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Abstract001

Verbal fluency is a well-established experimen-002
tal paradigm, used to examine various aspects003
of human knowledge retrieval, linguistic pro-004
cessing, and cognitive performance as well as,005
more recently, human creative abilities. In this006
work, we investigate the predictive capacities007
of recent large language models, known for008
their ability to store knowledge and retrieve009
it with high accuracy and efficiency from their010
latent space. We focus on switching and cluster-011
ing patterns and seek evidence to substantiate012
them as two distinct and separable processes013
in creative semantic search. We prompt differ-014
ent transformer-based language models with015
verbal fluency items and ask whether metrics016
derived from the language models’ prediction017
probabilities or internal attention distributions018
offer reliable predictors of switching/clustering019
behaviors in verbal fluency. We find that to-020
ken probabilities, but especially attention-based021
metrics have strong statistical power when sep-022
arating between cases of switching and clus-023
tering, in line with prior research on human024
cognition.025

1 Introduction026

The processes underlying human creative abilities027

have been an important topic of research in several028

fields. Research in cognitive science suggests that029

semantic association and search are core aspects of030

creative thinking (Mednick, 1962; Gilhooly et al.,031

2007; Beaty and Silvia, 2012). Therefore, cre-032

ative abilities in humans are commonly tested and033

measured using semantic search tasks such as ver-034

bal fluency, in which participants are asked to list035

lexical items for a given category in a short pe-036

riod of time (e.g., name as many animals as pos-037

sible in 60 seconds) (Beaty et al., 2014a). Hu-038

man responses to such tasks exhibit a well-known039

search pattern, which has been termed “clustering040

and switching” or “exploitation and exploration”041

(Troyer et al., 1997). During clustering, humans042

generate sequences of words that belong to the 043

same subcategory, exploiting the neighbourhood 044

of previous items in the semantic space. As this 045

subcategory becomes increasingly exhausted, they 046

jump to other subcategories, shifting their atten- 047

tion to a different patch in their conceptual space. 048

Recent work suggests that clustering and switch- 049

ing are two fundamental components of semantic 050

search related to creative abilities and has aimed 051

to identify neurocognitive correlates of these pro- 052

cesses (Ovando-Tellez et al., 2022). 053

In this paper, we investigate whether recent trans- 054

former language models provide further evidence 055

for the hypothesis that creative semantic search 056

in verbal fluency involves two distinct, separable 057

processes related to clustering and switching. The 058

design of our experiments follows (Ovando-Tellez 059

et al., 2022), who tested correlations between the 060

occurrence of clusters and switches in participants’ 061

responses to fluency tasks and metrics for partici- 062

pants’ creativity, semantic network structure, and 063

brain connectivity. In our study, we replace these 064

metrics of human neuro-cognitive processes with 065

a set of probability and attention-based measures 066

computed with language models over human verbal 067

fluency sequences. We test whether these measures 068

provide predictors of clusters and switches in the 069

human sequences, e.g., whether attention is dis- 070

tributed differently in the LM when retrieving a 071

word within a cluster as compared to a switch. 072

Our motivation for studying clustering and 073

switching in verbal fluency using LMs is twofold: 074

First, we note that cognitive science has a long- 075

standing interest in computational models that cap- 076

ture human behavior in verbal fluency and other cre- 077

ative search tasks. Existing models in this area typ- 078

ically implement graph-based semantic networks 079

and explicit search algorithms on top of these net- 080

works (Hills et al., 2012; Zemla and Austerweil, 081

2017). We believe that LMs are an obvious alterna- 082

tive modeling approach worth exploring here since 083
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their implicit semantic representations and word084

