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Abstract

Large Language Models (LLMs) demonstrate001
remarkable emergent abilities across various002
tasks, yet fall short of complex reasoning and003
planning tasks. The tree-search-based reason-004
ing methods address this by surpassing the ca-005
pabilities of chain-of-thought prompting, en-006
couraging exploration of intermediate steps.007
However, such methods introduce significant008
inference latency due to the systematic explo-009
ration and evaluation of multiple thought paths.010
This paper introduces SEED, a novel and effi-011
cient inference framework to optimize runtime012
speed and GPU memory management concur-013
rently. By employing a scheduled speculative014
execution, SEED efficiently handles multiple015
iterations for the thought generation and the016
state evaluation, leveraging a rounds-scheduled017
strategy to manage draft model dispatching. Ex-018
tensive experimental evaluations on three rea-019
soning datasets demonstrate superior speedup020
performance of SEED, providing a viable path021
for batched inference in training-free specula-022
tive decoding.1023

1 Introduction024

Despite Large Language Models (LLMs) have025

shown remarkable emergent abilities across a vari-026

ety of tasks (Ouyang et al., 2022; OpenAI, 2022;027

Touvron et al., 2023a,b; Achiam et al., 2023), their028

performance in complex reasoning and planning029

tasks remains suboptimal. Traditional or simple030

prompting techniques (Wei et al., 2022; Kojima031

et al., 2022), which have been widely leveraged,032

are insufficient for tasks that require exploratory033

actions or strategic lookahead (Liao et al., 2024).034

Tree-Search-Based (TSB) reasoning methods ef-035

fectively harness the planning and reasoning ca-036

pabilities of LLMs by decomposing problems and037

subsequently orchestrating a structured plan (Hui038

1The code of this paper will be publicly available upon the
acceptance of the paper.
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Figure 1: Illustration of four LLM execution strategies
for generating n = 3 sequences in Reasoning Tree con-
structing: (a) Serial, where executions are operated one
after another, simplifying resource management but in-
creasing overall execution time; (b) Seiral SD, where
speculative decoding is used for each execution; (c)
Scheduled, which involves several parallel draft mod-
els and one target model; (d) Parallel, where multiple
executions run concurrently, reducing completion time
but increasing GPU HBM.Latency

(a) Serial (b) Parallel (c) Schedule

Target DraftGPU HBM
refers to a large target

model,Latency

(a) Serial (b) Parallel (c) Schedule

Target DraftGPU HBM signifies a smaller draft model, Latency
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Target DraftGPU HBM represents
a unit length of execution time.

et al., 2024). These methods not only lever- 039

age the inherent strengths of LLMs in process- 040

ing vast datasets but also address their limitations 041

in dynamic problem-solving scenarios (Hao et al., 042

2023; Guan et al., 2023). For example, Yao et al. 043

(2024) introduced Tree-of-Thoughts (ToT) prompt- 044

ing, which generalizes beyond chain-of-thought 045

(CoT) prompting by fostering the exploration of 046

intermediate thoughts that serve as crucial steps in 047

general problem-solving with LLMs. Following 048

this way, subsequent works, such as Reasoning via 049

Planning (RAP) (Hao et al., 2023) and Refection 050

on search Trees (RoT) are proposed (Hui et al., 051

2024). These approaches fully leverage the capabil- 052

ities of LLMs to generate and evaluate intermediate 053

thoughts and then integrate them with search algo- 054

rithms to improve problem-solving efficiency. 055
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However, such methods introduce a serious issue056

