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Abstract

Gradient-based optimization has been a cornerstone of machine learning that enabled the vast ad-
vances of Artificial Intelligence (AI) development over the past decades. However, this type of
optimization requires differentiation, and with recent evidence of the benefits of non-differentiable
(e.g. neuromorphic) architectures over classical models w.r.t. efficiency, such constraints can become
limiting in the future. We present Layer-wise Feedback Propagation (LFP), a novel training prin-
ciple for neural network-like predictors that utilizes methods from the domain of explainability to
decompose a reward to individual neurons based on their respective contributions. Leveraging these
neuron-wise rewards, our method then implements a greedy approach reinforcing helpful parts of the
network and weakening harmful ones. While having comparable computational complexity to gradi-
ent descent, LFP does not require gradient computation and generates sparse and thereby memory-
and energy-efficient parameter updates and models. We establish the convergence of LFP theoretically
and empirically, demonstrating its effectiveness on various models and datasets. Via two applications
— neural network pruning and the approximation-free training of Spiking Neural Networks (SNNs)
— we demonstrate that LFP combines increased efficiency in terms of computation and representation
with flexibility w.r.t. choice of model architecture and objective function. Our code is available at
https://github.com/leanderweber/layerwise-feedback-propagation.

1 Motivation

In recent years, supervised deep learning has been successfully employed in a wide variety of applications, including
highly accurate classification (Dosovitskiy et al., 2021), generation of realistic images (Rombach et al., 2022), writing
of complex text (Ouyang et al., 2022), or assisting in medical diagnosis (Briganti & Le Moine, 2020). These develop-
ments have been enabled by the widespread use of well-researched gradient-based training methods that provide fast
convergence and are easily implemented on GPU hardware. However, the computation of gradients requires the model
and objective to be differentiable, which can pose a significant restriction and limit flexibility in terms of objective
formulation and model architecture: For instance, gradient-based training becomes difficult when non-differentiable
evaluation measures should be integrated into the objective function (e.g. F1-Score in classification or Levenshtein
distance in word recognition tasks) or when feedback is obtained from external sources such as humans (Christiano
et al., 2017). Similarly, gradients cannot be used to directly train non-differentiable models despite these models
providing unique benefits, especially when implemented on dedicated hardware; e.g., when a model is quantized to have
discrete forward passes for reduced memory requirements or when neuromorphic architectures such as Spiking Neural
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Figure 1: Our proposed method. A: During the forward pass, the model receives an input and generates activations
aj , ak and an output. B: After receiving an initial reward rc (cf. Sections 3.1.1, 3.2) that evaluates the output quality,
Layer-wise Feedback Propagation (LFP) decomposes rc into local rewards rk for each neuron k (and rewards rjk

for each weighted connection j → k). This is achieved via a backward pass that leverages Layer-wise Relevance
Propagation (LRP)-rules and does not require gradient computation, obtaining feedback for each neuron that evaluates
how well it performed w.r.t. a given task. For this step, LFP requires an initial reward for each output neuron, but
otherwise places no restrictions on how this reward is obtained. C: After the initial reward is decomposed into local
rewards, each neuron is viewed as a separate agent with its own (local) reward that is used to derive a parameter update
dlfp

wjk . This update implements a greedy strategy, strengthening connections that are evaluated as helpful by receiving a
positive reward, and weakening connections that receive a negative reward. Note that the Hebbian-like update in step
C could be performed based on any local reward, and is not necessarily tied to the specific propagation in step B we
employ in this work.

Networks (SNNs) are employed that encode information more efficiently than Artificial Neural Networks (ANNs), as
evidenced by recent research (Singh et al., 2023). Consequently, finding alternatives to gradient-based training methods
is paramount for the application of more suitable objectives and more information-efficient models.

1.1 Approach

We introduce Layer-wise Feedback Propagation (LFP), a novel principle of training based on eXplainable artificial
intelligence (XAI). As summarized in Figure 1, optimizing a model with LFP consists of three distinct steps:

A: Forward Pass. In each iteration, LFP first requires the model to perform a forward pass, similar to other training
methods such as gradient descent. Here, some intermediate variables such as activations are set and a prediction is
obtained.

B: Feedback Propagation. Based on this prediction, the model then receives an initial reward (cf. Section 3.2) evaluating
the prediction quality. In a modified backward pass, LFP decomposes this initial reward into local rewards that provide
feedback to single neurons and connections.

C: Weight Update. Finally, LFP updates parameters based on a local reward at each neuron. In this work, the local
reward is obtained from step B; however, a local reward obtained from any source could be used in theory. Here, positive
and negative reinforcement is leveraged in a greedy manner, strengthening connections that work well (i.e., receive a
positive reward) and weakening those that do not (i.e., receive a negative reward). This step is similar to a Hebbian
update rule, as discussed in Section 3.1.2.

As such, LFP is related to the reinforcement learning paradigm of encouraging rewarded behavior, implementing it at
the smallest elements of neural networks — neurons and connections. Refer to Section 3 for more details.

To propagate feedback to each neuron, we decompose an initial reward (cf. Figure 1) based on each neuron’s contribution.
The question of neuron contributions (or feature importance) is addressed by a subset of interpretability methods
(Baehrens et al., 2010; Simonyan et al., 2013; Springenberg et al., 2015; Bach et al., 2015; Sundararajan et al., 2017)
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Figure 2: Venn diagram of the capabilities of LFP and supervised gradient descent. LFP shares some properties of
gradient descent but provides several additional benefits, as it does not require gradient computation and thus provides
increased flexibility w.r.t. choice of model and objective, and naturally encourages sparsity.

that focus on obtaining local explanations. These techniques assign importance scores to individual features or groups
of features in specific samples, based on the model’s behavior. It is important to note that some of these methods are
not limited to attributing importance solely to input features but can also determine the significance of individual units
within a model. Among these, LRP (Bach et al., 2015) efficiently explains predictions after inference by computing the
contribution of network components to the prediction outcome. This is achieved by decomposing an initial relevance
value assigned to the output layer through a modified backward pass. LFP leverages the LRP-decomposition rules to
distribute an initial reward during step B in Figure 1 (in place of an initial relevance) to individual neurons during
training. Our method then utilizes the distributed reward at each neuron to update parameters (see step C of Figure 1).

Compared to several other gradient alternatives such as evolutionary approaches or methods from the domain of
biologically plausible learning, LFP makes more assumptions about the model and objective, for instance, that the
model is decomposable in terms of layer-wise mappings or that forward weights equal backward weights. However,
our method preserves similar computational complexity, performance and convergence speed to gradient descent
(cf. Section 3.3) and scales well to complex tasks and models (cf. Sections 3.5 A.9) but does not require gradient
computation (see Figure 2). This allows for increased flexibility in terms of model and objective function compared
to gradient-based methods. Consequently, LFP can be employed for training both Deep Neural Networks (DNNs)
(cf. Sections 3.5, 3.6) and neuromorphic architectures such as SNNs (cf. Section 4.2). The formulation of objective
functions for LFP is similarly flexible. For instance, similar to supervised gradient descent, prior knowledge about
the task such as ground truth predictions can be included in the objective. But if such knowledge is not available, or
non-differentiable elements should be integrated, a valid objective for LFP can still be formulated (see Table 1). It is
therefore well-suited to supervised tasks (and naturally extends to reinforcement learning tasks as well, although we
leave this application to future work).

Neurons that do not contribute in the forward pass are not altered by LFP, which encourages sparse (and thus
theoretically more efficient) updates, a property also found in biological networks (Pozzi et al., 2020). Due to an implicit
weight scaling, the models obtained via LFP sparsely represent information and are easily prunable, contributing to
energy-efficient Artificial Intelligence (AI).

1.2 Contributions

The primary objective of this work is to introduce LFP and demonstrate that this method provides a valid training
signal and converges to a local optimum in a set of controlled tasks explored in this work. Specifically, we focus on
the well-understood supervised problem of classification, using fully-connected and convolutional neural networks
(although we provide simple initial examples for regression and transformers in Appendix A.8 and A.9, respectively).
We further examine the properties of LFP and consequently explore two applications that impact AI energy efficiency
and expressivity. We can show that LFP performs well in these semi-complex settings, which is a positive indicator for
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Table 1: Overview of model and objective configurations solvable by LFP and gradient-based methods (in the table,
D stands for Differentiable and ND for Nondifferentiable), respectively, in the context of supervised learning. LFP
is more flexible and can be applied to a wide variety of learning settings without requiring significant adaptations or
substitutions.

Configuration Example Gradient-based
Training

LFP-based
Training

D ND MNIST Classification with
ReLU-activated MLP ✓ ✓Objective ⊠ □

Model ⊠ □
D ND Learning with Neuromorphic

Architecture, e.g. SNNs ×0 ✓Objective ⊠ □
Model □ ⊠

D ND Non-differentiable evaluation measures
in objective, e.g. Levenshtein distance ×1 ✓Objective □ ⊠

Model ⊠ □
D ND Any Combination of the

Two Rows Above ×0 ✓Objective □ ⊠
Model □ ⊠

a successful extension to more difficult problems as well, given appropriate parameterization and further research. The
current work thus serves as a foundation for understanding the fundamental aspects of LFP, with future investigations
expected to explore the method’s applicability in more state-of-the-art scenarios.

In summary, we make the following contributions:

1. We propose Layer-wise Feedback Propagation (LFP), a novel, interpretability-based training paradigm for
DNNs that updates parameters based on a local, neuron-wise reward.

2. We prove the convergence of LFP and confirm this theoretical result empirically on several different models
and datasets.

3. We discuss the properties, advantages and disadvantages of LFP.

4. Based on the discovered properties, we investigate two applications of LFP in-depth: Obtaining sparser models,
that represent information efficiently and can be pruned more easily, and training non-differentiable models,
such as Heaviside-activated SNNs.

2 Related Work

2.1 Deep Learning Approaches

Depending on the amount of (human) supervision involved, deep learning approaches can generally be categorized
into supervised, unsupervised, and reinforcement learning, as well as hybrids between these, such as semi-supervised
approaches. Setting aside unsupervised and hybrid methods, supervised approaches assume the availability of examples
with ground truth predictions and aim to solve a well-defined and specific task. Reinforcement learning makes far less
assumptions, requiring a model to learn to interact with a potentially changing environment only from a reward signal
that is typically sparse and discrete. As such, reinforcement learning is the most general category, as most supervised
problems can be reformulated as reinforcement learning problems, while the reverse is usually not possible. However,
this reformulation is often inefficient, since it leverages less domain knowledge and results in an optimization problem

0Gradient-based methods are not applicable here without substituting non-differentiable model parts in the backward pass
1These settings can be expressed as reinforcement learning problems and solved through gradient-based reinforcement learning methods —

however, depending on the specific objective, this reformulation can increase problem difficulty and thus lead to suboptimal solutions (Barto &
Dietterich, 2004).
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that is more difficult to solve (Barto & Dietterich, 2004). Therefore, if the task constraints allow, supervised methods
are preferred in practice.

Within these categories, gradient-based approaches (Rumelhart et al., 1985; Sutton et al., 1999; Mnih et al., 2013;
Schulman et al., 2017) are by far the most widely used. However, as detailed in Section 1, these approaches assume
the model and (for supervised learning) the objective function to be differentiable w.r.t. the model parameters. This
is not always desirable because, as a consequence, gradient-based learning restricts the space of usable models, can
be inefficient (Zuo, 2020), limits implementations on hardware, and is not plausible from a biological perspective
(Pozzi et al., 2020; Hinton, 2022). Several alternative approaches have been proposed to address these issues over
the years. For instance, a number of studies (Goldstein et al., 2014; Carreira-Perpiñán & Wang, 2014; Taylor et al.,
2016; Zeng et al., 2019; Wang et al., 2019; Tang et al., 2020; Wang et al., 2022) formulate neural network training
as alternating minimization problems using auxiliary variables. These methods make training easily parallelizable
and require comparatively few (but computationally expensive) iterations, but often scale badly to complex problems.
Another set of methods (Salimans et al., 2017; Such et al., 2017; Cui et al., 2019; Tripathi & Singh, 2020; Chen et al.,
2021) involves training models through evolutionary strategies, by making random alterations to the model’s parameters
and selecting the best-performing version. While these strategies are highly flexible w.r.t. model architecture and task
description, they are based on sampling strategies and therefore do not scale well to larger models.

