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ABSTRACT

In this study, we examine the representation learning abilities of Denoising Dif-
fusion Models (DDM) that were originally purposed for image generation. Our
philosophy is to deconstruct a DDM, gradually transforming it into a classical
Denoising Autoencoder (DAE). This deconstructive process allows us to explore
how various components of modern DDMs influence self-supervised representation
learning. We observe that only a very few modern components are critical for
learning good representations, while many others are nonessential. Our study
ultimately arrives at an approach that is highly simplified and to a large extent
resembles a classical DAE. We hope our study will rekindle interest in a family of
classical methods within the realm of modern self-supervised learning.

1 INTRODUCTION

Denoising is at the core in the current trend of generative models in computer vision and other areas.
Popularly known as Denoising Diffusion Models (DDM) today, these methods (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal
& Nichol, 2021) learn a Denoising Autoencoder (DAE) (Vincent et al., 2008) that removes noise of
multiple levels driven by a diffusion process. These methods achieve impressive image generation
quality, especially for high-resolution, photo-realistic images (Rombach et al., 2022; Peebles & Xie,
2023)—in fact, these generation models are so good that they appear to have strong recognition
power for understanding the visual content.

While DAE is a powerhouse of today’s generative models, it was originally proposed for learning
representations (Vincent et al., 2008) from data in a self-supervised manner. In today’s community
of representation learning, the arguably most successful variants of DAEs are based on “masking
noise” (Vincent et al., 2008), such as predicting missing text in languages (e.g., BERT (Devlin et al.,
2019)) or missing patches in images (e.g., Masked Autoencoder, MAE (He et al., 2022)). However,
in concept, these masking-based variants remain significantly different from removing additive
(e.g., Gaussian) noise: while the masked tokens explicitly specify unknown vs. known content, no
clean signal is available in the task of separating additive noise. Nevertheless, today’s DDMs for
generation are dominantly based on additive noise, implying that they may learn representations
without explicitly marking unknown/known content.

Most recently, there has been an increasing interest (Xiang et al., 2023; Mukhopadhyay et al., 2023)
in inspecting the representation learning ability of DDMs. In particular, these studies directly take
off-the-shelf pre-trained DDMs (Ho et al., 2020; Peebles & Xie, 2023; Dhariwal & Nichol, 2021),
which are originally purposed for generation, and evaluate their representation quality for recognition.
They report encouraging results using these generation-oriented models. However, these pioneering
studies obviously leave open questions: these off-the-shelf models were designed for generation,
not recognition; it remains largely unclear whether the representation capability is gained by a
denoising-driven process, or a diffusion-driven process.

In this work, we take a much deeper dive into the direction initialized by these recent explorations
(Xiang et al., 2023; Mukhopadhyay et al., 2023). Instead of using an off-the-shelf DDM that is
generation-oriented, we train models that are recognition-oriented. At the core of our philosophy is
to deconstruct a DDM, changing it step-by-step into a classical DAE. Through this deconstructive
process, we examine every single aspect (that we can think of) of a modern DDM, with the goal of
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(a) latent Denoising Autoencoder (l-DAE) (b) clean, noised and denoised image

Figure 1: (a) The l-DAE we have ultimately reached, after a thorough exploration of deconstructing
Denoising Diffusion Models (DDM) (Ho et al., 2020), to approach classical Denoising Autoencoders
(DAE) (Vincent et al., 2008). Crucial to its self-supervised representations, l-DAE adds noise in the
latent space. (b) A clean image (left) is projected onto the latent space with PCA, in which noise
is added. It is then mapped back to pixels via inverse PCA (middle). An autoencoder is learned to
predict a denoised image (right).

learning representations. This research process gains us new understandings on what are the critical
components for a DAE to learn good representations.

Surprisingly, we discover that the main critical component is a tokenizer (Rombach et al., 2022) that
creates a low-dimensional latent space. Interestingly, this observation is largely independent of the
specifics of the tokenizer—we explore a standard VAE (Kingma & Welling, 2013), a patch-wise VAE,
a patch-wise AE, and a patch-wise PCA encoder. We discover that it is the low-dimensional latent
space, rather than the tokenizer specifics, that enables a DAE to achieve good representations.

Thanks to the effectiveness of PCA, our deconstructive trajectory ultimately reaches a simple ar-
chitecture that is highly similar to the classical DAE (Fig. 1). We project the image onto a latent
space using patch-wise PCA, add noise, and then project it back by inverse PCA. Then we train an
autoencoder to predict a denoised image. We call this “latent Denoising Autoencoder” (l-DAE).

Our deconstructive trajectory also reveals many other intriguing properties that lie between DDM
and classical DAE. For one example, we discover that even using a single noise level (i.e., not using
the noise scheduling of DDM) can achieve a decent result with our l-DAE. The role of using multiple
levels of noise is analogous to a form of data augmentation, which can be beneficial, but not an
enabling factor. With this and other observations, we argue that the representation capability of DDM
is mainly gained by the denoising-driven process, not a diffusion-driven process.

Finally, we compare with previous baselines. To make the comparisons fair and signals clean, we
adopted minimal enhancements to l-DAE—only ones related to data and model size scaling. On one
hand, our results are substantially better than the off-the-shelf counterparts (following the spirit of
Xiang et al. (2023); Mukhopadhyay et al. (2023)): this is as expected, because these are our starting
point of deconstruction. On the other hand, while l-DAE falls short in certain aspects, e.g. linear
probing against baseline contrastive learning methods (Chen et al., 2021), or model size scaling
against masking-based methods (He et al., 2022), but outshines in others (e.g., fine-tuned transfer
with ViT-B). These suggest opportunities and potential for further research along this direction.

