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Abstract

Inductive reasoning infers general rules from observed evidence, which is one of
the most critical intelligence abilities. Previous works have succeeded in formal
languages but suffer from onerous and error-prone conversions between a particular
formal language and the working language. As large language models (LLMs)
have emerged, direct reasoning with various kinds of languages, especially natural
languages, without formal language involvement has become feasible. However,
existing LLM-based inductive reasoning usually relies on LLM’s intrinsic genera-
tion ability, which is prone to LLM’s hallucination and lacks systematic guidance
according to the nature of inductive reasoning. To this end, we propose HypoBoot-
strap, an integrated framework for inductive reasoning that generates and confirms
hypotheses both in a bootstrapping manner. Regarding hypothesis generation, we
propose a novel bootstrapping generation strategy, bootstrapping object hypotheses,
relational hypotheses, and functional hypotheses successively, which assists LLM
in observing the evidence from trivial patterns to non-trivial patterns. Regarding
hypothesis confirmation, we utilize Glymour’s theory of bootstrap confirmation, a
hypothesis confirmation theory from the philosophy of science that can confirm
a set of hypotheses. We use its principles to confirm the object hypotheses, rela-
tional hypotheses, and functional hypotheses. Empirical studies on four inductive
reasoning scenarios of different natures, involving causal induction, concept learn-
ing, grammar learning, and abstract reasoning, demonstrate that HypoBootstrap
significantly outperforms existing methods.

1 Introduction

Inductive reasoning emblems high-level human intelligence [8, 19, 11, 1]. While deductive reasoning
is a critically required ability for intelligence, inductive reasoning is more significant, by which
means humans infer general rules from observed evidence. These rules are the basis of the soundness
of deductive reasoning. Figure 1 illustrates an inductive reasoning task. In contrast to deductive
reasoning, where we reason over given rules, inductive reasoning has no rules to follow and requires
creative thinking to generate various possible hypotheses.

In the past few decades, Inductive Logic Programming (ILP) [2] was the major research subject for
inductive reasoning in the AI community. An ILP system can learn symbolic rules from symbolic
evidence, typically expressed in first-order language. An example hypothesis in first-order language
is depicted in Figure 1. While ILP can efficiently learn interpretable rules in formal language, it
mandatorily requires the formalization of evidence, preventing it from inductive reasoning over
more common natural-language evidence. Besides, since ILP cannot produce natural-language rules,
translating formal-language rules into natural language is another tremendous burden.
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Figure 1: Comparison of natural-language hypothesis with formal-language hypothesis given the
same evidence. Natural-language hypotheses are typically imprecise and implicitly imply some
statements, which are usually considered trivial and redundant in daily conversation. In contrast,
formal-language hypotheses are as precise as possible; even trivial things should be expressed
explicitly. HypoBootstrap first generates the trivial hypotheses (i.e., object hypothesis HO and
relational hypothesis HR), which are much easier to observe, and final hypotheses (i.e., functional
hypothesis HF ) are generated based on these hypotheses.

With the rise of large language models (LLMs; 28), direct reasoning in non-formal languages becomes
feasible, especially in natural languages, which avoid the troublesome mutual conversion between
non-formal language and formal language. Existing works reveal some degree of ability to propose
natural-language hypotheses via LLM’s powerful generation ability [20, 25]. However, due to the
unavoidable hallucination, LLMs usually unconsciously propose fallacious hypotheses, losing the
rigorous nature of formal-language reasoning.

To alleviate LLM’s hallucination and provide systematic guidance for inductive reasoning, we propose
HypoBootstrap, a novel agent framework to boost LLM’s inductive reasoning performance. Hypo-
Bootstrap enhances inductive reasoning from two tightly interacting aspects, hypothesis generation
(i.e., hypothesis proposing) and hypothesis confirmation, the two indispensable aspects of inductive
reasoning. On the one hand, HypoBootstrap enhances hypothesis generation by bootstrapping hy-
potheses from trivial to non-trivial. The trivial hypotheses, corresponding to the implicitly stated
hypotheses of Figure 1 (pink), are easy to observe and help generate more non-trivial hypotheses,
corresponding to the explicitly stated hypotheses of Figure 1 (blue). Specifically, inspired by first-
order languages, HypoBootstrap successively generates object hypotheses, relational hypotheses, and
functional hypotheses, bootstrapping the latter from the former. On the other hand, HypoBootstrap
confirms hypotheses based on Glymour’s theory of bootstrap confirmation [6], a widely-used confir-
mation theory from the philosophy of science that is advantageous to confirm a set of hypotheses.
HypoBootstrap adopts this confirmation method to confirm the set of object hypotheses, relational
hypotheses, and functional hypotheses. Implementing such a confirmation theory originated from
first-order languages via LLM agents is not direct; hence, we deliberately design a confirmation
procedure and simultaneously integrate it into our bootstrapping generation procedure, which can
alleviate the LLM’s hallucination during hypothesis generation.

We conduct experiments 1 on four inductive reasoning scenarios with varying nature: causal induction,
concept learning, grammar learning, and abstract reasoning. Empirical results demonstrate significant
improvement of HypoBootstrap compared with previous works and verify that both the bootstrap
generation and bootstrap confirmation are effective. In addition, HypoBootstrap can be further
improved via human priors, demonstrating its broader potential in inductive reasoning. The main
limitation of HypoBootstrap is the high inference cost. In practice, the trade-off between performance
and cost should be considered seriously.

2 Related work

2.1 Inductive reasoning via language models

Language model-based inductive reasoning enables inferring hypotheses in various languages, espe-
cially natural languages, and does not require formalizing evidence. Existing research is divided into

1Code is available at https://github.com/chensi99/HypoBootstrap.
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two lines. One line requires parameter fine-tuning [24], which is costly for LLMs, even impossible
for closed-source but powerful models. The fine-tuning may even require annotated rules as training
data [22, 26], which is costly, error-prone, and intractable for broader applications. Another line
does not rely on fine-tuning, where language models are directly prompted to infer rule hypotheses
from evidence, as in Hypothesis Refinement [20]. The hypotheses are confirmed via programs,
which are translated from natural-language hypotheses via LLMs. The hypotheses can be refined by
iteratively generating with error feedback. Hypothesis Search [25] attempts to inject human priors
into prompts, which can further stimulate LLMs’ inductive reasoning ability. MoC [13] prompts LLM
first to generate relevant concepts for each inductive reasoning task, and then to generate hypotheses
according to these concepts, which enriches the diversity of generated hypotheses. However, none
of these works explicitly alleviates hallucinations during hypothesis generation. Our work falls into
the second line and alleviates LLM’s hallucination in inductive reasoning. Further, our proposed
framework considers the nature of inductive reasoning and provides systematic guidance for LLMs.