prediction processes have been shown to excel in085

a variety of text generation and language produc-086

tion tasks. In this sense, LM-based correlates of087

clustering and switching would provide further ro-088

bust empirical support for current theoretical as-089

sumptions in cognitive science and demonstrate the090

potential of LMs to complement the landscape of091

computational approaches in this field. At the same092

time, we note that research on LMs is increasingly093

interested in testing the linguistic abilities of these094

models, including cognitive abilities related to lan-095

guage processing. For example, a number of recent096

studies have tested the extent to which surprisal or097

attention-based scores computed with LMs predict098

human reading times, providing a cognitively plau-099

sible account of processing difficulties in reading100

and language comprehension, cf. (Oh and Schuler,101

2022; Shain et al., 2024). In this sense, verbal102

fluency is an interesting paradigm for analyzing103

the abilities of LMs, complementing the landscape104

of existing probing tasks and analysis methods to-105

ward production-oriented tasks involving semantic106

search and creative abilities.107

In this study, we attempt to answer whether and108

how these metrics predict and separate between109

clustering and switching, as two central compo-110

nents of creative semantic search. Our results sug-111

gest that LMs provide novel and strong predictors112

for modeling human behavior in the verbal flu-113

ency task and that attention distribution in LMs114

has predictive power in accounting for clustering115

and switching.116

2 Background117

2.1 Verbal fluency118

The verbal fluency task is a neuropsychological test119

of verbal functioning that is commonly used to mea-120

sure cognitive performance in e.g. lexical knowl-121

edge and retrieval or executive control (Shao et al.,122

2014). We focus on categorical fluency, which in-123

volves repeated retrieval of lexical items for the124

same category. This gets more challenging when125

easily accessible words are exhausted and partici-126

pants are required to transition from fast, associa-127

tive processes to a more controlled semantic search128

(Demetriou and Holtzer, 2017). At a basic level,129

performance in verbal fluency is scored via the130

total number of correct words produced for a cate-131

gory, but more fine-grained analyses also include132

clusters and switches in produced word sequences,133

i.e., word chains that fall into the same semantic 134

subcategories or transitions between subcategories 135

(Troyer et al., 1997; Kim et al., 2019). Semantic 136

memory search as part of the verbal fluency task 137

plays an important role in creativity and associa- 138

tive thinking (Silvia et al. 2013; Beaty et al. 2014b; 139

Beaty and Kenett 2023, among others). Ovando- 140

Tellez et al. (2022) show that clustering is related 141

to divergent thinking, i.e., generating new and ef- 142

fective ideas, while switching is connected with 143

convergent thinking or combining available infor- 144

mation in creative ways, and both are characterized 145

by distinct brain connectivity patterns. 146

2.2 Linguistic and Cognitive Probing of LMs 147

Work on analyzing linguistic and cognitive capa- 148

bilities captured in LMs has become an important 149

area of research in computational linguistics and 150

cognitive science (Belinkov and Glass, 2019; Ba- 151

roni, 2022; Chang and Bergen, 2023; Binz and 152

Schulz, 2023; Strachan et al., 2024). One of the 153

most common paradigms in LM probing is behav- 154

ioral analysis, which treats the pretrained LM as a 155

black box and uses carefully controlled test suites 156

or experimental datasets from (psycho-)linguistics 157

to compare model outputs against human produc- 158

tions or judgments. This paradigm is useful for test- 159

ing whether LMs learn particular linguistic rules 160

and generalizations, in particular in the domain of 161

syntax (Warstadt et al., 2020), but provide very 162

limited insights into how underlying processing 163

mechanisms in LMs align to human language pro- 164

cessing and cognition, cf. (Baroni, 2022; Chang 165

and Bergen, 2023). 166

Work on probing LMs in terms of their ability 167

to account for mechanisms of language processing 168

and effects of processing difficulty often goes back 169

to the idea of “surprisal” (Hale, 2001; Levy, 2008; 170

Demberg and Keller, 2008; Smith and Levy, 2013). 171

Surprisal is defined as the negative log probability 172

of a word in context and has been demonstrated 173

to provide a very robust predictor for human pro- 174

cessing times (e.g., to reading times) when com- 175

puted with larger but also smaller language models 176

(Goodkind and Bicknell, 2018; Shain et al., 2024). 177

These findings lend support to expectation-based 178

accounts of sentence processing in psycholinguis- 179

tics, aligning word prediction processes in LMs 180

with humans’ anticipation of upcoming material in 181

sentence reading. A few recent studies explored 182

further predictors complementing surprisal. Most 183

importantly for our study, Oh and Schuler (2022) 184
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{ Fish,
Water}

{ Canine,
Fur,

NorthAmerica}

{Feline,
Pet }

{ Bird,
Pet }

{ African,
Canine }

{ African,
Feline }

{ African,
Feline }

Sub-
categories: 

FishFoxCatParrotHyenaLionCheetahTokens:

100100Hard switches:

110100Soft switches:

Figure 1: An example for soft and hard switches. Soft switch is decided by looking back to the previous item, while
hard switch is decided based on all the previous sub-categories.

showed that predictors computed based on atten-185

tion distribution and distances from the internal186

layers of the LM yield very powerful predictors187

for self-paced reading times and gaze durations188

in naturalistic reading, lending empirical support189

to memory-based accounts of sentence processing.190

Thus, it has been proposed that the attention mech-191

anism in the transformer architecture of LMs might192

approximate aspects of memory and attention in193

human cognition (Ryu and Lewis, 2021; De Varda194

and Marelli, 2024). As memory is an important195

aspect of semantic search in the verbal fluency task,196

our study will examine both surprisal (or, more197

generally, probability-based) predictors computed198

at the LM’s output layer as well as attention-based199

predictors from the internal layers.200

However, although LMs are now frequently used201

as computational testbeds for theories of language202

processing and cognition, the field is still debating203

which of the many existing LMs can provide the204

most robust and cognitively plausible predictors205

of human processing. Oh et al. (2022) tested sur-206

prisal estimates from GPT-2 models of different207

sizes and showed that the surprisal computed with208

smaller model sizes achieved a better fit with hu-209

man reading times than larger model sizes. Similar210

observations have been made in (Kuribayashi et al.,211

2022; Oh and Schuler, 2023). Wilcox et al. (2023),212

on the other hand, trains LMs of small and medium213

size on a range of languages and finds that LM214

quality generally correlates with its psychometric215

predictive power. Therefore, in the following, we216

will rely on some less recent but widely used LMs217

such as BERT or GPT-2, but also include variants218

of more recent models available in different sizes.219

2.3 Computational Models of Verbal Fluency220

The computational modeling of verbal fluency data221

has received considerable attention in cognitive sci-222

ence research. Framing the production of verbal flu-223

ency responses as a general search task, some work224

tested different search strategies over graph-based225

representations of semantic spaces for their ability 226

to predict human fluency sequences on a word level 227

(Hills et al., 2012; Abbott et al., 2015; Zemla and 228

Austerweil, 2017; Avery and Jones, 2018). To a 229

similar end, other approaches make use of biologi- 230

cally inspired neural networks (Kajić et al., 2017) 231

or, more recently, pre-trained transformer models 232

(Nighojkar et al., 2022) and LMs (Heineman et al., 233

2024; Wang et al., 2025). 234

Complementary to this, other computational 235

work on verbal fluency focused explicitly on ana- 236

lyzing clustering-switching patterns in sequences 237

produced by humans. Some studies have explored 238

the use of distributional semantic representations 239

and word embeddings for scoring semantic fluency 240

data (Linz et al., 2017; Paula et al., 2018; Kim 241

et al., 2019; Alacam et al., 2022) or the ability of 242

pre-trained LMs in predicting category switches 243

(Heineman et al., 2024). We combine those ap- 244

proaches by using both word embeddings and LM 245

prediction probabilities as predictors for cluster- 246

ing/switching behaviors, but also include metrics 247

derived from attention distributions that reflect the 248

internal processing of the models. 249

3 Experimental Method 250

3.1 Data 251

We base our experiments on BIEFU (Alacam et al., 252

2022), a dataset of German verbal fluency re- 253

sponses, which covers a fairly high number of cat- 254

egories. The BIEFU data was collected from 100 255

participants and contains verbal fluency responses 256

that enumerate words for 10 different semantic cat- 257

egories (e.g., animals, hobbies, body parts). An 258

overview of the data is shown in Table 4 (App. A). 259

Soft and Hard Switches The BIEFU dataset in- 260

cludes manual annotations of lexical items with 261

semantic subcategories (as in Figure 1). Based on 262

these, we determine soft (fluid) and hard (static) 263

switches, following Zemla and Austerweil (2019). 264
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Seq: dog, cat, mouse, ...

pr-01 Animals: dog, [MASK]
pr-02 Animals: dog, cat, [MASK]

pr-11 Animals I know are dog, [MASK]
pr-12 Animals I know are dog, cat, [MASK]

Table 1: A (translated) sample of a human response
and derived LM prompts for two subsequent steps in a
verbal fluency sequence for autoregressive prompting.

