
Published at Building Trust Workshop at ICLR 2025

BOOSTING ADVERSARIAL ROBUSTNESS OF VISION-
LANGUAGE PRE-TRAINING MODELS AGAINST MULTI-
MODAL ADVERSARIAL ATTACKS

Youze Wang, Wenbo Hu, Qin Li, Richang Hong
Hefei University of Technology
{wangyouze,liqin}@mail.hfut.edu.cn
{wenbohu,hongrc}@hfut.edu.cn

ABSTRACT

Vision-language pre-training (VLP) models, known for their generalization across
multimodal tasks, are increasingly deployed in perturbation-sensitive environ-
ments, highlighting the need for improved adversarial robustness. Recent studies
have revealed VLP models’ vulnerability to multimodal adversarial attacks, which
exploit interactions across multiple modalities to uncover deeper weaknesses than
single-modal attacks. Methods like Co-attack, SGA, and VLP-attack leverage
cross-modal interactions to more effectively challenge models’ robustness. To
counter these threats, adversarial fine-tuning has emerged as a key strategy. Our
approach refines vision encoders using Multi-granularity Aligned Visual Adver-
sarial Fine-tuning, which enhances robustness by expanding the vision semantic
space and aligning features across perturbed and clean models. Extensive ex-
periments demonstrate that our method offers superior robustness to multimodal
adversarial attacks while preserving clean performance on downstream V+L tasks.

1 INTRODUCTION

Vision-language pre-training (VLP) modelsRadford et al. (2021); Li et al. (2021); Yang et al. (2022);
Li et al. (2023) have become pivotal in various vision-language tasks such as image-text retrieval Cao
et al. (2022), visual entailment Xie et al. (2019) and visual question answering Antol et al. (2015),
demonstrating broad generalization capabilities across different domains. Given their increasing
deployment in perturbation-sensitive environments, the need to improve their adversarial robustness
of VLP models is pressing Zhang et al. (2022); Lu et al. (2023); Wang et al. (2025).

Adversarial robustness introduces vulnerabilities in deep learning (DL) models through subtle, often
imperceptible perturbations to input data, including text and images Goodfellow et al. (2014); Wang
et al. (2023); Li et al. (2020). Based on it, multimodal adversarial attacks have been developed, pos-
ing a more realistic threat in scenarios involving complex multimodal interactions. Co-attack Zhang
et al. (2022) explores these vulnerabilities in VLP models under a white-box setting by perturbing
both textual and visual modalities with a sequential text-then-image approach in single image-text
pairs. SGA Lu et al. (2023) enhances the transferability of multimodal adversarial examples by
exploiting cross-modal interactions with set-level guidance, thereby increasing attack efficacy. Fur-
thermore, VLP-attack Wang et al. (2025) employs cross-modal contrastive learning to disrupt the
alignment of image-text pairs from various perspectives, thereby misleading the multimodal under-
standing of VLP models. Compared to single-modal attacks Madry et al. (2017); Gao et al. (2020);
Wang & He (2021), multimodal adversarial attacks exploit interactions across multiple modalities,
revealing additional vulnerabilities and increasing the likelihood of identifying effective attack vec-
tors against defenses designed primarily for image attacks.

To counteract the growing threat of adversarial attacks, numerous defense mechanisms have been
developed to enhance the robustness of DL models. Adversarial training has proven particularly
effective, as demonstrated by recent studies Sankaranarayanan et al. (2018); Jin et al. (2023). Sub-
sequent research Mao et al. (2023); Schlarmann et al. (2024) has further shown that fine-tuning
the visual embeddings of vision-language models can improve robustness to adversarial image per-
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Figure 1: Comparison of CLIP with different visual encoders under various adversarial attacks.
Despite original CLIP’s high performance in image-text retrieval tasks on Flickr30k dataset, it ex-
hibits vulnerabilities to adversarially constructed inputs. While adversarial fine-tuning strategies
(e.g. TeCoA) tailored for image attacks enhance robustness against such threats (e.g. PGD), they
prove less effective against multimodal attacks (e.g. SGA).

turbations (e.g. PGD Goodfellow et al. (2014) and APGD Croce & Hein (2020)) while largely
preserving the original model features. However, as shown in Figure 1, a comparison of PGD, Co-
attack, VLP-attack and SGA attacks on both original and adversarially fine-tuned CLIP (TeCoA
and FARE) demonstrates that these methods offer only limited improvements in robustness to mul-
timodal adversarial perturbations. We attribute this to the fact that unlike single-modal attacks,
multimodal adversarial examples generated through image-text interactions can disrupt the contex-
tual integrity of image-text pairs and introduce additional perturbation information, posing a greater
threat to VLP models. These findings highlight the need to incorporate image-text interactions into
adversarial fine-tuning and mitigate overfitting on adversarial images within a multimodal context.

This paper addresses the critical yet underexplored challenge of fine-tuning vision encoders in
VLP models to enhance robustness against multimodal adversarial attacks. We propose Multi-
granularity Aligned Visual Adversarial fine-tuning (MAVA), a novel method to fortify VLP
models against multimodal adversarial threats. Our approach fine-tunes vision encoders at three
granularities to improve VLP model performance under image-text perturbations. First, we employ
Cross-Modal Supervision (CMS) to leverage cross-modal interactions, aligning adversarial image
features with text descriptions from multiple perspectives and mitigating the impact of perturba-
tions based on image-text interactions. Second, we introduce Vision Semantic Space Expansion
(VSSE) to incorporate neighboring data points around adversarial images to tune the visual features,
expanding the vision semantic space and reducing overfitting on adversarial data. Third, we apply
Semantic Consistency Alignment (SCA) to minimize divergence between feature representations
of clean images in fine-tuned and non-fine-tuned models, preserving pre-training benefits. These
strategies achieve an optimal balance between clean data accuracy and robustness to multimodal
adversarial examples.

We conduct a comprehensive evaluation of the adversarial robustness of VLP models under mul-
timodal attack scenarios, assessing the effectiveness of adversarial fine-tuning against multimodal
threats. The experimental results demonstrate that MAVA maintains performance closer to clean
data scenarios, even under multimodal adversarial attacks. The main contributions are summarized
as follows:

• We demonstrate that existing adversarial fine-tuning methods are less effective against mul-
timodal adversarial attacks;

• We propose MAVA, a novel adversarial fine-tuning method that effectively utilizes cross-
modal supervision, vision semantic space expansion, and semantic consistency alignment
to enhance multimodal adversarial robustness;

• Extensive experiments show that MAVA have better robustness to l∞ bounded attacks,
while perserving much closer the clean performance of VLP models on downstream V+L
tasks.
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2 RELATED WORKS

2.1 VISION-LANGUAGE PRE-TRAINING MODELS

Vision-Language Pre-training (VLP) models aim to improve multimodal task performance by lever-
aging large-scale pre-training on image-text pairs. A prominent example is CLIP Radford et al.
(2021), which excels in image-text matching and zero-shot multimodal tasks by effectively integrat-
ing visual and textual information. ALBEF Li et al. (2021) builds on this with image-text contrastive
learning to align and fuse representations through a multimodal encoder. TCL Yang et al. (2022)
introduces triple contrastive learning, utilizing complementary information from multiple views to
enhance representation learning and modality alignment. BLIP Li et al. (2022) and BLIP2 Li et al.
(2023) further advance vision-language alignment. The adversarial robustness of these VLP models
is crucial for their practical deployment and effectiveness in real-world applications.