2 RELATED WORK

In the history of machine learning and computer vision, the generation of images (or other content)
has been closely intertwined with the development of unsupervised or self-supervised learning.
Approaches in generation are conceptually forms of un-/self-supervised learning, where models were
trained without labeled data, learning to capture the underlying distributions of the input data.

There has been a prevailing belief that the ability of a model to generate high-fidelity data is indicative
of its potential for learning good representations. Generative Adversarial Networks (GAN) (Good-
fellow et al., 2014), for example, have ignited broad interest in adversarial representation learning
(Donahue et al., 2017; Donahue & Simonyan, 2019). Variational Autoencoders (VAE) (Kingma &
Welling, 2013), originally conceptualized as generative models for approximating data distributions,
have evolved to become a standard in learning localized representations (“tokens”), e.g., VQVAE
(Oord et al., 2017; Esser et al., 2021). Image inpainting (Bertalmio et al., 2000), essentially a form
of conditional image generation, has led to a family of modern representation learning methods,
including Context Encoder (Pathak et al., 2016) and MAE (He et al., 2022).
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(a) a classical Denoising Autoencoder (DAE)
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(b) a modern Denoising Diffusion Model (DDM)

Figure 2: A classical DAE and a modern DDM. (a) A classical DAE that adds and predicts noise
on the image space. (b) State-of-the-art DDMs (e.g., LDM (Rombach et al., 2022), DIT (Peebles &
Xie, 2023)) that operate on a latent space, where the noise is added and predicted.

Analogously, the outstanding generative performance of DDMs (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Song et al., 2020; Ho et al., 2020; Dhariwal & Nichol, 2021) has drawn attention for
their potential in representation learning. Pioneering studies (Xiang et al., 2023; Mukhopadhyay et al.,
2023) have begun to investigate this direction by evaluating existing pre-trained DDMs. However, we
note that while a model’s generation capability suggests a certain level of understanding, it does not
necessarily translate to representations useful for downstream tasks. Our study delves deeper into
these issues, with a deconstructive trajectory different from Hudson et al. (2024).

On the other hand, although classical DAEs (Vincent et al., 2008) have laid the groundwork for
autoencoding-based representation learning, their success has been mainly confined to scenarios
involving masking-based corruptions (e.g., He et al. (2022); Xie et al. (2022); Fang et al. (2022); Chen
et al. (2023)). To the best of our knowledge, little research dives into classical DAE variants with
additive Gaussian noise alone (e.g., not with masking (Wei et al., 2023)). We believe the underlying
reason is that a simple DAE baseline (Fig. 2(a)) performs poorly (e.g., ∼20% in Fig. 4).

3 BACKGROUND: DENOISING DIFFUSION MODELS

Our deconstructive research starts with a Denoising Diffusion Model (DDM) (Ho et al., 2020;
Dhariwal & Nichol, 2021). We briefly describe the DDM we use, following Dhariwal & Nichol
(2021); Peebles & Xie (2023).

A diffusion process starts from a clean data point (z0) and sequentially adds noise to it. At a specified
time step t, the noised data zt is given by:

zt = γtz0 + σtϵ, (1)

where ϵ∼N (0, I) is a noise map sampled from a Gaussian distribution, and γt and σt define the
scaling factors of the signal and of the noise, respectively. By default, it is set γ2

t + σ2
t = 1 (Nichol &

Dhariwal, 2021; Dhariwal & Nichol, 2021).

A DDM is learned to remove the noise, conditioned on the time step t. Unlike the original DAE
(Vincent et al., 2008) that predicts a clean input, modern DDMs (Ho et al., 2020; Nichol & Dhariwal,
2021) often predict the noise ϵ, minimizing:

∥ϵ− net(zt)∥2, (2)

where net(zt) is the network output. The model is trained for multiple noise levels given a noise
schedule conditioned on t. For generation, a trained model is iteratively applied until it reaches z0.

DDMs can operate on two types of input spaces. One is the image space (Dhariwal & Nichol, 2021),
where the raw image x0 is directly used as z0. The other option is to build DDMs on a latent space
produced by a tokenizer, following Rombach et al. (2022). See Fig. 2(b). In this case, a pre-trained
tokenizer f (which is often another autoencoder, e.g., VQVAE (Oord et al., 2017)) is used to map the
image x0 into its latent z0=f(x0).

Diffusion Transformer (DiT). Our study begins with the Diffusion Transformer (DiT) (Peebles &
Xie, 2023). We choose this for several reasons: (i) Unlike other UNet-based DDMs (Dhariwal &
Nichol, 2021; Rombach et al., 2022), Transformer-based architectures can provide fairer comparisons
to other self-supervised learning baselines driven by Transformers (e.g., Chen et al. (2021); He et al.
(2022)); (ii) DiT has a clearer distinction between the encoder and the decoder, while a UNet’s
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acc. (↑) FID (↓)
DiT baseline (DDAE Xiang et al. (2023)) 57.5 11.6
+ remove class-conditioning 62.5 30.9

+ remove VQGAN perceptual loss 58.4 54.3
+ remove VQGAN adversarial loss 59.0 75.6

+ replace noise schedule 63.4 93.2

Table 1: Reorienting DDM for self-supervised learning. We begin with the DiT (Peebles & Xie,
2023) baseline and evaluate its linear probe accuracy (acc.) on ImageNet. This conceptually follows
recent studies (Xiang et al., 2023; Mukhopadhyay et al., 2023) (more specifically, DDAE (Xiang
et al., 2023)), which evaluate off-the-shelf DDMs with the same protocol. Each line is based on a
modification of the immediately preceding line. The entries in gray, in which class labels are used,
are not legitimate results for self-supervised learning. See Sec. 4.1 for descriptions.

encoder and decoder are connected by skip connections and may require extra efforts on network
surgery when evaluating the encoder; (iii) DiT also trains much faster than other UNet-based DDMs
(see Peebles & Xie (2023)) while achieving better generation quality.