A soft cluster switch occurs when the next word in265

a list does not share a sub-category label with the266

previous word, while a hard switch occurs when-267

ever the next word does not share a sub-category268

label with any of the previous words since the start269

of the last cluster. Soft switches are the most com-270

monly examined types of switches in the literature271

and we will focus on these in the following.272

3.2 Prompting273

To obtain prompts from human verbal fluency se-274

quences, Nighojkar et al. (2022) replaced the last275

item in a partial verbal fluency sequence with a276

mask token, cf. (1).277

(1) [C]s I know are wn−1−ct, . . . , the wn−1,278

and the [MASK] .279

Here, wn−1−ct (ct being the context size) is the ini-280

tial and wn−1 the penultimate item in a sequence281

produced for category C. [MASK] always repre-282

sents the last item. We adopt this scheme and itera-283

tively mask out subsequent items in each human-284

produced sequence, i.e., shift the masked token285

from left to right by truncating them at the po-286

sition of the masking token, cf. the prompts in287

Table 1. Prompt-0, which consists of a simple288

enumeration preceded by the category name, is289

added for comparison. Since LMs can be very sen-290

sitive to the specification of their prompts, we con-291

ducted further experiments with prompt design that292

addresses both auto-regressive and bidirectional293

prompt strategies with different wording variations,294

see Table 5 (App. B.2) for additional results on295

these.296

3.3 Language Models297

Since our investigation is one of the first to test298

the predictive power of LMs in distinguishing clus-299

tering and switching, we select basic transformer300

LMs that have also been widely used in the litera-301

ture on cognitive probing – GPT-2 (Radford et al.,302

2019), BERT (Devlin et al., 2019) and T5 (Raffel 303

et al., 2020). Next to these, we also include recent 304

open-source German or multilingual models that 305

come in different size – Bloom 7 (350m, 1b5, 1b7) 306

and XGLM (560M, 1b7) models. This model se- 307

lection ensures a representative comparison across 308

transformer architectures that employ different ver- 309

sions of the self-attention mechanism: BERT as a 310

bidirectional encoder model, GPT-2, and BLOOM 311

as uni-directional autoregressive decoder models, 312

and T5 as an encoder-decoder transformer. 313

3.4 Predictors of Switching and Clustering 314

We use generalized linear mixed-effect models to 315

test the predictive power of probability-based and 316

attention-based metrics derived from LMs to sepa- 317

rate clustering and switching in verbal fluency data. 318

In the following, we describe the predictors we 319

include in this statistical analysis. 320

3.4.1 Psycholinguistic Predictors 321

We implement a strong baseline model that predicts 322

clustering/switching based on fixed and random ef- 323

fects established in recent verbal fluency literature 324

(Michalko et al., 2023). These predictors are tempo- 325

ral order, task demand, Typicality, Inter-response 326

similarity. We add the participants and semantic 327

categories as a crossed random effect to the initial 328

model (m0). 329

Temporal order (TEMP). The normalized tem- 330

poral order (TEMP) corresponds to the current posi- 331

tion of the word in a sequence divided by the length 332

of that sequence (range between 0 and 1). This pre- 333

dictor captures the fact that words are more difficult 334

to produce the longer the sequences become. 335

Task demand (TD). This predictor captures the 336

fact that certain verbal fluency categories are sys- 337

tematically easier to enumerate than others, due 338

to their familiarity, frequency, and lexical speci- 339

ficity. For instance, categories like animals and 340

vegetables are easier to enumerate since they are 341

more frequent, while other categories like fabrics 342

or insects are less easily accessible. Following 343

Michalko et al. (2023), we manually group the ver- 344

bal fluency categories into three so-called “task 345

demand categories”. 346

Typicality (TYP). Next, we add a fixed effect that 347

captures the typicality of an item within a verbal 348

fluency category (TYP). TYP is calculated as the 349

logarithm of the absolute number of occurrences of 350
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a word among all items enumerated by all partici-351

pants within that particular category. See App. A352

for further detail.353

Inter-response similarity (IRS) We compute the354

semantic similarity of subsequent lexical items355

in a verbal fluency sequence. Here, we deviate356

slightly from Michalko et al. (2023) and use the357

cosine similarity between the items’ word embed-358

dings, computed with the ConceptNET Number-359

batch word embedding. This semantic space is en-360

riched with ConceptNet taxonomic relations (Speer361

et al., 2017), achieves the best performance in pre-362

dicting clustering and switching patterns in BIEFU363

data Alacam et al. (2022).364

Retrieval latency (RL) Our data records time365

stamps of every typed character in the verbal flu-366

ency sequence. We define retrieval latency as the367

time span as the offset between a preceding item368

and the onset of the next item. We calculate it by369

subtracting the offset of the first item from the on-370

set of the second item. The sequences with empty371

strings were omitted from the study since the re-372

trieval latency can not be interpreted for such cases.373

3.4.2 Probability-based Predictors374

Our first set of LM predictors is derived from word375

probabilities. We regard these as measures of re-376

trieval difficulty or predictability in sequence gen-377

eration, mirroring the notion of “expectation” in378

sequence understanding (Shain et al., 2024). We379

expect that clustering corresponds to less surpris-380

ing items, whereas switching should show higher381

surprisal and lower probabilities. To test this hy-382

pothesis, we consider the following predictors:383

Surprisal (Surp.) We transform word probabili-384

ties into surprisal scores, quantifying the informa-385

tion content it conveys in the context in which it386

appears. The surprisal score of a word w is calcu-387

lated as the negative log-likelihood of its probabil-388

ity score obtained by the previous calculation. We389

expect a positive correlation with the latency scores390

(i.e. the lower the surprisal, ≈ shorter RL).391

Surprisal(wi) = − log2 p(wi |w<i)392

Rankings (Rank). This predictor derives from393

the distribution of word probabilities and deter-394

mines the rank of the word w in this distribution.395

We expect a positive correlation with the latency396

scores (i.e. the lower the rank, ≈ shorter RL).397

Rank(w) = arg mini {p(w | context) : i = 1, 2, . . . , N}398

Entropy (Ent.). As another account of retrieval 399

difficulty in context, we include the entropy of 400

the word probability distribution, quantifying the 401

model’s uncertainty in the given context, regardless 402

of the probability or rank of the target item. We 403

expect a positive correlation with the latency scores 404

(i.e. the lower the entropy, ≈ shorter the RL). 405

Entropy(wi) = −
∑
wi

p(wi |w<i) log2 p(wi |w<i) 406

3.4.3 Attention-based Predictors 407

The second set of LM predictors derives from the 408

model’s internal attention patterns and distributions 409

as general measures of cognitive effort, related to 410

monitoring and shifting working memory and atten- 411

tion (Ryu and Lewis, 2021; De Varda and Marelli, 412

2024). We expect that switching corresponds to 413

higher cognitive effort, e.g., wider attention dis- 414

tributions across layers and heads, than clustering 415

which we expect to show more localized attention 416

patterns. 417

We extract the attention-based predictors consid- 418

ering different layers and attention heads in the 419

transformer architecture (144 heads in total for 420

the smaller LMs, 256 for the larger LMs). We 421

first transform the embeddings of tokens or hidden 422

states of a sequence to a triple of query (q), key 423

(k), and value (v) embeddings. The heads then 424

compute the attention weight between the query 425

and key vectors for all pairs of tokens in the input 426

prompt as soft-max-normalized dot products. 427

αij =
exp(qTi kj)∑n
l=1 exp(q

T
i kl)