2.2 Confirmation theory

Confirmation theory studies the logic that a hypothesis may be confirmed or disconfirmed by given
evidence. Various confirmation theories are used in the philosophy of science, such as the Hempelian
positive-instance account of confirmation, the hypothetico-deductive method, and the probabilistic
method [17]. Glymour’s theory of bootstrap confirmation [6] is the one that is, implicitly or explicitly,
often used in various significant scientific breakthroughs, such as Newton’s universal gravitation,
general theory of relativity [6], and quantum theory [15, 16]. We adopt Glymour’s bootstrap
confirmation since it is designed and appropriate for scenarios where multiple hypotheses should be
confirmed together.

3 Preliminary

3.1 Inductive reasoning

Following previous works [20, 25], we consider a practical induction problem of inferring a mapping
rule from an input space X to an output space Y . All the elements of the spaces are assumed
to be represented in some language, and all the inputs and outputs passed to LLMs refer to their
language representation. To have coherent notations throughout the paper, we deliberately express
this problem in first-order logic. 2 Specifically, for each task, we have observed evidence, a consistent
set of binary ground atoms E = {f(x(1)) ≡ y(1), . . . , f(x(n)) ≡ y(n)}, where x(1), . . . , x(n) ∈ X ,
y(1), . . . , y(n) ∈ Y , f is the mapping function to be inferred, and ≡ denotes the binary predicate
equality. The goal is to infer a rule H s.t. ∀x ∈ X , y ∈ Y ,

H ⊢ f(x) ≡ y if f(x) is equal to y,

H ⊢ ¬f(x) ≡ y if f(x) is not equal to y.

For instance, given evidence {f([4, 2, 3, 1]) ≡ [1, 2, 3, 4]}, where input and output are both lists of
numbers, we may infer H as y is the sorted list of x in ascending order. The evaluation of a rule is
conducted on unobserved evidence, a separate set of binary ground atoms generated from the same
mapping f . The hold-out evidence ensures that E itself would not be an acceptable rule and a good
inductive reasoner should have inferred the underlying mapping behind the observed evidence.

The hypotheses and evidence involved throughout the paper are all supposed to be expressible in a
first-order language, though they are never explicitly converted into it; i.e., we conduct induction
directly in various working languages that modern LLMs support, such as natural language. This
assumption is acceptable since knowledge has been, to some extent, successfully represented by
first-order languages in AI research, such as knowledge graph [9] and logic programming [14]. We
also give examples of translating our experimental data into first-order language (Appendix D).

3.2 Glymour’s theory of bootstrap confirmation

While Glymour’s original work [6] leaves some space for interpretation, several formalizations exist.
We adopt the formalization from [4] to conduct a rigorous discussion.

2We assume basic knowledge about first-order logic.
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Definition 3.1 (Glymour’s Bootstrap Confirmation (simplified version)). Given a set of hypotheses
H = {H1, . . . ,Hm}, the evidence E bootstrap-confirms H if

1. H ∪ E ⊬ ⊥ (consistency)

2. for each i ∈ {1, . . . ,m}, there is a H ′ ⊊ H s.t. Hi /∈ H ′ and E confirms Hi with respect
to H ′ (confirmation)

3. there is possible, but not observed, evidence E′ s.t. E′ disconfirms H (non-triviality)

See Appendix A for more details. In addition, Definition 3.1 requires an auxiliary (non-bootstrap)
confirmation & disconfirmation method. Glymour’s theory tends to be neutral across any auxiliary
confirmation & disconfirmation. In practice, hypothetico-deductive (HD) confirmation & disconfir-
mation is one of the common choices, which we defined in Definition 3.2 & 3.3 following [7]. The
exact auxiliary confirmation & disconfirmation HypoBootstrap uses is an implementation feasible by
LLM and will be illustrated in Section 4.2.2 & 4.2.3.
Definition 3.2 (Hypothetico-Deductive Confirmation). Given a hypothesis H , the evidence E
hypothetico-deductively confirms H with respect to H ′ if

1. H ∪H ′ ⊬ ⊥ (consistency) 2. H ∪H ′ ⊢ E (entailment) 3. H ′ ⊬ E (necessity)
Definition 3.3 (Hypothetico-Deductive Disconfirmation). Given a hypothesis H , the evidence E
hypothetico-deductively disconfirms H if

1. H ⊬ ⊥ (consistency) 2. H ⊢ ¬E (entailment)

4 HypoBootstrap

This section presents HypoBootstrap, an inductive reasoning framework that utilizes LLM agents to
implement hypothesis bootstrap generation and Glymour’s bootstrap confirmation. The pseudo-code
is given in Appendix B.1. As depicted in Figure 2, the framework generates the object hypothesis,
relational hypothesis, and functional hypothesis in a bootstrapping manner, with confirmations
embedded into the generation procedure. If not confirmed, the framework iteratively regenerates
the functional hypothesis according to error feedback from the last iteration. See Appendix B.3 for
implementation details (e.g., prompts) of the agents in Figure 2.

4.1 Bootstrap generation

Inspired by first-order languages that mainly deal with objects (i.e., constants), relations (i.e., pred-
icates), and functions, the bootstrap generation is divided into three steps: generating the object
hypothesis HO, the relational hypothesis HR, and the functional hypothesis HF . Intuitively, the
difficulties of generating these three hypotheses increase in order. While object hypothesis and
relational hypothesis correspond more to the implicit and trivial statements in Figure 1, the functional
hypotheses correspond more to the explicit and non-trivial statements.

4.1.1 Object hypothesis generation

In the first step, we generate hypotheses that describe the patterns of each object in the evidence (i.e.,
input or output). Such hypotheses may be relatively simple and specific to a particular object, but
they are the starting points of bootstrap generation. Specifically, for each input x(i) (resp., output
y(i)), ObjectHypothesisGenerator identifies a list of object patterns H̃(i)

x (resp., H̃(i)
y ).

Since LLM may generate fallacious patterns, ObjectHypothesisInconsistencyEliminator is
used to eliminate those patterns inconsistent with its relevant object from the pattern list. The filtered
object hypothesis of H̃(i)

x (resp., H̃(i)
y ) is denoted by H

(i)
x (resp., H(i)

y ). The object hypothesis HO

contains all these filtered object patterns. Formally, HO ≜
∧n

i=1 H
(i)
x ∧ H

(i)
y . In addition to the

LLM’s hallucination, another benefit of eliminating inconsistency is ensuring HO ∪E is as consistent
as possible. If each H

(i)
x or H(i)

y is consistent (with its corresponding object), HO ∪ E will be
consistent, since H

(i)
x , H(i)

y are object-level (i.e., cannot contradict with E, which is function-level)
and object-dependent (i.e., cannot contradict each other). The consistency of HO contributes to the
consistency clause of Definition 3.1, detailed in Section 4.2.1.
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Figure 2: Overview of HypoBootstrap. The orange rectangles represent agents. See Figure 3 and
Appendix C.2 for concrete examples.