Specifically, we use DiT-Large (DiT-L) (Peebles & Xie, 2023). In DiT-L, the encoder and decoder
together have the size of ViT-L (Dosovitskiy et al., 2021) (24 blocks). We evaluate the representation
quality of the encoder, which has 12 blocks, referred to as “ 1

2L” (half large).

Tokenizer. DiT instantiated in Peebles & Xie (2023) is a form of Latent Diffusion Models
(LDM) (Rombach et al., 2022), which uses a VQGAN tokenizer (Esser et al., 2021). Specifi-
cally, this VQGAN tokenizer transforms the 256×256×3 input image (height×width×channels) into
a 32×32×4 latent map, with a stride of 8.

Starting baseline. We train DiT-L for 400 epochs on ImageNet (Deng et al., 2009). The baseline
results are reported in Tab. 1 (line 1). With DiT-L, we report a linear probe accuracy of 57.5% using
its 1

2L encoder. The generation quality (Fréchet Inception Distance (Heusel et al., 2017), FID-50K)
of this DiT-L model is 11.6. This is the starting point of our destructive trajectory.

Despite differences in implementation details (see Appendix A), our starting point largely follows
recent studies (Xiang et al., 2023; Mukhopadhyay et al., 2023), which evaluate DDMs off-the-shelf
with linear probing.

4 DECONSTRUCTING DENOISING DIFFUSION MODELS

Our deconstruction trajectory is divided into three stages. We first adapt the generation-focused
settings in DiT to be more oriented toward self-supervised learning (Sec. 4.1). Next, we deconstruct
and simplify the tokenizer step by step (Sec. 4.2). Finally, we attempt to reverse as many DDM-
motivated designs as possible, pushing the models towards a classical DAE (Vincent et al., 2008)
(Sec. 4.3).

4.1 REORIENTING DDM FOR SELF-SUPERVISED LEARNING

While a DDM is conceptually a form of DAE, it was originally developed for image generation.
Many designs in a DDM are oriented toward the generation task. Some designs are not legitimate for
self-supervised learning (e.g., involving class labels); some others are not necessary if visual quality
is not concerned. We thus first reorient our baseline for self-supervised learning (Tab. 1).

Remove class-conditioning. A high-quality DDM is often trained with conditioning on class labels,
which can largely improve the generation quality. But the usage of class labels is simply not legitimate
in self-supervised learning. As the first step, we remove class-conditioning in our baseline.

Surprisingly, this change substantially improves the linear probe accuracy from 57.5% to 62.1%
(Tab. 1), even though generation is greatly hurt as expected (FID from 11.6 to 34.2). We hypothesize
that directly conditioning the model on class labels may reduce the model’s demands on encoding the
label-related information. Removing this conditioning can force the model to learn more semantics.
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Figure 3: Noise schedule comparisons. The
original schedule (Ho et al., 2020; Peebles
& Xie, 2023), which sets γ2

t=Πt
s=1(1− βs)

with a linear schedule of β, spends many time
steps on very noisy images (small γ). Instead,
we use a simple schedule that is linear on γ2,
which provides less noisy images.

Deconstruct VQGAN. The VQGAN tokenizer inherited from LDM (Rombach et al., 2022) is trained
with multiple loss terms: (i) AE reconstruction loss; (ii) KL-divergence regularization loss (Rombach
et al., 2022);1 (iii) perceptual loss (Zhang et al., 2018b); and (iv) adversarial loss (Goodfellow et al.,
2014; Esser et al., 2021) with a discriminator. We ablate the latter two terms next.

The perceptual loss (Zhang et al., 2018b) is based on a supervised VGG net (Simonyan & Zisserman,
2015) trained for ImageNet classification. Therefore, using the VQGAN trained with this loss is again
not legitimate. Instead, we train another VQGAN (Rombach et al., 2022) where this loss is removed.
Using this tokenizer reduces the linear probe accuracy significantly from 62.5% to 58.4% (Tab. 1),
which, however, provides the first legitimate entry thus far. This comparison reveals that a tokenizer
trained with the perceptual loss (with class labels) in itself provides semantic representations. From
now on, we will no longer use perceptual loss.

We train the next VQGAN tokenizer that further removes the adversarial loss. It slightly increases
the accuracy from 58.4% to 59.0% (Tab. 1). At this point, our tokenizer is essentially a VAE, which
we move on to deconstruct next. We also note that removing either loss harms generation quality.

Replace noise schedule. In the task of generation, the goal is to progressively turn a noise map into
an image. As a result, the original noise schedule allocates many time steps on very noisy images
(Fig. 3). This is not necessary if our model is not generation-oriented.