of inference latency due to the requirement for sys-057

tematic exploration of thoughts with lookahead and058

backtracking. TSB reasoning methods primarily059

consist of two key parts, tree construction and the060

search algorithm. Recent studies have enhanced061

the efficacy of search algorithms by incorporating062

diversity rewards or pruning techniques (Yan et al.,063

2024; Hui et al., 2024). To the best of our knowl-064

edge, no prior work explored the acceleration of065

tree crafting, which is the focus of this paper. Tree066

construction involves two components that directly067

impact the inference time of LLMs: the Thought068

Generator and the State Evaluator. The Thought069

Generator is responsible for creating multiple dis-070

tinct paths from the same prompt, whereas the State071

Evaluator evaluates these paths to determine the072

optimal one, utilizing different prompts for each073

evaluation.074

Traditional Sequential execution of LLMs ne-075

cessitates repeated executions by both components,076

leading to long execution time, as shown in 1 (a).077

For instance, when applying ToT prompting to ex-078

ecute a single sample in the GSM8K dataset, the079

average total runtime is approximately 80 seconds080

using sequential processing with a 7B model on081

a consumer GPU. If the execution of LLMs shifts082

from sequential to parallel processing, it could083

pose challenges for end-users or researchers with084

access only to consumer GPUs, as illustrated in 1085

(d). Such condition typically exacerbates the issues086

related to hardware limitations, necessitating strate-087

gies for efficient resource management and opti-088

mization. Speculative decoding is now widely used089

to accelerate inference, which involves employing090

a small draft model with a larger target model, as091

depicted in Figure 1 (b). Intuitively, these draft092

models achieve rapid inference speeds owing to093

their small size. If they are executed in parallel,094

concerns about the GPU memory constraints be-095

come negligible, allowing for speed performance096

that is comparable to the scenarios illustrated in Fig-097

ure 1 (d). Moreover, speculative decoding employs098

a draft-then-verify two-stage paradigm, the target099

model is not fully utilized when the acceptance rate100

of drafted tokens is relatively high. By increasing101

the number of draft models, the full potential of a102

single target model can be effectively harnessed,103

ensuring its capacity is maximally utilized.104

Therefore, we propose a novel and efficient in-105

ference framework, SEED, to address both runtime106

speed and GPU memory resource management con-107

currently in reasoning tree construction. SEED ef- 108

fectively handles two scenarios: (1) executing mul- 109

tiple iterations with the same prompt; (2) evaluating 110

multiple iterations with different prompts. We uti- 111

lize scheduled speculative decoding to manage the 112

scheduling of parallel draft models. Specifically, 113

we introduce a novel execution strategy, Specu- 114

lative Scheduled Execution, inspired by the use 115

of speculative decoding in parallel drafting, as de- 116

picted in Figure 1 (c). Given that there is only one 117

shared target model, which can not simultaneously 118

verify multiple draft models, we address this lim- 119

itation by drawing inspiration from operating sys- 120

tem management of process scheduling (Zhao and 121

Stankovic, 1989; Siahaan, 2016). To this end, the 122

Rounds-Scheduled strategy that uses a Fist-Come- 123

Fist-Serve (FCFS) deque is employed to control 124

and maintain the overall execution flow. 125

SEED achieves excellent speed performance on 126

three reasoning and planning datasets: GSM8K, 127

Creative Writing and Blocksworld. Our framework 128

also provides a viable path for conducting batched 129

inference in training-free speculative decoding. 130

Our contribution can be summarized as follows: 131

• An efficient inference framework, SEED, is 132

proposed to accelerate two components in rea- 133

soning tree construction. 134

• We propose the Speculative Scheduled Exe- 135

cution that integrates parallel drafting with 136

speculative decoding, employing an effective 137

Rounds-Scheduled strategy to manage paral- 138

lel drafting devoid of verification conflicts. 139

• Empirically, extensive experiments and abla- 140

tion studies are conducted to demonstrate the 141

effectiveness of SEED. We show that SEED 142

achieves an average speedup of up to 1.5× 143

across three reasoning datasets. 144

2 Related Works 145

2.1 Tree-Search-Based Reasoning 146

Recently, TSB reasoning methods have been 147

widely leveraged to augment the reasoning capa- 148

bilities of LLMs such as RAP (Hao et al., 2023), 149

ToT (Yao et al., 2024), RoT (Hui et al., 2024). 150

These methods craft a reasoning tree allowing con- 151

sider multiple reasoning paths and self-evaluate the 152

choices to determine the next course of action. At 153

each reasoning step, the popular tree search algo- 154

rithms such as Breadth-First Search (BFS) (Bundy 155

and Wallen, 1984) and Monte-Carlo Tree Search 156

(MCTS) (Kocsis and Szepesvári, 2006) are inte- 157
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grated to explore the tree in search of an optimal158

state. Also, crafting or searching the tree requires159

more iterations than single sampling methods (e.g.,160

Input-output prompting and CoT (Wei et al., 2022)),161

leading to higher inference latency. To address this,162

some studies introduce diversity rewards (Yan et al.,163

2024) or pruning techniques (Hui et al., 2024) to164

mitigate inefficient searches during iterations, im-165

proving search efficiency. However, these methods166

still overlook the inference latency caused by the167

iterative process of tree crafting. Instead, we focus168

on the tree-crafting process, leveraging specula-169

tive decoding to accelerate the crafting process and170

reduce inference latency.171

2.2 Parallel Decoding172

The inference latency of LLMs has emerged as a173

substantial obstacle, restricting their remarkable174

reasoning capabilities in downstream tasks (Xia175

et al., 2024). One major factor contributing to176

the high inference latency is the sequential de-177

coding strategy for token generation adopted by178

almost all LLMs (Lu et al., 2024b). There are179

numerous studies have explored this challenge180

through parallel decoding strategies, such as Spec-181

ulative Decoding (SD) (Zhou et al., 2023; Cai et al.,182

2024), Early Exiting (EE) (Del Corro et al., 2023;183

Elhoushi et al., 2024), and Non-AutoRegressive184

(NAR) (Ghazvininejad et al., 2019; Lu et al.,185

2024a). SD accelerates LLMs inference by em-186

ploying a faster draft model for generating multi-187

ple tokens, which are then verified in parallel by188

a larger target model, resulting in the text gener-189

ated according to the target model distribution (Xia190

et al., 2023; Leviathan et al., 2023). In this pa-191

per, we focus on the study of Speculative Decod-192

ing. Within SD, one line of work falls into the193

training-free category (Sun et al., 2024; Liu et al.,194

2023). This plug-and-play approach seamlessly195

integrates with other modular inference methods196

(e.g., CoT, TSB), significantly enabling direct in-197

ference acceleration and reducing inference latency198

on open-source models. Recent SD works focus on199

designing diversity strategies for the single draft-200

ing or verifying process (Chen et al., 2023b; Yang201

et al., 2024), and entirely different training and in-202

ference mechanisms (Li et al., 2024; Kou et al.,203

2024; Zhong and Bharadwaj, 2024). In contrast,204

this paper explores a scheduled SD execution to205

speed up parallel inference further. As far as we206

know, we are the first to integrate multiple parallel207

prompts with the TSB reasoning task, without mod-208

ifying LLM architecture or requiring additional 209

training. 210

3 Preliminaries 211

3.1 Speculative Decoding 212

The core technique of speculative decoding in- 213

volves using a small draft model to generate tokens 214

sequentially, with a larger target model validating 215

these tokens (Leviathan et al., 2023). Specifically, 216

let c be the input tokens and Md and Mt be the draft 217

and the target model respectively, k be the number 218

of draft tokens generated per step. Speculative de- 219

coding is a Draft-then-Verify 2 two-stage decoding 220

paradigm. In the draft stage, Md samples a draft 221

sequence of tokens autoregressively, denoted as 222

x̂1, . . . , x̂k, where x̂i ∼ pd(x|x̂1, . . . , x̂i−1, c). In 223

the verification stage, the draft tokens along with c, 224

are passed to Mt to obtain their output distribution 225

pt(x|x̂1, . . . , x̂i−1, c) in parallel, and then verified 226

from x̂1 to x̂k. The draft token x̂i is accepted with 227

probability min(1, pt(x|x̂1,...,x̂i−1,c)
pd(x|x̂1,...,x̂i−1,c)