2.2 MULTIMODAL ADVERSARIAL ATTACKS

The vulnerability of VLP mdoels to adversarial attacks remains a critical concern. Zhang’s study
investigates these vulnerabilities in VLP models within a white-box setting, providing valuable in-
sights into multimodal adversarial attack construction and robustness enhancement strategies Zhang
et al. (2022). Building on this, Lu et al. (2023) improve the transferability of multimodal adver-
sarial samples by leveraging cross-modal interactions and data augmentation. Wang et al. Wang
et al. (2025) explore the use of contrastive learning to disrupt image-text feature alignment from
different perspectives. These multimodal adversarial attacks pose significant threats to the practical
deployment of VLP models, particularly in downstream applications. In response, our study intro-
duces a novel adversarial fine-tuning method designed to enhance the adversarial robustness of VLP
systems, addressing these challenges.

2.3 ADVERSARIAL FINE-TUNING

Deep neural networks are vulnerable to adversarial attacks, prompting the development of various
defense strategies, including adversarial purification Nie et al. (2022), data transformation Bhagoji
et al. (2018); Dziugaite et al. (2016); Guo et al. (2017), and adversarial training Jin et al. (2023);
Sankaranarayanan et al. (2018). Among these, adversarial training has proven most effective by
incorporating adversarial examples into the training process. Recent studies Mao et al. (2023);
Schlarmann et al. (2024) have adapted adversarial fine-tuning for vision-language models, primar-
ily targeting image-based attacks by incorporating adversarial images during fine-tuning. However,
these methods often fail against multimodal adversarial attacks, as shown in Figure 1. In contrast,
our approach focuses on fine-tuning the vision encoder of VLP models to address multimodal ad-
versarial threats, improving robustness and aligning the embeddings of adversarial images and text
with those of clean images, thereby preserving modality coherence under adversarial conditions.

3 METHODS

VLP models effectively bridge the gap between visual and language understanding, enhancing V+L
tasks. This study investigates adversarial fine-tuning to improve the robustness of VLP models
against multimodal adversarial scenarios. While current methods boost performance through adver-
sarial fine-tuning against images attacks, they often fall short against multimodal adversarial chal-
lenges. To overcome this, we introduce Multi-granularity Aligned Visual Adversarial fine-tuning
(MAVA), specifically designed to enhance the adversarial robustness of VLP models to multimodal
attacks.

3.1 PRELIMINARIES

Let Fθ(·) represent a vision-language pre-training (VLP) model with parameters θ. Given an image-
text pair (v, t), the model generates representations (Ev, Et) = Fθ(v, t). For alignment tasks be-
tween image and text modalities, such as image-text retrieval, a standard VLP model seeks to min-
imize a contrastive loss, promoting cross-modal alignment and intra-modal consistency between Ev
and Et.
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Figure 2: Illustration of MAVA. We propose an adversarial fine-tuning method that utilize cross-
modal supervision, vision semantic space expansion, and semantic consistency alignment to enhance
multimodal adversarial robustness.

Multimodal Adversarial attacks. An adversary typically optimizes for an additive pixel-level
perturbation δv to the image to generate adversarial image v′ = v + δv , and word (character)-level
perturbation δt to the text to generate adversarial text t′ = t + δt, which can mislead Fθ to make
wrong predictions:


(v′, t′) = argmax

(v′,t′)

L((v′, t′), y)

s.t. ||v′ − v||∞ ≤ ϵ

s.t. similarity(t′, t) ≤ β,

(1)

where ϵ and β constrain perturbations on images and texts, respectively, ensuring the attacks remain
perceptually invisible. y indicates whether the images and texts are aligned. The defender’s role is
to correct the model’s predictions against such attacks and enhance the robustness of VLP models
to multimodal adversarial perturbations.

3.2 MULTI-GRANULARITY ALIGNED VISUAL ADVERSARIAL FINE-TUNING

We propose the Multi-granularity Aligned Visual Adversarial Fine-tuning method for VLP mod-
els as an effective defense against multimodal adversarial attacks. Unlike prior methods, such as
TeCoA Mao et al. (2023) and FARE Schlarmann et al. (2024), which primarily target robustness
against image-based attacks, our MAVA addresses a comprehensive multimodal attack paradigm.
To balance accuracy on clean data with robustness to multimodal adversarial examples, MAVA
integrates three novel strategies within the standard adversarial training framework, as shown in
Figure 2.

Vision Semantic Space Expansion. Previous adversarial fine-tuning methods have primarily fo-
cused on single adversarial data points during each epoch’s optimization, leading to overfitting on
adversarial images. Instead, we ensure that features of neighboring data points around the current
adversarial images remain close to the unperturbed features Forg(v) of the original VLP model. This
strategy aims to expand the vision encoder’s semantic space and mitigate overfitting. Specifically,
we sample N examples from the neighborhood of v′ to compute the loss LVSSE:

LVSSE(θ) = E
v∼D

[
1

N

N∑
i=1

∥ F(v′ + ri)−Forg(v) ∥22

]
, (2)

where ri ∼ U [−(β ·ϵ)d, (β ·ϵ)d], and U [ad, bd] stands for the uniform distribution D in d dimensions.
N is the number of sampling examples. As LVSSE goes to zeors, the visual features given by the
fine-tuned model for clean images is the same as the one by the original model, which implies that
when presented with adversarial images, the vision encoder can generate more normal and stable
features.

Cross-modal Supervision. Cross-modal interactions are essential for VLP models in vision-
language tasks such as image-text retrieval, where text provides unique supervisory signals for each
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image from various perspectives. Here, we leverage these interactions to expand the vision semantic
space. Specifically, paired text information guides the optimization of the vision encoder, aligning
neighboring datapoints around adversarial image features more closely with text-based supervision.
This approach allows image features to integrate gradients from multiple supervisory sources, as
follows:

LCMS(θ) = E
v∼D

[
1

M

M∑
i=1

F(ti) · 1
N

∑N
j=1 F(v′ + rj)

∥ F(ti) ∥∥ 1
N

∑N
j=1 F(v′ + rj) ∥

]
, (3)

where t is a captions set related to the image v, with set size is M . We optimize the vision semantic
space to align adversarial features from the vision encoder closely with their corresponding captions.