428

The diffuseness of attention obtained from these 429

attention maps α can be calculated in different 430

ways. We follow (Clark et al., 2019) and con- 431

sider attention head entropy and distance between 432

attention distribution for subsequent items in the 433

sequence. 434

Average Attention-Heads Entropy (AHE). The 435

attention entropy is calculated in a similar way to 436

the probability-based entropy metric. The key dis- 437

tinction lies in its application to attention weight 438

distributions instead of a softmax-adjusted proba- 439

bility distribution. Subsequently, the attention en- 440

tropy is obtained by averaging across all heads for 441

the respective iteration of the input prompt. High 442

entropy is associated with bag-of-words context 443

incorporation (Clark et al., 2019). 444
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Entropy(head) = −
N∑
i=1

α(i) log2 α(i)445

Here, α(i) represents the probability associated446

with the i-th element in the attention distribution.447

Average JS-Divergence in attention heads (AH-448

JSD). To explore whether attention heads in the449

same layer can be grouped based on similar behav-450

ior, we compute the distances between all pairs of451

attention heads. This pairwise distance between the452

attention distribution of each pair of heads Hi and453

Hj is calculated using Jenson-Shannon Divergence454

following (Clark et al., 2019). Lower divergence in-455

dicates that all heads process the inputs in a similar456

way.457

JSD =
∑

token∈Prompt

JS(Hi(token), Hj(token))458

4 Experiments459

We now describe our experiments, testing the pre-460

dictive power of LM predictors in distinguishing461

between clustering and switching in a creative se-462

mantic search task.463

4.1 Baseline Models464

We use mixed-effect logistic regression (glmer) and465

fit them on annotations of switching and clustering466

in human verbal fluency responses. The depen-467

dent variable is coded as a binomial variable (1:468

switch, 0: cluster), indicating clustering or switch-469

ing between consecutive words in a sequence. The470

independent variables are introduced stepwise, and471

the models are compared using the ANOVA() func-472

tion. All analyses were carried out in R version473

2024.12.x (R Core Team, 2021).474

We define a sequence of baseline models, start-475

ing with m0 which has only crossed-random effects476

of participant and category. For model m1 to m5,477

we add the baseline predictors from Section 3.4.1478

as follows:479

m0 :switch+ (∼ 1|part.)+ (∼ 1|cat.)480

m1 :m0+ TEMP481

m2 :m1+ TASKDEMAND482

m3 :m2+ TYP483

m4 :m3+ IRS484

m5 :m4+ RL485

486

The temporal order parameter did not improve the487

model fit (χ2(1) = 1.31, p > .05). Adding task488

demand (TEMP) has a significant effect (χ2(2) =489

6.64, p < .05). The main effects of the typicality 490

(TYP) and of the inter-response similarity param- 491

eter (IRS) were also found significant ((χ2(1) = 492

44.63, p < .0001) and (χ2(1) = 3384, p < .001), 493

respectively). For the hard switch, all parame- 494

ters significantly contributed to model fit (see Ap- 495

pendix B.3 for the details). The results indicate that 496

m5 is the strongest baseline for switch modeling. 497

This set of baseline models, commonly used in 498

the verbal fluency literature, enables us to quantify 499

and compare the individual contributions of a rich 500

array of LM predictors that we propose. 501

4.2 Models with LM predictors 502

Next, we analyze the power of LM predictors in 503

modeling clustering and switching. The following 504

model list shows in which order the probability and 505

attention-based variables from Sections 3.4.2 and 506

3.4.3 are included: 507

lm_m6 :(m3, m4, or m5)+ ProbLMtype 508

lm_m7 :(m3, m4, or m5)+RankLMtype 509

lm_m8 :(m3, m4, or m5)+ EntLMtype 510

lm_m9 :(m3, m4, or m5)+AHELMtype 511

lm_m10 :(m3, m4, or m5)+AH − JSDLMtype 512

513

Thus, adding LM predictors to m3 shows the 514

contribution of probability and attention-based pre- 515

dictors to a model that includes the baseline predic- 516

tors of temporal order, task demand, and typicality. 517

Then, we test the predictive power of LM parame- 518

ters to the m4 model, which includes a significant 519

predictor for semantic similarity between consec- 520

utive words (IRS). Finally, we add them to the 521

m5 model, which further includes retrieval latency 522

(RL), a highly predictive variable for clustering and 523

switching. 524

4.3 Results 525

Table 2 summarizes the contribution of each LM 526

predictor for soft switch modeling when added to 527

the defacto baseline model (m3). The results for 528

m3 in Table 2 show clear evidence for the predic- 529

tive power of LM predictors, in separating between 530

clustering and switching processes. The attention- 531

based metric AH-JSD, in particular, models these 532

processes very robustly and independently from 533

the underlying LM, i.e. it is highly significant for 534

all LMs. This also holds for the AHE metric, which 535

achieves slightly lower values across the board, 536

though. The probability-based metrics are less con- 537

sistent across LMs: T5, Bloom350, and XGLM 538
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Table 2: Soft Switch: the individual contributions of L-predictors to the base model (m3) (Chi-Square)

BERT T5 GPT-2 Bloom350 Bloom1b5 Bloom1b7 XGLM560 XGLM1b7

m
3

Prob 37.44*** 11.28*** 2.20 0.65 0.62 2.64 4.68* 15.26***
Rank 9.64** 51.25*** 1.49 50.41*** 0.74 2.41 67.79*** 76.78***
Surprisal 64.08*** 12.89*** 3.86* 46.99*** 23.09*** 2.78 30.25*** 17.25***
Entropy 2.91 0.83 3.54 33.02*** 0.72 1.03 63.16*** 3.21