Several learning methods specifically aim for higher biological plausibility. For instance, feedback alignment (Lillicrap
et al., 2016; Nøkland, 2016) removes the need for symmetric weights in the forward and backward pass (a biologically
implausible property), but otherwise backpropagates gradients nonetheless, limiting its applicability to e.g. non-
differentiable models. Variations of target propagation (Le Cun, 1986; Lee et al., 2015; Bartunov et al., 2018; Ernoult
et al., 2022; Roulet & Harchaoui, 2023) introduce dedicated backward connections to directly generate layer-wise
activation targets and update parameters locally per layer based on these targets. This avoids the need for both
symmetric weights and error propagation altogether and can even pass meaningful training signals through non-
differentiable activations (Lee et al., 2015), but requires optimizing an additional, dedicated feedback path. Approaches
to Hebbian learning (Hebb, 1949; Whittington & Bogacz, 2017; Miconi, 2021; Gupta et al., 2021; Lagani et al., 2022;
Demidovskij et al., 2023; Journé et al., 2023) implement fully local but unsupervised learning rules proportional to
the product of neuron inputs and outputs. To extend Hebbian learning to supervised settings, it is usually combined
with backpropagation of a feedback signal Gupta et al. (2021); Demidovskij et al. (2023) in order to obtain both local
and global representations. Finally, Hinton (2022); Ghader et al. (2025) suggest a contrastive approach to learning that
requires no backward pass but assumes data to be split in positive and negative examples.

For specialized architectures, gradient application can be especially inefficient or infeasible, resulting in the development
of dedicated learning methods for these settings. In the context of convergent recurrent architectures and Hopfield-like
models, approaches such as contrastive Hebbian learning (Movellan, 1991; Detorakis et al., 2019) and equilibrium
propagation (Scellier & Bengio, 2017; Ernoult et al., 2019; Laborieux et al., 2021) approximate local gradients through
differences in neural activities between a (free) forward phase and a backward phase where the network outputs are
nudged towards a target. Due to the need for two settling phases, these approaches are comparatively slow but effectively
avoid the computation of gradients, inspiring extensions to physical systems such as SNNs (Martin et al., 2021) or
Ising Machines (Laydevant et al., 2024), where gradient-based learning is notoriously difficult. Due to their promising
properties Singh et al. (2023), specifically gradient-free optimization on SNNs is an active field of research. Here,
DECOLLE (Kaiser et al., 2020) avoids propagation through time by minimizing the global loss at each layer separately
using random readout matrices, and then utilizes surrogates to approximate Heaviside gradients. The unsupervised
spike-time dependent plasticity (Bengio et al., 2015; Mozafari et al., 2018) and its extensions for supervised settings,
e.g., Reward-modulated Spike-Timing Dependent Plasticity (R-STDP) (Frémaux & Gerstner, 2016), implement a local,
unsupervised learning rule akin to Hebbian principles that considers the timing between incoming and outgoing spikes.

Our method is biologically implausible, as it requires symmetric forward and backward weights and backpropagates a
reward signal. However, it implements select properties from biological learning, such as only altering contributing
neurons Pozzi et al. (2020) and performing local, hebbian-like updates modulated by a reward (cf. Section 3.1.2).
LFP scales well to large-scale tasks (cf. Sections 3.5, 4.1) and avoids gradient computations altogether by adopting a
multi-agent view of DNNs and distributing a global reward locally to single neurons based on their contribution. It
is therefore closely related to techniques that apply reinforcement to single neurons, either based on a global reward
(Seung, 2003) or by assuming local, neuron-wise rewards are available (Wang & Cai, 2015). Among these methods,
BrainProp (Pozzi et al., 2020) also distributes a feedback signal to single neurons based on a global reward, similar
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to LFP. However, BrainProp’s feedback consists of an error signal derived from the global reward, and consequently
requires computation of derivatives and differentiable models. Furthermore, the method optimizes for one output unit at
a time, limiting convergence speed, and the feedback can grow arbitrarily large for deeper models due to long chains
of weight multiplications. In contrast, LFP does not require models to be differentiable as no gradients are computed,
implicitly normalizes the distributed reward (cf. Equation 2), and can optimize for all outputs at the same time. This
makes LFP applicable to both supervised and reinforcement learning problem formulations.

2.2 Utility of Intermediate Explanations

Due to the highly nonlinear complexity of DNNs, their underlying decision-making is difficult to interpret. For this
reason, the field of XAI has come forth with several methods to elucidate on a model’s behavior. Here, post-hoc methods
aim to explain existing and already trained models and can be divided into global and local approaches:

Global XAI interprets a model’s behavior in a general manner, e.g., by identifying (and visualizing) encoded concepts or
learned representations and their hierarchical relationships (Bau et al., 2017; Kim et al., 2018; Hu et al., 2020; Hohman
et al., 2020; Zhang et al., 2021; Fel et al., 2023b; Achtibat et al., 2023; Vielhaben et al., 2023; Kowal et al., 2024), by
computing (and visualizing) its sensitivities (Santurkar et al., 2019; Fel et al., 2023a), or by interpreting their internal
mechanisms through surrogate models (Huben et al., 2024; Gorton, 2024; Bhalla et al., 2024; Dreyer et al., 2025).

Local XAI instead explains the individual predictions of a model. That is, for a particular sample, local explanation
techniques seek to assign importance scores to individual features or groups of features that have the most influence on a
model’s decision. Here, sampling-based techniques (Štrumbelj & Kononenko, 2014; Ribeiro et al., 2016; Zintgraf et al.,
2017; Fong & Vedaldi, 2017; Lundberg & Lee, 2017) assume models to be impenetrable black boxes, and consequently
explain through a challenge-response-scheme involving perturbation, but are costly to compute and approximative.
Methods that modify the backward pass, such as Baehrens et al. (2010); Bach et al. (2015); Montavon et al. (2017);
Shrikumar et al. (2017); Sundararajan et al. (2017) require grey-box access to a model’s internal parameters. In turn,
most of these latter methods can be implemented to explain efficiently in terms of computation time (requiring exactly
one forward-backward pass).

Beyond the human-understandable explanations in input space, a secondary property of local XAI is the ability to
generate intermediate explanations, i.e., assign importance scores to the activations (or for some methods even to
weighted connections) of intermediate layers. Especially methods that modify the backward pass yield such intermediate
explanations naturally and efficiently, as a by-product of computing input-level scores.

Several previous works have utilized these intermediate importance assignments towards improving models: For
instance, explanation scores can be employed similarly to an attention mechanism during training, masking features
in the forward pass (Fukui et al., 2019; Schiller et al., 2019; Sun et al., 2020), or to guide which information is
passed through dropout layers beyond random choice (Zunino et al., 2021). Lee et al. (2019); Nagisetty et al. (2020)
instead apply a similar XAI-based masking to the gradients during the backward pass. In trained models, intermediate
explanations are employed as a criterion for pruning or quantization (Voita et al., 2019; Sabih et al., 2020; Becking
et al., 2022; Yeom et al., 2021; Soroush et al., 2023; Hatefi et al., 2024) to increase efficiency. Similarly, Ede et al.
(2022) proposes XAI-guided plasticity regularization of relevant neurons in order to mitigate catastrophic forgetting
when learning consecutive tasks.

Our method is related to the above works that leverage intermediate explanations for model improvement both during
and after training, specifically those that augment the backward pass (Lee et al., 2019; Nagisetty et al., 2020). However,
in contrast to the above methods, we do not utilize explanations as additional guidance, and rather distribute a reward
directly to single neurons based on their contribution. Instead of explaining a specific decision, this can be understood
as explaining the source of an obtained reward in terms of internal model components and updating parameters based
on that information. We choose to utilize Layer-wise Relevance Propagation (LRP) for reward propagation due to its
demonstrated utility in several of the above applications (Lee et al., 2019; Sun et al., 2020; Becking et al., 2022; Yeom
et al., 2021; Ede et al., 2022; Soroush et al., 2023; Hatefi et al., 2024).
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3 Layer-wise Feedback Propagation

In this section, we introduce the methodology behind LFP in detail, demonstrate its convergence empirically, and prove
it theoretically.

3.1 LFP Backpropagation and Credit Assignment

LFP assigns credit to parameters by distributing a reward throughout the model. We detail the specific LFP backpropa-
gation rules — partially inherited from the LRP methodology — below:

3.1.1 Reward Propagation and Parameter Update

Let x be a singular input sample to model f , with corresponding one-hot encoded ground-truth label y ∈ {0, 1}C , and
C possible classes. Then, f(x) denotes the model output given x and a

[l+1]
j the output of an arbitrary neuron j at layer

l + 1. This output is computed as

a
[l+1]
j = ϕ

[l+1]
j

(∑
i

w
[l+1]
ij · a

[l]
i

)
, (1)

where ϕ
[l+1]
j denotes the activation function of the neuron j and the parameters w

[l+1]
ij weigh the output a

[l]
i of the i-th

neuron at layer l. The weight wij[l+1] may be 0 if there is no connection between i and j. We view the bias b
[l+1]
j of

each neuron j as a weighted connection constantly receiving a
[l+1]
bj

= 1 in this context. As common in LRP-literature

(e.g., Montavon et al. (2019)), we denote the contribution of a connection between neurons i, j as z
[l+1]
ij = w

[l+1]
ij · a

[l]
i

and the pre-activation of the j-th neuron as z
[l+1]
j =

∑
i z

[l+1]
ij .

LFP then assumes that an initial reward rc is available for each output neuron c, measuring how well it contributes to
solving the task. In practice, rc is decomposed from a global reward Rc assigned to the predicted outcome (e.g., the
class in supervised classification) corresponding to c. This initial decomposition from Rc to rc may be task-specific.
Refer to Section 3.2 for more details. Intuitively, a positive reward should cause positive reinforcement, and a negative
reward negative reinforcement. Therefore, the resulting change in neuron activation depends on the sign of both the
reward and the activation. To optimize performance, if a positively activated neuron receives positive or negative reward,
we signal it to increase or decrease, respectively. With the same-signed reward, a negative activation is signaled to
decrease or increase, respectively. After obtaining rc, it is propagated backwards through the model based on the
backpropagation rules of LRP, so that the at layer l + 1 eventually receives a local reward r

[l+1]
j , as a decomposition of

the initial rc of all c ∈ C. In the below derivations, the LRP-0-rule is used for simplicity, although this rule is generally
not applicable without issue in practice due to numerical instability (cf. Sections below). Then, a reward message r

[l+1]
ij

is sent from neuron j at layer l + 1 to neuron i at layer l (i.e., through the connection weighted by w
[l+1]
ij ):

r
[l+1]
ij =

z
[l+1]
ij

z
[l+1]
j

· r
[l+1]
j , (2)

The local reward for neuron i then accumulates as

r
[l]
i =

∑
j

r
[l+1]
ij . (3)

Equation 3 inherently assigns credit to i, providing a notion of how helpful an activated neuron or a parameter is in
solving the task correctly. Similarly, r

[l+1]
ij from Equation 2 is derived by decomposition from the local reward rc, and

can thus be interpreted as a reward for the connection weighted by wij[l+1] . Note that (excluding reward flowing to bias
terms) Equation 3 and Equation 2 implicitly normalize the decomposed reward to sum up to the initial reward (cf. Bach
et al. (2015)). I.e., if the model has L layers l ∈ [0, 1, ..., L − 1], then ∀l.

∑
i r

[l]
i =

∑
j r

[l+1]
j =

∑
c r

[L]
c holds.
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In order to derive an update for w
[l+1]
ij , we replace w

[l+1]
ij in z

[l+1]
ij from Equation equation 2 with sign(w[l+1]

ij ) ·w[l+1]
ij =

|w[l+1]
ij |. I.e., we multiply the reward r

[l+1]
ij with the parameter sign (since identically signed rewards should result in

opposite update directions for negative/positive parameters) and thus arrive at the following update step:

dlfp
w

[l+1]
ij

=
|w[l+1]

ij | · a
[l]
i

z
[l+1]
j

· r
[l+1]
j

(w[l+1]
ij )new = w

[l+1]
ij + η · dlfp

w
[l+1]
ij

(4)

Here, η is a learning rate. We refer to this basic formulation of LFP as LFP-0. Note that while we utilize LRP-like
rules to obtain r

[l+1]
j , this is not strictly required, and r

[l+1]
j could theoretically come from any source, with Equation 4

performing a reward-modulated Hebbian-like update, as detailed below. Optimization akin to Stochastic Gradient
Descent (SGD) with a momentum can then be described as follows:

dmom
w

[l+1]
ij

= dold
w

[l+1]
ij

d
w

[l+1]
ij

= α · dmom
w

[l+1]
ij

+ (1 − α) · dlfp
w

[l+1]
ij

(w[l+1]
ij )new = w

[l+1]
ij + η · d

w
[l+1]
ij

(5)

where α ∈ [0, 1].