Semantic Consistency Alignment. Adversarial fine-tuning can significantly alter image features,
potentially diminishing the benefits derived from pre-training. To address this issue, we propose
imposing a constraint on the divergence between the feature representations of clean images from
fine-tuned and non-fine-tuned VLP models. This constraint is designed to ensure that the image fea-
tures from fine-tuned models retain task-agnostic general knowledge during adversarial fine-tuning.
We measure this divergence using the l2 distance between the feature representations, as follows:

LSCA(θ) = E
v∼D

[
1

2
∥ F(v)−Forg(v) ∥22

]
, (4)

By integrating LCMS and LSCA with the expansion of the base adversarial fine-tuning loss LVSSE,
we direct the adversarial fine-tuning process to not only enhance adversarial robustness but also
maintain clean performance. The overall training objective is formulated as follows:

Linner = LCMS + LVSSE, (5)

Louter = a · LCMS + b · LVSSE + c · LSCA, (6)

where a, b, c are the hyper-parameters that can control the strength of different constraint terms.

Based on the above method, we iteratively optimize the parameters θ of the vision encoder in Fθ to
minimize the aforementioned objective (Eq. 6) on the generated adversarial examples(Eq. 5):

minLouter

[
max

δ∈B(v,ϵ)
Linner(θ, v + δ)

]
. (7)

4 EXPERIMENTS AND RESULTS

We conduct experiments to evaluate the adversarial robustness of VLP models where the vision
encoder is replaced with an adversarially fine-tuned version across various downstream V+L tasks.

4.1 EXPERIMENTS SETTING

Examized VLP models. For image-text retrieval, we assessed four vision-language pretraining
(VLP) models: CLIP Radford et al. (2021), ALBEF Li et al. (2021), TCL Yang et al. (2022), and
BLIP Li et al. (2022), each employing ViT-B/16 as the vision encoder. For visual entailment tasks,
we focused on ALBEF and TCL, while for visual grounding, we exclusively evaluated TCL.

Datasets and Downstream Tasks. Following Co-attack Zhang et al. (2022), SGA Lu et al. (2023),
and VLP-attack Wang et al. (2025), we evaluate the effectiveness of our method using test sets
from MSCOCO Lin et al. (2014), Flickr30K Plummer et al. (2015), SNLI-VE Xie et al. (2019),
and RefCOCO+ Yu et al. (2016). Specifically, we use MSCOCO’s test set to fine-tune the vision
encoders, Flickr30K’s test set for image-text retrieval, SNLI-VE for Visual Entailment (VE), and
RefCOCO+ for Visual Grounding (VG). For cross-task transferability evaluation, following SGA,
we fine-tune the vision encoders on Flickr30K’s test set and assess performance on MSCOCO’s test
set.

Setting. The main drawback of adversarial training/fine-tuning is the degradation of clean per-
formance. For consistency with FARE Schlarmann et al. (2024), we use ϵ = 2

255 and ϵ = 4
255

for adversarial fine-tuning, denoting the VLP models as MAVA2 and MAVA4 (resp. TeCoA2 and
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Table 1: Clean and adversarial evaluation on Flickr30k dataset for image-text retrieval.
Co-attack SGAclean 2/255 4/255 2/255 4/255VLP

models
Adversarial
fine-tuning TR↑ IR↑ TR↑ IR↑ TR↑ IR↑ TR↑ IR↑ TR↑ IR↑

Origin 81.5 62.1 8.3 4.2 1.5 0.5 0.7 0.6 0.3 0.1
TeCoA2 81.0 60.6 22.3 11.6 9.7 18.3 5.0 3.8 1.7 1.8
FARE2 81.0 62.6 30.0 16.9 12.8 7.7 7.8 5.0 2.8 1.8
MAVA2 81.0 66.2 43.6 29.8 31.0 20.7 20.3 36.0 10.2 7.2
TeCoA4 76.7 59.3 29.8 17.4 16.6 10.2 10.3 6.3 5.2 3.3
FARE4 81.0 64.7 26.0 13.4 10.4 4.5 5.1 3.1 1.8 1.2

CLIPViT

MAVA4 80.9 65.9 32.9 25.2 20.6 16.6 11.5 9.8 5.0 5.1
Origin 94.9 84.5 27.3 23.5 13.0 11.9 2.3 2.5 1.1 1.0

TeCoA2 93.0 85.7 34.8 27.9 16.1 14.7 9.5 9.3 5.7 4.5
FARE2 94.6 84.5 74.3 53.7 62.8 46.2 19.1 14.6 7.9 6.3
MAVA2 95.2 85.0 74.7 54.2 63.6 46.4 20.3 15.8 8.3 6.4
TeCoA4 94.0 84.5 32.9 23.4 16.9 12.6 10.6 9.0 4.2 3.0
FARE4 90.7 80.2 75.7 53.9 70.8 50.3 11.4 9.9 5.2 3.8

ALBEF

MAVA4 94.1 84.3 77.8 55.6 72.6 52.5 19.2 13.3 9.9 6.6
Origin 94.9 84.0 13.5 13.0 2.8 3.1 1.7 1.1 0.5 0.3

TeCoA2 90.9 84.7 28.1 26.4 8.2 9.3 5.0 3.9 1.0 0.9
FARE2 93.1 82.5 57.4 25.2 32.9 33.5 12.8 9.7 3.3 2.6
MAVA2 94.6 83.7 67.0 48.9 41.5 31.8 14.1 11.6 4.0 3.2
TeCoA4 94.3 83.5 17.1 14.4 5.9 7.2 4.6 3.7 1.3 0.8
FARE4 94.0 82.9 56.6 39.7 34.6 25.9 13.0 9.7 3.3 2.7

TCL

MAVA4 94.3 83.4 63.0 45.7 46.9 33.6 18.9 14.7 5.5 4.9
Origin 97.2 87.3 22.4 17.1 6.8 6.1 6.2 5.3 2.1 2.2

TeCoA2 96.8 86.6 36.6 24.7 14.4 10.9 13.2 18.6 7.4 9.8
FARE2 96.5 85.9 60.5 40.1 49.0 29.3 16.5 13.6 2.7 2.6
MAVA2 97.5 87.4 60.6 41.3 53.3 35.6 22.6 17.7 11.2 8.8
TeCoA4 95.8 84.6 33.1 23.2 12.3 10.0 13.7 15.0 6.2 7.5
FARE4 95.5 84.1 61.4 42.5 44.2 29.7 19.4 15.7 5.0 5.1

BLIP

MAVA4 97.3 87.3 60.4 42.0 54.1 36.8 24.2 18.6 11.6 9.4
Note: the reported results are TR@1 and IR@1.