4.1.2 Relational hypothesis generation

In the second step, we generate hypotheses for each input-output pair, which describe its relational
patterns, by bootstrapping from the hypotheses for each object. Specifically, for each pair (x(i), y(i)),
RelationalHypothesisGenerator identifies a list of patterns H̃(i)

xy between x(i) and y(i) based
on H

(i)
x , H

(i)
y , x(i), y(i). For example, the input and output are both number matrices of 5 columns

and 5 rows. At this step, the hypotheses are closer to functional hypotheses generated at the next step,
since they already involve the relation between objects and are not merely object-specific. However,
the relational hypotheses are still specific to a particular input-output pair and may be unable to form
a function, i.e., it is probably impossible to determine the unique output for a certain input.

The relational hypothesis HR contains the relational patterns H
(i)
xy filtered by

RelationalHypothesisInconsistencyEliminator. Formally, HR ≜
∧n

i=1 H
(i)
xy . Simi-

larly, if each H
(i)
xy is consistent (with its corresponding input-output pair), HR ∪ E will be consistent,

since H
(i)
xy are pair-dependent (i.e., cannot contradict each other). Besides, we assume {HO, HR} is

consistent enough, so is {HO, HR, E} (justified in Appendix B.2).

4.1.3 Functional hypothesis generation

In the third step, bootstrapping from the object and relational hypotheses, we generate functional
hypotheses for all input-output pairs, which describe the general transformation rule from input to
output. Specifically, FunctionalHypothesisGenerator generates the functional hypothesis HF

based on {HO, HR, E}. As illustrated in Figure 1, HF may be a natural-language hypothesis and
imprecise. Combining with object and relational hypotheses, HO, HR, HF are expected to constitute
a precise hypothesis and match the underlying formal hypothesis. We describe the confirmation of
H ≜ {HO, HR, HF } below.

4.2 Bootstrap confirmation

In this section, we bootstrap confirm H = {HO, HR, HF } using Definition 3.1. A crucial difference,
in terms of hypothesis confirmation, against existing works [20, 25] is that, roughly speaking, existing
works confirm HF which is typically imprecise as illustrated in Figure 1, but HypoBootstrap confirms
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H = {HO, HR, HF } that is deliberately bootstrap-generated and is expected to be as precise as
formal language.

Adapting Definition 3.1, defined in the first-order language, to LLMs, natural language-based models,
is problematic. The pivotal issue is also LLM’s hallucination, which makes strict confirmation
rarely possible. Therefore, in the following subsections, we attempt to simplify Definition 3.1, with
reasonable justification, to alleviate the impact of LLM’s hallucination in our bootstrap confirmation.
Note that it is our deliberately designed bootstrap generation strategy that permits most of the
simplifications. Specifically, we validate the consistency clause, the confirmation clause, and the
non-triviality clause of Definition 3.1 in Section 4.2.1, Section 4.2.2, and Section 4.2.3, respectively.

4.2.1 Consistency

The consistency of H ∪ E, where H = {HO, HR, HF }, is guaranteed in multiple parts. In
Section 4.1.1 and Section 4.1.2, we have already ensured (as much as possible) the consis-
tency of {HO, HR, E}. The consistency check between HF and {HO, HR, E} is ensured by
ConsistencyValidator. To reduce experimental cost, ConsistencyValidator is used after
AuxiliaryConfirmer (see Section 4.2.2), since the latter costs less. If AuxiliaryConfirmer
failed, ConsistencyValidator will not be used. 3

The inconsistency elimination used in Section 4.1.1 and Section 4.1.2 vastly reduces the burden of
ConsistencyValidator and the whole framework. If we did not eliminate inconsistency when
generating HO and HR, ConsistencyValidator would check the consistency among everything
in H ∪ E, i.e., H(i)

x , H
(i)
y , H

(i)
xy , HF , which would intuitively cause severe hallucination. Besides,

also profiting from the inconsistency elimination, if ConsistencyValidator detect inconsistency
in HF , we can only regenerate HF .

4.2.2 Confirmation

Recall that the confirmation clause of Definition 3.1 lacks an auxiliary confirmation method and
HypoBootstrap uses an HD-like confirmation (i.e., similar to Definition 3.2), which we define here.

Definition 4.1 (HypoBootstrap’s Auxiliary Confirmation). Given a hypothesis H , the evidence E
confirms H with respect to H ′ if the program function, translated from {H,H ′} via LLMs, passes
the unit test with E as test cases.

This definition is a good approximation for the entailment clause of Definition 3.2 since it attempts to
infer E from {H,H ′} in a deductive way. The motivation of utilizing programs instead of LLMs
is that LLMs are relatively not good at deduction with given rules, and can often produce correct
programs if the rule is not too complex [20]. Definition 4.1 is in spirit similar to the hypothesis
confirmation method used in [20, 25], in the case without H ′ (i.e., E confirms H , without respect to
any auxiliary hypothesis). 4

In Glymour’s theory of bootstrap confirmation (Definition 3.1), checking the consistency clause of
Definition 3.2 is superfluous since it is implied by the consistency clause of Definition 3.1. See
Appendix A for detailed justification. What is lacking for Definition 3.2 is only the necessity clause.

Before discussing the necessity clause, we must first discuss the implementation details of the confir-
mation clause in Definition 3.1. According to the clause, we should find for each of HO, HR, HF

a proper subset of H = {HO, HR, HF } as auxiliary hypotheses to help E confirm it. In Hypo-
Bootstrap, it is probably that verifying HO or HR according to the entailment clause of Definition
3.2, the core part of the confirmation clause, requires the help of HF since object hypothesis and
relational hypothesis usually cannot imply function-generated evidence. Hence, the verification of
the entailment clause in Definition 3.2 for HO or HR is implicitly accomplished if we verify HF for

3Appendix B.3 indicates that the prompt of ConsistencyValidator is much longer than
AuxiliaryConfirmer. Our codebase provide real cases, showing that the prompt and response of
ConsistencyValidator is much longer than AuxiliaryConfirmer. Hence, ConsistencyValidator is
much more costly than AuxiliaryConfirmer.

4These works do not use Glymour’s bootstrap confirmation. All they use is a method similar to Definition
4.1, which is only one part of our confirmation. See Appendix A.1 for more discussion.
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the entailment clause with the help of {HO, HR} (i.e., we have {HO, HR, HF } ⊢ E). Therefore, for
simplicity, we only verify HF for the confirmation clause. 5

Now we go back to the necessity clause in Definition 3.2. What we still need to check, according to
the final method given above, is {HO, HR} ⊬ E. However, this check is unnecessary since HO and
HR have little chance of completely describing the mapping f that generates E.

It is worth recalling and emphasizing that although the final confirmation method, after quite a few
simplifications, seems much simpler than the initial version, it is because of our elaborately designed
bootstrap-generation method that we are reasonably permitted to do the simplification above.