Since compared to SGD, LFP employs a reward instead of a loss function, it requires maximization instead of
minimization in the update step of the above formula. This reward is then distributed throughout the model, which — as
detailed by the above equations — requires no gradient computation2. Consider e.g. the Heaviside step function (cf.
Figure A.11): This activation function has zero or infinite gradients everywhere, but Equation 2 and Equation 3 can still
propagate a meaningful non-zero signal through models with Heaviside activations.

3.1.2 Connection to Hebbian Learning

While we derived equations (2–4) from the relevance propagation of LRP, as described in Bach et al. (2015), there is a
close similarity of the resulting update rule to Hebbian learning (Hebb, 1949). At its core, Hebbian learning formulates
weight updates as

dHebb
w

[l+1]
ij

= a
[l]
i a

[l+1]
j . (6)

The LFP update rule from Equation 4 can be reformulated as follows:

dlfp
w

[l+1]
ij

=
|w[l+1]

ij | · a
[l]
i

z
[l+1]
j

· r
[l+1]
j

∝ a
[l]
i

z
[l+1]
j

· r
[l+1]
j |a[l+1]

j ≈ z
[l+1]
j

≈ a
[l]
i

a
[l+1]
j

· r
[l+1]
j

(7)

Since (excluding 0) sign(a[l]
i /a

[l+1]
j ) = sign(a[l]

i ·a[l+1]
j ), the LFP weight update can be interpreted as a Hebbian update,

modulated by the local reward r
[l+1]
j . In expectation, Equation 6 simply results in increasing |a[l+1]

j |. By multiplying

with r
[l+1]
j , LFP contextualizes a

[l+1]
j to a given task, decreasing |a[l+1]

j | if neuron j hinders performance as evaluated

2Equation 2 can be written as activation times gradient only for (piece-wise) linear models, e.g., with ReLU activations, cf. Theorem 1
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by the reward function. Aside from this reward modulation, the largest difference to the original Hebbian formulation
is the division of a

[l]
i and a

[l+1]
j in place of multiplication. While this preserves the update direction, it also implicitly

regularizes the update when the weights grow too large (and, as a consequence, also |a[l+1]
j |), similar to, e.g., Oja’s rule

(Oja, 1989). Lastly, the LFP-update includes a multiplication with the weight magnitude that induces sparse updates,
which have been shown to improve performance in the context of Hebbian learning (Gupta et al., 2021).

3.1.3 Special Case: Numerical Stability

The LFP-0-rule described above captures the fundamental idea of how rewards are distributed via LFP but is infeasible
in practical applications due to being numerically unstable for denominators close to zero (cf. the LRP-0-rule (Bach
et al., 2015)).

Inspired by Bach et al. (2015), we therefore employ a normalizing constant ε to increase numerical stability, resulting in
the LFP-ε-rule:

r
[l+1]
ij =

z
[l+1]
ij

z
[l+1]
j + sign(z[l+1]

j ) · ε
· r

[l+1]
j (8)

dlfp
w

[l+1]
ij

=
|w[l+1]

ij | · a
[l]
i

z
[l+1]
j + sign(z[l+1]

j ) · ε
· r

[l+1]
j (9)

Note that for the remainder of this work, we define sign(0) = 1. We utilize this rule in all experiments as a replacement
for LFP-0. As recommended by Bach et al. (2015), we choose ε = 10−6.

3.1.4 Special Case: Batch Normalization Layers

Attribution methods based on modified backpropagation, such as LRP, are generally not implementation invariant
and require models to be canonized (i.e. restructuring models to a functionally equivalent version that only contains
layer types with well-understood properties w.r.t. a given explanation method) before the explanations are computed
(Kohlbrenner et al., 2020; Motzkus et al., 2022), which usually involves merging multiple layers. This mostly affects
BatchNorm layers (Ioffe & Szegedy, 2015) (and their neighboring layers), which implement the following operation:

(a[l+1]
j )bn = γ

[l+1]
i

a
[l]
i − E[a[l]

i ]√
Var[a[l]

i ] + ϵ

+ β
[l+1]
i

We expect the above issue to extend to LFP as well due to its close relation to LRP. However, merging BatchNorm
layers during training is not possible, as these layers also contain learnable parameters. For this reason, we instead
provide a rule to propagate reward through BatchNorm layers approximatively by first writing the BatchNorm equation
as two consecutive linear operations:

(a[l+1]
j )bn = γ

[l+1]
i ãi

[l] + β
[l+1]
i and ãi

[l] = 1√
Var[a[l]

i ] + ϵ

a
[l]
i − E[a[l]

i ]√
Var[a[l]

i ] + ϵ

(10)

This allows us to formulate the following LFP rule:

r
[l+1]
ij =

γi · a
[l]
i√

Var[a[l]
i

]+ϵ

a
[l+1]
j + sign(a[l+1]

j ) · ε
· r

[l+1]
j (11)
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Table 2: Examples of reward functions for multiclass classification (i.e., one output neuron per class) with LFP. In the
table, σ denotes the sigmoid function, and SM the softmax function. GD denotes gradient descent and CE cross-entropy.

ID rc ρ(f(x)) Rc
Theorem 1:

GD-Equivalent
#1 sign(oc) · 1(yc = 1) 1 1(yc = 1) ×

#2
sign(oc)·

−1(∃c′.yc′ = 1 ∧ oc > oc′) 1 −1(∃c′.yc′ = 1 ∧ oc > oc′) ×

#3 oc · (yc − SM(oc))
{

(1 − SM(oc)) if yc = 1
SM(oc) if yc = 0

{
|oc| if yc = 1
−|oc| if yc = 0

Softmax-CE

#4 oc · (yc − σ(oc))
{

(1 − σ(oc)) if yc = 1
σ(oc) if yc = 0

{
|oc| if yc = 1
−|oc| if yc = 0

Sigmoid-CE

dlfp
γ

[l+1]
i

= |γ[l+1]
i | · ã

[l]
i

a
[l+1]
j + sign(a[l+1]

j ) · ε
· r

[l+1]
j

dlfp
β

[l+1]
i

= |β[l+1]
i |

a
[l+1]
j + sign(a[l+1]

j ) · ε
· r

[l+1]
j (12)

For updating parameters γ
[l+1]
i and β

[l+1]
i , the above rule simply applies LFP-ε to the second, parameterized linear

operation. This is also done for passing the reward backward in Equation 11, but a mean E(a[l]
i ) = 0 is assumed for this

backward pass since shifting rewards across 0 can lead to updates in the wrong direction in preceding layers. Note that
z

[l+1]
j = a

[l+1]
j here, since BatchNorm employs a linear activation function.

We apply this rule to the ResNet (He et al., 2016) and VGG-16-BN (Simonyan & Zisserman, 2014) models in our
experiments.

3.1.5 Special Case: Skip Connections

Skip connections do not contain parameters and simply merge incoming activation signals from multiple pathways. They
are present in several architectures such as ResNets (He et al., 2016) and merge activations either through concatenation
(a[l+1]

j )skip = [a[l]
i , a

[l−l′]
k ] or summation (a[l+1]

j )skip = a
[l]
i + a

[l−l′]
k . For the former type, we pass rewards through the

concatenation. For the latter type, rewards are decomposed according to their proportional contributions:

r
[l+1]
ij = a

[l]
i

a
[l+1]
j + sign(a[l+1]

j ) · ε
· r

[l+1]
j

r
[l+1]
kj =

a
[l−l′]
k

a
[l+1]
j + sign(a[l+1]

j ) · ε
· r

[l+1]
j (13)

3.2 Obtaining Initial Rewards

LFP distributes a reward signal rc throughout the model. rc is the initial reward assigned to the output neuron c. As
such, it slightly differs from a global reward Rc (as employed, e.g., in reinforcement learning) assigned to the outcome
associated with neuron c. We distinguish between an output and an outcome as follows: For instance, consider the
example of (multiclass) classification. The highest-activating output neuron c = 0 may produce the output oc = 1.2343

3Note that we assume output neurons to be linearly activated (i.e. oc = zc) in all models except SNNs, where we assume a Heaviside activation.
For multiclass classification, the class with the largest oc is predicted, and any nonlinearities (e.g., softmax to obtain probabilities) are interpreted as
part of the objective function.
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for a given sample. Consequently, the class corresponding to this neuron is chosen as a prediction, resulting in the
outcome that class c = 0 is assigned to the given input. I.e., the outcome (the class prediction in this example) is derived
from the output (the raw logit) via some rule or function that depends on the task. Note that the current prediction in the
above example is only one of C possible outcomes, and more than one outcome may be considered at the same time by
obtaining nonzero Rc for more than one class.

In this framework, Rc measures the quality of an outcome, not considering the model that produced it. For instance,
the correctness of a class assignment to a given input. rc considers the model by decomposing Rc to the output oc of
the neuron c, based on the mapping from output to outcome. Consequently, how oc should be evaluated w.r.t. the task
depends on how an outcome (e.g., a class prediction) is derived from oc. For instance, consider binary classification
with an instance correctly classified as class 0, and R0 = 1. If two output neurons exist, each corresponding to a single
class, neuron c = 0 receives a positive global reward. However, if o0 < 0, the initial reward r0 should become negative
in order to encourage a positive output maximizing class probability. On the other hand, if only one output neuron
exists and the sign of o0 determines the predicted class, r0 should be positive, e.g., r0 = R0, in order to encourage the
current (correct) direction of o0 — again maximizing class probability. As shown in the example, obtaining rc from
Rc therefore requires an initial decomposition that depends on the relationship between output oc and the associated
outcome.

For supervised classification, which is the focus of this work, deriving rc from Rc is straightforward: In the special
case of binary classification with one output neuron, we maintain rc = Rc. Otherwise, for multiclass settings with one
output neuron per class, rc can be obtained as

rc = sign(oc) · Rc (14)

Since the reward directly affects parameter updates (cf. Equation 4), the model will be updated as long as long as a rc is
nonzero. While this is not the only solution4, including a convergence mechanism ρ(f(x)) : RC 7→ [0, 1] in the initial
reward rc alleviates this issue:

rc = sign(oc) · ρ(f(x)) · Rc (15)

Under the above formulation, possible reward functions for LFP are listed in Table 2. In this table, the third and fourth
row are equivalent to commonly used loss functions for gradient descent, as described in Theorem 1 (cf. Section 3.3).
Specifically, #3 corresponds to a cross-entropy loss with softmax, and #4 to a cross-entropy loss with sigmoid. Note
that for the purpose of Theorem 1, we view the softmax and sigmoid nonlinearities as part of the loss function, applied
to linearly activated outputs oc. We employ reward #3 in our experiments. We briefly investigate LFP with reward #2 in
Appendix A.3.

3.3 Convergence of LFP

In this section, we demonstrate theoretically and experimentally in the context of supervised classification that LFP
converges, and can successfully train ML models. First, we show the following theorem:

Theorem 1. For a differentiable loss function L and any ReLU-activated network, LFP-0 with initial reward

rc = oc ·
(

− dL
doc

)
is equivalent to weight-scaled gradient descent, i.e.

(w[l+1]
ij )new = w

[l+1]
ij − η · |w[l+1]

ij | · dL
dw

[l+1]
ij

.

4There exist heuristics for training despite non-converging rewards, such as zero-capped rewards, capped parameters, early stopping, or
progressively decaying learning rates or rewards. Utilization of such techniques allows for the application of a wider range of reward functions
beyond those applied in this work.
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In particular, allowing for individual step sizes ηij if we choose ηij = |w[l+1]
ij |−1 · η we can frame gradient descent for

any differentiable loss function in the LFP-framework.

For the detailed proof, refer to Appendix A.2. While we proved the statement in the Theorem for ReLU-activated
models, as that is by far the most common setup in DNNs, it in fact holds for several piecewise linear activation
functions (such as Linear, ReLU, or Leaky ReLU). I.e., for networks with these activation functions, we can reformulate
gradient descent with any differentiable loss function as LFP-0 with the appropriate reward.

However, LFP can also be used to achieve learning behaviour different from gradient descent as the above theorem is
subject to several conditions, which are not necessarily fulfilled in practice (including the experiments below). These
conditions are as follows:

LFP-0 Rule. The theorem assumes LFP-0 Rule. In practice, we employ LFP-ε in all experiments for numerical stability.
This results in updates that do not only differ in magnitude from LFP-0, but potentially even in sign due to cascading
effects from higher layers. Additional rules may be formulated for LFP, which can yield diverse learning dynamics and
behaviors (see Appendix A.5).