TeCoA4, FARE2 and FARE4). Notably, the text encoders of all VLP models are fixed in these
experiments.

Multimodal Adversarial Attacks and Defences. We use two adversarial fine-tuning methods
(TeCoA Mao et al. (2023), FARE Schlarmann et al. (2024)) as baselines to evaluate three multi-
modal adversarial attacks (Co-attack Zhang et al. (2022), SGA Lu et al. (2023), VLP-attack Wang
et al. (2025)) against VLP models. The detailed description is referred App. A.1.

4.2 QUANTITATIVE ROBUSTNESS EVALUATION OF VLP MODELS

First, we evaluate the clean and robust performance on several tasks native to the VLP models for
l∞ -perturbation strengths of ϵ = 2

255 and ϵ = 4
255 .

Implementations. We employ PGD Goodfellow et al. (2014) -based adversarial attack with Eq. 5 as
the loss degrades the VLP models’ performance. We conduct PGD with 10 epochs at each iteration.
The number of sampling neighbors is set to 3. The hyperparameters a, b, c in Eq. 6 are set to 0.002,
0.4, 0.6 separately. We perform adversarial fine-tuning on the vision encoder of VLP models for
only 10 epochs. Leveraging the multiple text descriptions for each image in the MSCOCO and
Flickr30k test sets, we fine-tune on the MSCOCO test set and evaluate on the Flickr30k test set
for image-text retrieval, the SNLI-VE test set for visual entailment, and the RefCOCO+ test set for
visual grounding to assess the generalization of the fine-tuned vision encoder in VLP models. The
whole method is implemented by Pytorch Paszke et al. (2019). The implementation details about all
tasks are referred to App. A.1.
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Table 2: Clean and adversarial evaluation on SNLI-VE dataset for visual entailment.
Co-attack

(Acc)↑
SGA

(Acc)↑VLP
models

Adversarial
fine-tuning

Clean 2/255 4/255 2/255 4/255
Origin 83.3 21.9 17.5 54.2 50.7

TeCoA2 83.6 25.2 19.1 56.8 52.6
FARE2 81.8 35.1 28.2 59.1 57.1
MAVA2 83.7 44.0 42.9 67.9 68.4
TeCoA4 83.5 24.1 18.6 55.9 52.3
FARE4 82.7 31.4 24.5 58.9 56.1

ALBEF

MAVA4 83.6 41.7 40.8 61.1 61.3
Origin 79.3 21.0 18.9 54.1 49.5

TeCoA2 79.8 23.9 20.1 57.3 53.1
FARE2 77.2 30.3 27.2 57.9 56.2
MAVA2 79.2 27.8 22.9 63.0 61.0
TeCoA4 79.8 23.8 20.0 57.4 52.9
FARE4 79.0 26.2 21.6 57.2 53.4

TCL

MAVA4 79.1 34.4 30.8 63.0 62.5

Main Results. We adversarially fine-tune vision encoder of VLP models for various V+L tasks
using different adversarial fine-tuning methods and examine their performance on the select 4 VLP
models. The results are shown in Table 1 and Table 2. Several observations are summarized in the
following context.

First, the original VLP models exhibit the best clean performance but lack robustness against mul-
timodal adversarial attacks, showing significant performance degradation. Among the adversarially
fine-tuned models, those tuned using our proposed MAVA method demonstrate superior robustness
to such attacks, while maintaining comparable clean performance to other baseline methods.

Additionally, all examined methods focus solely on adversarially fine-tuning the vision encoder of
VLP models to defend against adversarial examples. Among baseline methods, FARE consistently
outperforms TeCoA under different perturbation budgets (ϵ = 2

255 and 4
255 ), except for TeCoA4 and

FARE4. However, TeCoA generally aligns more closely with the original clean performance, par-
ticularly in visual entailment tasks. Our MAVA surpasses these baselines in both adversarial robust-
ness and clean performance across three V+L downstream tasks, effectively meeting our objective
of enhancing the robustness of VLP models against multimodal adversarial attacks. Furthermore,
SGA continues to demonstrate a more effective attack strategy compared to Co-attack across vari-
ous adversarial fine-tuning methods. Detailed results of adversarial fine-tuning, including PGD and
VLP-attack, and the performance in visual grounding tasks are provided in App. A.2.

4.3 TRANSFER-BASED ATTACKS

Attack Setup. Following the settings of SGA Lu et al. (2023), we evaluate the performance of adver-
sarial fine-tuning methods on two transfer-based settings: cross-modal transferability and cross-task
transferability, where ALBEF is used as the surrogate model to craft adversarial examples.

4.3.1 CROSS-MODAL TRANSFERABILITY.

Image-Text Retrieval. We evaluate the effectiveness of adversarial fine-tuning methods in a
transfer-based adversarial attack setting, with results summarized in Table 3. Transfer attacks are
useful when adversaries lack white-box access to target models but have access to a surrogate
model. Despite architectural and parameter differences, adversarial examples transfer effectively
across ALBEF, TCL, and BLIP. However, when target VLP models employ robust vision encoders,
their performance improves significantly. Compared to baselines, our MAVA demonstrates superior
robustness, with MAVA2 achieving the best results when paired with either TCL or BLIP.

Visual Entailment. The transferability of adversarial examples against robust vision encoders in the
visual entailment task is similar to that observed in the image-text retrieval, as detailed in App. A.3.
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Table 3: The transfer-based attack results on the Flickr30k dataset for image-text retrieval. The
surrogate model is ALBEF, we select TCL and BLIP as the target models to evaluate adversarial
robustness in a transfer-based setting.

SGAclean 2/255 4/255VLP
model

Vision
encoder TR@1 IR@1 TR@1 TR@5 IR@1 IR@5 TR@1 TR@5 IR@1 IR@5
Origin 94.9 84.0 51.1 75.0 38.2 62.0 33.7 56.8 26.5 47.3

TeCoA2 90.9 84.7 48.4 67.3 42.7 66.2 35.0 52.5 31.5 54.3
FARE2 93.1 82.5 61.4 82.9 45.2 77.8 46.8 70.3 35.2 58.9
MAVA2 94.6 83.7 64.9 85.0 46.5 70.8 50.2 74.5 37.2 60.8
TeCoA4 88.8 83.5 44.9 62.9 41.9 65.9 31.5 48.6 30.9 53.2
FARE4 94.0 82.9 59.9 82.1 45.0 69.0 46.4 71.0 35.4 58.9

TCL

MAVA4 94.3 83.4 64.6 85.7 47.1 71.5 51.9 75.6 38.5 62.9
Origin 97.2 87.3 70.8 88.3 50.6 74.3 55.8 75.3 39.8 63.2

TeCoA2 96.8 86.6 72.0 89.4 52.3 75.5 59.2 78.3 42.7 66.5
FARE2 96.5 85.9 70.9 89.2 52.2 75.5 58.6 80.6 43.1 66.5
MAVA2 96.2 86.4 75.5 91.4 55.1 77.7 65.9 85.3 47.7 71.6
TeCoA4 95.8 84.6 71.5 88.8 52.3 75.3 58.0 78.1 42.6 66.2
FARE4 95.5 84.1 71.4 89.2 53.0 76.3 62.4 82.0 46.0 69.8

BLIP

MAVA4 95.5 84.4 71.5 89.6 53.0 76.4 62.7 82.6 46.1 69.8

4.3.2 CROSS-TASK TRANSFERABILITY

Cross-modal interactions and alignments are fundamental to multimodal learning across various
V+L tasks. Here we evaluate the effectiveness of MAVA in a cross-task transferability setting.