AHE 60.43 *** 33.66*** 45.02*** 32.31*** 32.31*** 31.97*** 52.68*** 52.68***
AH-JSD 106.26 *** 63.64*** 92.35 *** 71.07*** 68.34*** 73.56*** 85.11*** 79.52***

yield a highly significant RANK variable while sur-539

prisal is less significant. However, SURPRISAL540

derived from BERT achieves substantial predictive541

power, comparably to AHE. All probablity-based542

predictors from GPT-2 are insignificant.543

Analysis with Concept Similarities and Re-544

trieval Latency. We further investigate the re-545

lationship between LM parameters and semantic546

similarity (IRS) – one of the most frequently used547

NLP metrics in verbal fluency modeling – as well548

as retrieval latency (RL) as a strong behavioural549

measure of processing difficulty. Table 3 summa-550

rizes the contribution of each LM predictor for soft551

switch modeling when added to the m4, and m5552

models, respectively. Looking at the results for m4,553

we find that a number of LM predictors remain554

highly significant, even on top of the strong simi-555

larity variable IRS. This holds in particular for the556

attention-based metrics, most notably for AH-JSD.557

This confirms our hypothesis that attention distribu-558

tions in the internal layers of LMs capture aspects559

of processes in semantic search beyond static simi-560

larities in embedding space. However, we also see561

notable differences in how predictors from different562

LMs interact with IRS Bloom350 and Bloom1b5’s563

attention-based metrics seem to be more closely564

aligned with the IRS parameter (resulting in lower565

contributions) compared to their probability-based566

parameters. The probability-based predictors of567

BERT, however, are not significant anymore when568

combined with IRS.569

The results for m5 closely align with those of570

m4, with the primary difference being a substan-571

tial decrease in the magnitude of contribution for572

attention-based models. As m5 includes the highly573

significant retrieval latency parameter from the hu-574

man data, we take this as a promising finding sug-575

gesting that attention-based metrics derived from576

LMs show some alignment with humans internal re-577

trieval processes. The inclusion of retrieval latency578

does not influence the contribution of probability-579

based metrics which supports the view that they 580

capture complementary aspects of clustering and 581

switching in our data. 582

LM Comparison When comparing all three test- 583

ing conditions, attention-based metrics are the 584

most robust predictors across different LM archi- 585

tectures. Their predictive power only decreases 586

when added after the retrieval latency parameter, 587

which suggests that attention-based predictors are 588

highly aligned with retrieval latency in humans. 589

For the final m5 model, the probability-based met- 590

rics from small German Bloom models remain 591

highly significant. Interestingly, we observe a sim- 592

ilar effect here to other studies on surprisal (Oh 593

and Schuler, 2023), i.e. their predictive power 594

decreases with increasing model size. Similarly, 595

we see some advantages of the smaller XGLM560 596

over the larger XGLM1b7. Finally, next to model 597

size, we see great differences between predictors 598

computed from different transformer architectures 599

(BERT, GPT2, T5). For instance, AH-JSD from 600

BERT remains significant in m5, while the same 601

is not true for T5 or GPT-2. This suggests that 602

attention patterns learned in different architectures 603

capture different aspects of humans’ cognitive pro- 604

cesses, supporting further research into novel LM 605

architectures (Charpentier and Samuel, 2024). 606

Finally, we complement the chi-square-based 607

evaluation with the model ranking according to 608

AIC scores (quantifying model fitness) in Ap- 609

pendix Figure B.4. The AIC-based analysis 610

confirms the pattern described above. Among 611

all variations for the base model (m3), AH- 612

JSD metric derived from BERT had the highest 613

model fit. However, for the enriched models 614

incorporating semantic similarity (m4) and re- 615

trieval latency (m5), larger models—particularly 616

BLOOM1b5 and XGLM560—demonstrate supe- 617

rior performance. 618
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Table 3: Soft Switch: the individual contributions of LM-predictors on top of m4 and m5 models (Chi-Square)

BERT T5 GPT-2 Bloom350 Bloom1b5 Bloom1b7 XGLM560 XGLM1b7

m
4

Prob 1.56 22.85 *** 29.05 *** 56.94 *** 50.15 0.005 9.77** 15.11***
Rank 4.26 * 16.50 *** 8.35 ** 35.96 *** 48.61*** 8.92** 14.92*** 29.39***
Surprisal 10.76 ** 0.89 1.34 53.55 *** 74.28*** 1.22 0.02 4.19*
Entropy 0.15 0.97 1.96 42.27*** 0.79 0.01 71.10*** 7.19**

AHE 46.65 *** 21.03 *** 31.24 *** 20.27 *** 20.27*** 15.79*** 34.95*** 34.95***
AH-JSD 71.41 *** 29.28 *** 58.64 *** 38.61 *** 35.16*** 34.88*** 43.88*** 39.10***

m
5

Prob 1.85 24.05 *** 30.05 *** 56.13 *** 50.69*** 0.001 8.81** 16.83***
Rank 4.54 * 17.57 *** 6.80 ** 33.12*** 43.35*** 7.13** 15.82*** 28.39***
Surprisal 8.95 ** 2.06 0.93 51.61 *** 74.14*** 1.55 0.20 4.68*
Entropy 0.49 1.59 2.05 35.39 *** 1.32 0.02 69.39*** 6.12*

AHE 14.99 *** 3.51 * 7.44 ** 2.67 2.67 1.11 8.73** 8.73**
AH-JSD 24.93 *** 4.02 * 17.93 *** 7.28 ** 5.71* 5.13* 8.64** 6.35*