We study a simpler noise schedule for the purpose of self-supervised learning. Specifically, we let
γ2
t linearly decay in the range of 1>γ2

t≥0 (Fig. 3). This allows the model to spend more capacity
on cleaner images. This change greatly improves the linear probe accuracy from 59.0% to 63.4%
(Tab. 1), suggesting that the original schedule is too focused on noisier regimes. On the other hand,
as expected, it further hurts generation, leading to a FID of 93.2.

Summary. Overall, the results in Tab. 1 reveal that self-supervised learning performance is not
correlated to generation quality. The representation capability of a DDM is not necessarily the
outcome of its generation capability.

4.2 DECONSTRUCTING THE TOKENIZER

Next, we further deconstruct the VAE tokenizer by making substantial simplifications. We compare
the following four variants as tokenizers, each of which is a simplified version of the preceding one:

• Convolutional VAE. Our deconstruction thus far leads us to a VAE tokenizer. As common practice
(Kingma & Welling, 2013; Rombach et al., 2022), the encoder f(·) and decoder g(·) of this VAE
are deep convolutional (conv) neural networks (LeCun et al., 1989). This convolutional VAE
minimizes the following loss function:

∥x− g(f(x))∥2 +KL [f(x)|N ] .

Here, x is the full input image. The first term is the reconstruction loss, and the second term is the
K-L divergence (Bishop & Nasrabadi, 2006; Esser et al., 2021) between the latent distribution of
f(x) and a unit Gaussian distribution.

• Patch-wise VAE. Next we simplify so that the VAE encoder and decoder are both linear projections,
and the VAE input x is a patch. The training process of this patch-wise VAE minimizes this loss:

∥x− UTV x∥2 +KL [V x|N ] .

1The KL form in Rombach et al. (2022) does not perform explicit vector quantization (VQ).
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latent dim per token (log-scale)

45
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65

conv. VAE
patch-wise VAE
patch-wise AE
patch-wise PCA

latent dim. d 8 16 32 64 128
conv. VAE (baseline) 54.5 63.4 62.8 57.0 48.1
patch-wise VAE 58.3 64.9 64.8 56.8 -
patch-wise AE 59.9 64.7 64.6 59.9 -
patch-wise PCA 56.0 63.4 65.1 60.0 53.9

Table 2: Linear probe accuracy
vs. latent dimension. With a DiT
model, we study four variants of to-
kenizers for computing the latent
space. We vary the dimensional-
ity d (per token) of the latent space.
The table is visualized by the plot
above. All four variants of the
tokenizers exhibit similar trends,
despite their differences in architec-
tures and loss functions. The 63.4%
entry of “conv. VAE” is the same
entry as the last line in Tab. 1.

Here x denotes a patch flattened into a D-dimensional vector. Both U and V are d×D matrices,
where d is the latent space dimension. Patch size is 16×16, following Dosovitskiy et al. (2021).

• Patch-wise AE. We further simplify VAE by dropping regularization:

∥x− UTV x∥2.
As such, this tokenizer is essentially an AE on patches, with a linear encoder and decoder.

• Patch-wise PCA. Finally, we consider a simpler variant which performs PCA on the patch space.
It is easy to show that PCA is equivalent to a special case of AE:

∥x− V TV x∥2.
Here V satisfies V V T=I (d×d identity matrix). The PCA bases can be simply computed by
eigen-decomposition on a large set of randomly sampled patches without gradient-based training.

Tab. 2 summarizes the linear probe accuracy of DiT using these four variants of tokenizers. We show
the results w.r.t. the latent dimension “per token”.2 We draw the following observations.

Latent dimension of the tokenizer is crucial for DDM to work well in self-supervised learning.

As shown in Tab. 2, all four variants of tokenizers exhibit similar trends, despite their differences in
architectures and loss functions.3 Interestingly, the optimal dimension is relatively low (d is 16 or
32), even though the full dimension per patch is much higher (16×16×3=768).

Surprisingly, the convolutional VAE tokenizer is neither necessary nor favorable; instead, all patch-
based tokenizers, in which each patch is encoded independently, perform similarly with each other
and consistently outperform conv. VAE. In addition, the KL regularization term is unnecessary, as
both the AE and PCA variants work well.

To our further surprise, even the PCA tokenizer works well. Unlike the VAE or AE counterparts,
PCA does not require gradient-based training. With pre-computed PCA bases, the application of the
PCA tokenizer is close to a “image pre-processing” step, rather than a “network architecture”. Its
effectiveness largely helps us push the modern DDM towards a classical DAE, as we will show next.

High-resolution, pixel-based DDMs are inferior for self-supervised learning.

Before we move on, we report an extra ablation that is consistent with the aforementioned observation.
Specifically, we consider a “naı̈ve tokenizer” that performs identity mapping on patches extracted
from resized images. In this case, a “token” is the flatten vector consisting all pixels of a patch.

In Fig. 4, we show the results of this “pixel-based” tokenizer, operated on an image size of 256, 128,
64, and 32, respectively with a patch size of 16, 8, 4, 2. The “latent” dimensions of these tokenized
spaces are 768, 192, 48, and 12 per token. In all case, the sequence length of the Transformer is kept
unchanged (256).

2For patch-wise VAE/AE/PCA (patch stride is 16), we treat each patch as a token, so the latent dimension is
simply d for each patch. For the convolutional VAE that has a stride of 8, DiT (Peebles & Xie, 2023) treats each
2×2 patch on the latent space as a “token”; as a result, its latent dimension “per token” should be multiplied by
4 for calibration.