Image Captioning. In our experiment, we generate adversarial images using ALBEF with an
image-text retrieval objective, then directly attack the target model, BLIP Li et al. (2022), on the
image captioning task. Table 8 in App. A.4 shows the performance of BLIP with a robust vision
encoder on image captioning. The results indicate notable improvements in adversarial robustness
for BLIP in the cross-task transferability scenario. The details can be found in App. A.4.
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Figure 3: The impact of neighborhood sampling number on defense against multimodal adversarial
attacks.

4.4 ABLATION STUDIES

We conduct ablation studies on MAVA to further verify our design. In this context, we only report
the performance of CLIP for analysis on image-text retrieval tasks.

Strategies of CMS, VSSE, and SCA. We first evaluate the impact of the proposed strategies—CMS,
VSSE, and SCA—on image-text retrieval performance. As shown in Table 4, each strategy inde-
pendently improves performance to some extent. When combined, they maximize adversarial ro-
bustness against diverse attacks. This suggests that CMS’s unique supervisory signals from paired
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Table 4: Evaluation of the proposed method on image-text retrieval tasks with CLIP model.

Methods Vision
encoder

Normal Co-attack SGA
2/255 4/255 2/255 4/255

TR IR TR IR TR IR TR IR TR IR

MAVA w/CMS
MAVA2 81.5 66.8 42.4 29.6 29.6 18.9 19.3 12.7 10.2 6.4
MAVA4 81.5 62.1 15.9 13.2 11.6 10.7 8.8 4.8 2.4 3.0

MAVA w/V SSE
MAVA2 80.5 65.9 42.9 29.6 31.0 20.6 19.3 12.9 10.2 6.4
MAVA4 79.3 65.8 30.2 22.0 19.5 14.5 9.4 4.2 3.6 3.2

MAVAw/SCA
MAVA2 48.1 45.5 25.6 26.6 21.8 22.4 16.0 16.9 12.0 12.1
MAVA4 46.4 40.3 22.6 20.4 18.4 16.6 10.6 9.2 6.8 7.0

MAVA MAVA2 81.0 66.2 43.6 29.8 31.0 20.7 20.3 36.0 10.2 7.2
MAVA4 80.9 65.9 32.9 25.2 20.6 16.6 11.5 9.8 5.0 5.1

w/X means a variant of with X being removed; The reported results are TR@1 and IR@1.

image-text data, VSSE’s enhancement of the vision semantic space, and SCA’s mitigation of perfor-
mance degradation collectively contribute to the adversarial robustness of VLP models. Notably, re-
moving SCA significantly reduces the performance of MAVA, highlighting its critical role in MAVA
by constraining the divergence between feature representations of clean images in fine-tuned and
non-fine-tuned VLP models. GradCAM visualizations in APP. A.6 demonstrate that MAVA effec-
tively enhances the robustness of VLP models against multimodal adversarial attacks.

Number of neighborhood samples. To mitigate overfitting on adversarial images v′ and enhance
model robustness, we incorporate neighboring data points around the current v′ to refine the vision
semantic space during each iteration. Specifically, we sample N examples from the neighborhood
of v′ to compute the loss LVSSE. Figure 3 shows the effect of varying the number of neighborhood
samples in MAVA4 against Co-attack and SGA with ϵ = 2

255 . As the number of neighborhood
samples increases from 0 to 3, CLIP with MAVA4 becomes more robust. However, when the number
of samples reaches 4, robustness against Co-attack and SGA decreases. Based on these findings, we
use 3 neighborhood samples to mitigate overfitting on adversarial images. The effect of the number
of neighborhood samples in MAVA4 against VLP-attack is referred to App. A.5.

4.5 IN-DEPTH ANALYSES

We present several in-depth analyses demonstrating MVAV’s effectiveness under varying conditions.

Number of Iterations. To further analyze the impact of iterations on defense against multimodal
adversarial attacks, we examine the effect of varying iterations during adversarial fine-tuning of
CLIP with ϵ = 2

255 , which are provided in App. B.1.

Multi Captions for An Image. We also investigate the impact of number of captions on adversarial
robustness of vision encoder. The number of captions varies from 1 to M , where M represents the
total number of caption pairs for each image, with each caption offering a distinct perspective, which
is referred to App. B.2.

Theoretical Analysis of MAVA. To further understand MAVA, we provide a theoretical analysis of
its core mechanisms, which are provided in App. B.3.

Scalability and Computational Cost of MAVA. We present a detailed analysis of the scalability
and computational cost of MAVA, which is refreed to App. B.4 and B.5.

5 CONCLUSION

This paper presents a comprehensive study of multimodal adversarial robustness in VLP models.
Our findings reveal that existing adversarial fine-tuning methods are inadequate against multimodal
attacks. To address this, we propose a novel Multi-granularity Aligned Visual Adversarial Fine-
tuning approach, which integrates cross-modal supervision, vision semantic space expansion, and
semantic consistency alignment to improve model robustness on downstream V+L tasks. Future
work will focus on optimizing our method and extending the framework to incorporate perturbations
from other modalities, such as text.
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SUPPLEMENTARY MATERIAL :
BOOSTING ADVERSARIAL ROBUSTNESS OF VISION-LANGUAGE

PRE-TRAINING MODELS AGAINST MULTIMODAL ADVERSARIAL ATTACKS

A ADDITIONAL EXPERIMENTS

A.1 EXPERIMENTS SETTING

Implementation details. We apply PGD Goodfellow et al. (2014) to generate adversarial images
over 10 epochs, with a step size of 1.0 across all tasks. In our MAVA approach, the learning rate is set
to 1e-3 for image-text retrieval (1e-4 for CLIP), visual entailment, and image captioning, and 1e-4
for visual grounding. The weight decay for all VLP models is 1e-4. For the FARE Schlarmann et al.
(2024) method, to maintain clean performance close to that of standard VLP models, the learning
rate is 1e-3 for image-text retrieval, except for ALBEF with ϵ = 2

255 and TCL with ϵ = 2
255 and

ϵ = 4
255 , where it is set to 1e-4. For visual entailment and visual grounding tasks, the learning rate

is also 1e-4. In TeCoA Schlarmann et al. (2024), a learning rate of 1e-3 is used across all tasks.
For all baseline methods, we choose the learning rate that yields the best adversarial robustness
while maintaining clean performance comparable to standard VLP models. We use 3 neighborhood
samples around adversarial images and 5 image captions for per image. The vision encoders in the
VLP models are fine-tuned over 10 epochs using four A100 GPUs, while the text encoders remain
fixed. The entire implementation is conducted using PyTorch Paszke et al. (2019).