Specific Activations. The theorem implicitly assumes activations

ϕ
[l]
i (z[l]

i ) = dϕ
[l]
i (z[l]

i )
dz

[l]
i

· z
[l]
i . (16)

This condition is fulfilled by e.g. ReLU, LeakyReLU and Linear activations, but not Heaviside, Tanh, SiLU, ELU,
GeLU. For the latter group, LFP may exhibit update behavior different to gradient descent even in simple settings, as
shown, e.g. in Appendix A.4 In our experiments, we apply both types of activations.

Specific Reward Functions. The theorem only holds for rewards rc = oc ·
(

− dL
doc

)
. However, there exist sensible

rewards for LFP which cannot be expressed through gradient descent and would require other, reinforcement-learning-
based approaches instead, e.g. Table 2, reward #2:

rc = −1(∃c′.yc′ = 1 ∧ oc > oc′) · sign(oc) (17)

where reward -1 punishes any false positive7.

In a first experiment, we show empirically that LFP is able to train models in simple supervised classification settings.
For this purpose, we train a small ReLU-activated MLP (fulfilling the proof-conditions of Theorem 1 except for the
LFP-0 rule) on three toy datasets (cf. Figure 3 left) using LFP-ε (Equation 8). For more details about the specific setup,
refer to Appendix A.7.1. Figure 3 shows the decision boundaries, accuracies, and weight distributions of the resulting
models. Firstly, as shown by the train set accuracies over iterations (second-to-right), LFP is able to converge well to
respective solutions for the given toy tasks, with the obtained solutions achieving high test set accuracies (second-to-left)
and their decision boundaries (left) separating well between classes. Refer to Appendix A.1 for decision boundaries
for other (non-ReLU) activation functions. Secondly, when comparing the performance (second-to-left) of LFP and
stochastic gradient descent (Grad), we find that they achieve the same accuracy, however, LFP scales differently w.r.t.
learning rate (for same performance, ηLFP ≈ ηGrad

100 ). Thirdly, we observe that the solutions (parameters of the model)
obtained by LFP are of increased θ-sparsity (right), with few large positive or negative parameters when compared to
the initialization or solutions obtained by standard gradient descent. When dividing weights into groups via a threshold
θ5, LFP-trained models have much more “neutral” weights w.r.t. θ than the initial model or the models trained via
gradient descent. As shown in Figure 4, this sparsity is caused by the implicit weight-scaling in the LFP update step (cf.
Theorem 1). We investigate this property in detail in Section 4.1.

3.4 Computational Cost of LFP

LFP leverages LRP to decompose rewards to all neurons in a network. Updates for each connection are then directly
derived from the resulting local rewards at each neuron via multiplication with a scalar factor. Consequently, the
computational complexity of a single model update with LFP is the same as computing attributions via LRP (and the

7We investigate LFP with this reward function in Appendix A.3
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Figure 3: Proof-of-Concept results for LFP on toy data. Left: Training with LFP results in the expected decision
boundaries. Second-to-Left: Under similar training conditions, LFP achieves comparable performance to gradient
descent, although it scales differently in terms of learning rate. The diamond marks the highest performance across
learning rates; the remaining panels on the right are plotted for this best performing configuration. Second-to-Right:
LFP converges in a stable manner. Right: Distribution of weight values, given a relative threshold θ5. In each panel, the
percentage of large positive (green), large negative (purple) and neutral (grey) weights for each threshold is shown on
the left (areas are drawn cumulatively to sum up to one, with lines highlighting the border between areas). On the right
of each panel, connections are colored accordingly, for θ = 0.25. Compared to the initialization and the solution found
by gradient descent, LFP finds θ-sparse solutions, with more weights being assigned to “neutral” at lower thresholds
(number in the top right).

LFP Grad

Figure 4: Update behavior of LFP-ε and gradient descent in a two-parameter toy setting (w1 and w2, no bias). The
contours show constant values of the respective objective function (reward left and loss right, with lighter shades of
magenta denoting more positive values and lighter shades of blue denoting more negative values). The training progress
of seven differently initialized models is shown in orange. The same initializations were used for both training schemes.
Gradient descent simply updates all models towards the global optimum, as measured by the lowest loss. In contrast,
LFP distributes a reward throughout the model, updating parameters depending on their contribution. This results in an
implicit weight scaling, affects step size and update direction, and encourages finding a sparse solution, where possible.
Refer to Appendix A.7.1 for experimental details.

same as computing a gradient descent update), which is in O(1) given a single forward pass (Achtibat et al., 2024). I.e.,
theoretically, LFP requires one forward and one backward pass to update the model given a single batch of data. Note
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LeNetMLP

Figure 5: Comparison of test accuracy over time when training an Multi Layer Perceptron (MLP) (left) and LeNet
(right) using LFP vs. various other optimization methods. The training time of LFP is in the same order of magnitude a
for other training approaches that perform a backward pass. Note that an implementation of dlADMM compatible with
convolutional networks was not available. Time-axis is logscale. The diamonds mark the end of the first and last epoch
for each method. Refer to Appendix A.7.2 for experimental details.

that in practice, our implementations of LFP rely on the LXT library (Achtibat et al., 2024), which simply overwrites
the forward and backward passes and follows the above computational complexity. We also implement LFP for the
zennit library (Anders et al., 2021), which utilizes a version of gradient checkpointing for increased memory efficiency,
but in turn requires two forward passes and one backward pass per batch update.

To analyze computational overhead associated with LFP, we compare its performance and required clock time against
stochastic gradient descent, feedback alignment (Lillicrap et al., 2016), dlADMM (Wang et al., 2019), and a variant of
Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995). We chose these methods based on their applicability
to standard DNNs, distinctness in optimization strategy, and availability of implementation. Refer to Appendix A.7.2
for details on each method’s hyperparamters. We train a simple MLP and LeNet for 50 epochs on MNIST using the
above approaches, if applicable. As shown in Figure 5, LFP has computational overhead comparable to e.g. gradient
descent and feedback alignment, which also perform a backward pass.

3.5 LFP for non-ReLU Activations

We have shown in Section 3.3, that LFP-0, as formulated in Equation 4, is equal to weight-scaled gradient descent, but
may differ in the magnitude of updates. This does not hold for models whose activation functions are not partially linear
(as well as for the LFP-ε rule applied in practice), in which the updates caused by LFP and gradient descent may differ
more significantly (cf. also Appendix A.4). Consequently, we investigate empirically in the following Section whether
LFP generates meaningful update signals when applied to such models.

Table 3 compares performances of LFP-trained models across various activation functions (ReLU, SiLU, ELU, Tanh,
Sigmoid, and Heaviside Step Function, from left to right). These activations are further illustrated in Figure A.11. Note
that among these, LFP-0 would equal weight-scaled gradient descent only for ReLU activations. Refer to Appendix
A.7.3 for further experimental details.

We observe that LFP on ReLU-activated models outperforms all other activations (except for the VGG-like model,
where ELU wins instead). However, with SiLU, ELU and Tanh activations LFP generally also converges, albeit with
slightly lower performance — depending on the model and data. This is interesting, as there is no equivalence between
LFP and gradient descent for these activations (cf. Theorem 1, which relies on a subset of piece-wise linear activations),
but LFP still arrives at a good solution.

For the remaining activation functions, Heaviside and Sigmoid, LFP leads to (close-to) randomly performing models in
this experiment8. With LFP being applicable to Heaviside-activated models in theory, this result is initially surprising,

8Note that this random baseline varies strongly between ResNet-18 and VGG-16 for the ISIC2019 dataset. This dataset contains 9 extremely
imbalanced classes, with one class “NV” containing approximately half the total amount of samples. Depending on which class is favored, the
accuracy of randomly performing models can thus vary significantly.
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Table 3: Accuracy of LFP with different activation functions. Mean and standard deviation over three seeds were
evaluated. For all models except VGG-like, LFP on ReLU-models outperforms (underlined) all other activations.
However, for several not piece-wise linear functions (SiLU, ELU, Tanh) LFP achieves accuracies that are close to
that, showing that LFP is also able to train models with not partially linear activation functions. For reference, we also
provide gradient descent results in grey.

Model Data Activation
ReLU SiLU ELU Tanh Sigmoid Heaviside9

VGG-like
Cifar10 82.2±0.4 77.1±0.6 82.7±0.4 78.8±0.2 10.0±0.0 10.0±0.0

84.1±0.4 85.3±0.3 85.2±0.3 80.7±0.1 10.0±0.0 16.0±0.5

Cifar100 49.0±0.6 45.7±0.6 51.0±0.3 20.6±0.6 1.0±0.0 1.0±0.0
52.0±0.6 55.8±0.6 55.5±0.4 51.1±0.3 1.0±0.0 2.4±0.1

VGG-16

CUB 72.9±0.2 72.6±0.5 0.5±0.0 1.0±0.9 0.5±0.0 0.5±0.0
71.6±0.1 71.7±0.3 69.9±0.4 5.3±3.9 0.5±0.0 2.8±0.1

ISIC2019 86.5±0.2 84.8±0.4 80.0±0.6 50.6±0.0 50.6±0.0 50.6±0.0
87.1±0.2 86.9±0.1 86.9±0.3 50.6±0.0 50.6±0.0 54.5±0.1

Food-11 91.7±0.2 91.2±0.5 91.0±0.4 30.9±15.4 14.9±0.0 14.9±0.0
91.9±0.2 91.2±0.0 90.7±0.1 31.3±23.2 14.9±0.0 33.0±0.2

ResNet-18

CUB 66.7±0.3 54.2±0.2 47.4±0.3 12.4±1.5 0.5±0.0 0.5±0.0
70.4±0.3 63.5±0.6 47.9±0.3 16.5±0.3 3.7±0.1 1.5±0.1

ISIC2019 85.1±0.6 80.3±0.2 77.3±0.5 72.9±0.7 17.7±0.0 17.7±0.0
86.0±0.6 84.8±0.2 82.4±0.3 78.8±0.3 69.5±0.3 54.5±0.3

Food-11 90.9±0.5 86.8±0.5 82.4±0.4 76.0±0.7 11.0±0.0 11.0±0.0
91.7±0.1 88.7±0.3 86.4±0.4 82.2±0.3 71.2±0.5 29.8±0.2

especially combined with the above-random performance of gradient descent. We hypothesize that such models may
be difficult to train in practice, since the Heaviside function has no decreasing slope before evaluating to zero, and
thus, in classical ANN architectures, leads more easily to dead neurons than other, comparable activations, e.g., ReLU.
We investigate this effect more closely in Section 3.6 and provide a solution for LFP. We further show that Heaviside
activations cause no issues for LFP when a different model type is used, i.e., in the context of SNNs in Section 4.2,
which accumulate stimuli over time and thus may be more robust to dead neurons.

Sigmoid, on the other hand, is equal to a scaled and shifted Tanh function. As LFP is generally able to train Tanh-
activated models, this illuminates a requirement of LFP: Activation functions need to map positive values to [0, ∞]
and negative values to [−∞, 0]. Otherwise, pre-activation and post-activation may be differently signed, and the
accumulated (post-activation) reward (cf. Equation 3, ri) cannot be used directly as the (pre-activation) reward (cf.
Equation 2, rj) in order to further backpropagate feedback10. We note, however, that this requirement is rarely not
fulfilled in state-of-the-art deep learning models; consequently, it only impacts the applicability of LFP to non-deep-
learning machine learning applications in practice. The Tanh activation fulfills this requirement, but Sigmoid does not. In
comparison, for gradient-based training, fulfilling this property is not a strict requirement, but nevertheless advantageous,
as evidenced by the large performance gap between Tanh and Sigmoid activated models (Sigmoid-activated models
achieve above-random performance only for ResNet-18) for the gradient-descent baseline.

In general, we observe that the optimal configurations (i.e., underlined values in Table 3) for gradient-descent slightly
outperform the optimal configurations of LFP. This difference varies between models and datasets, but exceeds 1%
only in three settings. We attribute this performance gap to the additional implicit weight-scaling of LFP, which may
impact accuracy slightly negatively, but provide advantages in terms of model sparsity (cf. Section 4.1). In summary,
we find that LFP is able to train models whose activation functions are not partially linear; indicating that it functions as
a training paradigm in settings where it is not equal to weight-scaled gradient descent (also cf. Section 4.2, where the
condition on activations from Theorem 1 is also not fulfilled).

9Note that we investigate the reason behind LFP failing to train Heaviside-activated DNNs in Section 3.6, provide a solution, and demonstrate its
efficacy in Heaviside-activated SNN (cf. Section 4.2).