3For the patch-wise tokenizers, we find they also learn different filters. See Appendix B for visualizations.
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Figure 4: Linear probe accuracies on pixel-
based tokenizer, operated on an image size of
256, 128, 64, and 32, respectively with a patch
size of 16, 8, 4, 2. The “latent” dimensions of
these tokenized spaces are 768, 192, 48, and 12
per token. Similar to others, this pixel-based
tokenizer exhibits a similar trend: a relatively
small dimension of the latent space is optimal.

Interestingly, this pixel-based tokenizer exhibits a similar trend with previous tokenizers, although
the optimal dimension is shifted. In particular, the best dimension is d=48, which corresponds to an
image size of 64 with a patch size of 4. With image size 256 and patch size 16 (d=768), the accuracy
drops dramatically to 23.6%.

These comparisons show that the tokenizer and the resulting latent space are crucial for DDM/DAE
to work competitively in the self-supervised learning scenario. In particular, applying a classical
DAE with additive Gaussian noise on the image space leads to poor results.

4.3 TOWARD CLASSICAL DENOISING AUTOENCODERS

Next, we go on with our deconstruction trajectory and aim to get as close as possible to the classical
DAE (Vincent et al., 2008). We attempt to remove every single aspect that still remains different
between our current PCA-based DDM and the classical DAE practice. Via this deconstructive process,
we gain better understandings on how every modern design may influence the classical DAE. Tab. 3
lists the results.

Predict clean data (rather than noise). While modern DDMs commonly predict the noise ϵ (see
Eq. (2)), the classical DAE predicts the clean data instead. We examine this difference by minimizing:

λt∥z0 − net(zt)∥2. (3)

Here z0 is the clean data (in the latent space), and net(zt) is the network prediction. λt is a t-
dependent loss weight, introduced to balance the contribution of different noise levels (Salimans &
Ho, 2022). It is suggested to set λt = γ2

t /σ
2
t as per Salimans & Ho (2022). We find that setting

λt = γ2
t works better in our scenario. Intuitively, it simply puts more weight to the loss terms of the

cleaner data (larger γt).

With the change of predicting clean data, the linear probe accuracy degrades from 65.1% to 62.4%
(Tab. 3). This suggests that the choice of the prediction target influences the representation quality.

Even though we suffer from a degradation in this step, we will stick to this modification from now on,
as our goal is to get as close as possible to a classical DAE.4

Remove input scaling. In modern DDMs, the input is scaled by a factor of γt (Eq. (1)). This is not
common in a classical DAE and next we remove it, i.e., set γt ≡ 1. As γt is fixed, we need to define a
noise schedule directly on σt. We simply set as a linear schedule on σt from 0 to

√
2, and empirically

set the weight in Eq. (3) as λt = 1/(1 + σ2
t ). This again puts more emphasis on cleaner data.

After fixing γt ≡ 1, we achieve a decent accuracy of 63.6% (Tab. 3), which compares favorably with
the varying γt counterpart’s 62.4%.

Operate on the image space with inverse PCA. So far, for all entries we have explored (except
Fig. 4), the model operates on the latent space produced by a tokenizer (Fig. 2 (b)). Ideally, we hope
our DAE can work directly on the image space while still having good accuracy. With the usage of
PCA, we can achieve this goal by inverse PCA.

The idea is illustrated in Fig. 1. Specially, we project the input image into the latent space by the PCA
bases (i.e., V ), add noise in the latent space, and project the noisy latent back to the image space
by the inverse PCA bases (V T ). Fig. 1b (middle) shows an example image with noise added in the
latent space. With this noisy image as the input to the network, we can apply a standard ViT network
(Dosovitskiy et al., 2021) that directly operate on images, as if there is no tokenizer.

4We have revisited undoing this change in our final entry, in which we have not observed this degradation.
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acc.
patch-wise PCA baseline 65.1
+ predict clean data (rather than noise) 62.4

+ remove input scaling (fix γt ≡ 1) 63.6
+ operate on image input with inv. PCA 63.6

+ operate on image output with inv. PCA 63.9
+ predict original image 64.5

Table 3: Moving toward a classical DAE from our patch-wise PCA tokenizer. Each line adds a
modification to the immediately preceding line. See Sec. 4.3 for details.

Applying this modification on the input side (while still predicting the output on the latent space)
has 63.6% accuracy (Tab. 3). Further applying it to the output side (i.e., predicting the output on the
image space with inverse PCA) has 63.9% accuracy. Both results show that operating on the image
space with inverse PCA can achieve similar results as operating on the latent space.

Predict original image. While inverse PCA can produce a prediction target in the image space, this
target is not the original image. This is because PCA is a lossy encoder for any reduced dimension d.
In contrast, it is a more natural solution to predict the original image directly.

When we let the network predict the original image, the “noise” includes two parts: (i) the additive
Gaussian noise, whose intrinsic dimension is d, and (ii) the PCA reconstruction error, whose intrinsic
dimension is D − d (D is 768). We weight the loss of both parts differently.

Formally, with the clean original image x0 and network prediction net(xt), we can compute the
residue r projected onto the full PCA space: r ≜ V (x0 − net(xt)). Here V is the D-by-D matrix
representing the full PCA bases. Then we minimize λt

∑D
i=1 wir

2
i , where i denotes the i-th dimension

of the vector r. The per-dimension weight wi is 1 for i ≤ d, and 0.1 for d < i ≤ D. Intuitively, wi

down-weights the loss of the PCA reconstruction error. With this formulation, predicting the original
image achieves 64.5% linear probe accuracy (Tab. 3).