). Once a token 228

is rejected, the verifying terminates and a resam- 229

pling phase follows to return a new token by Mt. 230

This new token is then used as the endpoint fol- 231

lowing the accepted tokens. It has been proven 232

to maintain the same output as sampling autore- 233

gressively using the target model alone (Leviathan 234

et al., 2023). 235

3.2 Tree Attention 236

Current speculative decoding studies have demon- 237

strated that when the draft model samples multi- 238

ple candidates per position in the draft sequence, 239

the expected acceptance length per step can be en- 240

hanced during the verification stage (Chen et al., 241

2023a). Additionally, the tree attention technique 242

enables multiple candidate draft sequences to share 243

the caches of generated tokens, further improving 244

the efficiency of the verification stage (Cai et al., 245

2024). Within tree attention, a unique attention 246

mask is applied to prevent information contamina- 247

tion among candidates and preserve causal relation- 248

ships between tokens. Specifically, in a drafting 249

phase, consider a scenario where the number of 250

draft tokens is 3, with the multiple sampling con- 251

figured as kconfig = (2, 2, 1) 3. In this scenario, 252

2In the following paper, we define “Verification” as the
“Verify” mentioned here, which includes both the verify and
resampling phases.

3The length k of the kconfig is 3, and each element repre-
sents the number of candidate tokens sampled at the corre-
sponding position.
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Figure 2: Two main components in reasoning tree con-
struction, which are the Thought Generator and the State
Evaluator, respectively.

Md samples 2 candidate tokens in the first two253

positions and 1 candidate token in the third po-254

sition per step. We denote x̂ij as the j-th token255

generated by the Md at position i. In the draft256

phase: At position 1, the candidates x̂11 and x̂12257

are sampled. At position 2, with x̂11 as the prede-258

cessor, the x̂21 and x̂22 are sampled, and with x̂12259

as the predecessor, x̂23 and x̂24 are sampled. At260

position 3, with x̂21, x̂22, x̂23 and x̂24 as the pre-261

decessors respectively, x̂31, x̂32, x̂33 and x̂34 are262

sampled respectively. We illustrate the tree atten-263

tion mask strategy in Appendix B. For instance,264

we let x̂31 only attention to its ancestors x̂11 and265

x̂21 on the same continuation, while x̂22 is masked266

due to situate in different continuation with x̂31.267

This method, along with the KV-Cache (Park et al.,268

2020), enhances verification efficiency while intro-269

ducing negligible computational overhead, making270

a practical solution for optimizing the latency of271

speculative decoding (Cai et al., 2024; Yang et al.,272

2024).273

4 Method274

Our proposed SEED is an efficient inference frame-275

work designed to accelerate the construction of a276

reasoning tree. We first introduce two phases in the277

Speculative Scheduled Execution in §4.1. Subse-278

quently, we depict the Rounds-Scheduled Strategy279

designed to effectively manage parallel drafting280

without conflicts in §4.2. Finally, the combined281

approach is elaborated in §4.3.282

Task Formulation Given an initial input ques-283

tion I, a reasoning tree is constructed with the284

relatively common search algorithm BFS follow-285

ing Yao et al. (2024), as shown in Figure 2. In the286

constructed reasoning tree, each node represents a287

distinct state Si, which includes a partial solution288

with the input c and the progressively elaborated289

thoughts proposal z1, · · · , zn. During the expan-290

Algorithm 1 SEED(x, pθ, G, n, E, s, b)
1: Input: Initial prompt I, speculative sched-

uled execution with a rounds-scheduled strat-
egy pθ, thought generator G(·) with a number
of thought n, states evaluator E(·), step limit
T , breadth limit b.

2: Initialize: States S; S0 ← {I}
3: for i = 1, · · · , T do
4: S′

i ← {[c, zi] | c← Si−1,
5: zi ∈ G(pθ, c, n)} ▷ Propose in Parallel
6: Ei ← E(pθ, S

′
i) ▷ Evaluate in Parallel

7: Si ← argmaxS⊂S′
i,|S|=b

∑
s∈S Ei(s)

8: end for
9: return G(pθ, argmaxs∈ST ET (s), 1)

sion of each node, the Thought Generator G(·) pro- 291

duces multiple reasoning paths to decompose the 292

intermediate process from the current state. Once 293

these thoughts are generated, the State Evaluator 294

E(·) assesses the contribution of each path toward 295

solving the problem, serving as a heuristic for guid- 296

ing the search algorithm. This evaluation aids in 297

determining which states to continue exploring and 298

in establishing the order of exploration. 299

Taking the root node S0 as an example in Fig- 300

ure 2, it first generates n reasoning paths based on 301

the same input c, which is the initial prompt I and 302

subsequently selects the middle path by the State 303

Evaluator for these n paths. 304

Different generation executions in the Thought 305

Generator or the State Evaluator are conducted in 306

distinct branches, ensuring that they do not inter- 307

fere with each other. Consequently, the Specula- 308

tive Scheduled Execution is implemented in both 309

the Thought Generator and the State Evaluator, en- 310

abling parallel processing to accelerate the overall 311

reasoning tree construction, as detailed in Algo- 312

rithm 1. 313

4.1 Speculative Scheduled Execution 314

We further detail the speculative scheduled execu- 315

tion algorithm within SEED. To enhance clarity, 316

we delve the algorithm into two phases: the par- 317

allel drafting phase and the sequential verification 318

phase. 319

Parallel Drafting Phase The model size signifi- 320

cantly impacts memory usage and inference time. 321

In light of this, given the small size and rapid in- 322

ference speed of the draft models, we can directly 323

initialize multiple draft models corresponding to 324
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Figure 3: (a) The scenario where the target model manages the verification of target models at the beginning; (b)
Overall scheduling diagram for one target model and three draft models. , , represent Draft Model 1,
Draft Model 2, Draft Model 3, respectively. , , denotes the execution times of drafting for each corresponding

draft model. refers to Target Model. represents the execution time of the verification phase, while specifies
the resampling time in cases of rejection.