10If pre-activation and post-activation have different signs, the LFP formulas could be adapted heuristically by simply taking the oppositely signed
post-activation reward as pre-activation reward
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Figure 6: Effect of adding noise to activations during training on LFP and gradient descent performance on Heaviside-
activated DNNs. (Top row): Small MLP; (Bottom row): LeNet. We report the test accuracy of the final model (left) and
the percentage of zero activations (averaged over all batches within an epoch) after the last Heaviside for the first 50
epochs (right). Models with noise applied to activations during training are shown as dotted hatch and line, respectively.
Adding noise to activations during training helps (only) LFP, vastly increasing the achieved test performance.

3.6 Training Heaviside-activated DNNs with LFP

Although propagating rewards through Heaviside activations with LFP is feasible in theory, as LFP does not require the
computation of gradients, the results presented in Table 3 show a negative result. This finding is initially unexpected,
particularly in comparison to the gradient descent trained baseline models, which perform above random. Note, however,
that the models evaluated in Table 3 were pre-trained on ImageNet using gradient descent and employ a linear activation
in the final layer. It is therefore reasonable to expect that gradient descent would achieve above random performance in
these tasks by leveraging the pre-trained lower-layer parameters while updating only the final layer.

For LFP, we hypothesize that it fails to effectively train the Heaviside-activated DNNs in this experiment due to the
emergence of a substantial number of dead (i.e., always zero-activating) neurons during the initial training phase. Since
such neurons neither contribute nor propagate rewards backward, they effectively obstruct both forward and backward
information flow, thereby preventing the updating of lower layers. As discussed previously, this property makes the
algorithm more efficient and realizes a property of biological learning (Pozzi et al., 2020). We further observe that LFP
successfully trains the SNNs discussed in Section 4.2, despite their reliance on Heaviside activations. We attribute this
discrepancy to the noisy inputs and dynamic, time-dependent nature of SNNs that accumulate membrane potential over
time.

If this hypothesis is correct, an initial increase in inactive neurons should be observable when training Heaviside-
activated DNNs with LFP, but no such change should occur with gradient descent due to the zero-derivatives of the
Heaviside function. Furthermore, introducing a small degree of noise to activations during training (there seems to be
evidence for noisiness in biological neurons as well (Buhmann & Schulten, 1987)) should mitigate the issue of inactive
neurons, thereby enabling LFP to produce meaningful, albeit slightly noisy, updates. To evaluate this hypothesis, we
conduct experiments on the MNIST dataset, as illustrated in Figure 6. We test a three-layer MLP with full Heaviside
activations, including the final layer, and a LeNet with Heaviside activations in all layers except the last. The MLP
comprises linear layers with 120, 84, and 10 neurons, respectively. The LeNet architecture consists of two convolutional
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layers with 16 channels and a kernel size of 5, each followed by max-pooling with a stride of 2. Two subsequent linear
layers contain 120, 84, and 10 neurons for classification. Both models are trained with a learning rate of 0.1 and a batch
size of 128 for 300 and 400 epochs, respectively.

As shown in Figure 6, a rapid increase in inactive neurons occurs within the first few iterations when using LFP, whereas
no such effect can be observed for gradient descent. Moreover, introducing minor noise to activations effectively
mitigates this issue for LFP, leading to vastly improved test accuracy in the final Heaviside-activated model (Note
that no noise is applied during testing). Furthermore, despite the final layer of LeNet being linearly activated, gradient
descent achieves only random performance on that model. This suggests that the above-random performance of gradient
descent in Table 3 can be attributed to the advantageous pre-trained weights in conjunction with training of the linearly
activated final layer.

Note, however, that a limitation of this noise-based approach is the increased training time, requiring 300 epochs for the
MLP and 400 epochs for the LeNet. Different noise, or a more informed “drop-in” strategy may be able to resolve this,
however, we leave investigation into this to future work.

4 Applications

In the following, we will consider two specific applications for LFP, based on the above observations:

4.1 Application 1: Sparse and Prunable Models

In Section 3.3, we observed that in the investigated toy settings, LFP seems to lead to sparser models than gradient
descent, i.e., the resulting models have few comparatively large weights and many weights that are close to zero. Sparser
models utilize the available parameters more efficiently, in the sense that a larger number of connections can be pruned
(i.e., removed) before performance deteriorates, allowing for reduced memory requirements when storing the model. In
this Section, we explore this model sparsity property of LFP in more detail. Refer to Appendix A.7.4 for details on the
experimental setup.

For this purpose, we first confirm that our observations regarding weight distribution from Section 3.3 extend to
larger scale models as well. The layer-wise normalized weight distribution for LFP- and gradient-trained ResNet-18
models is visualized in Figure 7 (top). The bottom plot shows the average Gini coefficient (Hurley & Rickard, 2009) of
the visualized distribution at each layer, as a measure of sparsity. Note that we canonized (see Appendix A.7.4) the
BatchNorm layers of the ResNet into the preceding convolutional layers to account for their implicit re-scaling of weight
magnitudes. Results for more models are available in Figure A.6. We find that indeed, compared to gradient-trained
models, LFP-trained models are sparser, with more weights close to zero and few large weights, as well as higher Gini
indices. I.e., relative to the respective weight magnitude in each layer, the visualized percentiles up to the 75th are lower
for LFP than for gradient descent.

However, the fact that the weight distribution of an LFP-trained model is closer to zero does not necessarily imply
that its weights are sparser, in the sense that less weights are relevant. We therefore study further how this changed
weight distribution affects the prunability of the resulting models. Here, we first employ a magnitude-based pruning
criterion akin to Han et al. (2015). If a model retains performance for longer while being pruned under this criterion, it
either has a better connection between weight magnitude and weight importance or is practically sparser, with more
weights being safely removable. To test whether the latter case applies, we thus additionally employ a relevance-based
pruning criterion (Voita et al., 2019; Yeom et al., 2021; Hatefi et al., 2024). The pruning criteria are described in more
detail in Appendix A.7.4. The results of this analysis are visualized in Figure 8. LFP-trained models generally retain
performance better than gradient-trained ones under magnitude-based local pruning (left) and global pruning (middle),
i.e., the curve only starts decreasing at a higher pruning rate. This implies that both within each layer, and globally
across the whole model, there is a better weight magnitude-importance connection, or that more weights can be removed
from the resulting model. Since LFP-trained models also perform better under the relevance pruning criterion (right),
the latter is the case. Results for additional models and datasets are available in Figure A.9. Note that we observed the
final LFP-trained models to perform slightly worse than gradient-trained models during this experiment (cf. Figure
A.9), which we attribute to slightly slower convergence due to the increased sparsity. Furthermore, there are certain
few combinations of dataset, model, and pruning criterion, where gradient-trained models outperform the LFP-trained
models in terms of prunability (for instance, CUB, ResNet-34, and relevance-based pruning). Interestingly, these
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Figure 7: Sparsity of LFP-trained models vs. gradient-trained models. Top: Distribution of weight magnitudes, nor-
malized by the maximum absolute value per layer. Data is shown for ResNet-18 models, trained on the CUB dataset
using either LFP or gradient descent (Grad). BatchNorm layers were canonized into the preceding convolutional layers.
Black horizontal lines of each bar denote, from the bottom to the top, the 0-th, 25th, 50th, 75th, and 100th percentile of
weight magnitudes in each layer. Bottom: Gini coefficient of normalized weights at each layer, as a measure of sparsity.
A higher Gini coefficient implies higher sparsity. Relative to the layer-wise maximum magnitude, LFP-trained models
have a larger amount of smaller weights close to zero in each layer, indicating increased sparsity compared to the
gradient-trained models. This is confirmed by the Gini coefficient, where the score of the LFP-trained models is larger
or equal to that of gradient-trained models. Results are averaged over three seeds. Refer to Figure A.7 for unnormalized
weight distributions, and Figure A.6 for weight distributions of additional models.

cases are restricted to magnitude-based local pruning and relevance-based global pruning. Nevertheless, LFP-trained
models seem to retain performance better in the vast majority of settings. Also note that, since LFP is equivalent to
weight-scaled gradient descent in ReLU models (cf. Theorem 1) the above results also align with the observations of
Kim et al. (2020).

In combination, the above results demonstrate how LFP results in increased network sparsity as the model is incentivized
to utilize the available connections efficiently. LFP-trained models are thus more resistant against pruning, and can
retain performance even when a larger amount of parameters is removed.

4.2 Application 2: Gradient-Free Training

As discussed previously, LFP functions as a gradient-free learning algorithm, which makes it readily applicable to
models that contain non-differentiable components. Consequently, LFP is well-suited for training a broader range of
models than those trainable through gradient-based methods, including some overlap of models that both methods can
be applied to.

In this section, we demonstrate the versatility of LFP by applying it to train a Spiking Neural Network (SNN), a
neuromorphic recurrent neural network architecture. SNNs process information in the form of binary signal sequences
known as spikes, mimicking the functionality of biological neurons. When implemented on specialized neuromorphic
hardware, SNNs enable event-based and energy-efficient processing while requiring less memory compared to conven-
tional network architectures (Maass, 1997; Ponulak & Kasinski, 2011). However, the binary activation functions in
SNNs present a challenge: their gradients are either undefined or zero, rendering direct application of gradient-based
learning methods infeasible. In practice, this issue can be mitigated by replacing the network during the backward pass
with a differentiable approximation. Such approximations, however, could be extremely inefficient when implemented
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Figure 8: Test set accuracy over the percentage of pruned weights. BatchNorm layers were canonized into preceding
convolutional layers prior to pruning (cf. Appendix A.7.4). Results are shown for three pruning criteria (left to right:
pruning weights with the smallest magnitude within each layer, pruning weights with the smallest magnitude globally,
and pruning weights with the smallest relevance globally). LFP-trained models are able to retain performance for
longer when pruned based on weight magnitude, both locally and globally. Interestingly, LFP-trained models also retain
performance better under the relevance-based pruning criterion, indicating that the resulting models are indeed sparser
and use fewer weights to solve a given task. Results are averaged over three seeds, with the shaded area showing the
standard deviation across seeds. Refer to Figure A.9 for results on additional models and datasets, and to Appendix
A.7.4 for more details w.r.t. the pruning algorithms.
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Figure 9: Final test accuracies after three epochs of training with different learning rates. Left: SNN based on a fully-
connected MLP architecture, right: SNN with a LeNet backbone. The diamond marks the highest performance. LFP
achieves high accuracies across a wide range of learning rates. The top performance of LFP-ε and surrogate-enabled
gradient descent (Surr.+Grad) are comparable, where the latter yields a slightly higher top accuracy. Direct application
of gradient descent (Grad) does not yield any improvement at all (since learning here is not possible as dw

dL = 0). More
details on the hyperparameters and setup are provided in Appendix A.7.5. Results are averaged over three seeds, with
the shaded area showing the standard deviation across seeds.

directly in hardware, as the (binary) activation functions would need to be replaced by continuous surrogates (Pfeiffer &
Pfeil, 2018). LFP offers a training paradigm for SNNs that overcomes this limitation by propagating rewards directly
through the non-differentiable spiking activations.

To demonstrate the effectiveness of LFP, we trained two types of SNN architectures on the MNIST handwritten digit
classification task: a fully-connected network and a convolutional LeNet architecture. See Appendix A.7.5 for further
details. For comparison, we also trained both architectures using surrogate-enabled gradient descent.

Figure 9 displays the final test set accuracies obtained for various learning rates. We find that LFP-ε-based training
achieves high accuracies across a wide range of learning rates. The highest accuracies obtained via LFP and surrogate-
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Deeper2024 ResNet2024

Figure 10: Test accuracies over epochs of training two larger SNN-architectures on Cifar10 data. Architectures are
inspired by the equally named ones from https://github.com/aidinattar/snn. Results are plotted for the
learning rate which yielded the best performing run amongst the learning rates we investigated. LFP outperforms both
gradient descent and surrogate gradient descent after a few epochs. More details on the hyperparameters and setup are
provided in Appendix A.7.5. Results are averaged over three seeds, with the shaded area showing the standard deviation
across seeds.