4.4 Discussion619

Our experiments on verbal fluency add to the ex-620

isting evidence that language models show some621

degree of human-likeness in their internal process-622

ing mechanisms, cf. (Kuribayashi et al., 2025).623

Thus, we find that well-known predictors derived624

from LMs’ word predictions, i.e., surprisal and625

related measures, as well as predictors computed626

from LMs’ attention distributions, have strong sta-627

tistical power when separating between clustering628

and switching in human verbal fluency responses.629

For research on creativity in human cognition,630

this result supports the assumption that different631

processes are at play in creative semantic search632

tasks (Ovando-Tellez et al., 2022). When LMs re-633

generate humans’ verbal fluency responses, they634

show clearly distinct attention and prediction pat-635

terns that neatly align with annotations of clustering636

and switching in these sequences. Previous studies637

identified these patterns based on distances in word638

embedding spaces (Alacam et al., 2022). Our study639

complements this with further metrics computed,640

in particular, from the LMs’ internal attention dis-641

tribution. These attention-based LM predictors re-642

mained significant even when added to a baseline643

model that included a semantic distance-based vari-644

able (IRS). This suggests that attention distributions645

capture processing-related mechanisms in verbal646

fluency beyond semantic distances.647

The fact that attention-based predictors are su-648

perior to probability-based metrics in our verbal649

fluency setting supports previous work proposing650

that attention patterns in transformer LMs could re-651

flect processes or retrieval and memory search (Ryu652

and Lewis, 2021; De Varda and Marelli, 2024). The653

creative search processes involved in verbal fluency 654

pose particularly strong demands on memory and 655

executive processes of working memory and inhibi- 656

tion (Shao et al., 2014). This further underlines the 657

plausibility of our findings and explains why sur- 658

prisal predictors, which are prominent in studies on 659

processing difficulty in natural reading, show less 660

consistent patterns than attention-based metrics. 661

Finally, our study points to some new directions 662

for future work on the cognitive probing of LMs. 663

Whereas most work on understanding the human- 664

likeness of LMs’ processing looked at modeling 665

variation in reading times, our study explores a new 666

paradigm that shows the fitness of LM predictors in 667

accounting for creative tasks researched in areas be- 668

yond psycholinguistics. Furthermore, recent work 669

has mostly focused on autoregressive GPT-style ar- 670

chitectures, whereas our results show that attention 671

predictors from encoder models like BERT outper- 672

form GPT models, pointing to the need for further 673

architectural explorations on LMs. 674

5 Conclusion 675

Our work contributes to understanding the process- 676

ing mechanisms of LMs with the help of verbal 677

fluency, an established experimental task from cog- 678

nitive science research. We showed that LMs can 679

distinguish two central components of creative se- 680

matic search, clustering and switching, via their 681

metrics derived from their attention and probability 682

distributions. Our study is one of the first to show 683

that distributions of attention weights in the internal 684

layers and attention heads of the transformer archi- 685

tecture correlate to a great extent with processing 686

difficulty in a creative semantic search task. 687
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Limitations688

We have employed the vanilla versions of the se-689

lected language models and all the metrics derived690

from the models were not subjected to heavy trans-691

formations except the basic soft-max, negative log-692

likelihood, or pooling over layers and attention693

heads. Since the evidence from the analysis points694

towards the advantage of using attention-based met-695

rics, further investigation on calculating different696

attention scores (Oh and Schuler, 2022) is a promis-697

ing line of research.698

The verbal fluency data were processed using699

off-the-shelf NLP text processing tools. Compound700

words are generally common in German, and the701

vocabulary used by participants also frequently702

contains compound words such as “Klavierspielen”703

(piano playing), “Krankenpfleger” (health nurse),704

“Fahrradfahren” (bike riding). Unfortunately, many705

of the compounds do not exist in the vocabulary of706

the static embedding models such as ConceptNet,707

whereas BERT and succeeding language models708

can deal with out-of-vocabulary tokens due to their709

sub-word tokenization method.710

Ethical Statement711

Our study utilizes a published and openly available712

dataset with annotations on verbal fluency, without713

annotator-related information. Additionally, we714

ensure that our use of the dataset aligns with its715

intended purpose.716
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Appendix 977

A BIEFU data 978

Table 4 presents basic statistics for word counts 979

and retrieval latencies for BIEFU verbal fluency 980

sequences within each category and across cate- 981

gories (as global). This overview highlights some 982

characteristic differences between the categories: 983

participants enumerated almost 11.5 items on av- 984

erage. For the animals and countries, the number 985

is high as 19.11 and 18.5 respectively, while it 986

is around or below 10 items for fabrics, insects, 987

and vessels. Correspondingly, retrieval latency for 988

countries, animals, groceries and body parts are 989

significantly lower than categories that are less easy 990

to enumerate such as fabrics or insects. 991

Table 4 also includes typicality and IRS scores 992

that we will use as predictors in our baseline model. 993

The IRS is the cosine similarity between consec- 994

utive words calculated with ConceptNet Number- 995

batch embeddings (Speer et al., 2017). We ob- 996

serve that the categories insects and fabrics which 997

elicited the smallest number of words (tokens and 998

types) across participants show the lowest typical- 999

ity values, i.e. participants retrieved relatively few 1000

and rather divergent sets of words. Interestingly, 1001

hobbies and occupations exhibit high typicality, 1002

i.e. show more overlap between participants, but 1003

also show the lowest IRS scores, i.e. they con- 1004

tain words that have more distant embedding in 1005
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semantic space. The categories clothes, body parts,1006

insects, and vessels exhibit the highest IRS scores.1007

Based on the provided dataset, we further calcu-1008

late the retrieval latencies between each consec-1009

utive items. The mean retrieval latencies shown1010

in Table 4 further differentiate the overall picture.1011

Here, the categories countries and animals, the1012

most widely used category in verbal fluency, show1013

the lowest mean retrieval latencies, together with1014

high typicality and medium IRS.1015

Task demands For creating the task demand cat-1016

egories for BIEFU in a similar way as in Michalko1017

et al. (2023), we have looked at the held-out se-1018

quences (from another 100 participants on the same1019

categories, but without retrieval latency scores)1020

and calculated the basic statistics similar to Ta-1021

ble 4 except the retrieval latency score. Based on1022

these scores, we categorized the BIEFU categories1023

into three groups depending on the cognitive effort1024

needed to enumerate them. The low-demand cate-1025

gory consists of animals, body parts and countries.1026

Hobbies, occupations, groceries and clothes belong1027

to the moderate category. Finally, the high demand1028

category includes fabrics, vessels and insects.1029

B Language Models1030

We utilize the verbal fluency data in German by1031

(Alacam et al., 2022) and we employ various dis-1032

tinct language models for German : (i) a pretrained1033

German BERT model1 (ii) a pretrained German1034

GPT-2 model2 , and (iii) a pretrained T5 model31035

for German.1036

In this way, we aim to minimize any potential1037

impact of the training data’s nature on the overall1038

performance of our models. We generally use the1039

Hugging Face4 framework for reproducibility.1040

Next to these common LMs, we evaluate two1041

more recent autoregressive models on the dataset,1042

investigating the effects of model size and the dif-1043

ference between monolingual and multilingual lan-1044

guage models. Specifically, we employ (i) a mono-1045

lingual BLOOM model that is trained from scratch1046

on German data, comprising 350M parameters5,1047

(ii) a multilingual BLOOM model adapted to the1048

German language via the CLP-Transfer method1049

with 1.5B parameters6, and (iii) a multilingual1050

1
https://huggingface.co/dbmdz/bert-base-german-cased.

2
https://huggingface.co/dbmdz/german-gpt2.

3
https://huggingface.co/t5-base.

4
https://huggingface.co/.

5
https://huggingface.co/malteos/bloom-350m-german.

6
https://huggingface.co/malteos/bloom-1b5-clp-german.