the number of thoughts, enabling parallel processes.325

To be specific, if the number of thoughts Nt is set326

to n, the draft models Md1 ,Md2 , · · · ,Mdn take327

c1, c2, · · · , cn as input tokens respectively in the328

drafting phase. Note that, during the Thought Gen-329

eration, the input instructions are the same, i.e.,330

c1 = c2 = · · · = cn; during the State Evaluation,331

they may differ, denoted as c1 ̸= c2 ̸= · · · ≠ cn.332

As shown in Figure 3 (a), three draft models ini-333

tiate simultaneously sampling when the queue Q334

is initially empty. In the subsequent stage, draft335

models enter the queue according to which com-336

pletes the generation first. In Figure 3 (a), Draft337

Model first completes the drafting process and338

is the first to enter the queue Q, followed by Draft339

Model and Draft Model . While the tar-340

get model Mt is verifying the tokens of other draft341

models, each draft model is generating its own to-342

kens. In this way, we can fully leverage the poten-343

tial of small draft models to complete their drafting344

processes simultaneously, while the larger target345

model only needs to verify them sequentially.346

Sequential Verification Phase Only one single347

target model is employed for the sequential verifi-348

cation of multiple draft sequences in our proposed349

framework. The target model first verifies the to-350

kens generated by the draft model at the front of the351

queue. During the verification phase, two scenarios352

may occur: acceptance and rejection. If the tokens353

generated by the draft model are accepted by the354

target model, they are retained, as exemplified by355

Draft Model in Fugure 3 (a). If rejected, one 356

new token is resampled by the target model, as 357

demonstrated by Draft Model and Draft Model 358

. Taking Draft Model as an example, it 359

drafts two tokens, “many” and “duch”, which are 360

rejected by the target model. Target Model then 361

resamples a new token “much”. Furthermore, when 362

accepted, the target model only requires the exe- 363

cution time , when rejected, it incurs additional 364

time for resampling . 365

4.2 Rounds-Scheduled Strategy 366

With the integration of parallel drafting and se- 367

quential verification, it is crucial to optimize the 368

scheduling to ensure the correctness of speculative 369

execution while maximizing the utilization of the 370

target model and minimizing the overall execution 371

latency. 372

Inspired by the operating system management 373

of process scheduling, which utilizes the First- 374

Come-First-Serve (FCFS) scheduling policy for 375

all requests, ensuring fairness and preventing star- 376

vation (Zhao and Stankovic, 1989; Siahaan, 2016). 377

We leverage a Rounds-Scheduled Strategy inte- 378

grated with the FCFS scheduling policy to manage 379

the verification process efficiently. When a draft 380

model completes its drafting phase and is ready for 381

verification, the draft sequences along with c are 382

placed into a deque. 383

As depicted in Figure 3 (a), when the deque Q is 384

not empty, a sequence of draft tokens is dequeued 385

in a FCFS manner. Target Model first verifies 386
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the tokens generated by Draft Model , followed387