Figure 11: Evaluation of train accuracy trajectories for the Deeper2024 SNN trained on Cifar10 with LFP, R-STDP, and
gradient-based training enabled by substantial model augmentation. It is important to note that R-STDP sequentially
trains each layer, thus train accuracy metrics only become available upon reaching the final layer, which occurs after
approximately 7500 seconds. Due to the large training time of R-STDP we report results only for ten epochs in this
figure. While both LFP and surrogate gradient descent achieve similar performance levels (which increase even further
with additional epochs, cf. Figure 11), R-STDP performance remains close to random. Refer to Appendix A.7.5 for
experimental details.

enabled gradient-based training are comparable, albeit LFP results in a slightly lower top accuracy for both trained
architectures. Consistent with the experiments in Section 3.3, we observe that LFP performance saturates at lower
learning rates compared to gradient-based training. Also for other hyperparameters, such as the sequence length used
to encode data and the decay rate of the internal state of the spiking neurons (see Appendix A.6), LFP and gradient
descent show different sensitivities. Specifically, for the LeNet architecture, LFP performs worse than surrogate-enabled
gradient descent when encoding the training data with smaller sequence lengths, while it performs better for higher
decay rates of the internal neuron states, see Figure A.10 in the Appendix.

We further extend this experiment by training two larger convolutional SNN architectures on Cifar10 data (Figure 10).
Notably, LFP outperforms both gradient descent and vanilla gradient descent after a few epochs on both models. We
also applied LFP with surrogate in the backward pass as a sanity check, which yielded the exact same curve as LFP
without surrogate and is thus not visualized in the figure.

In addition to performance, we compare the training efficiency of different methods. Here, we additionally apply
R-STDP (Mozafari et al., 2018), an alternative gradient-free learning framework for SNNs that independently trains
each layer based solely on its respective inputs and outputs, as discussed in Section 2. The findings are illustrated
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in Figure 11. LFP has similar time complexity to gradient descent and is faster than R-STDP. In this setting, LFP
outperforms both gradient descent and R-STDP in terms of accuracy (also cf. Figure 10).

Overall, our results show that LFP-based training of SNNs efficiently achieves high accuracies comparable to (or
even exceeding) those obtained via surrogate-enabled gradient-based training for different architectures across various
hyperparameters and different underlying architectures. This makes LFP a promising alternative for SNN training,
especially in hardware implementations where surrogate gradients might be impractical.

5 Discussion

In this work, we introduce LFP, a novel XAI-based paradigm for training neural networks that decomposes a global
reward signal into neuron-wise local rewards to update parameters without requiring the computation of gradients.

We show empirically and theoretically, that in supervised classification settings, LFP converges under the right choice of
hyperparameters. While our convergence proof relies on models containing piecewise linear activations, we demonstrate
experimentally that LFP also converges for other activations, such as SiLU, ELU, and Tanh. We further identify
several strengths of LFP, among these, the increased sparsity of information representation in the resulting model, and
the independence from the differentiability of the model or objective. Based on these properties, we investigate two
applications: The increased prunability of LFP-trained models due to their sparsity and the approximation-free training
of SNNs. In the former setting, we show how LFP-trained models use fewer weights to solve a given task and retain
better performance at higher pruning rates compared to gradient-descent-trained models. In the latter setting, LFP is
able to train SNNs with no performance trade-off compared to (approximative) gradient descent, but without requiring
approximation of the Heaviside step activations during the backward pass. In summary, we provide a proof-of-concept
for the novel LFP training paradigm, observing that the method has several applications and — with future research
beyond this work — further potential to develop.

5.1 Strengths and Limitations of LFP

Consequently, we summarize the strengths and limitations of LFP as follows:

Strengths. Firstly, LFP can utilize both differentiable and non-differentiable objective functions. While differentiable
objectives as employed e.g. for supervised gradient descent can be reformulated as rewards for LFP, the reverse is
not always the case. Despite this, LFP is closely related to gradient descent, with similar computational efficiency
and convergence properties, but requires no gradient computation and can thus train non-differentiable models. This
includes, e.g., Heaviside step function-activated SNNs, where LFP converges to similar (or even better) performances
as (approximative) gradient descent but does not require approximation in the backward pass, easing the adoption of
neuromorphic hardware. Secondly, LFP finds sparse solutions without compromising accuracy. The resulting models
consequently retain performance better under pruning. In combinations, these properties have promising implications
towards utilizing LFP for energy-efficient AI in future work — especially in state-of-the-art applications such as
deploying Large-Language models in energy- and memory-restricted applications.

Limitations. Nevertheless, there are several limitations to the applicability of LFP: Firstly, it assumes that the model
consists of neurons ϕ(h(a)) where h(a) is a linear function of a and ϕ an optional nonlinearity. This is the case, e.g.,
for neural networks, but does not include the same wide range of functions optimizable by gradients. Nevertheless, this
assumption is met by deep learning applications, where LFP is best suited. Secondly, while activations do not need to be
differentiable, they do need map positive values to [0, ∞] and negative values to [−∞, 0], although this requirement is
usually satisfied by deep learning models in practice. Thirdly, connections that do not contribute in the forward pass will
not be updated and will not propagate feedback backward. This originates from the LFP assumption of zero as a neutral
value, inherited from LRP. Consequently, the backward pass through and update of a connection is blocked by either
the corresponding activation or parameter being zero (cf. gradient descent, where backward passes are only blocked
through zero parameters at a connection and, vice versa, parameter updates are only blocked through zero activations,
offering more options to escape dead neurons). Note, however, that this behavior is closer to the biological reality
(Pozzi et al., 2020), enables sparse and thereby energy-efficient updates, and — if desired — can largely be mitigated in
practice by utilizing a momentum term or drop-in strategies such as adding noise to activations in the forward pass.
Finally, the proposed reward propagation through BatchNorm layers (cf. Section 3.1.4) is a novel contribution and
needs further testing in different models and in company with different LFP rules. However, in our experiments, models
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that contained BatchNorm layers reached comparable accuracies in our experiments whether they were trained by LFP
or gradient descent, which makes the rule seem promising for LFP- and LRP-applications alike.

5.2 Future Work

This paper focuses on introducing Layer-wise Feedback Propagation, demonstrating its convergence, and suggesting
some applications of this novel training method. For LRP, which LFP leverages to distribute rewards, there exist several
rules specific to explaining certain types of models or layers. Not all of these rules may translate well to LFP (due
to the diverging goals of explaining vs. training, cf. Appendix A.5), or they might require non-trivial adaptations.
Further LFP-rules for BatchNorm layers and transformer architectures (cf. Achtibat et al. (2024) and Appendix A.9)
nevertheless seem worthwhile to explore in follow-up works, as they would enable the application of LFP to a wider
range of architectures and state-of-the-art settings. In this work, we utilize LRP to obtain local rewards for the update
in Equation 4. Exploration into alternative sources for this local reward seems promising, e.g. ones that do not rely
on a backward pass, especially for training efficiency in SNN-applications. Similarly, we investigate LFP in-depth
for supervised classification in this work.In the future, exploration of other learning problems (such as regression, cf.
Appendix A.8) and comparison with a larger number of training techniques would be interesting, especially in the
context of reinforcement learning, which LFP is related to. We furthermore leave an in-depth investigation of additional
hyperparameters, e.g., the choice of ε, or thorough exploration of potential reward functions to future research.
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A Appendix

A.1 Proof-Of-Concept with Additional Activations

In Section 3.3 we demonstrated the convergence of LFP for ReLU-activated models in toy settings. Here, we investigate
the efficacy of LFP for training models with other activations — of which several are not piece-wise linear and thus not
covered under Theorem 1.

We use the same experimental setup as for Figure 3 (also cf. Section A.7.1), but insert an additional activation after the
last linear layer. Otherwise, due to the simplicity of the toy data, a learning algorithm may solve the given tasks while
ignoring the previous layers, and thus bypass the activation functions that we vary in this experiment.

Results are shown in Figure A.1. LFP generally results in the expected decision boundaries. Nevertheless, there is
some variation between activation functions. Specifically for Heaviside, while the test accuracy is clearly better than
random, and the model has clearly been somewhat optimized to solve the task, accuracy and resulting boundaries
are considerably worse compared to other activation functions. Furthermore, during training, we observed a high
dependence on initialization for Heaviside-activated models — even in the simple toy settings considered here. We
hypothesize that while the update signals are sensible, Heaviside activations make standard neural network training
simply too unstable (but this may not be the case for other types of architectures). This corresponds well to our results
in Sections 3.5, 3.6, and 4.2.
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Figure A.1: Additional decision boundaries for the three toy datasets from Figure 3 with other, non-ReLU activation
functions (also cf. Figure A.11). The test accuracy of the corresponding model is shown in the upper right corner of
each plot. LFP is able to train models with all of these activations - not only the piece-wise linear ones covered by
Theorem 1.
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A.2 Proof of Theorem 1

Proof. In the interest of preciseness, let a
[l]
i denote the i-th neuron in the l-th layer of the network and w

[l+1]
ij the weight

corresponding to the connection of neuron a
[l]
i to a

[l+1]
j . Similarly, let r

[l]
i denote the reward corresponding to neuron a
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holds for all hidden layers of the network by inverse induction from the last layer before the output l = L to the first layer
l = 1. For calculating the output activations oc, we use a linear activation function s.t. oc = z
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For the induction step, assume now that the equality in Equation A.1 holds for layer l + 1. The following equation
follows from the formula for relevance propagation:
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Thus by induction Equation A.1 holds for all hidden layers l. We apply Equation A.1 to the formula for the reward
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Inserting the reward defined in the statement of the theorem, we derive the following form of the reward:
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The update step of LFP in Equation 4 is given by
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so the update is equivalent to weight-scaled gradient descent:
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Note that while we proved the statement for ReLU functions with linearly activated outputs, it in fact holds that for
weight-scaled gradient descent with any activation function ϕl

i(zl
i) = dϕl

i(zl
i)

dzl
i

· zl
i, Theorem 1 yields an equivalent

LFP-0-reward with equivalent weight updates.

A.3 LFP with Reward from Equation 17

While we observed reward #3 from Table 2 to converge well in our experiments, LFP can also backpropagate rewards
that do not have a corresponding loss function in the sense of Theorem 1, such as non-differentiable rewards, and still
converge. To shortly demonstrate this, we repeat the experiment from Figure 3 on the first toy dataset (“Blob Dataset”,
cf. Appendix A.7.1) with the reward function from Equation 17.

As shown in Figure A.2, LFP is also able to converge in this setting under the right choice of hyperparameters (e.g.,
learning rate 3 · 10−4). However, training is comparatively unstable and highly dependent on hyperparameters (cf.
Figure 3, where training is far more stable and 100% accuracy is reached for more than one learning rate under the
same conditions using a different reward). As the reward from Equation 17 does not employ a convergence mechanism
and leverages less fine-grained information of the closeness of the prediction to the ground truth (cf. reward reward #3
from Table 2), this is to be expected.

Nevertheless, this result shows that LFP converges in settings beyond those where it is equivalent to weight-scaled
gradient descent (cf. Theorem 1).

A.4 Differences between LFP and Gradient Descent Updates

Theorem 1 indicates equivalence between LFP and gradient descent under specific conditions, that are generally not met
in practice (e.g., we utilize LFP-ε, which violates one of the conditions). Here, we show that if Theorem 1 is not met,
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Figure A.2: LFP with reward #2 from Table 2 on toy data (“Blob Dataset”). Middle: Test accuracies over learning rates.
The marker denotes the best-performing setting. Left: Decision boundary for the best-performing setting. Right: Train
accuracy over training iterations for the best-performing setting. While training seems unstable compared to e.g. the
results of Figure 3, there exists a choice of hyperparameters where LFP using this reward solves the task well. Note that
the reward used here does not have a corresponding loss function in the context of Theorem 1. Results are averaged
over 5 randomly drawn instances of the toy data, with the shaded area showing the standard deviation across draws.

LFP employs a fundamentally different update strategy, even on extremely simple models. For instance, the condition
of specific piece-wise linear activations is not met by the SiLU non-linearity.

For this reason, we train a SiLU-activated one-neuron model for 10 iterations on a single datapoint using both LFP
and gradient descent, with the respective criterion aimed at either maximizing or minimizing the neuron’s output. This
mimicks the optimization of a single neuron in a larger model, given all inputs and other parameters are kept constant.
Weight initializations W1 = (0.5, 0.5) and W2 = (−1, −1) are deliberately placed to evaluate the pre-activation to
the right and left of the SiLU minimum for the single used datapoint, (1, 1). For maximization, we use an LFP-reward
of sign(oc) · (1 − σ(oc)) and gradient descent loss of −σ(logits). For minimization, we use the respective negative
criterion.