Multimodal Adversarial Attacks. To demonstrate the effectiveness of our proposed method, in the
work, we select three multimodal adversarial attacks as the baseline methods.

• Co-attack Zhang et al. (2022) is a multimodal adversarial attack against vision-language
pre-training models that adopts a step-wise mechanism that first perturbs the discrete inputs
(text) and then perturbs the continuous inputs (image) given the text perturbation, which is
designed for white-box attack manner.

• SGA Lu et al. (2023) is a multimodal transfer-based adversarial attack that investigates the
adversarial transferability of recent VLP models through modalities interactions and data
augmentation.

• VLP-attack Wang et al. (2025) is a multimodal transfer-based adversarial attack that pro-
vides contrastive learning with sufficient image-text variations to perturb the inherent struc-
tures in the benign samples and the contextual integrity of image-text pairs from different
views.

All the multimodal adversarial attacks have shown superior performance than single-modal adver-
sarial attacks, such as PGD and Bert-attack.

Adversarial Fine-Tuning Methods. We use two baseline adversarial fine-tuning approaches to
evaluate the effectiveness of our MAVA method:

• TeCoA Mao et al. (2023) employs a text-guided contrastive adversarial training loss to
align text embeddings with adversarial image features, which are then used for model and
visual prompt tuning.

• FARE Schlarmann et al. (2024) constrains the features of adversarial images to remain
close to those of the unperturbed original CLIP model, while preserving the original
model’s feature representations.

A.2 QUANTITATIVE ROBUSTNESS EVALUATION OF VLP MODELS

We present additional experimental results on adversarial fine-tuning in visual grounding tasks, eval-
uating the performance of PGD and VLP-attack against adversarial fine-tuning methods in image-
text retrieval.
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Table 5: Clean and adversarial evaluation on Refcoco+ dataset for visual grounding.
Co-attack SGAClean 2/255 4/255 2/255 4/255Vision

encoder Val TestA TestB Val TestA TestB Val TestA TestB Val TestA TestB Val TestA TestB
Origin 58.4 65.9 46.2 32.8 36.3 29.3 31.5 34.0 28.2 39.9 45.2 33.9 36.6 40.2 32.0
TeCoA2 57.4 64.9 45.8 45.1 50.4 36.1 43.2 48.5 35.5 46.2 51.0 37.8 43.9 48.8 36.3
FARE2 56.7 63.3 46.0 46.1 51.8 37.4 44.8 50.2 36.6 47.2 52.8 38.5 45.7 51.4 37.9
MAVA2 57.9 63.8 46.2 47.0 52.7 39.0 46.4 51.0 38.4 48.8 53.2 39.8 47.5 53.3 39.0
TeCoA4 57.6 65.2 45.9 43.1 48.3 35.1 40.4 45.5 33.9 44.7 49.9 36.8 41.8 46.8 35.8
FARE4 56.7 63.1 46.0 46.3 51.9 37.4 45.3 50.9 36.9 47.0 52.3 38.4 45.5 50.9 38.0
MAVA4 56.9 63.1 45.9 46.8 51.9 38.4 46.7 51.2 38.1 48.0 53.0 39.6 46.8 51.9 39.4

Table 6: Clean and adversarial evaluation on Flickr30k dataset for image-text retrieval.
PGD VLP-attackclean 2/255 4/255 2/255 4/255VLP

models
Vision

encoder TR↑ IR↑ TR↑ IR↑ TR↑ IR↑ TR↑ IR↑ TR↑ IR↑
Origin 81.5 62.1 27.5 16.4 9.4 7.9 9.1 5.4 3.1 2.5

TeCoA2 81.0 60.6 53.7 32.2 29.5 20.2 21.1 13.6 11.0 7.1
FARE2 80.5 62.6 52.9 31.3 24.6 15.1 21.1 12.5 8.0 5.0
MAVA2 81.0 66.2 76.0 59.4 66.3 49.2 44.1 31.1 29.1 19.5
TeCoA4 76.7 59.3 60.2 41.2 42.9 28.6 29.2 20.4 17.3 14.3
FARE4 81.0 64.7 61.7 40.2 33.6 21.8 24.1 14.7 8.9 5.9

CLIPViT

MAVA4 80.9 65.9 66.7 52.3 51.6 42.9 34.4 29.1 20.0 19.2
Origin 94.9 84.5 31.9 23.6 12.0 9.3 14.1 9.7 5.2 4.1

TeCoA2 93.0 85.7 50.1 39.8 23.7 19.9 35.1 28.2 24.1 16.2
FARE2 94.6 84.5 80.0 66.5 64.4 50.8 58.2 51.6 27.0 19.8
MAVA2 95.2 85.0 86.0 73.3 69.7 55.6 63.0 45.1 31.6 23.6
TeCoA4 94.0 84.5 47.7 39.0 23.2 19.3 38.0 30.9 30.2 23.1
FARE4 90.7 80.2 82.7 71.9 81.4 70.6 66.4 45.8 42.0 28.6

ALBEF

MAVA4 94.1 84.3 88.8 77.6 84.7 70.5 70.7 49.9 51.1 36.7
Origin 94.9 84.0 42.2 30.2 18.8 11.8 12.6 8.8 4.9 4.0

TeCoA2 90.9 84.7 56.7 43.1 40.1 29.3 36.8 24.6 8.0 6.6
FARE2 93.1 82.5 78.4 65.8 64.0 51.3 35.8 23.7 7.6 5.5
MAVA2 94.6 83.7 81.0 66.4 65.0 51.6 39.4 28.3 12.8 9.0
TeCoA4 94.3 83.5 57.1 44.2 38.6 30.1 40.8 30.6 18.9 15.1
FARE4 94.0 82.9 76.5 62.4 65.0 51.6 60.8 42.2 49.8 36.2

TCL

MAVA4 94.3 83.4 88.1 75.8 87.0 73.6 64.0 47.0 54.3 39.3
Origin 97.2 87.3 43.0 31.2 20.6 10.8 10.8 6.6 3.4 2.8

TeCoA2 96.8 86.6 60.2 46.6 45.4 36.1 40.2 34.8 28.6 22.5
FARE2 96.5 85.9 76.8 62.8 66.7 58.2 44.2 39.4 34.4 27.8
MAVA2 97.5 87.4 80.6 72.5 78.4 69.7 50.8 43.6 42.9 37.2
TeCoA4 95.8 84.6 61.6 48.1 46.2 36.2 51.0 39.8 32.4 30.0
FARE4 95.5 84.1 80.8 69.6 78.7 67.1 57.3 51.1 40.7 38.1

BLIP

MAVA4 97.3 87.3 83.8 72.1 81.4 71.4 61.0 56.8 46.2 43.8
Note: the reported results are TR@1 and IR@1.