4.2.3 Non-triviality

In the problem setting described in Section 3.1, checking the non-triviality clause of Definition 3.1
is not critical if the confirmation clause of Definition 3.1 is successfully verified via Definition 4.1.
Specifically, successfully verified via Definition 4.1 indicates that for all x ∈ X , there is a unique
y ∈ Y such that f(x) ≡ y is true, and that for any y′ ̸= y, f(x) ≡ y′ is false. 6 Analogous to
Definition 4.1, we then have H ⊢ ¬f(x) ≡ y′. By Definition 3.3, f(x) ≡ y′ is thus a possible, but
not observed, evidence that disconfirms H .

4.3 Refinement

As depicted in Figure 2 and mentioned in Section 4.2.2, if HF or H is not confirmed, we regenerate
HF with error feedback. The feedback contains the wrong case from Definition 4.1 and its corre-
sponding object hypotheses and relational hypotheses. We use T to denote the number of refinement
iterations (T = 1 indicates no refinement).

5 Experiments

We compare HypoBootstrap (HB) against Hypothesis Refinement (HR) [20] and MoC [13] to demon-
strate the effectiveness of both bootstrap generation and bootstrap confirmation. Hypothesis
Search (HS) [25] manually adds human priors into prompts; hence, it is not directly comparable to
other methods, and cannot be easily extended to new tasks. Instead, we imitate HS to add human
priors into agents to see whether the HypoBootstrap’s performance can be further improved. We also
conduct ablation studies and case studies to further demonstrate the effectiveness of HypoBootstrap’s
components.

5.1 Setup

Our experimental setup follows HR [20], detailed in this subsection. All experiments use GPT-4
[18]. We also include results on DeepSeek-V3 [3] in Appendix C.1. For a fair comparison, we ensure
that the number of functional hypotheses generated across different methods remains the same, i.e.,
N = 1 in HR and K = T in MoC. 7 This also ensures that the frequency of unit testing in training
remains the same across all methods. 8 In addition, LLM’s decoding temperature in HypoBootstrap
is set to 0, i.e., greedy decoding.

5.1.1 Evaluation

Evaluation is conducted on a hold-out set of unobserved evidence, separated from the observed
evidence used to infer rules. We use raw accuracy and task accuracy to compare inductive reasoning

5In practice, we found the LLM agent AuxiliaryConfirmer can generate a well-defined program solely
based on HF , and thus the helper hypothesis {HO, HR} in Definition 4.1 (corresponding to the entailment
clause) are unnecessary. Generating the program additionally based on {HO, HR} may further increase the
correctness, but may augment hallucination due to the long context. We choose to ignore them to reduce
experimental cost.

6The only exception is that the program function involves randomness, preventing from producing outputs
uniquely. We did not observe such case in experiments.

7MoC doesn’t involve iterations. See their original paper for the definition of N and K.
8More precisely, HR and HB may have one less unit test since not necessary in the final refinement iteration.
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Table 1: Main results. T refers to the number of refinement iterations. K = T for MoC.

ACRE List Fns MiniSCAN MiniARC Avg.

T Met. Raw Task Raw Task Raw Task Raw Task Raw Task

1

HR 78.3 45.0 51.6 42.4 77.0 46.0 5.9 3.8 53.2 34.3
MoC 74.0 34.0 53.0 43.2 60.4 21.0 6.7 4.6 48.5(-4.7) 25.7(-8.6)
H̃B 84.8 57.0 53.5 42.0 92.9 75.0 9.5 4.6 60.2(+7.0) 44.7(+10.4)
HB 84.8 57.0 57.9 47.6 94.9 82.0 11.0 6.9 62.2(+9.0) 48.4(+14.1)

3

HR 77.8 47.0 61.7 52.8 98.2 95.0 10.1 6.9 62.0 50.4
MoC 73.0 39.0 61.9 50.8 87.3 64.0 10.8 8.5 58.3(-3.7) 40.6(-9.8)
H̃B 79.0 56.0 59.9 50.4 93.2 78.0 12.6 7.7 61.2(-0.8) 48.0(-2.4)
H̃B* 79.3 56.0 61.8 50.4 96.2 79.0 12.3 7.7 62.4(+0.4) 48.3(-2.1)
HB 78.5 55.0 62.4 54.0 96.6 89.0 11.0 7.7 62.1(+0.1) 51.4(+1.0)
HB* 79.0 55.0 64.3 53.6 98.2 89.0 12.1 8.5 63.4(+1.4) 51.5(+1.1)

Table 2: Ablation results on List Functions.

T=1 T=3

Method Raw Task Raw Task

HB 57.9 47.6 62.4 54.0
w/o HO 57.2 45.6 62.4 52.0
w/o HR 53.4 44.0 60.5 51.6
H̃B 53.5 42.0 59.9 50.4

Table 3: Results with human prior.

MiniARC

Method Raw Task

HB (T=1) 11.0 6.9
w human prior 11.0 7.7
HB (T=3) 11.0 7.7
w human prior 12.6 9.2

methods. An input-output pair is considered accurately predicted by a hypothesis if the program
function, translated from the evaluating hypothesis via LLMs, passes the unit test with this pair as
the test case (similar to Definition 4.1). The raw accuracy of a task is the average accuracy over all
input-output pairs, and the raw accuracy of a dataset is averaged over all tasks involved. The task
accuracy of a dataset is the percentage of tasks whose input-output pairs are all accurately predicted.

5.1.2 Datasets

We use four inductive reasoning datasets with varying natures: causal induction, concept learning,
grammar learning, and abstract reasoning. See Qiu et al. [20] and our codebase for examples and
more details.

The Abstract Causal REasoning dataset (ACRE) [27] is a diagnostic benchmark for causal induction.
The presence of certain objects triggers a machine, and the goal is to find which objects can trigger
it. Sampled 100 tasks from the original dataset are used. Following Gendron et al. [5], instead
of images, evidence is represented in language. List Functions dataset [21] is initially designed
for psychological investigation of concept learning, which requires establishing a mapping from
input lists to output lists. We use the original 250 tasks. MiniSCAN [12] requires the ability of
sequence-to-sequence learning. As in HR, a quasi-synchronous context-free grammar [23] is used to
represent sequence-to-sequence rules and pseudowords to represent inputs. We use 100 generated
tasks. The Abstract Reasoning Corpus (ARC) [1] is an advanced benchmark for measuring general
fluid intelligence. MiniARC [10] is a small-scale version of ARC, where inputs and outputs are
5x5 visual grids. The remaining 130 tasks after heuristically filtering are used. The visual grids are
transformed into text data by mapping the grid cells to corresponding integers.