As shown by Figure A.3, weight updates of LFP do not follow the gradient when crossing into the decreasing area of
the SiLU function (top). This is detrimental when optimizing for the minimum (top left), since the minimum is crossed
as weights are constantly updated to decrease the pre-activation output. However SiLU has an upper bound of zero with
decreasing pre-activations, and as a consequence, the resulting error missing the minimum is negligible (cf. the minor
decrease in reward). I.e., in the worst case, SiLU will evaluate to zero and the neuron will simply not contribute to the
output anymore. On the other hand, when optimizing for the (infinite) maximum (top right), this interaction of LFP with
SiLU has a positive effect, as the model is updated in the correct direction of the global maximum (towards positive
pre-activations), no matter the initialization. Interestingly, we observe a similarly ambivalent behavior for gradient
descent. Here, updates are performed in the theoretically correct direction of the function slope, and the correct minimum
is found (bottom left), however, in the maximization task, the success of gradient descent is initialization-dependent,
with W2 becoming stuck in a local optimum (bottom right).

Consequently, both learning algorithms follow different update strategies with their respective strengths and weaknesses
in their interaction with SiLU, with LFP finding the correct but unreachable maximum, while gradient descent converges
to the correct minimum.

A.5 A note on LRP-Rules

LFP utilizes LRP to propagate reward signals through the model. LRP introduces several specialized rules (Montavon
et al., 2019; Achtibat et al., 2024) targeted at explaining specific types of layers or architectures, e.g., distinguishing
between positive and negative contributions. One may thus ask whether these rules can be extended to LFP as well.
The goals of LFP (training) and LRP (explaining) are not the same. Therefore, while some underlying paradigms
of LRP-rules, such as numerical stability (cf. Section 3.1.3) align between both goals and the corresponding rules
consequently translate well to LFP, several others do not. For instance, distinguishing between positively and negatively
contributing connections would lead to updating those connections to different degrees, potentially destabilizing training
and resulting in suboptimal solutions. We therefore do not extend most of these rules to LFP. Nevertheless, it may
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Gradient Descent - Minimization

LFP - MaximizationLFP - Minimization

Gradient Descent - Maximization

Figure A.3: Interaction of LFP (top) and gradient descent (bottom) with SiLU activation functions, shown on a toy
model consisting of a single, SiLU-activated neuron trained on a single datapoint as input. The task is to minimize
(left) or maximize (right) the neuron output. The respective optimum is shown in green, the post-activation output in
blue, and the respective criterion (reward or loss) in orange. Starting from two different weight initializations (W1
and W2), model updates over 10 iterations are shown in red. For LFP, when crossing into the area left of the SiLU
minimum, weights are updated in the (theoretically) wrong direction. We observe, however, that this behavior can be
both detrimental (top left) and beneficial (top right) to finding the optimum. This non-monotoneous area can furthermore
be detrimental to gradient descent as well, depending on the initialization (bottom right). We show in Table 3 that LFP
is able to train SiLU-activated models without issue.

make sense (or even be necessary in order to apply LFP to state-of-the-art models) to develop completely new layer- or
architecture-dependent rules for LFP (e.g., see Section 3.1.4, Appendix A.9, as well as Achtibat et al. (2024)), however,
we leave further research into this direction to future work.

A.6 Spiking Neural Networks

Spiking neural networks (SNNs) (Maass, 1997; Ponulak & Kasinski, 2011) are a special type of recurrent network built
out of spiking neurons that model biological processing in real brains more closely than conventional neurons in DNNs.
Spiking neurons have a membrane potential U ∈ R that dictates whether a neuron sends out a discrete spike or remains
inactive. The output of neurons in a SNN can be modeled using the Heaviside step function:

H (U [t] − θ) =
{

1 if U [t] > θ

0 else
(A.2)
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where
U [t] := βU [t − 1] + WX[t] − θ H (U [t − 1] − θ) . (A.3)

In Equation A.3, the hyperparameter β ∈ (0, 1] controls the decay rate of the membrane potential, while θ ∈ R
represents the threshold that determines the membrane potential required for the neuron to fire. The matrix W represents
the learnable parameters associated with the input connections from the preceding layer’s output X[t]. The final term
in Equation A.3 resets the membrane potential after the neuron fires. For further details, refer to Maass (1997) and
Eshraghian et al. (2021).

A.7 Details on Experiments

Of the experiments in this work, the ones in Sections 3.3, 3.4, and 3.6, as well as Appendix A.1, A.3, A.4, A.8, and A.9
ran on a local machine, while all other experiments ran on an HPC Cluster.

The local machine used Ubuntu 20.04.6 LTS, an NVIDIA TITAN RTX Graphics Card with 24GB of memory, an Intel
Xeon CPU E5-2687W V4 with 3.00GHz, and 32GB of RAM.

The HPC-Cluster used Ubuntu 18.04.6 LTS, an NVIDIA A100 Graphics Card with 40GB of memory, an Intel Xeon
Gold 6150 CPU with 2.70GHz, and 512GB of RAM. Apptainer was used to containerize experiments on the cluster.

The code for all experiments was implemented in python, using PyTorch (Paszke et al., 2019) for deep learning,
including weights available from torchvision, as well as snnTorch (Eshraghian et al., 2021) for SNN applications.
matplotlib was used for plotting. The implementation of LFP builds upon zennit (Anders et al., 2021) and LXT (Achtibat
et al., 2024), two XAI-libraries.

Seeds were chosen using the $RANDOM shell command, and the following function was used to set them for the
experiments:
1 import torch
2 import numpy as np
3 import os
4 import random
5
6 def set_random_seeds(seed):
7 torch.manual_seed(seed)
8 torch.cuda.manual_seed(seed)
9 torch.cuda.manual_seed_all(seed)

10 np.random.seed(seed)
11 random.seed(seed)
12 torch.manual_seed(seed)
13 os.environ[’PYTHONHASHSEED’]=str(seed)
14
15 torch.backends.cudnn.benchmark=False
16 torch.backends.cudnn.deterministic=True
17 torch.backends.cudnn.enabled=False

A.7.1 Proof-of-Concept

Small ReLU-activated MLPs were trained on three toy datasets with LFP-ε and reward #3 from Table 2 (as well as
stochastic gradient descent with categorical cross-entropy loss) using a batch-size of 128 and momentum of 0.95.
The MLPs each consist of three dense layers with 32, 16, and n neurons, respectively, and are visualized to the right
of Figure 3. n refers to the number of classes, which vary between 2 and 3 depending on the dataset. The models
were trained for a large number of different learning rates, chosen according to the following formula: a ∗ 10b, with
a ∈ [1, 2, ..., 10] and b ∈ [−10, −9, ..., 3]. We used the following toy datasets:

Blob Dataset: 1000 training samples and 100 test samples were drawn using the scikit-learn function skdata.

make_blobs with two classes, centered at [1, 1] and [2, 2], respectively, and a cluster standard deviation of 0.2. Models
were trained on this dataset for 10 epochs.

Circle Dataset: 10000 training samples and 500 test samples were drawn using the scikit-learn function skdata.

make_circles with two classes, using a cluster standard deviation of 0.2 and a scale factor of 0.05. Models were trained
on this dataset for 10 epochs.
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Swirl Dataset: 10000 training samples and 500 test samples were drawn for three classes in the shape of a swirl, similar
to the toy dataset used in Yeom et al. (2021). Models were trained on this dataset for 15 epochs.

Refer to the supplied code11 for more specifics on dataset generation. We did not employ seeding for this experiment
but instead averaged all results over five different versions of each dataset.

For the results shown in Figure 4, we instead used a version of the Blob Dataset with classes centered at [−1, −1] and
[1, 1], respectively. We further employed a single-neuron model without bias trained using either gradient descent and
binary cross-entropy loss or LFP-ε and reward #4 from Table 2. We trained this model for one epoch using a learning
rate of 0.5, batch size of 8, and no momentum. Initial weights were set manually at [0, 4], [4, 0], [2, 4], [4, 2], [−4, −4],
[−4, 4], and [4, −4] to cover some different proportions of w1 to w2. Results are shown for one seed only.

A.7.2 Computational Cost of LFP

We trained a small three-layer MLP and LeNet for 50 epochs on the MNIST dataset. The MLP consists of 120, 84 and
10 neurons, respectively. The LeNet utilizes two convolutional layers with 16 channels and kernel size of 5, followed by
two maxpooling layers, respectively. For classification, three linear layers (120, 84, 10 neurons) with two 50% dropout
layers in between are used. Both models utilize ReLU activations, except for the last layer.

These models are trained using the following methods and hyperparameters:

LFP-ε. We utilize a batch-size of 128, learning rates 0.1 and 0.01 for the MLP and LeNet, respectively, a momentum
of 0.9, an SGD optimizer and the reward #3 from Table 2.

Gradient Descent. We utilize a batch-size of 128, learning rates 0.1 and 0.01 for the MLP and LeNet, respectively, a
momentum of 0.9, an SGD optimizer and a categorical crossentropy loss.

Feedback Alignment. We adapt an implementation12 of the original method Lillicrap et al. (2016) and utilize a
batch-size of 128, learning rates 0.1 and 0.01 for the MLP and LeNet, respectively, a momentum of 0.9, an SGD
optimizer and a categorical crossentropy loss.

PSO. We adapt an implementation (Sansom, 2022)13 of the original method (Eberhart & Kennedy, 1995) and utilize a
batch-size of 1000, cognitive and social coefficients of 2, an inertial weight of 0.8, 1000 particles, a search space of
[−0.1, 0.1] and categorical crossentropy loss as a measure of fitness. To encourage exploration, we decay cognitive
and social coefficients in each particle by a factor of 0.95 for every iteration where the particle or swarm optimum,
respectively, was not updated. Coefficients are reset to the initial value when an update occurs, to encourage search near
the new optimum.

dlADMM. We utilize the implementation14 from the original paper Wang et al. (2019), only adapting the number of
neurons in the MLP to match the MLP used in the other methods. An implementation compatible with the LeNet was
not available.

A.7.3 Non-ReLU Activations

For this experiment, we applied LFP-ε with reward #3 from Table 2 and stochastic gradient descent with categorical
crossentropy loss to three different model architectures: A randomly initialized “VGG-like” model, consisting of
three convolutional blocks with two kernel-size 3 and stride 1 convolutional layers and a kernel-size 2 and stride 2
max-pooling layer each, followed by three fully-connected layers with two 50% dropout layers in-between. In order,
the convolutional layers have the following number of channels: 32, 64, 128, 128, 256, 256. The linear layers have the
following number of neurons: 1024, 512, number of classes. We further used the VGG-16 (Simonyan & Zisserman,
2014) and ResNet-18 (He et al., 2016) models, initialized by ImageNet weights available in torchvision (Paszke et al.,
2019).

Out of the above models, we trained the VGG-like model on the CIFAR10 and CIFAR100 tasks (Krizhevsky, 2009) for
50 epochs with a batch size of 128 using a one-cycle learning rate schedule (Smith & Topin, 2017) with a max learning

11https://github.com/leanderweber/layerwise-feedback-propagation
12https://github.com/jordan-g/PyTorch-Feedback-Alignment-Layers
13https://github.com/qthequartermasterman/torch_pso
14https://github.com/xianggebenben/dlADMM
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rate of 0.1, and gradient (in this case reward) norm clipping with a max norm of 3. The VGG-16 and ResNet-18 models
were trained on the Caltech-UCSD Birds-200-2011 (CUB) (Wah et al., 2011), ISIC 2019 (Tschandl et al., 2018; Codella
et al., 2018; Combalia et al., 2019) skin lesion, and Food-1115 classification datasets. Here, models were trained for
100 epochs with a batch size of 32, employing the one-cycle learning rate schedule (Smith & Topin, 2019) with a max
learning rate of 1e−3 (except for VGG-16 on Food-11, which performed better with a max learning rate of 1e−4), and a
weight decay of 1e−4.

All models were trained multiple times, with ReLU, SiLU (Elfwing et al., 2018), ELU (Clevert et al., 2016), Tanh,
Sigmoid, and Heaviside step functions for hidden layer activations. Results are averaged over three randomly generated
seeds.

For more details regarding data and training hyperparameters, please refer to the supplied code.

A.7.4 Application 1: Sparse and Prunable Models

For this experiment, we utilized the same datasets as detailed in Appendix A.7.3: Non-ReLU Activations. In addition to
the models used in Appendix A.7.3: Non-ReLU Activations (only the ReLU-activated versions), we also employed
ResNet-32 (He et al., 2016) and VGG-16 with BatchNorm (VGG-16-BN) (Simonyan & Zisserman, 2014) for the CUB,
ISIC2019, and Food-11 datasets. To these, we applied LFP-ε with reward #3 from Table 2 and stochastic gradient
descent with categorical crossentropy loss. We further used the same training setups as in Appendix A.7.3: Non-ReLU
Activations, except for slightly different learning rates: On both CIFAR10 and CIFAR100, we trained with a max
learning rate of 0.1. For VGG-16 and VGG-16-BN, we used a max learning rate of 1e−3 and for ResNet-18 and
ResNet-32, a max learning rate of 5e−3.