sequentially by tokens generated by Draft Model388

and Draft Model , adhering to FCFS. This389

approach ensures fairness and prevents starvation390

for all small draft models, avoiding prolonged wait391

times for those who complete the drafting phase392

earlier. Upon completion of the verification of a393

draft sequence associated with a draft model, the394

draft model proceeds to the drafting process in the395

next iteration.396

The overall scheduling diagram is shown in Fig-397

ure 3 (b), each draft model displays a series of iter-398

ations to complete the overall drafting progress for399

the Thought Generator or the State Evaluator. The400

target model is consistently active across the over-401

all scheduling timeline. This continuous activity402

ensures that the target model is utilized efficiently,403

addressing issues related to idle time when accep-404

tance rates are relatively high. Once all drafting405

and verification processes are completed, the entire406

execution concludes, resulting in the generation of407

n sequences.408

The technical principle of SEED is inspired by409

the operation system schedule. We present the410

detailed analogy between the operation system411

scheduling with SEED in Appendix A.4.412

4.3 Algorithm413

The core acceleration mechanisms of SEED, which414

combines speculative scheduled execution with the415

rounds-scheduled strategy, is presented in Algo-416

rithm 2.417

At its essence, the parallel drafting is realized by418

multiple parallel processesD(n), while the sequen-419

tial verification is realized by a verification process420

V that cyclically verifies from the verify queue Q.421

The verification process has two phases, which are422

the verify phase E and the resampling phaseR. To423

maintain the asynchronous nature of the draft-then-424

verify event loop, leveraging a draft label map γD,425

ensures each draft process waits for verification426

before proceeding with new drafts. At the initial427

stage, each element in the draft label map γD is set428

to 1, indicating all draft models can perform draft-429

ing. After completing the verification of a draft430

model, the corresponding label in γD changes to431

0, awaiting for re-drafting. Notably, D(n) and V432

are synchronized. The termination condition for433

both process D(n) and process V is that all current434

validated token Li, i ∈ [1, n] equals the max new435

length l. When all the processes are finished, we436

can obtain a list containing n response.437

5 Experiments 438

All experiments are conducted on a single NVIDIA 439

RTX A100 80GB GPU. 440

5.1 Datasets 441

Three widely used reasoning and planning datasets 442

are chosen for our experiments to validate the 443

speedup performance of our proposed framework. 444

For mathematical reasoning, GSM8K (Cobbe et al., 445

2021) is a dataset comprising high-quality grade- 446

school math word problems that require multi-step 447

reasoning. To assess the effectiveness of creativity 448

and planning task, we leverage the Creative Writing 449

dataset (Yao et al., 2024), a task where the input 450

is four random sentences and the output should 451

be a coherent passage with four paragraphs that 452

end in the four input sentences respectively. This 453

task is open-ended and exploratory, posing signifi- 454

cant challenges to creative thinking and high-level 455

planning. To better demonstrate the speedup perfor- 456

mance of our proposed SEED in solving more com- 457

plex planning problems, we select the Blocksworld 458

dataset (Valmeekam et al., 2023). 459

Specifically, we utilize 1319 samples from the 460

GSM8K test set, 100 random samples from the Cre- 461

ative Writing dataset following (Yao et al., 2024), 462

and 145 samples from the Blocksworld step-6 463

dataset. 464

5.2 Baselines 465

This study focuses on accelerating the reasoning 466

tree construction process rather than the search 467

algorithm or advanced prompting methods. We 468

consider AR, SD, MCSD as our baselines. 469

(1) AR denotes the original ToT (Yao et al., 2024) 470

that employing standard autoregressive generation 471

as shown in Figure 1 (a); 472

(2) SD presents the application of speculative sam- 473

pling which is detailed in 3.2 on the basis of ToT 474

as shown in Figure 1 (b); 475

(3) MCSD utilizes multi-candidate sampling and 476

employs a different verifying algorithm to im- 477

prove the acceptance rate and enhance the speed of 478

SD (Yang et al., 2024). Similar to SD, it adheres to 479

only one single-sample serial execution process. 480

The selection of baselines will be discussed in 481

Appendix A.1. 482

5.3 Setup 483

For comparison with standard draft-target specula- 484

tive decoding (Leviathan et al., 2023) and MCSD, 485
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Dataset Methods Tree Depth Base Tree Attention
kconfig Speedup kconfig Speedup

Creative Writing

AR 2 - 1× - 1×

SD 2 (1,1,1) 1.05× - -
MCSD 2 (1,1,1) 1.16× (2,2,1) 1.40×
SEED(ours) 2 (1,1,1) 1.18× (2,2,1) 1.66×

SD 2 (1,1,1,1) 1.11× - -
MCSD 2 (1,1,1,1) 1.13× (4,2,1,1) 1.47×
SEED(ours) 2 (1,1,1,1) 1.26× (4,2,1,1) 1.71×

GSM8K

AR 4 - 1× - 1×

SD 4 (1,1,1) 1.05× - -
MCSD 4 (1,1,1) 1.09× (2,2,1) 1.14×
SEED(ours) 3 (1,1,1) 1.13× (2,2,1) 1.21×

SD 4 (1,1,1,1) 1.17× - -
MCSD 4 (1,1,1,1) 1.20× (4,2,1,1) 1.27×
SEED(ours) 4 (1,1,1,1) 1.24× (4,2,1,1) 1.43×

Blocksworld

AR 7 - 1× - 1×

SD 7 (1,1,1,1) 1.06× - -
MCSD 7 (1,1,1,1) 1.10× (2,2,1,1) 1.16×
SEED(ours) 7 (1,1,1,1) 1.13× (2,2,1,1) 1.25×

SD 7 (1,1,1,1,1) 1.12× - -
MCSD 7 (1,1,1,1,1) 1.17× (8,2,1,1,1) 1.36×
SEED(ours) 7 (1,1,1,1,1) 1.19× (8,2,1,1,1) 1.39×

Table 1: Speedup performance of our proposed SEED and baselines. All speedups are relative to the vanilla AR.
The best results among all methods are in bolded.

we conduct speculative decoding with tree atten-486

tion using LLaMA-2-Chat-7B4 as the target model487

following Chen et al. (2023b). Since there is no488

official release of a smaller model in the LLaMA489

suite, we use a pre-trained 160M model LLaMA-490

160M-Chat5 with the same tokenizer as the draft491

model. To validate the extensibility of our frame-492

work, we also conducted experiments using the493

QWen2 suite (Bai et al., 2023). Detailed informa-494

tion can be found in Appendix A.2. We perform a495

BFS algorithm as the search strategy for all tasks.496

For Creative Writing, following the ToT setup (Yao497

et al., 2024), the tree depth is 2. For GSM8K, we498

simplify by setting the tree depth to 4. For the more499

complex Blocksworld, we set the tree depth to 7500

to allow for more iterations. The detailed prompts501

for the Thought Generator and the State Evaluator,502

along with the ToT setup for each task are provided503

in Appendix C.504

6 Results and Analysis505

6.1 Main Results506

Table 1 presents a comprehensive analysis of our507

proposed SEED and baselines applied to three rea-508

4
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

5
https://huggingface.co/Felladrin/Llama-160M-Chat-v1

soning datasets: Creative Writing, GSM8K, and 509

Blocksworld. The Tree Depth suggests that the 510

operations with varying levels of complexity or 511

iterations, with deeper trees potentially represent- 512

ing more complex calculations or decision-making 513

processes. The Base setting indicates traditional 514

single sampling at each position of the draft se- 515

quence, while the Tree Attention represents sample 516

multiple candidate tokens at each position and ver- 517

ifying leveraging tree attention which details in 518

Section 3.2. For instance, when kconfig is set to 519

(2,2,1), it indicates the Tree Attention method: dur- 520

ing each draft phase, a group of k = 3 tokens is 521

generated, with the first two positions each sam- 522

pling 2 candidates, and the third position sampling 523

1. The illustration of this configuration is presented 524

in Figure 6. If each element in kconfig is 1, the 525

Base setting is applied. A greater number at each 526

position in kconfig signifies that more candidates, 527

generally yield higher speedups. 528

In the Creative Writing dataset with a reasoning 529

tree depth of 2, the best performance was achieved 530

with a speedup performance of 1.26× in the base 531

setting and 1.71× using tree attention. This re- 532

markable improvement may be attributed to the 533

fine-tuning of the draft model LLaMA-160M-Chat 534
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Component Tree Attention α Speedup

Thought Generator ✗ 0.37 1.32×
✓ 0.41 1.51×

State Evaluator ✗ 0.23 1.10×
✓ 0.35 1.35×

Table 2: The speedup performance on GSM8K of the
two main components of SEED. The average accep-
tance rate is represented as α.