Conceptually, this variant is very simple: its input is a noisy image whose noise is added in the PCA
space, its prediction is the original clean image (Fig. 1).

56 58 60 62 64 66
linear probing accuracy

DiT baseline
remove cls-cond

remove VQGAN perc. loss
remove VQGAN adv. loss

replace noise sched.
conv. VAE to patch-wise VAE

to patch-wise AE
to patch-wise PCA
predict clean data

remove input scaling
use image input

use image output
predict original image

57.5
62.5

58.4
59.0

63.4
64.9
64.7
65.1

62.4
63.6
63.6
63.9

64.5

Figure 5: The overall deconstructive trajec-
tory from a modern DDM to l-DAE, summa-
rizing Tab. 1, Tab. 2, and Tab. 3. Each line is
based on a modification of the immediately
preceding line.

Single noise level. Lastly, out of curiosity, we further
study a variant with single-level noise. We note that
multi-level noise, given by noise scheduling, is a
property motived by the diffusion process in DDMs;
it is conceptually unnecessary in a classical DAE.

We fix the noise level σ as a constant (
√

1/3). Using
this single-level noise achieves decent accuracy of
61.5%, a 3% degradation vs. the multi-level noise
counterpart (64.5%). This mild degeneration sug-
gests multiple levels of noise is analogous to a form
of data augmentation in DAE: it is beneficial, but not
an enabling factor. This also implies that the rep-
resentation capability of DDM is mainly gained by
the denoising-driven process, not a diffusion-driven
process.

As multi-level noise is useful and conceptually sim-
ple, we keep it for our final comparisons.

4.4 SUMMARY

In sum, we have deconstructed a modern DDM and pushed it towards a classical DAE (Fig. 5). We
undo many of the modern designs and retain only two designs inherited from modern DDMs: (i) a
low-dimensional latent space in which noise is added; and (ii) multi-level noise.

We use the entry at the end of Tab. 3 as our final DAE instantiation (illustrated in Fig. 1). We refer to
this method as “latent Denoising Autoencoder”, or l-DAE.
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(a) clean (b) pixel (c) latent

Figure 6: Visualizing pixel noise vs. latent noise. (a) clean
image, 256×256. (b) noise added to the image space. (c) noise
added to the PCA latent space, visualized by back projection to
the image space using inverse PCA. σ=

√
1/3 in both cases.

5 ANALYSES AND COMPARISONS

Visualizing latent noise. Conceptually, l-DAE is a form of DAE that learns to remove noise added to
the latent space. Thanks to the simplicity of PCA, we can easily visualize the latent noise by inverse
PCA. Fig. 6 compares the noise added to pixels vs. to the latent. Unlike the pixel noise, the latent
noise is largely independent of the resolution of the image. With patch-wise PCA as the tokenizer,
the pattern of the latent noise is mainly determined by the patch size. Intuitively, we may think of it
as using patches, rather than pixels, to resolve the image. This behavior resembles MAE (He et al.,
2022), which masks out patches instead of individual pixels.

Denoising results. Fig. 7 shows examples of denoising results based on l-DAE. Our method produces
reasonable predictions despite the heavy noise. We note that this is less of a surprise, because neural
network-based image restoration (Burger et al., 2012; Dong et al., 2014) has been intensively studied.

Nevertheless, the visualization may help us better understand how l-DAE can learn good represen-
tations. The heavy noise added to the latent space creates a challenging pretext task for the model
to solve. It is nontrivial (even for human beings) to predict the content based on one or a few noisy
patches locally; the model is forced to learn higher-level, more holistic semantics to make sense of
the underlying objects and scenes.

Beyond qualitative visualizations, we perform three more quantitative analyses on l-DAE:

Data augmentation. All models we present thus far have no data augmentation: only the center crops
of images are used, with no random resizing or color jittering, following Dhariwal & Nichol (2021);
Peebles & Xie (2023). We further explore a mild data augmentation (random resized crop) for our
final l-DAE, which has slight improvement (Tab. 4a). This suggests that the representation learning
ability of l-DAE is largely independent of its reliance on data augmentation. A similar behavior was
observed in MAE (He et al., 2022), which sharply differs from the behavior of contrastive learning
methods (e.g., Chen et al. (2020)).

Training epochs. All our experiments thus far are based on 400-epoch training. Following MAE (He
et al., 2022), we also study training for 800 and 1600 epochs (Tab. 4b). As a reference, MAE has a

Figure 7: Denoising results of l-DAE, evaluated on ImageNet validation images. This denoising
problem, serving as a pretext task, encourages the network to learn meaningful representations in a
self-supervised manner. For each case, we show: (left) clean image; (middle) noisy image as the
input to the network, where the noise is added to the latent space; (right) denoised output.
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aug. center crop random crop

acc. 64.5 65.0

(a) augmentation

epochs 400 800 1600

acc. 65.0 67.5 69.6

(b) training epochs

encoder ViT-B ViT- 1
2

L ViT-L

acc. 60.3 65.0 70.9

(c) model size

Table 4: Analysis on l-DAE. Specifically, we show: l-DAE requires minimal data augmentation in
(a) and scales reasonably well with training epochs in (b) and model size in (c).