For visualizing the weight distributions in Figures 7, A.6, A.7, and A.8, we first apply BatchNorm canonization as
described below, and then divide the unsigned weights by their maximum value.

For pruning, we only consider methods without subsequent re-training or fine-tuning of the model and always prune
a given percentage of connections (as opposed to, e.g., pruning all connections with some importance score below a
given threshold). We only consider unstructured pruning, and only apply pruning to convolutional layers, as done by
Yeom et al. (2021). We also canonize all BatchNorm layers into the preceding convolutional layers before computing
pruning criteria (resulting in a functionally equivalent model), for two reasons: firstly, to be able to correctly apply the
relevance-based pruning criterion (Yeom et al., 2021), and secondly, to be able to apply the global magnitude-based
pruning criterion, since BatchNorm layers can lead to arbitrary weight magnitudes in the preceding layer as they
are invariant to weight scale (van Laarhoven, 2017). To determine the pruning criterion, we applied the following
algorithms:

Magnitude-based Pruning: Here, connections are simply pruned based on the magnitude of their weights, similar to
Han et al. (2015). It is assumed that the lowest magnitude weights are the least important, and consequently, they are
removed first. We consider both local and global variants of magnitude-based pruning. The former applies the pruning
criterion layer-wise, removing the same percentage of connections from each layer at each pruning step. The latter
considers all layers at the same time when computing the pruning criterion, removing a percentage of connections from
the whole model at each pruning step. Global pruning usually performs better but can lead to layer collapse (Tanaka
et al., 2020).

Relevance-based Pruning: As suggested by Yeom et al. (2021), we also apply a global relevance-based pruning
criterion. Specifically, we apply LRP-ε to the model (this is different to Yeom et al. (2021), who use LRP-z+), summing
relevances of each connection across the whole test dataset. The absolute summed relevance of each connection is used
as a criterion for pruning.

All results in this experiment are averaged over three randomly generated seeds. For more details regarding data,
training, and pruning hyperparameters, please refer to the supplied code.

A.7.5 Application 2: Spiking Neural Networks

For the results in Figure 9, LeNet and multilayer perceptron (MLP) architectures were trained on the MNIST dataset
(LeCun et al., 1998) for image classification. The LeNet architecture comprised two successive convolution blocks

15https://www.kaggle.com/datasets/vermaavi/food11
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followed by a final MLP block. Each convolution block contained a convolution layer (12 and 64 channels, respectively)
with 5×5 kernels, stride 1, and no input padding. These were followed by max-pooling layers (2×2 kernels, stride
2) and Leaky Integrate-and-Fire (LIF) activation functions (described in Equation A.2-Equation A.3). The final MLP
classification block consisted of a dense layer with 1,024 LIF neurons, followed by another LIF non-linearity.
The MLP architecture consisted of three dense layers each followed by the LIF non-linearity. The dimension of the
hidden layers was set to 1,000.
For the LIFs activation function, we adapted the implementation from Eshraghian et al. (2021). To enable gradient-based
training, we employed a surrogate function s : R → R in the backward pass, defined as:

s(x) = x

1 + 25 · |x|

We furthermore used a fixed LIF threshold of θ=1 and varying the decay factor β to values of 0.3, 0.6, and 0.9. The
sequence length L was varied across 5, 15, and 25 time steps. Both networks were trained for three epochs using a
batch size of 128. For optimization, we used the stochastic gradient descent algorithm. Learning rates of 10−3, 10−2,
5 · 10−2 7.5 · 10−2, 0.1, 0.25, 0.5 and 0.8 were investigated in combination with the one-cycle-lr-scheduler proposed in
Smith & Topin (2019). For stability, in this experiment, the backward pass was normalized by the maximum absolute
value between layers. Additionally, we utilized the adaptive gradient clipping strategy proposed in Brock et al. (2021).
The experiments were performed across three different random seeds, with results averaged.
For the gradient-based training, the categorical cross-entropy loss was employed between the one-hot encoded target
classes and the output spikes per step. The resulting values were averaged across the batch and the number of steps to
obtain the final loss16.
The LFP training methodology requires a reward function. For the SNNs experiments, the static MNIST images are
encoded into the required input sequence through constant encoding. Specifically, a given image Xi ∈ Rw×h×c is fed
sequentially into the network n times, yielding the input X∈Rn×w×h×c. When presented with the input X , the SNNs
produces an output sequence (ok,i)n

i=1 per class, where 1 ⩽ k ⩽ m is the class index. This can be written as an output
matrix O ∈ Rn,m. The predicted class of the model is determined by accumulating the spikes for each class and taking
the maximum. For a given model output with corresponding target label yc ∈ N, we rewarded the network with the
matrix R ∈ Rn,m, elementwise defined via

rc,i=
{

1−σ(
∑

i oc,i − n
2 ) if yc=c

σ(
∑

i|oc,i−1|− n
2 )−1 if yc ̸=c

(A.4)

where σ denotes the sigmoid function. This reward function encourages spikes for the correct class while discouraging
spikes for others, yet tolerates some spikes across all classes to yield a more stable signal that is less affected by noise.

For the experiments in Figures 10 and 11, we utilized the implementation of Mozafari et al. (2018) in
www.github.com/aidinattar/snn for the R-STDP training. Here, the Cifar10 data was encoded as pre-
viously outlined for MNIST. We implemented two convolutional neural networks, utilizing 25 time-steps per sample
and β = 0.9, adapting the deeper2024 and resnet2024 models from the R-STDP codebase. In conducting
gradient-based and LFP training, we modified the architectures by adding a final fully connected layer to facilitate
prediction. In our revised architectures, each block is composed of a convolutional layer, succeeded by a max pooling
layer and a LIF-layer. R-STDP ran only on the (original) deeper2024 model from the R-STDP codebase.

To enable gradient-based training, we employed a shifted arctan surrogate function in the backward pass, as per
(Fang et al., 2021). We investigated learning rates of 1e−3, 5e−4, and 1e−4 for gradient descent and LFP, where
the setting where the maximum accuracy was reached (lr 5e−4) are reported in the figure. For R-STDP we used the
hyperparameters of the reference implementation, only changing the number of time-steps to 25. We trained the LFP
and gradient descent models for 50 epochs each. For R-STDP, each layer was separately trained for 10 epochs. Refer to
the implementation17 for further details.
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Figure A.4: LFP-regression on the California Housing dataset. We report the MSE on the test set (left) and a scatter
plot of (test set) prediction vs. ground truth house prices (right). Note that house price 5 is equally distributed across
variation of the most predictive features in the dataset (despite strong correlation with house price and e.g. median
income overall) causing the random behavior of predictions at ground truth 5.

A.8 Extending LFP to Regression

In this work, we have focused on applying LFP for classification. In the following, we shortly outline how LFP can be
extended to regression models. This requires two adaptations from the classification-formulation in the paper: (1) A
different reward function and (2) (possibly) a reference point correction in the last, linearly activated layer.

The former (1) is relatively trivial. Given some examples (x, y) of the ground truth function y = g(x), and the model
output oc, suitable initial rewards oc include, e.g., oc = (yc − oc) · sign(oc) and rc = (yc − oc)3 · sign(ok). Note that c
does not correspond to a class, but rather an output dimension of the regression model here. These rewards consider the
direction of the difference between ground truth and prediction, and are proportional to rewards derived from gradient
descent with MSE and MSE-squared in the sense of Theorem 1, respectively.

The second (2) adaptation is more complex. LFP in the present classification setting implicitly utilizes a reference point
of zero when evaluating contributions, measuring how a z

[l+1]
ij shifts z

[l+1]
j away from zero (the reference point). For the

last, linearly activated layer of regression models, zero may not always be an ideal choice, and may require a dedicated
rule for successful application in regression scenarios. For applications of LRP in regression settings, the choice of
reference activation value is well motivated and explained in Letzgus et al. (2022). Choosing a suitable reference value
for LRP depends on the intended explanation target. However, setting such reference during active training, might
be non-trivial, as it strongly affects the magnitude and direction of parameter updates, and should be investigated in
dedicated future work.

We provide an initial experiment training a small MLP regressor for 100 epochs on the California Housing Dataset with
LFP (predicting house prices). The MLP consists of three layers with 256, 128, and 1 neurons, respectively. Except
for the last, linearly activated layer, we use ReLU activations, and apply dropout with a probability of 50% after the
first two linear layers during training. We utilize a batch size of 128, a learning rate of 0.05, a momentum of 0.9, and
rk = (yk − ok)3 · sign(ok) and do not change the reference value from zero. In this example, the application of LFP can
be considered successful, achieving a final MSE of 0.33 on the test set. Notably, in this simple application, adaptation
of the reference value does not seem necessary.

A.9 Extending LFP to Transformer Models

While we do not investigate this in-depth in this work, the following Section briefly discusses how LFP could be
extended to train state-of-the-art transformer architectures.

These models mainly employ GeLU, SiLU or ReLU activations, which are handled by LFP out of the box, as they
are sign-preserving (e.g., cf. Table 3 for ReLU and SiLU; GeLU has a similar shape as SilU). They further employ
LayerNorm (Ba et al., 2016) instead of BatchNorm. LayerNorm normalizes across features instead of the batch, and
can thus be handled using the same rule as we used for BatchNorm (equation 11 and equation 12), except with mean
and variance computed across features instead of samples.

16This corresponds to the "cross entropy spike rate loss" in the implementation of Eshraghian et al. (2021).
17https://github.com/leanderweber/layerwise-feedback-propagation
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Figure A.5: LFP performance on a ViT over clock time (s). We report training (left) and test (right) accuracy for gradient
descent and LFP. While LFP provides a valid training signal even in such deep architectures, it is outperformed by
gradient descent, emphasizing the need for further research into more optimal propagation rules. Results are averaged
over 3 seeds, with standard deviation highlighted around each line.

In transformer models, the main challenge for LFP is propagation through attention layers, specifically the highly
nonlinear softmax function in the attention. The issue is described and solved in Achtibat et al. (2024) for LRP, but
obtaining neuron contribution (which LFP relies on) specifically for attention layers is still an active field of research.

The below experiment shows LFP applied to a Visual Transformer (Dosovitskiy et al., 2021), handling GeLU and
LayerNorm as described above, and otherwise adapting the rules suggested by Achtibat et al. (2024). These can be
directly translated to LFP since they do not alter propagation through any parameterized operations. We utilize a model
pretrained18 on ImageNet and fine-tune it on a small bean disease classification dataset19 for 100 epochs, altering
all parameters except for the embeddings. We utilize a batch-size of 32, momentum of 0.9 and learning rate of 2e−4

with an Adam (Kingma & Ba, 2015) optimizer. While LFP provides a meaningful training signal, with only a slight
increase in training time per epoch, it is outperformed by gradient descent in this experiment and converges much
slower, emphasizing the need for further research to extend it to state-of-the-art model architectures.

A.10 Additional Figures

18https://huggingface.co/google/vit-base-patch16-224-in21k
19https://huggingface.co/datasets/AI-Lab-Makerere/beans
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VGG-Like: CIFAR10

VGG-16: ISIC2019

ResNet-34: Food-11

Figure A.6: More normalized unsigned weight distributions, confirming observations on Figure 7.
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ResNet-18: CUB

Figure A.7: Original unsigned weight distributions, without maximum value normalization. (cf. Figure 7).
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VGG-Like: CIFAR10

VGG-16: ISIC2019

ResNet-34: Food-11

Figure A.8: Original unsigned weight distributions, without maximum value normalization. (cf. Figure A.6).
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Figure A.9: Pruning results, extending Figure 8. Note that we report the weighted accuracy for ISIC2019, due to the
severe imbalance of that dataset. While there is slight variance depending on the setting, and there are specific cases
where gradient-trained models seem more prunable at least for one out of the three criteria, the general trend from
Figure 8 holds, with LFP-trained models retaining accuracy for longer in the majority of cases.
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Figure A.10: Final test set accuracies for different hyperparameter settings in MLP and LeNet based SNNs. Top row:
Variation with sequence length of the encoded data. Values used: 5, 15, and 25 steps. Bottom row: Variation with decay
factor β. Values used: 0.3, 0.6, and 0.9. Three training methods (LFP-ε, gradient descent (Grad), and surrogate-enabled
gradient descent (Surr. + Grad)) are compared in each graph.

ReLU SiLULeakyReLU ELU Tanh Sigmoid Heaviside

Figure A.11: Illustration of the activation functions used in Section 3.5 and throughout the paper.
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