on this specific corpus (Felladrin, 2024), resulting535

in a higher acceptance rate and improved speedup536

performance.537

Across all datasets, SEED, consistently outper-538

forms the other methods across different settings539

and configurations in terms of speedup, achieving540

the highest speedup. Specifically, it achieves an541

average speedup of 1.2× in the base setting and542

1.5× in the candidate setting, respectively. This543

indicates that SEED is more efficient in inferencing544

these tasks.545

6.2 Ablation Study546

SEED accelerate two components in reasoning tree547

construction, which are the Thought Generator548

(TG) and the State Evaluator (SE). Table 2 presents549

the speedup performance of two main components550

of the SEED method on the GSM8K dataset. For551

both components, the application of the tree atten-552

tion leads to higher acceptance rates and greater553

speedup. When the tree attention is not applied,554

the TG component has an acceptance rate (α) of555

0.37 and a speedup of 1.32×. With the tree at-556

tention, both the acceptance rate and the speedup557

increase, to 0.41 and 1.51× respectively. Similar558

to TG, the SE component shows improved perfor-559

mance with the tree attention. Without it, α is 0.23560

and the speedup is 1.10×; with it, these values rise561

to 0.35 and 1.35×, respectively. The TG executes562

multiple iterations with the same prompt while the563

SE refers to evaluates multiple iterations with dif-564

ferent prompts. The TG component consistently565

outperforms the SE component in terms of both α566

and speedup, possibly because the TG is relatively567

simpler compared to the SE component. The profi-568

ciency between the target model and draft model569

may be more closely aligned in the proposal of570

thoughts, compared to decision-making capability.571

6.3 Analysis of GPU Utilization572

In the paradigm of speculative decoding, all model573

parameters, including those of both target and draft574

Time

G
PU

 U
ti

liz
at

io
n 

(%
)

SD

Time

SEED

Figure 4: The comparison visualization of GPU utiliza-
tion between the vanilla SD (on the left part) and the
proposed SEED (on the right part) over the 120-second
period.

models, are initially moved to GPU memory. When 575

the draft model is in drafting processing, the target 576

model remains idle. The utilization rate of the 577

target model is low when the acceptance rate is 578

relatively high. To address this limitation, SEED 579

introduces parallel draft models to fully involve the 580

target model in the verification phase. 581

We recorded GPU utilization over the same du- 582

rations for the SD and the proposed SEED to vi- 583

sualize the effectiveness of parallel drafting. As 584

depicted in Figure 4, the left part illustrates the 585

GPU utilization of SD shows intermittent fluctua- 586

tions, primarily due to the target model being idle 587

when the drafting process. In contrast, the SEED 588

process, shown in the right part, exhibits more sta- 589

ble GPU utilization, attributed to the continuous 590

engagement of the target model in the verification 591

phase. This demonstrates that our method SEED 592

effectively leverages the GPU resources by continu- 593

ously interacting operations between the pre-loaded 594

target model and smaller draft models. 595

7 Conclusion 596

In this paper, we introduce SEED, a novel inference 597

framework designed to optimize the runtime speed 598

and manage GPU memory usage effectively during 599

the reasoning tree construction for complex reason- 600

ing and planning tasks. SEED employs scheduled 601

speculative execution to enhance the performance 602

of LLMs by integrating the management of multi- 603

ple draft models and a single target model, based 604

on principles similar to operating system process 605

scheduling. This strategy not only mitigates the 606

inference latency inherent in tree-search-based rea- 607

soning methods but also maximizes the utilization 608

of available computational resources. Our exten- 609

sive experimental evaluation across three reason- 610

ing demonstrates that SEED achieves significant 611

improvements in inference speed, achieving an av- 612

erage speedup of 1.5×. 613
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Limitations614

Although SEED already achieves exceptional615

speedup performance in the experiments, our work616

also has the following limitations.617

KV-cache has emerged as a critical bottleneck by618

growing linearly in size with the sequence length.619

Our frameworks introduce parallel drafting, involv-620

ing n− 1 additional drafting models, which inher-621

ently necessitates the addition of an equivalent num-622

ber of KV caches. Given the increase attributed623

to small draft models (168M) is relatively mini-624

mal, we do not optimize the management of the625

KV cache in this work. Moreover, our method626

offers a potential implementation of batched spec-627

ulative decoding from the execution scheduling628

perspective, which could be integrated with other629

KV-cache-based batch speculative decoding meth-630

ods (Ni et al., 2024).631

This study focuses solely on optimizing the infer-632

ence speed of the tree-crafting process for the TSB633

reasoning task and does not optimize the search634

speed for these tasks.635
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A Discussions842