5.2 Main results

Table 1 shows the main results. H̃B removes all the inconsistency elimination (Section 4.1.1 &
4.1.2) and consistency validation (Section 4.2.1) from HypoBootstrap. The only improvement of
H̃B from HR is generating object hypothesis and relational hypothesis before generating functional
hypothesis. Experimental results show that, when T = 1, the bootstrap generation gains a 7.0
percentage point improvement on raw accuracy, averaged over all four datasets, and a 10.4 percentage
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1.The output sequence only includes numbers from the input sequence that are larger than the previous number in the 
output sequence, indicating a pattern of increasing values.
2.The output sequence does not include any of the smaller numbers from the alternating pattern in the input sequence.

1.The output consists of the first three elements of the input, regardless of their values or the pattern they form.
2.The frequency of numbers in the input does not affect their presence in the output.







1.Each number in the sequence is larger than the previous one.
2.The differences of the first two pairs of numbers (22-12)  is 10.

1.The data set contains both positive and negative numbers.
2.The number 60 appears twice in the data set.

Output: [9, 21, 43, 66, 83]

Input: [1, 9, 60, 0, 60, 38]

Object
Hypothesis
Generator

Object
Hypothesis

Inconsistency
Eliminator

Input: [9, 21, 43, 0, 26, 2, 66, 5, 32, 83]

Output: [1, 9, 60]







Ev
id

en
ce

From the input list, select the first number and then select the next number only if it is larger than the previously selected number. Continue this process 
until the end of the list.

Figure 3: A real case from HypoBootstrap on List Functions.

point improvement on task accuracy, significantly demonstrating the effectiveness of the bootstrap
generation. Besides, the bootstrap confirmation can further improve performance. When T = 1,
HypoBootstrap gains an 9.0 & 14.1 percentage point improvement on raw accuracy & task accuracy,
significantly demonstrating the effectiveness of the whole framework.

When using iterative refinement (T = 3), HypoBootstrap still outperforms HR on average. While HR,
HB, H̃B stop refinement if training task accuracy achieves one (different tasks are independent during
evaluation), and use results from the last iteration if no early stopping, HB* and H̃B* use the results
from the iteration with the best training raw accuracy. Results show that consistency-related agents
are indispensable for iterative refinement. We also found that HypoBootstrap slightly underperforms
HR on MiniSCAN when T = 3, caused by LLM’s degraded long-context capability (Appendix C.3).

MoC is unstable across tasks. On ListFns and MiniARC, MoC outperforms HR or achieves compara-
ble performance, which is in line with the results reported in MoC’s paper. However, on ACRE and
MiniSCAN, MoC shows poor performance. MoC is even significantly worse than HR in several met-
rics. The latter two tasks both require generating hypotheses under a specific format, and the correct
hypotheses are usually highly composite, i.e., the output must be obtained by applying the rules in
combination. This significantly differs from ListFns & MiniARC and makes ACRE & MiniSCAN a
challenging benchmark. The comparison between the robust performance of HypoBootstrap and the
unstable performance of MoC reveals the benefit of our framework.

5.3 Ablation study

The main results have already shown the individual effectiveness of bootstrap generation and bootstrap
confirmation, respectively. In this section, we further analyze the effect of object hypothesis and
relational hypothesis. Table 2 reveals the indispensability of both object hypothesis and relational
hypothesis. However, the consistency-related agents in bootstrap confirmation is the most important
according to Table 2.

5.4 Adding human prior

Similar to HS [25], we add human priors into agents’ prompts, e.g., reasoning hints (Appendix B.4).
Table 3 shows the improvement, and we believe more deliberately designed human priors (e.g., we
don’t use selected in-context examples as in HS) would further improve performance.

5.5 Case study

Figure 3 gives a real case of HypoBootstrap from our experiments. First, a list of object patterns is
generated (in the light yellow box at the upper right) for each input or output. Inconsistent patterns
are eliminated (struck through with a deletion line) while preserving the consistent ones (highlighted
in green). The filtered object hypothesis is used to bootstrap-generate the relational hypotheses
(within the light yellow box positioned centrally on the right side), a list of relational patterns of
each input-output pair. As for object hypotheses, inconsistent relational patterns are filtered out.
Finally, based on the object and relational hypotheses above, the functional hypothesis is bootstrap-
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Table 4: Token consumption for DeepSeek-V3. P for the number of prompt tokens and C for the
number of completion tokens. K = T for MoC. (Unit: thousand tokens)

ACRE List Fns MiniSCAN MiniARC Avg.

T Met. P C P C P C P C P C

1
HR 22 6 161 34 43 29 622 120 212 47
MoC 46 24 209 67 306 417 152 50 178 140
HB 400 69 2409 633 1201 245 991 283 1250 308

3
HR 56 10 539 76 331 77 1064 208 498 93
MoC 98 23 439 82 454 464 317 90 327 165
HB* 572 82 3121 745 1642 305 1616 407 1738 385

generated for all input-output pairs. More importantly, compared with HR [20], whose generated
functional hypothesis (i.e., rule) in this case is removing all even numbers and zero from the list, our
method successfully generates the functional hypothesis since the pre-generated object and relational
hypotheses automatically provide hints. See Appendix C.2 for more case study.

6 Limitations

Although HypoBootstrap achieves the best results on inductive reasoning, as shown in Table 1, it
still cannot completely solve LLM’s hallucination problem in inductive reasoning. For example,
Appendix C.3 shows a wrongly generated rule after 3 refinement iterations. The main reason is that
LLMs cannot strictly adhere to formal logic.

Another limitation is that HypoBootstrap has a higher inference cost compared to baselines. Table 4
shows the token consumption of each method. On average, compared with HR & MoC, HypoBoot-
strap consumes 6 & 7 times the prompt tokens and 7 & 2 times the completion tokens for 1 iteration,
and 3 & 5 times the prompt tokens and 4 & 2 times the completion tokens for 3 iterations. We argue
that the stable performance gain well justify the token consumption. In addition, HypoBoostrap has
decreasing marginal cost in terms of refinement iterations, since only HF is regenerated in each
refinement loop and the agents related to HO, HR are only used once at the very beginning.

Besides, HypoBoostrap and all baselines require a way to verify generated hypotheses, e.g., unit
test. Although this is available in research benchmarks, verification is not always available in real-
world scenario, such as open-ended text-based induction. In scientific research, which is one of the
largest applications of inductive reasoning, hypothesis verification may be costly due to expensive
experimental instruments. Hence, reducing the need for verification is worth exploring.

