated
approach: Ours(w/o AMR) shows notably lower
correlations, demonstrating that the incorporation
of AMR graph information significantly enhances
the model’s ability to evaluate adversarial exam-
ples. These results comprehensively validate the
effectiveness of integrating AMR graph-enhanced
SLM with LLMs for robust open-domain dialogue
evaluation.

Hi kevin, how was your year at college?
It was great! How was your year? It
was good. Do you have a girlfriend at
school?

Are you still in touch with any of your
old school friends?

Would you recommend some places for
sightseeing? How about great canyon?
Is it worth seeing?

Singapore is reportedly a very exciting
place to live.

I need change for the machines? You
need to put 50 cents into the washer ma-
chine and a dollar into the dryer. So
what do I need to do?

In our factory, there are 50 electrical ma-
chines.

Context:

Response:

Context:

Response:

Context:

Response:

Table 4: Samples of context-response pairs. The bold
words represent the overlapping words.

5.3 Case Study

To demonstrate the effectiveness of AMR graphs
in identifying adversarial negative responses, we
present several illustrative examples in Table 4.

Model Accuracy
BERT Regressor 75.92
RUBER 76.50
DEB 82.04
Mask-and-fill 85.27
Ours (SLM) 86.81
Ours (- w/o GM) 86.22
Ours (- w/o CL) 86.46
Ours (- w/o GM, CL) 85.64
Graph Transformer 84.73
Sentence Transformer 83.81

Table 5: Ablation study on Dailydialog++ dataset.

These cases highlight instances where responses
were incorrectly classified as “positive” without
AMR graph information, but were accurately iden-
tified as “negative” when incorporating semantic
structural knowledge from AMR graphs. This anal-
ysis underscores the crucial role of AMR-derived
semantic information in enhancing the model’s dis-
criminative capability for challenging adversarial
examples. We also analyse the attention heatmap
of Graph Transformer and Sentence Transformer
in Appendix A.1

5.4 Ablation Study

We evaluate our SLM’s classification performance
on the DailyDialog++ testset. As shown in Table 5,
our SLM surpasses all baselines and demonstrat-
ing the effectiveness of incorporating AMR graph
information. Ablation studies reveal that removing
either the Graph Transformer or Sentence Trans-
former components of SLM leads to decreased per-
formance, with the Graph Transformer alone per-
forming marginally better than the Sentence Trans-
former. While removing the contrastive learning
(CL) or gating mechanism (GM) shows minimal
impact, the removal of AMR information results in
the most significant performance drop, highlighting
its crucial role in dialogue evaluation.

6 Conclusion

In this paper, we presents a novel evaluation frame-
work for open-domain dialogue systems that in-
tegrates AMR graph-enhanced SLMs with LLMs.
Comprehensive experimental results across multi-
ple datasets demonstrate that our method consis-
tently outperforms existing approaches, including
state-of-the-art LLM-based methods, in the chal-
lenging task of open-domain dialogue evaluation.



Ethics Statement

Our proposed evaluation metric enhances the as-
sessment of open-domain dialogue systems through
AMR integration and contrastive learning. While
the framework effectively addresses the one-to-
many nature of dialogue evaluation, it may oc-
casionally assign high scores to inappropriate re-
sponses. We recommend careful screening of train-
ing data and implementation of content filters be-
fore deployment.

Limitations

Despite demonstrating robust performance, our
method primarily focuses on semantic dependen-
cies between context and response. Following
Howecroft et al. (2020), we acknowledge that hu-
man evaluation encompasses multiple attributes
beyond semantic relationships. Future work should
explore disentangling these various attributes to
enhance model interpretability and evaluation com-
prehensiveness.
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A More Experimental Results and
Analysis

A.1 Attention Visualisation Analysis

We analyse the attention patterns of both Sentence
and Graph Transformers of the SLM through visu-
alisation of their attention heatmaps for the context-
response pair shown in Figure 3.

The Sentence Transformer exhibits strong atten-
tion weights between overlapping tokens in con-
text and response. As illustrated in Figure 3 (top),
tokens such as “school” and “friend” in the re-
sponse show high attention scores with their coun-
terparts “school” and “girlfriend” in the context.
In contrast, the Graph Transformer, which incor-
porates entity relationships through AMR struc-
tures, demonstrates different attention patterns. Fig-
ure 3 (bottom) shows that these lexically similar
tokens receive lower attention weights, indicating
the model’s ability to capture semantic differences
beyond surface-level similarities.

B Prompt Templates

B.1 Prompt for Engagingness evaluation

Rate the dialogue response.

Use the prediction probability from the
SLMs and AMR graphs of the conversation
pair to aid your judgment.

Note: Please take the time to fully read
and understand the dialogue response.
How dull/interest 1is the text of the
dialogue response? (on a scale of 1-5,
with 1 being the lowest)

Input:

Conversation Context:

Response:

AMR Graph:

SLM score:

Evaluation Form (Score ONLY):
Engagingness:

B.2 Prompt for Naturalness evaluation

Rate the dialogue response.

Use the prediction probability from the
SLMs and AMR graphs of the conversation
pair to aid your judgment.

Note: Please take the time to fully read
and understand the dialogue response.

To what extent the response is naturally
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written (on a scale of 1-5, with 1 being
the lowest)

Input:

Conversation Context:

Response:

AMR Graph:

SLM score:

Evaluation Form (Score ONLY):
Naturalness:

B.3 Prompt for Coherence evaluation

Rate the dialogue response.

Use the prediction probability from the
SLMs and AMR graphs of the conversation
pair to aid your judgment.

Note: Please take the time to fully read
and understand the dialogue response.

To what extent the response is
well-structured, logical, and meaningful
(on a scale of 1-5, with 1 being the
lowest)

Input:

Conversation Context:

Response:

AMR Graph:

SLM score:

Evaluation Form (Score ONLY):
Coherence:

B.4 Prompt for Groundedness evaluation

Rate the dialogue response.

Use the prediction probability from the
SLMs and AMR graphs of the conversation
pair to aid your judgment.

Note: Please take the time to fully read
and understand the dialogue response.

To what extent the response is grounded
in facts present in the context (on a
scale of 1-5, with 1 being the lowest)
Input:

Conversation Context:

Response:

AMR Graph:

SLM score:

Evaluation Form (Score ONLY):
Groundedness:
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Figure 3: Attention pattern visualisation for context-response analysis. Top: Graph Transformer attention heatmap
showing semantic-aware attention distribution. Bottom: Sentence Transformer attention heatmap highlighting
lexical-level attention patterns. Overlapping tokens between context and response (friends and school) demonstrate
distinct attention behaviours in the two encoders.
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