acc. ViT-B ViT-L
MoCo v3 76.7 77.6

MAE 68.0 75.8
l-DAE 66.6 75.0

(a) linear probing

acc. ViT-B ViT-L
MoCo v3 83.2 84.1

MAE 83.6 85.9
l-DAE 83.7 84.7

(b) end-to-end fine-tuning

APbox ViT-B ViT-L
Supervised 47.6 49.6

MAE 51.2 54.6
l-DAE 51.6 54.4

(c) object detection transfer

Table 5: System-level comparisons with previous baselines on standard Transformer encoders. For
ImageNet classification, we compare MoCo v3 (Chen et al., 2021) and MAE (He et al., 2022) in two
protocols: (a) linear probing and (b) End-to-end fine-tuning. For object detection transfer (c), we use
ViTDet (Li et al., 2022) and report AP on COCO (Lin et al., 2014). Different methods show different
strengths: l-DAE shines in fine-tuned transfer with ViT-B; and even for linear probing, the accuracy
gap is drastically closed (from ∼20% in Fig. 4 to 70+% in Tab. 5a).

significant gain (4%) from 400 to 800 epochs, and MoCo v3 (Chen et al., 2021) has nearly no gain
(0.2%) from 300 to 600 epochs. Our l-DAE falls in-between (+4.6% from 400 to 1600 epochs).

Model size. So far, our all models are based on the DiT-L variant (Peebles & Xie, 2023), whose
encoder and decoder are both “ViT- 12L” (half depth of ViT-L). We further train models of different
sizes, whose encoder is ViT-B or ViT-L (decoder always has the same size). We observe a good
scaling behavior w.r.t. model size (Tab. 4c): from ViT-B to ViT-L it has a large, 10.6% gain. A similar
scaling behavior is also observed in MAE (He et al., 2022), which gains 7.8% from ViT-B to ViT-L.

Comparison with previous baselines on ImageNet. We compare l-DAE to previous baselines in
Tab. 5a and Tab. 5b. We consider MoCo v3 (Chen et al., 2021), which belongs to contrastive learning
methods, and MAE (He et al., 2022), which belongs to masking-based methods. Besides linear
probing, we also report end-to-end fine-tuning results, with details listed in Appendix A.

While l-DAE falls short in linear probe accuracy especially against MoCo v3, it behaves similarly to
MAE, and even achieves the best overall fine-tuning results with ViT-B. We note that here the training
settings are made as fair as possible between MAE and l-DAE: both are trained for 1600 epochs and
with random crop augmentation. With our deconstructive efforts, the accuracy gap between MAE
and a DAE-driven method is drastically closed (from ∼20% in Fig. 4 to 70+% in Tab. 5a).

Comparison on object detection transfer. Finally, we transfer the representations learned with
l-DAE for object detection and segmentation. We use the ViTDet framework (Li et al., 2022) and
evaluate on the COCO benchmark (Lin et al., 2014) against MAE and supervised pre-training. Again,
we find l-DAE behaves similarly to MAE, and significantly outperforms supervised pre-training.
With MAE, l-DAE performs well with ViT-B, while slightly falls short when the model size gets
larger. More details and segmentation results are found in Appendix A and Appendix C.

6 CONCLUSION

We have reported that l-DAE, which largely resembles the classical DAE, can perform competitively
in self-supervised learning. The critical component is a low-dimensional latent space on which noise
is added. We hope our discovery will reignite interest in denoising-based methods in the context of
today’s self-supervised learning research.

Limitations. Our work studies DDM and DAE empirically, with limited theoretical analysis; while
we have locally shuffled the deconstruction order and verified our major claims, it’s impossible to
experiment all the orders; and while l-DAE outshines prior baselines in certain settings, it falls short
in others. Nonetheless, we hope our study provides clean and valuable signals to the community,
which can help guide future research along this direction.
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Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In ICLR, 2017.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional
network for image super-resolution. In ECCV, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR, 2021.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis. In CVPR, 2021.

Yuxin Fang, Li Dong, Hangbo Bao, Xinggang Wang, and Furu Wei. Corrupted image modeling for
self-supervised visual pre-training. arXiv:2202.03382, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
ImageNet in 1 hour. arXiv:1706.02677, 2017.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In NeurIPS,
2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In ECCV, 2016.

Drew A Hudson, Daniel Zoran, Mateusz Malinowski, Andrew K Lampinen, Andrew Jaegle, James L
McClelland, Loic Matthey, Felix Hill, and Alexander Lerchner. Soda: Bottleneck diffusion models
for representation learning. In CVPR, 2024.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2013.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1989.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer
backbones for object detection. In ECCV, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.

Soumik Mukhopadhyay, Matthew Gwilliam, Vatsal Agarwal, Namitha Padmanabhan, Archana
Swaminathan, Srinidhi Hegde, Tianyi Zhou, and Abhinav Shrivastava. Diffusion models beat
GANs on image classification. arXiv:2307.08702, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, 2021.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In NeurIPS, 2017.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In CVPR, 2016.

William Peebles and Saining Xie. Scalable diffusion models with Transformers. In ICCV, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
ICLR, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
NeurIPS, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
arXiv:2011.13456, 2020.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In ICML, 2008.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chen Wei, Karttikeya Mangalam, Po-Yao Huang, Yanghao Li, Haoqi Fan, Hu Xu, Huiyu Wang,
Cihang Xie, Alan Yuille, and Christoph Feichtenhofer. Diffusion models as masked autoencoders.
In ICCV, 2023.