BLOOMoom with 1.7B parameters7. Furthermore, 1051

we use (iv) a multilingual XGLM model with 564M 1052

parameters8, comparable in size to the monolingual 1053

BLOOM model, and (v) a multilingual XGLM 1054

model with 1.7B parameters9, equivalent in size to 1055

the biggest multilingual BLOOM model. 1056

We omit models like Chat-GPT or GPT-4 from 1057

our analysis since these do not generally provide to- 1058

ken probabilities or attention distributions through 1059

their respective APIs and, hence, do make it possi- 1060

ble to compute the type of measures and predictors 1061

we need for our investigation. 1062

B.1 Tokenization 1063

We first tokenize the masked prompt with the word 1064

w masked out by a single mask token m) and pass 1065

it through the model. We then restrict the output 1066

logits of the model to the position of the masked 1067

token and pass them through a softmax function to 1068

obtain a probability distribution over the model’s 1069

vocabulary for the position of m. In the resulting 1070

distribution, we select the probability of w, the en- 1071

tropy of the distribution as well as the rank of w in 1072

the model’s vocabulary sorted by the probability. 1073

In addition to this, we also store the attention map 1074

over the whole sequence. The subword tokeniza- 1075

tion of BERT and T5 complicates this process, i.e. 1076

w is not always represented by a single token in 1077

the model’s vocabulary, but may consist of multi- 1078

ple subword tokens (such as [Kol, ##ib, ##ri] for 1079

the word Kolibri (hummingbird)). In such cases, 1080

we iteratively replace m with each subword token 1081

for w and take the average of the log probabili- 1082

ties of all subwords as well as the lowest rank of 1083

any subword as representative of the whole item 1084

w. Such a method is considered useful for extract- 1085

ing a more meaningful score for the multiword 1086

expressions like [Großer Panda (Big Panda), Rote 1087

Paprika (Red paprika)]. For the autoregressive 1088

GPT-2, BLOOM and XGLM models, where uti- 1089

lizing a masked token isn’t feasible, we truncate 1090

the prompt at the position of the masked item and 1091

then pass it through the models. The process of 1092

extracting probabilities, ranks, surprisal scores, and 1093

entropies with GPT-2, BLOOM and XGLM models 1094

mirrors that are utilized for BERT and T5 models. 1095

This also extends to the handling of the subword 1096

tokens, as the autoregressive models employ the 1097

same tokenization strategy. 1098

7
https://huggingface.co/bigscience/bloom-1b7.

8
https://huggingface.co/facebook/xglm-564M.

9
https://huggingface.co/facebook/xglm-1.7B.
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Table 4: BIEFU: Basic statistics (Max, min, and average values of sequences, retrieval latency and sub-category
counts per semantic category)

Categories Token Count in a Sequence Mean Total Subcat. Typicality IRS
Retrieval Token Count (mean) Similarity
Latency (Type) (mean)
(in sec.) Count

animals Max: 34, Min: 8, Mean: 19.11 1,96 1548 (202) 22 4.53 .39
body parts Max: 28 , Min: 8 , Mean: 17.02 2.50 1571 (144) 8 3.98 .50

clothes Max: 24, Min: 7, Mean: 16.5 2.31 1434 15 4.04 .52
countries Max: 33, Min: 6, Mean: 18.5 1.81 1688 (140) 6 4.19 .42

fabrics Max: 14, Min: 5, Mean: 7.9 5.06 633 (142) 15 3.94 .39
groceries Max: 28, Min: 7, Mean: 16.6 2.32 1550 (276) 14 4.69 .42

hobbies Max: 25, Min: 6, Mean: 14.49 2.63 1333 (302) 31 4.86 .32
insects Max: 17, Min: 5, Mean: 9.47 4.21 843 (99) 14 3.67 .49

occupations Max: 20, Min: 6, Mean: 12.23 2.89 1113 (296) 19 4.91 .35
vessels Max: 17, Min: 5, Mean: 10.13 3.83 902 (166) 9 4.13 .46
Global Max: 34, Min: 5, Mean: 11.51 3.05 19518 (2763) 153 4.13 .43