For the visual grounding task, we assess the clean and robust performance of VLP models under l∞
-perturbation strengths of ϵ = 2

255 and ϵ = 4
255 . The results, presented in Table 5, show that the

performance of various adversarial fine-tuning methods on the VG task aligns closely with results
from image-text retrieval and visual entailment tasks. Notably, SGA underperforms compared to
Co-attack, likely because it requires multiple descriptive texts, and simple augmentations fail to
provide alignment-preserving enhancements for image-text pairs in the Refcoco+ dataset. Overall,
our MAVA method outperforms all baselines.
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Table 7: The transfer-based attack results on the SNLI-VE dataset for visual entailment tasks. The
surrogate model is ALBEF, we select TCL as the target models to evaluate adversarial robustness in
a cross-modal transfer-based setting.

SGA (Acc↑)VLP
models

Vision
encoder

Clean
(Acc↑) 2/255 4/255

Origin 83.3 58.5 46.4
TeCoA2 78.9 64.8 65.5
FARE2 79.5 64.4 65.0
MAVA2 79.5 65.4 66.3
TeCoA4 78.8 64.7 65.7
FARE4 79.2 64.8 65.6

TCL

MAVA4 79.2 65.3 66.6

To further demonstrate the effectiveness of our MAVA, we present the performance of VLP-attack
and PGD against adversarial fine-tuning methods in Table 6. For the image-based attack PGD, all
adversarial fine-tuning methods show improved defense. However, for the multimodal VLP-attack,
the results are consistent with those in Table 1 and Table 2. Overall, the findings indicate that MAVA
provides the best defense against both image and multimodal adversarial attacks.

A.3 CROSS-MODAL TRANSFERABILITY

We evaluate the effectiveness of adversarial fine-tuning methods under transfer-based adversarial
attacks, with results summarized in Table 7. Transfer attacks are relevant when adversaries lack
white-box access but have access to a surrogate model. Using ALBEF as the surrogate, we transfer
adversarial examples to evaluate TCL on visual entailment tasks. As shown in Table 7, the results
align with those in Table 3, demonstrating that MAVA consistently outperforms other methods in
resisting multimodal adversarial attacks under a cross-modal transfer-based setting.

A.4 DETAILS OF CROSS-TASK TRANSFERABILITY

In image captioning, an image is encoded into a feature vector and decoded into a language descrip-
tion. In our experiment, we generate adversarial images using ALBEF with an image-text retrieval
objective, then directly attack the target model, BLIP Li et al. (2022). Due to lack of text encoder in
BLIP, we only use LVSSE and LSCA in Louter to adversarially fine-tune the vision encoder of BLIP
with test set in the Flickr30k dataset:

Louter = b · LVSSE + c · LSCA, (8)

We evaluate performance on the MSCOCO dataset using several metrics, including BLEU Papineni
et al. (2002) (B), METEOR Banerjee & Lavie (2005) (M), ROUGE Lin (2004) (R), CIDEr Vedan-
tam et al. (2015) (C), and SPICE Anderson et al. (2016) (S) with pycocoevalcap tool1. The results
in Table 8 indicate notable improvements in adversarial robustness for BLIP in the cross-task trans-
ferability scenario.

A.5 NUMBER OF NEIGHBORHOOD SAMPLES

To mitigate overfitting on adversarial images v′ and enhance model robustness, we incorporate
neighboring data points around v′ to refine the vision semantic space during each iteration. Specifi-
cally, we sample N examples from the neighborhood of v′ to compute the loss LVSSE. As illustrated
in Figure 4, increasing the number of neighborhood samples in MAVA4 improves robustness against
VLP-attack with ϵ = 2

255 . Unlike the results in Figure 3, robustness consistently improves as the
number of samples increases from 0 to 4. Notably, when the number is 3 or 4, MAVA demonstrates
superior defense against multimodal adversarial attacks. Based on these findings, we adopt 3 as the
optimal configuration to mitigate overfitting on adversarial images.

1https://github.com/salaniz/pycocoevalcap
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Table 8: Cross-Task Transferability:ITR−→IC. Adversarial examples crafted from imae-text re-
trieval (ITR) to attack image captioning (IC) on MSCOCO. The baseline means the original perfor-
mance of IC on clean data. The ϵ of adversarial attacks is 2

255 .
Vision

Encoder Attacks B@4 M R C S

Origin
Baseline 39.7 31.0 60.0 133.3 23.8
Co-attack 37.4 29.8 58.4 125.5 22.8

SGA 34.8 28.4 56.3 116.0 21.4

MAVA4 Co-attack 38.2 30.4 59.0 127.4 23.4
SGA 36.4 29.6 57.4 118.8 22.8
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Figure 4: The impact of neighborhood sampling number on defense against multimodal adversarial
attacks.

A.6 VISUALIZATION

Original ALBEF Attack(Original ALBEF) Attack(MAVA+ALBEF)

A dark colored dog is 

sprinting across the 

ground

A dark colored dog is 

jumping across the 

ground

A dark colored dog is 

jumping across the 

ground

Attack(TeCoA+ALBEF) Attack(FARE+ALBEF)

Entailment:36.7% Entailment:30.1% Entailment:35.6%Entailment:33.1%Entailment:32.7%

A dark colored dog is 

jumping across the 

ground

A dark colored dog is 

jumping across the 

ground

SGA

The children are 

standing on the sand
The children are 

doing on the sand

The children are 

doing on the sand

The children are 

doing on the sand
The children are 

doing on the sand

Entailment:37.8% Entailment:30.2% Entailment:37.2%Entailment:30.6%Entailment:28.6%

Co-

Attack

Figure 5: GradCAM visualizations for three adversarial fine-tuning methods on the VE task under
Co-attack and SGA.

We present visualizations of adversarial examples from various multimodal attacks against adver-
sarial fine-tuning methods, as shown in Figure 5. The heatmaps reveal that the attention of ALBEF
shifts notably for adversarial examples when the vision encoder is replaced with different adver-
sarially fine-tuned versions. Among the methods, MAVA demonstrates the best improvement in
adversarial robustness against multimodal adversarial attack compared to other baselines.
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(b) The impact of number of captions.