Weilai Xiang, Hongyu Yang, Di Huang, and Yunhong Wang. Denoising diffusion autoencoders are
unified self-supervised learners. In ICCV, 2023.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
SimMIM: A simple framework for masked image modeling. In CVPR, 2022.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR, 2018a.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

DiT architecture. We follow the DiT architecture design (Peebles & Xie, 2023). The DiT architecture
is similar to the original ViT (Dosovitskiy et al., 2021), with extra modifications made for conditioning.
Each Transformer block accepts an embedding network (a two-layer MLP) conditioned on the time
step t. The output of this embedding network determines the scale and bias parameters of LayerNorm
(Ba et al., 2016), referred to as adaLN (Peebles & Xie, 2023). Slightly different from Peebles & Xie
(2023), we set the hidden dimension of this MLP as 1/4 of its original dimension, which helps reduce
model sizes and save memory, at no accuracy cost.

Training. The original DiTs (Peebles & Xie, 2023) are trained with a batch size of 256. To speed
up our exploration, we increase the batch size to 2048. We perform linear learning rate warm up
(Goyal et al., 2017) for 100 epochs and then decay it following a half-cycle cosine schedule. We use
a base learning rate blr = 1e-4 (Peebles & Xie, 2023) by default, and set the actual lr following the
linear scaling rule (Goyal et al., 2017): blr × batch size / 256. No weight decay is used (Peebles &
Xie, 2023). We train for 400 epochs by default. On a 256-core TPU-v3 pod, training DiT-L takes 12
hours.

Linear probing. Our linear probing implementation follows the practice of MAE (He et al., 2022).
We use clean, 256×256-sized images for linear probing training and evaluation. The ViT output
feature map is globally pooled by average pooling. It is then processed by a parameter-free Batch-
Norm (Ioffe & Szegedy, 2015) layer and a linear classifier layer, following He et al. (2022). The
training batch size is 16384, learning rate is 6.4×10−3 (cosine decay schedule), weight decay is 0,
and training length is 90 epochs. Randomly resized crop and flipping are used during training and a
single center crop is used for testing. Top-1 accuracy is reported.

While the model is conditioned on t in self-supervised pre-training, conditioning is not needed in
transfer learning (e.g., linear probing). We fix the time step t value in our linear probing training and
evaluation. The influence of different t values (out of 1000 time steps) is shown as follows:

fixed t 0 10 20 40 80
w/ clean input 64.1 64.5 64.1 63.3 62.2
w/ noisy input 64.2 65.0 65.0 65.0 64.5

We note that the t value determines: (i) the model weights, which are conditioned on t, and (ii) the
noise added in transfer learning, using the same level of t. Both are shown in this table. We use t =
10 and clean input in all our experiments, except Tab. 5 where we use the optimal setting.

Fixing t also means that the t-dependent MLP layers, which are used for conditioning, are not
exposed in transfer learning, because they can be merged given the fixed t. As such, our model has
the number of parameters just similar to the standard ViT (Dosovitskiy et al., 2021), as reported in
Tab. 5.

The DiT-L (Peebles & Xie, 2023) has 24 blocks where the first 12 blocks are referred to as the
“encoder” (hence ViT- 12L) and the others the “decoder”. This separation of the encoder and decoder
is artificial. In the following table, we show the linear probing results using different numbers of
blocks in the encoder, using the same pre-trained model:

enc. blocks 9 10 11 12 13 14 15
acc. 58.5 62.0 64.1 64.5 63.6 61.9 59.7

The optimal accuracy is achieved when the encoder and decoder have the same depth. This behavior
is different from MAE’s (He et al., 2022), whose encoder and decoder are asymmetric.

End-to-end fine-tuning. We closely followed MAE’s protocol (He et al., 2022). We use clean,
256×256-sized images as the inputs to the encoder. Globally average pooled outputs are used as
features for classification. The training batch size is 1024, initial learning rate is 4×10−3, weight
decay is 0.05, drop path (Huang et al., 2016) is 0.1, and training length is 100 epochs. We use a layer-
wise learning rate decay of 0.85 (B) or 0.65 (L). MixUp (Zhang et al., 2018a) (0.8), CutMix (Yun
et al., 2019) (1.0), RandAug (Cubuk et al., 2020) (9, 0.5), and exponential moving average (0.9999)
are used, similar to He et al. (2022).
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Object detection and segmentation transfer. We adopted the COCO recipe from ViTDet (Li et al.,
2022), except: window attention size is set to 8×8, as the pre-training size for l-DAE is 256×256; a
layer-wise learning rate decay of 0.95; a drop path of 0.1 (B) or 0.2 (L).

B VISUALIZATIONS OF THE LATENT SPACE

Thanks to the simplicity of using patches, for the three patch-wise tokenizers (VAE/AE/PCA), we
can visualize their filters in the patch space. We show below in Fig. 8.

(a) patch-wise VAE

(b) patch-wise AE

(c) patch-wise PCA

Figure 8: Visualization of the patch-wise tokenizer. Each filter corresponds to a row of the linear
projection matrix V (d×D), reshaped to 16×16×3 for visualization. Here d=16.

C OBJECT SEGMENTATION RESULTS

Besides Average Precision (AP) for bounding box detection, the evaluation of ViTDet (Li et al., 2022)
also includes results on object segmentation detection. We list them in Tab. 6 below.

ViT-B ViT-L
method APbox APmask APbox APmask

Supervised 47.6 42.4 49.6 43.8
MAE 51.2 45.5 54.6 48.6
l-DAE 51.6 45.8 54.4 48.2

Table 6: Object detection and segmentation results on COCO using ViTDet (Li et al., 2022).
l-DAE performs similarly to MAE and outperforms supervised pre-training.
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