7 Conclusion

LLM-based inductive reasoning allows direct reasoning in natural languages, without the need to
convert into a specific formal language. To alleviate hallucinations and provide systematic guidance
for LLM-based inductive reasoning, we propose HypoBootstrap, a framework integrating hypothesis
bootstrap generation and hypothesis bootstrap confirmation. Experimental results on four different
scenarios, including causal induction, concept learning, grammar learning, and abstract reasoning,
demonstrate the effectiveness of both bootstrap generation and bootstrap confirmation. However,
HypoBootstrap still cannot completely solve LLM’s hallucination problem in inductive reasoning,
though it achieves the best results. To this end, we emphasize that using HypoBootstrap in applications
must consider the potential fallacious rules it produces.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims are clearly written in abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Section 4, Appendix A
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5, Appendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is released and the url is given in the main text.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5, Appendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Repeated experiments on GPT-4 are too expensive. Besides, since we use
greedy decoding for LLMs, there is no randomness in our algorithm. However, note that the
API service providers do not guarantee reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Since we mainly use public API services, the computer resources cannot be
determined. Instead, we have discussed the token consumption in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No ethic concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix E

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We mainly use public API services. No risk happens from our side.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have check the licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We give a README.md and LICENSE for our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

18



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is the core component of our proposed framework, and the usage of
LLM is clearly described in Section 4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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We include various details in this appendix, including a discussion on Glymour’s theory of bootstrap
confirmation (A), HypoBootstrap details (B), more experimental results (C), examples of converting
natural-language statements to formal-language statements (D), and broader impacts (E).

More specifically, Appendix B includes the pseudo-code of HypoBootstrap (B.1), justification for
relational hypothesis generation (B.2), agents’ details (B.3), prompt with human prior (B.4). Appendix
C includes DeepSeek-V3 results (C.1), more case study (C.2), and failure analysis (C.3).

A Glymour’s theory of bootstrap confirmation

In this section, we introduce the first-order formalization of Glymour’s theory of bootstrap confirma-
tion introduced by Douven and Meijs [4] and justify how to transform it to Definition 3.1 in the case
of using hypothetico-deductive confirmation (Definition 3.2) & disconfirmation (Definition 3.3) in the
HypoBootstrap framework. Since HypoBootstrap uses a hypothetico-deductivism-like confirmation
(Definition 4.1) & disconfirmation (Section 4.2.3), using Definition 3.1 is a rational approximation.

Definition A.1 (Douven and Meijs [4]’s Formalization of Glymour’s Theory of Bootstrap Confirma-
tion). Given a hypothesis H = {H1, H2, . . . ,Hn}, evidence E bootstrap-confirms H if

1. H ∪ E ⊬ ⊥

2. for each Hi, there exists H ′ ⊊ H s.t. Hi /∈ H ′ and

(a) E confirms Hi with respect to H ′ ; and
(b) there is possible evidence E′, but not actually observed, such that E′ disconfirms Hi

with respect to H ′

3. for each Hi, there is no H ′′ ⊆ H such that E disconfirms Hi with respect to H ′′.

The confirm & disconfirm refer to an auxiliary (non-bootstrap) confirmation & disconfirmation
method. Glymour’s original theory tends to be neutral across auxiliary (non-bootstrap) confirmation
methods [6]. We select hypothetico-deductive confirmation & disconfirmation, where evidence
confirms a hypothesis if the hypothesis can deductively entail the evidence, since it is one of the
popular confirmation methods in scientific research. The formalization of hypothetico-deductive
confirmation & disconfirmation has been given in Definition 3.2 & 3.3. In Definition 3.2 & 3.3, if E
serves as deduction consequence, it is understood as the conjunction of its elements. For example,
H ∪H ′ ⊢ E is identical to H ∪H ′ ⊢

∧n
i=1 f(x

(i)) ≡ y(i).

Since Glymour’s bootstrap confirmation often seems circular at first sight, it is worth mentioning the
significance of the clause 2.(b) of Definition A.1, which corresponds to the non-triviality clause of
Definition 3.1. This clause makes the Definition A.1 not a circular confirmation. For a discussion,
see Comment (6) for Definition 2.1 in Douven and Meijs [4]’s work.

Now we specify how to transform Definition A.1 to Definition 3.1. Douven and Meijs [4] indicates
that using hypothetico-deductive confirmation can eliminate the third clause of Definition A.1 since
it is entirely redundant. See Comment (3) for Definition 2.1 in Douven and Meijs [4]’s work for a
proof. Hence, we only consider clauses 1, 2.(a), and 2.(b), which, respectively, correspond to the
consistency clause, confirmation clause, and non-triviality clause of Definition 3.1.

Simplification of non-triviality clause The non-triviality clause of Definition 3.1 is independent of
H ′ and different from the clause 2.(b). The non-triviality clause is a sufficient condition of the clause
2.(b) when the clause 2.(a) holds. We do such simplification because separately determining E′ for
object hypothesis, relational hypothesis, and functional hypothesis are difficult and costly for LLMs.
To see the sufficiency, recall we consider a HD disconfirmation (Definition 3.3), where checking E′

disconfirms H is to check H ⊢ ¬E′ (the consistency of H is checked by the clause 1). Similarly,
checking E′ disconfirms Hi with respect to H ′ is to check Hi ∪H ′ ⊢ ¬E′. By these definitions, if
E′ disconfirms H , then for each Hi, E′ disconfirms Hi with respect to H ′′′ = H \Hi. Hence, E′

is a possible evidence that disconfirms any hypothesis. On the other hand, according to the clause
2.(a), we already have Hi ∪H ′ ⊢ E for some H ′. By the monoticity of first-order logic and since
H ′ ⊂ H ′′′, we have Hi ∪H ′′′ ⊢ E. If we set H ′ to H ′′′, then the clause 2.(a) and 2.(b) both hold.
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Consistency clause of Definition 3.2 is superfluous. In the context of Definition 3.1, only the
confirmation clause uses an auxiliary confirmation method, and the hypotheses in the confirmation
clause (i.e., Hi, H

′) are element or subset of the whole hypothesis to be bootstrap-confirmed (i.e.,
H). The consistency clause in Definition 3.1 already verifies H ∪ E ⊬ ⊥, which is accomplished in
Section 4.2.1. By the monotonicity, if {Hi} ∪H ′ ⊢ ⊥, then H ∪E ⊢ ⊥. Hence, we don’t need to
check the consistency clause of Definition 3.2.

A.1 Relation to existing works

The confirmation used by Hypothesis Refinement [20], Hypothesis Search [25], and MoC [13] is
Definition 4.1. This is only one part of our confirmation since they only generate functional hypothesis
and do not generate object hypothesis and relational hypothesis.

HypoBootstrap bootstrap-generates functional hypothesis based on object hypothesis and relational
hypothesis, and all these hypotheses together form a complete hypothesis for the transformation rule.
Consequently, in addition to using Definition 4.1, which is accomplished by AuxiliaryConfirmer,
HypoBootstrap also uses ObjectHypothesisInconsistencyEliminator,
RelationalHypothesisInconsistencyEliminator, and ConsistencyValidator to confirm
the hypothesis.

B HypoBootstrap details

This section shows more details of HypoBootstrap, including the pseudo-code (B.1), justification for
relational hypothesis generation (B.2), agents’ details (B.3), and prompt with human prior (B.4).