B.2 Prompt Design1099

Since existing LMs can be very sensitive to the1100

specification of their prompts, we also test sev-1101

eral prompt variations for the calculation of prob-1102

abilities and attention distributions for verbal flu-1103

ency sequences. Depending on the type of LM,1104

these prompts can be divided into (i) unidirectional1105

prompts that only include left context for masked1106

tokens and (ii) bidirectional prompts where masked1107

tokens are presented in a left and right context. In1108

the following, we describe the design of the verbal1109

fluency prompts.1110

B.3 Hard Switches1111

Table 6 summarizes the results for the hard switch1112

modeling when the LM metrics are added to m3,1113

m4 and m5 models.1114

Unlike soft-switch modeling, the contribution1115

of various metrics in this specific case of switches1116

varies significantly, without exhibiting a consistent1117

pattern across all conditions. A closer examination1118

reveals that among the probability-based metrics,1119

RANK and SURPRISAL are the most influential, of-1120

ten performing on par with AH-JSD or even surpass-1121

ing it in modeling hard-switch cases. It is important1122

to note that a hard switch occurs when a previously1123

unmentioned subcategory appears in the enumera-1124

tion. This necessitates metrics that are sensitive to1125

a broader contextual lookback.1126

Overall, for detecting hard-switches, probability-1127

based metrics demonstrate greater predictive power1128

in decoder-only models, whereas models with en-1129

coders benefit substantially from AH-JSD. Fur-1130

ther details on these results are provided in Ap-1131

pendix B.3.1132

Psycholinguistic parameters. In the hard switch 1133

condition, adding the retrieval order parameter 1134

(TEMP) improves model fit (χ2(1) = 11.58, p < 1135

.001). The task demand also significantly im- 1136

proves the model (χ2(2) = 6.97.87, p < .0001). 1137

The main effects of typicality (TYP) (χ2(1) = 1138

19.76, p < .001) and the inter-response similar- 1139

ity parameter (IRS) also significantly contributed to 1140

explaining the data (χ2(1) = 2990.75, p < .0001) 1141

as well as the retrival latency. 1142

m3 + LM predictors. It is obvious that A closer 1143

look reveals that among the probability-based met- 1144

rics, Rank and Surprisal are the most prominent 1145

ones except the GPT-2, Bloom1b5 and Bloom1b7 1146

models. Furthermore, all attention-based metrics 1147

contribute significantly to the model fit to a differ- 1148

ing extent. Despite not having the highest contribu- 1149

tion, almost all metrics derived from XGLM adds 1150

explanatory power. 1151

m4 + LM predictors . When we look at the ef- 1152

fect of LM metrics for the model with IRS, it is 1153

also difficult to see one distinct pattern. Again, 1154

Rank and Surprisal parameters are generally more 1155

informative than probability or entropy metrics. 1156

Bloom1b7 seems to have no contribution on top of 1157

basic psycholinguistic parameters. Entropy only 1158

contributes to the fitness for Bloom350m. 1159

m5 + LM predictors. In addition to the defacto 1160

psycholinguistic parameters, we investigate the 1161

effect of a less common parameter in verbal flu- 1162

ency analysis – the retrieval latency – as an indi- 1163

cator of lexical computation in explaining switch- 1164

ing /clustering behavior. Then we also examine 1165

the alignment between retrieval latency with the 1166
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Table 5: A sample of a human response and derived LM prompts for two subsequent steps in a verbal fluency
sequence (1st step/left, 2nd step/right column), as input for autoregressive prompting. For T5, we use identical
prompts to BERT but replace [MASK] with the sentinel token.

Original Sequence Hund (dog), Katze (cat), Maus (mouse)

Target token Katze in the 1st step Maus in the 2nd step

(Animals: Dog, [MASK] )
Prompt-0 Tiere: Hund, [MASK]* Tiere: Hund, Katze, [MASK]*

(Animals I know are dog and [MASK].)
Prompt-1 Tiere, die ich kenne, sind Hund und [MASK]* Tiere, die ich kenne, sind Hund, Katze und [MASK]*

(Examples of animals are dog, [MASK])
Prompt-2 Beispiele für Tiere sind Hund und [MASK]*. Beispiele für Tiere sind Hund, Katze, und [MASK]*.

(The first animals that come to my mind are dog, [MASK], mouse.)
Prompt-3 Die ersten Tiere, die mir einfallen, sind Hund und [MASK]*. Die ersten Tiere, die mir einfallen, sind Hund, Katze und [MASK]*.

(Animals one can know are dog and [MASK].)
Prompt-4 Tiere, die man kennt, sind Hund und [MASK]* Tiere, die ich kenne, sind Hund, Katze und [MASK]*

(When I think of animals, I think of dog and [MASK].)
Prompt-5 Wenn ich an Tiere denke, dann denke ich an Hund und [MASK]* Wenn ich an Tiere denke, dann denke ich an Hund, Katze und [MASK]*

Table 6: Hard Switch: the individual contribution of LM-predictors on top of m3, m4 and m5 models (Chi-Square)

BERT T5 GPT-2 Bloom350 Bloom1b5 Bloom1b7 XGLM560 XGLM1b7

m
3

Prob 49.67 *** 9.95 ** 1.72 0.32 0.37 2.06 19.69 *** 27.02***
Rank 12.75 ** 57.89*** 1.67 44.32 ** 0.52 7.65** 94.86*** 66.05***
Surprisal 107.08*** 0.06 9.86** 66.82 ** 31.30*** 2.07 76.61 ** 27.25***
Entropy 5.24* 0.61 2.05 24.61*** 0.89 0.33 21.87** 2.32

AHE 37.12** 24.97*** 18.17** 16.40** 16.40** 16.36** 24.64*** 24.64***
AH-JSD 73.34*** 54.89*** 43.45*** 40.03*** 37.96** 45.91** 53.31*** 48.43***

m
4

Prob 0.10 23.33 *** 18.62 *** 49.31 *** 41.76*** 0.01 0.87 28.64***
Rank 7.14 ** 11.76 *** 21.49 *** 32.58 *** 26.23*** 19.05** 32.53*** 23.52***
Surprisal 39.25 *** 9.73 ** 0.52 78.20*** 89.56*** 0.8 14.11*** 10.71**
Entropy 1.50 0.04 2.37 30.98 *** 1.09 0.14 22.05*** 4.87*

AHE 24.40 *** 13.69 *** 8.49 ** 7.40 ** 7.40** 5.14* 11.65** 11.65***
AH-JSD 43.37 *** 28.45 *** 16.12 *** 16.22 *** 14.09** 16.58** 21.68*** 18.13***

m
5

Prob 0.04 24.80 *** 20.04 *** 48.93 *** 43.01*** 0.003 0.48 31.65***
Rank 7.25 ** 9.77 ** 23.08 *** 29.23 *** 21.22*** 15.87*** 34.57*** 22.44***
Surprisal 35.21 *** 8.62 ** 1.55 75.08 *** 88.46*** 1.15 17.65*** 11.8**
Entropy 2.67 0.03 3.57 24.31 *** 1.77 0.07 20.69*** 38.9*

AHE 2.28 *** 0.15 0.06 0.37 0.37 1.26 0.00 0.001
AH-JSD 6.41 * 1.67 0.00 0.01 0.17 0.04 0.11 0.02

LM predictors. To do that, we add the retrieval1167

latency to the m4 model. In the both hard and1168

soft switch conditions, we find that the retrieval1169

latency RL further improves the model fitness1170

significantly: (χ2(1) = 344.88, p < .001) and1171

(χ2(1) = 265.17, p < .001) respectively.1172

As summarized in Table 6, Bloom350 model1173

continues to exhibit significant effect for its1174

probability-based metrics followed by Bloom 1b5.1175

Attention-based metrics continuies to contribute to1176

the model fitness only for the BERT model on top1177

of retrieval latency.1178

B.4 AIC Based Ranking 1179

Complementary results for the Section 4.2. While 1180

the sub-figures positioned next to each other show 1181

the same data, they highlight the different aspects: 1182

for example Figure B.4 (a) is color-coded with 1183

respect to the LM type, and Figure B.4 (b) for the 1184

effect of metric. The lowest AIC corresponds to 1185

the lowest rank (1st rank/best model). 1186
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(c) m4 : Model-based color coded
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(d) m4: Metric-based color coded
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(e) m5 : Model-based color coded
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(f) m5: Metric-based color coded

Figure 2: Individual Models’ fitness (based on AIC scores

15


	Introduction
	Background
	Verbal fluency
	Linguistic and Cognitive Probing of LMs
	Computational Models of Verbal Fluency

	Experimental Method
	Data
	Prompting
	Language Models
	Predictors of Switching and Clustering
	Psycholinguistic Predictors
	Probability-based Predictors
	Attention-based Predictors


	Experiments
	Baseline Models
	Models with LM predictors
	Results
	Discussion

	Conclusion
	BIEFU data
	Language Models
	Tokenization
	Prompt Design
	Hard Switches
	AIC Based Ranking