Figure 6: The impact of iteration count and caption number on defense against multimodal adver-
sarial attacks. We report the average of IR@1 and TR@1 for every adversarial attack.

B IN-DEPTH ANALYSES

B.1 NUMBER OF ITERATIONS

To further analyze the impact of iterations on defense against multimodal adversarial attacks, we
examine the effect of varying iterations during adversarial fine-tuning of CLIP with ϵ = 2

255 , as
shown in Figure 6 (a). Increasing the number of iterations enhances CLIP’s robustness but slightly
reduces the clean performance of the fine-tuned vision encoder. For consistency with TeCoA, all
methods are fine-tuned for 10 epochs.

B.2 MULTI CAPTIONS FOR AN IMAGE

We also investigate the impact of number of captions on adversarial robustness of vision encoder.
The number of captions varies from 1 to M , where M represents the total number of caption pairs for
each image, with each caption offering a distinct perspective. As shown in Figure 6 (b), increasing
the number of captions enhances the adversarial robustness of ALBEF (fine-tuning vision encoder
with ϵ = 2

255 ) against multimodal attacks. These results highlight the effectiveness of cross-modal
supervision in our approach.

B.3 THEORETICAL ANALYSIS OF THE MAVA

The proposed Multi-granularity Aligned Visual Adversarial Fine-tuning (MAVA) enhances the ad-
versarial robustness of VLP models against multimodal attacks through three key strategies. Below,
we provide a theoretical explanation of its core mechanisms.

B.3.1 OPTIMIZATION FRAMEWORK FOR ADVERSARIAL FINE-TUNING

MAVA adopts a min-max optimization framework (Eq. 7):

min
θ

E(v,t)∼D

[
max

δ∈B(v,ϵ)
Linner(θ, v + δ)

]
︸ ︷︷ ︸

Adversarial Attack Generation

+a · LCMS + b · LVSSE + c · LSCA (9)

where the inner maximization generates adversarial perturbations to maximize the loss Linner ,
while the outer minimization optimizes model parameters θ under multi-granularity constraints.
This framework theoretically improves robustness by fine-tune the model on worst-case adversarial
examples, ensuring parameter updates account for perturbed inputs.
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B.3.2 SMOOTHNESS CONSTRAINT VIA VISION SEMANTIC SPACE EXPANSION (VSSE)

LVSSE(θ) = E
v∼D

[
1

N

N∑
i=1

∥ F(v′ + ri)−Forg(v) ∥22

]
, (10)

where ri denotes uniformly sampled perturbations. The theoretical implications are two fold:

Local Smoothness: By penalizing abrupt feature changes in the neighborhood of adversarial exam-
ples (v′ + ri), LVSSE prevents overfitting to specific adversarial perturbations.

Feature Stability: Minimizing the L2-distance between perturbed and original features Forg(v),
aligns with Lipschitz continuity assumptions Zühlke & Kudenko (2024), limiting the sensitivity of
visual representations to input perturbations.

B.3.3 CROSS-MODAL SUPERVISION (CMS) FOR SEMANTIC ALIGNMENT

LCMS leverages textual supervision to guide adversarial feature learning.

LCMS(θ) = E
v∼D

[
1

M

M∑
i=1

F(ti) · F̂(v′)

∥ F(ti) ∥∥ F̂(v′) ∥

]
, (11)

where F̂(v′) = 1
N

∑N
j=1 F(v′ + rj). This strategy ensures:

Multimodal Consistency: Maximizing cosine similarity between perturbed image features (F̂(v′))
and paired text embeddings F(ti) preserves semantic alignment under attacks.

Gradient Diversity: Textual supervision introduces additional gradient directions during optimiza-
tion, preventing the vision encoder from converging to suboptimal local minima and improving
cross-modal generalization.

B.3.4 LOSS TRADE-OFFS AND GENERALIZATION GUARANTEES

The composite loss
Louter = a · LCMS + b · LVSSE + c · LSCA, (12)

requires careful tuning of hyperparameters (a, b, c) to balance clean-data accuracy and adversarial
robustness. Theoretically:

Hyperparameter Sensitivity: Overweighting b may suppress semantic learning, while a small a
weakens cross-modal alignment.

Generalization Bounds: Following PAC-Bayes theory, the generalization error of adversarially
fine-tuned models is bounded by perturbation radius ϵ and model complexity. MAVA reduces the
effective complexity through feature smoothness and cross-modal alignment, tightening the gener-
alization bound.

B.4 SCALABILITY

Scalability is a critical consideration for adversarial fine-tuning methods deployed in real-world
applications. Here, we analyze scalability from two key perspective.

Model Architecture Compatibility. Our proposed MAVA is evaluated on standard VLP models
(e.g., CLIP, ALBEF, BLIP) with ViT-B/16 vision encoders. While scaling to larger architectures
(e.g., ViT-L/H) would increase computational demands due to higher parameter counts, MAVA’s de-
sign—including neighborhood sampling and cross-modal alignment—is architecture-agnostic, sug-
gesting compatibility with larger models given sufficient resources.

Data Sampling Efficiency. Vision Semantic Space Expansion (VSSE) involves sampling N per-
turbed images per adversarial example. While increasing N linearly raises computational cost, it
may enhance robustness by providing more comprehensive feature alignment. Similarly, Cross-
modal Supervision (CMS) leverages M captions per image, with larger M improving supervision
quality at the expense of proportional computational overhead. The scalability of the method de-
pends on an effective trade-off between N and M , where smaller values can be adopted to improve
efficiency without significantly degrading performance.
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B.5 COMPUTATIONAL COST

The time complexity of MAVA is primarily determined by the following components:

1. Adversarial Example Generation.

• Inner Maximization: For each training iteration, MAVA generates adversarial examples
by solving the inner maximization problem (e.g., using PGD). The time complexity de-
pends on the number of PGD steps (K), the dimensionality of the input space (d) and the
cost of computing gradients for the VLP model Fθ.

• Complexity: O(K · d · Tgradient) where Tgradient is time to compute gradients for Fθ.

2.Vision Semantic Space Expansion (VSSE).

• Neighborhood Sampling: For each adversarial example, MAVA samples N points in its
neighborhood and computes their features.

• Complexity: O(N · d ·Tforward) where Tforward is the time for a forward pass through Fθ.

3. Cross-Modal Supervision (CMS).

• Text-Image Alignment: For each image, MAVA computes the similarity between its fea-
tures and M paired text embeddings.

• Complexity:O(M · d · Tforward)

4. Semantic Consistency Alignment (SCA).

Measures divergence between fine-tuned and original features (O(d)), but requires storing original
model features, increasing memory consumption.

5. Overall Time Complexity.

The total time complexity per iteration is: O(K ·d ·Tgradient+N ·d ·Tforward+M ·d ·Tforward+d)
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