B.1 Pseudo-code

The pseudo-code of HypoBootstrap is given in Algorithm 1. Algorithm 1 stops if all training evidence
can pass AuxiliaryConfirmer (i.e., Ewrong is empty) and ConsistencyValidator. Slightly
different from Algorithm 1, the variant HB* selects the functional hypothesis from the iteration with
the best raw accuracy on observed evidence.

B.2 Justification for relational hypothesis generation

One may question the assumption that {HO, HR} is consistent enough since we do not eliminate
the inconsistency between H

(i)
x , H

(i)
y and H

(i)
xy . We argue that this inconsistency is less severe since

H
(i)
xy is generated based on H

(i)
x , H

(i)
y , and H

(i)
x , H

(i)
y , H

(i)
xy are, respectively, already consistent with

E. To reduce the cost, we do not explicitly eliminate the inconsistency between H
(i)
x , H

(i)
y and H

(i)
xy .

We also have two extra comments on inconsistency elimination, which
is accomplished by ObjectHypothesisInconsistencyEliminator and
RelationalHypothesisInconsistencyEliminator. First, these two agents remove in-
consistent object patterns from the pattern list or remove inconsistent relational patterns from
the relational pattern list. Filtering in this way does not increase inconsistency, even if they may
accidentally remove consistent patterns. Second, eliminating patterns in HO, HR may reduce the
hallucination of FunctionalHypothesisGenerator by decreasing the length of the input context,
since LLMs are usually error-prone to long context.

B.3 Agents

The shared auxiliary prompt templates across all the datasets are shown in Table 5. The prompts
used in our experiments on all the datasets are shown in Table 6, Table 7, Table 8, and Table 9. 9

The prompt structure remains consistent across all the datasets, with the distinction lying in their
task-specific descriptions. The AuxiliaryConfirmer for MiniSCAN and ACRE is accomplished
via the symbolic validators provided by [20]. Detailed input-output examples can be found in our
released codebase.

9These prompts are used in GPT-4’s experiments. See our codebase for prompts used in DeepSeek-V3.
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Algorithm 1 HypoBootstrap

1: input: evidence E = {f(x(1)) ≡ y(1), . . . , f(x(n)) ≡ y(n)}, maximum iteration of refinement
T

2: output: functional hypothesis HF

3: /* Object Hypothesis */
4: for i = 1 to n do
5: H̃

(i)
x ← ObjectHypothesisGenerator(x(i))

6: H̃
(i)
y ← ObjectHypothesisGenerator(y(i))

7: H
(i)
x ← ObjectHypothesisInconsistencyEliminator(H̃(i)

x , x(i))

8: H
(i)
y ← ObjectHypothesisInconsistencyEliminator(H̃(i)

y , y(i))
9: end for

10: HO ←
∧n

i=1 H
(i)
x ∧H

(i)
y

11: /* Relational Hypothesis */
12: for i = 1 to n do
13: H̃

(i)
xy ← RelationalHypothesisGenerator(H(i)

x , H
(i)
y , x(i), y(i))

14: H
(i)
xy ← RelationalHypothesisInconsistencyEliminator(H̃(i)

xy , x(i), y(i))
15: end for
16: HR ←

∧n
i=1 H

(i)
xy

17: /* Functional Hypothesis */
18: Ewrong = {}
19: repeat
20: if it is the first iteration then
21: HF ← FunctionalHypothesisGenerator(E,HO, HR)
22: else
23: HF ← FunctionalHypothesisGenerator(E,HO, HR, HF , Ewrong)
24: end if
25: Ewrong ← AuxiliaryConfirmer(HF , E)
26: if Ewrong is not empty then
27: continue
28: end if
29: if ConsistencyValidator(E,HO, HR, HF ) then
30: break
31: end if
32: until reach the T -th iteration

In the prompt of the ObjectHypothesisGenerator, {data} refers to the input or output of each
task, and a LLM (e.g. GPT-4) generates its analysis results in numbered items. The analysis are
fed as {patterns} into the ObjectHypothesisInconsistencyEliminator. The LLM identifies
the inconsistent patterns by generating their pattern numbers, and we filter them out based on the
generated numbers.

In the second step, the input and output data of each task, along with their corresponding pat-
terns, are fed into the RelationalHypothesisGenerator. The LLM then generates the cor-
relations in numbered items. The correlations along with the input/output data are fed into the
RelationalHypothesisInconsistencyEliminator. The LLM identifies the inconsistent cor-
relations by generating their correlation numbers, and we filter them out based on the generated
numbers.

The FunctionalHypothesisGenerator generates rules in two modes: without feedback and
with feedback. Generation on unseen data without feedback takes all the input-output pairs of
each task as examples. The prompt template {examples_with_pattern_and_correlations} consists
of all the hypothesis generated in previous steps, whose template is shown in Table 5 as exam-
ple_pair_with_pattern_and_correlations_template. Generation on seen data with feedback takes
previous rule, unit test feedback, and corresponding pattern and correlations of the wrong pairs in the
feedback. The template of {feedback} and {feedback_with_pattern_and_correlations} are shown in
Table 5 as feedback_template and feedback_with_patterns_and_correlations_template, respectively.
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The AuxiliaryConfirmer translates the generated rules to Python programs. After passing the
unit test on obeserved evidence, the ConsistencyValidator checks whether the rule is logically
consistent with the input-output pairs and their patterns and correlations.

Table 5: Auxiliary prompt templates for all the tasks.

Template Prompt

example_pair_with_pattern
_and_correlations_template

Pair {number}
Input: {input}
Output: {output}

Patterns of the input:
{input_pattern}

Patterns of the output:
{output_pattern}

Correlations between input and output:
{correlations}

feedback_template
Input: {input}
Expected output: {output}
Predicted output: {prediction}

feedback_with_patterns_
and_correlations_template

Input: {input}
Expected output: {output}
Predicted output: {prediction}

Patterns of the input:
{input_pattern}

Patterns of the output:
{output_pattern}

Correlations between input and expected output:
{correlations}

Table 6: The prompts used for List Functions.

Agent Prompt

Object
Hypothesis
Generator

Observe the following data, which consists of integers.
Systematically analyze its patterns.
Provide up to three most important patterns in your analysis.
Data: {data}

Please format your analysis as follows:

1.
2.
3.
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Table 6: continued

Agent Prompt

Object
Hypothesis

Inconsistency
Eliminator

Observe the data and its patterns below.

Data: {data}

Patterns:
{patterns}

Which patterns are logically inconsistent with the data and
other patterns?

Please respond with pattern numbers as follows:
Inconsistent patterns: <number>, <number>, <number>, ...

Relational
Hypothesis
Generator

Observe the input-output pair and its patterns below.
Systematically analyze the correlations between the input and
the output.
Provide up to three most important correlations in your analysis.
Input: {input}
Output: {output}

Patterns of the input:
{input_pattern}

Patterns of the output:
{output_pattern}

Please format your analysis as follows:

1.
2.
3.