A.1 Selection of Baselines843

See Section 5.2, where we list all the baselines844

used to compare with our proposed SEED in this845

study. However, several other speculative decod-846

ing strategies have not been explored as baselines.847

We do not conclude these strategies based on the848

following considerations as shown in Table 4:849

(1) Training-free indicates whether the method850

requires training.851

∗ Medusa (Cai et al., 2024) adds extra FFN852

heads atop the Transformer decoder, allowing853

for parallel token generation at each step;854

∗ Eagle (Li et al., 2024) performs the drafting855

process autoregressively at a more structured856

level, specifically the second-to-top layer of857

features;858

∗ SS (Bhendawade et al., 2024) integrates draft-859

ing phase into the target model by modifying860

the fine-tuning objective from the next token861

to future n-gram predictions.862

These methods all require training and are not plug-863

and-play, since they train the LLM to serve as both864

the target model and the draft model, which classi-865

fies them as self-drafting ▲ according to Xia et al.866

(2024); in contrast, our method employs indepen-867

dent drafting ■ (draft-and-target), placing it in a868

different SD type. Therefore, we do not consider869

them as baselines.870

(2) Extra-knowledge-free indicates whether the871

SD process uses additional knowledge modules.872

∗ CS-drafting (Chen et al., 2023b) resorts to873

a bigram model based on the probability dis-874

tribution of Wikipedia as the draft model at a875

more basic level.876

∗ REST (He et al., 2023) retrieve from exten-877

sive code and conversation data stores to gen-878

erate draft tokens.879

The two approaches introduce external knowledge880

modules, making it significantly dependent on the881

effectiveness of the external knowledge modules882

and unfair to compare us with draft-and-target mod-883

els.884

(3) Lossless indicates whether the method gen-885

erates the same output distribution as AR decoding886

does in the backbone model.887

SS (Bhendawade et al., 2024) and Medusa (Cai888

et al., 2024), which are inherently not lossless,889

Mt Methods kconfig Speedup

QWen2-1.5B

AR - 1×
SD (1,1,1,1) 1.19×

MCSD (1,1,1,1) 1.20×
SEED (1,1,1,1) 1.25×

QWen2-7B

AR - 1×
SD (1,1,1) 1.32×

MCSD (1,1,1) -
SEED (1,1,1) 1.40×

Table 3: The speedup performance on Creative Writing
dataset of SEED within using QWen2-0.5B as Md. The
result of MCSD using QWen2-7B as Mt is not reported
because QWen2-0.5B and QWen2-7B do not have the
same tokenizer, making speculative sampling with a
consistent vocabulary impossible. The results of SD and
SEED using Qwen2-7B as Mt employ naive sampling.

are unsuitable for comparison with our proposed 890

SEED, which maintains losslessness consistent 891

with SD in a single draft-then-verify. 892

A.2 Extensibility 893

LLM Suite Our framework is based on specu- 894

lative decoding, so the model setup of the draft 895

model and the target model can be consistent with 896

it. Consequently, any LLM suite can be integrated 897

into our framework. We also conducted experi- 898

ments using the QWen2 suite6. Specifically, we use 899

QWen2-0.5B-Instruct7 as the draft model and use 900

QWen2-1.5B-Instruct8 or QWen2-7B-Instruct9as 901

the target model. The results are presented in Ta- 902

ble. 3. The results align with the findings presented 903

in Section 6.1, demonstrating the superior perfor- 904

mance of our framework. It also highlights the 905

scalability of our framework to the LLM suite (Bai 906

et al., 2023). 907

Search Algorithm in ToT Our framework uses 908

the relatively simple search algorithm BFS. In fact, 909

SEED can seamlessly integrate more advanced 910

search algorithms, such as A∗ (Hart et al., 1968) 911

and MCTS (Kocsis and Szepesvári, 2006), etc., 912

which we leave for future research. 913

A.3 Task Performance 914

Leviathan et al. (2023) has proved the outputs of 915

AR and SD are the same. We separately evalu- 916

ated the performance of the GSM8K dataset using 917

6
https://qwenlm.github.io/zh/blog/qwen2/

7
https://huggingface.co/Qwen/Qwen2-0.5B-Instruct

8
https://huggingface.co/Qwen/Qwen2-1.5B-Instruct

9
https://huggingface.co/Qwen/Qwen2-7B-Instruct
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Methods Training-free Lossless SD Type Extra-knowledge-free Speedup

Vanilla AR ✓ ✓ - ✓ ✗

Speculative Decoding (Leviathan et al., 2023) ✓ ✓ ▲ ✓ ✓

CS-Drafting (Chen et al., 2023b) ✓ ✓ ▲ ✗ ✓

REST (He et al., 2023) ✓ ✓ ▲ ✗ ✓

Medusa (Cai et al., 2024) ✗ ✗ ■ ✓ ✓

Eagle (Li et al., 2024) ✗ ✓ ■ ✓ ✓

SS (Bhendawade et al., 2024) ✗ ✗ ■ ✓ ✓

MCSD (Yang et al., 2024) ✓ ✓ ▲ ✓ ✓

SEED (Ours) ✓ ✓ ▲ ✓ ✓

Table 4: The comprehensive comparison of the listed methods and SEED. ■ represents draft-and-target SD method,
while ▲ represents self-draft SD method.

the AR with QWen2-7B and SEED with the afore-918

mentioned QWen2 suite using QWen2-0.5B and919

QWen2-7B, and found that the performance differ-920

ence was within ±1.5%, which is acceptable and921

substantiates that the performance is effectively922

lossless.923

A.4 Technical Principle924

Previous research has adapted the principle of the925

operating system (OS) scheduler for efficient pro-926

cess management (Kwon et al., 2023). As shown in927

Figure 5, each component in SEED can be mapped928

to a corresponding component in the operating sys-929

tem scheduler. Next, we will elaborate on each930

component individually.931

• The rounds-scheduled execution in SEED cor-932

responds to the process scheduling in OS.933

Both use an FCFS deque to control and main-934

tain the overall execution flow. A key dis-935

tinction exists: in SEED, after the drafting936

tokens are processed by the verification phase,937

the draft model is returned to the queue, i.e.,938

“rounds”. In contrast, in OS scheduling, a939

process that has been handled by the CPU is940

marked as completed.941

• The verification of draft tokens X̂ mirrors an942

operating process in OS scheduling.943

• The target model serves Mt analogously to944

the CPU.945

• The total verification time of Mt resembles946

the CPU time in OS process scheduling.947

Future work may explore the integration of more948

advanced scheduling algorithms, such as those used949

in real-time systems, to further enhance the respon-950

siveness and efficiency of SEED.951

OS

Mt

Rounds-Scheduled
 Execution

Process Scheduling CPU

Target 
Model

Processes

Drafts

CPU Time

Verification
Time

SEED

Figure 5: Analogy between the Operation System sched-
uler with our proposed SEED.
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x31x24
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x32
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Figure 6: The tree attention used in SEED, multiple
tokens in single sequence concurrently are processed.
Root indicates previous tokens. ✓ indicates where atten-
tion is present, while the rest are masked. For simplicity,
we only visualize the tree attention mask of tokens in
yellow colors.

B Details of Tree Attention 952

Figure 6 illustrates a case of tree attention with a 953

configuration of kconfig = (2, 2, 1). 954

C Detailed Setup and Prompts 955

We implemented a simple and generic ToT-BFS 956

according to Yao et al. (2024). Within the Thought 957

Generator, we leverage a sampling strategy to gen- 958

erate thoughts for the next thought step. Within 959

the State Evaluator, we leverage a value strategy 960
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to evaluate the generated thoughts and output a961

scalar value (e.g., “1-10”) or a classification (e.g.,962

“good/bad”) which can be heuristically converted963

into a value. To encourage diverse thought genera-964

tion in all tasks, we set the generation temperature965

as 1 for the LLaMA2 and QWen2 suite models.966

The tot setup of the three tasks SEED utilized is967

as follows:968

• Creative Writing: We build a reasoning tree969

with a depth of 2 (with 1 intermediate thought970

step) that generates 3 plans and passages. The971

State Evaluator assesses the plans and outputs972

a coherency score with each plan and passage.973

• GSM8K: We build a reasoning tree with a974

depth of 4 (with 3 intermediate thought steps)975

that generates 3 sub-questions and correspond-976

ing sub-answers. This setup aligns with the977

findings from Hao et al. (2023), which indi-978

cated that three steps are generally sufficient979

to achieve a passable level of accuracy. The980

State Evaluator assesses them and outputs a981

number representing the helpfulness for an-982

swering the question. We select the one with983

the highest values and add it to the previous984

sub-question and sub-answers.985

• Blocksworld 6-step: We build a reasoning986

tree with a depth of 7 (with 6 intermediate987

thought steps) that generates 3 thoughts, in-988

cluding action plans and current actions. Due989

to the complexity of this task, demonstra-990

tions are provided in the prompt, labeled as991

“good/bad”, to assist the State Evaluator in its992

assessment.993

The prompts for the tasks described above are994

presented below. The parts in prompts are required995

for LLM completion.996

Prompts for GSM8K

The Thought Generator

Given a question: {initial_prompt}, the previous
sub−question and sub−answer is:
{state_text}
Please output the next sub−question to further
reason the question.
The sub−question is: {sub-question}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Given a question: {initial_prompt}, the sub−
question is: {sub_question}
Please answer the sub−question based on the
question.
The sub−answer is: {sub_answer}

The State Evaluator

Given a question: {initial_prompt}, the sub−
question is: {sub_question}, the sub−answer is:
{sub_answer}
Please output a number between 1 and 10 to
evaluate the answer. The higher the number, the
more help there is in answering the question.

The number is: {value}

997

Prompts for Creative Writing

The Thought Generator

Write a coherent passage of 4 short paragraphs. The
end sentence of each paragraph must be:

{initial_prompt}
Make a plan then write. Your output should be of
the following format:

Plan:
Your plan here.

Passage:
Your passage here.

The output is:
{Plan}
{Passage}

The State Evaluator

Analyze the passage: {Passage}, then at the last line
conclude "Thus the coherency score is [s]", where [

s] is an integer from 1 to 10.
The coherency score is: {value}

998
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Prompts for Blocksworld

The Thought Generator

I am playing with a set of blocks where I need to
arrange the blocks into stacks. Here are the actions
I can do:

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
##Restrictions on Action##

<—Omit demonstrations—>

[STATEMENT]
{initial_prompt}

My plan is as follows:
{state_text}
The current action is:
{action}

The State Evaluator

I am playing with a set of blocks where I need to
arrange the blocks into stacks. Here are the actions
I can do:

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
##Restrictions on Action##

<—Omit demonstrations—>

Please evaluate whether the given action is a good
one under certain conditions.

[STATEMENT]
{initial_prompt}
[ACTION]
{state_text}
[EVALUATION]
The evaluation is:
{evaluation}

999

Restrictions on Action for Blocksworld

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is
empty.
I can only pick up a block if the block is on the
table and the block is clear. A block is clear if the
block has no other blocks on top of it and if the
block is not picked up.
I can only unstack a block from on top of another
block if the block I am unstacking was really on top
of the other block.

I can only unstack a block from on top of another
block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the
block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I
am holding the block being stacked.
I can only stack a block on top of another block if
the block onto which I am stacking the block is
clear.
Once I put down or stack a block, my hand
becomes empty.

1000
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Algorithm 2 Speculative Scheduled Execution with a Rounds-Scheduled Strategy

1: Input: Draft models {Md1 , · · · ,Mdn}, prefixes {c1, · · · , cn}, target model Mt, max new length l,
draft length k, verify phase E in verification, resampling phase R in verification, auto-regressive
drafting pdi and length of current validated token Li of the i-th draft model Mdi , i ∈ [1, n];

2: Initialize: Prefill {Md1 , · · · ,Mdn} with prefixes; Create a verify deque Q and a draft label map γ[i]
of length n, with each element set to 1, i ∈ [1, n]; Li ← 1 , i ∈ [1, n]; Define X̂i[1 : k] represents
x̂1, . . . , x̂k the sequence of draft tokens generated from pdi , i ∈ [1, n]; Start n draft processes D(n)
and 1 verification process V Synchronously;

3: Processes D(n): ▷ Prallel Drafting
4: while ∃i ∈ [1, n] : Li < l do
5: if γ(i) then
6: X̂i[1 : k]← pdi(Mdi , ci, X̂i[1 : Li], k) ▷ Generate k draft tokens
7: Q← X̂i[1 : k] ▷ Add draft tokens to the queue
8: γ[i]← 0 ▷ Draft Process D(i) wait
9: end if

10: end while
11: Process V: ▷ Sequential Verification
12: while ∃i ∈ [1, n] : Li < l do
13: if Q is not empty then
14: X̂i[1 : k]← deque(Q) ▷ Dequeue a group of draft tokens (FCFS)
15: t1, · · · , tk ← E(Mt, ci, X̂i[1 : k]) ▷ Verify a group of draft tokens
16: for j = 1 to k do
17: if tj is acceptance then
18: X̂i[Li + 1]← x̂j and Li ← Li + 1
19: else
20: X̂ [Li + 1]← R(Mt, ci, X̂i[1 : Li]) and Li ← Li + 1
21: Break
22: end if
23: end for
24: γ[i]← 1 ▷ Draft Process D(i) continue
25: end if
26: end while
27: Wait for all D(n) and V to finish
28: return [response1, . . . , responsen]
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