Relational
Hypothesis

Inconsistency
Eliminator

Observe the input-output pair and the correlations between the
input and the output given below.

Input: {input}
Output: {output}

Correlations:
{correlations}

Which correlations are logically inconsistent with the
input-output pair and other correlations?

Please respond with correlation numbers as follows:
Inconsistent correlations: <number>, <number>, <number>, ...
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Table 6: continued

Agent Prompt

Functional
Hypothesis
Generator

(w/o feedback)

Generate a transformation rule that converts each of the given
input lists into their corresponding output lists.

{examples}

Please format your rule as follows:
Rule: <Your rule>

Below, we collect the patterns and correlations of several
input-output pairs mentioned above.

---

{examples_with_pattern_and_correlations}

---

Functional
Hypothesis
Generator

(w feedback)

Based on your previous rule and the feedback, generate a
revised transformation rule that converts each of the given
input lists into their corresponding output lists.

Your previous rule: {rule}

Feedback:
{feedback}

Please format your revised rule as follows:
Rule: <Your rule>

Below, we collect the patterns and correlations of several
input-output pairs mentioned above.

---

{feedback_with_pattern_and_correlations}

---

Auxiliary
Confirmer

Write a Python function ‘fn‘ for the following rule, where the
input must be a list of integers and the output must also be
a list of integers.

Rule: {rule}

Consistency
Validator

Is the target statement logically consistent with the
input-output pairs and their patterns and correlations?

Target statement: {rule}

---

{examples_with_pattern_and_correlations}

---

Please respond with Yes or No.
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Table 7: The prompts used for MiniSCAN.

Agent Prompt

Object
Hypothesis
Generator

Observe the following data, which consists of either pseudowords
or colors. Systematically analyze its patterns. If data consists
of pseudowords, do not analyze its letter composition or sequence.
Try to make your analysis as minimal as possible.
Provide up to three most important patterns in your analysis.

Data: {data}

Please format your analysis as follows:

1.
2.
3.

Object
Hypothesis

Inconsistency
Eliminator

Observe the data and its patterns below.

Data: {data}

Patterns:
{patterns}

Which patterns are logically inconsistent with the data and
other patterns?

Please respond with pattern numbers as follows:
Inconsistent patterns: <number>, <number>, <number>, ...

Relational
Hypothesis
Generator

Observe the input-output pair and its patterns below.
Systematically analyze the correlations between the input and
the output.
Try to make your analysis as minimal as possible.
Provide up to three most important correlations in your analysis.

Input: {input}
Output: {output}

Patterns of the input:
{input_pattern}

Patterns of the output:
{output_pattern}

Please format your analysis as follows:

1.
2.
3.
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Table 7: continued

Agent Prompt

Relational
Hypothesis

Inconsistency
Eliminator

Observe the input-output pair and the correlations between the input
and the output given below.

Input: {input}
Output: {output}

Correlations:
{correlations}

Which correlations are logically inconsistent with the input-output
pair and other correlations?

Please respond with correlation numbers as follows:
Inconsistent correlations: <number>, <number>, <number>, ...

Functional
Hypothesis
Generator

(w/o feedback)

Generate grammar rules that map the following inputs to their
corresponding outputs. Your grammar rules should follow the format
"<input> -> <output>". Use the prefix "##" to denote a nonterminal
symbol. For instance, "##A twice -> ##A ##A", "##A swap ##B -> ##B
##A". The left-hand side cannot contain repetitive or adjacent
nonterminal symbols; i.e., rules like "##A ##A -> ##A twice" or "##A
##B -> ##B ##A" are not allowed. Ensure that the number of unique
nonterminal symbols on the left-hand side matches that on the
right-hand side in your rules.
For each rule, assign an integer as its priority. A higher priority
indicates that the rule should be considered first when generating
parses. Ensure that unnecessary colors are replaced by nonterminal
symbols and that each rule has pseudoword(s) in the left-hand side.
Try to make your rules as minimal as possible.

{examples}

Please format your rule as follows:

Rule 1: <input> -> <output>
Priority 1: <Your priority>
...

(Below, we collect the patterns and correlations of several
input-output pairs mentioned above.)

---

{examples_with_pattern_and_correlations}

---
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Table 7: continued

Agent Prompt

Functional
Hypothesis
Generator

(w feedback)

Based on your previous rules and the feedback, generate revised
rules that map the following inputs to their corresponding outputs.
Your grammar rules should follow the format "<input> -> <output>".
Use the prefix "##" to denote a nonterminal symbol. For instance,
"##A twice -> ##A ##A", "##A swap ##B -> ##B ##A". The left-hand
side cannot contain repetitive nonterminal symbols; i.e., rules like
"##A ##A -> ##A twice" or "##A and ##A ->##A twice" are not allowed.
Ensure that the number of unique nonterminal symbols on the
left-hand side matches that on the right-hand side in your rules.
For each rule, assign an integer as its priority. A higher priority
indicates that the rule should be considered first when generating
parses. Ensure that unnecessary colors are replaced by nonterminal
symbols and that each rule has pseudoword(s) in the left-hand side.
Try to make your rules as minimal as possible.

Your previous rules: {rule}

Feedback:
{feedback}

Please format your rule as follows:

Rule 1: <Your rule>
...

(Below, we collect the patterns and correlations from the
input-output pairs in the feedback mentioned above.)

---

{feedback_with_pattern_and_correlations}

---

Auxiliary
Confirmer /

Consistency
Validator

Is the target statement logically consistent with the
input-output pairs and their patterns and correlations?

Target statement: {rule}

---

{examples_with_pattern_and_correlations}

---

Please respond with Yes or No.
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Table 8: The prompts used for ACRE.

Agent Prompt

Object
Hypothesis
Generator

Observe the following list of objects. Systematically analyze its
patterns.

Data: {data}

Please format your analysis as follows:

1.
2.
3.
...

Object
Hypothesis

Inconsistency
Eliminator

Observe the data and its patterns below.

Data: {data}

Patterns:
{patterns}

Which patterns are logically inconsistent with the data and
other patterns?

Please respond with pattern numbers as follows:
Inconsistent patterns: <number>, <number>, <number>, ...

Relational
Hypothesis
Generator

Observe the input-output pair and its patterns below. The input
is a list of objects. The presence of certain objects will
trigger the light to turn on. The output is either "on"
or "off", indicating the state of the light.
Systematically analyze the correlations between the input and
the output.

Input: {input}
Output: {output}

Patterns of the input:
{input_pattern}

Patterns of the output:
{output_pattern}

Please format your analysis as follows:

1.
2.
3.
...
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Table 8: continued

Agent Prompt

Relational
Hypothesis

Inconsistency
Eliminator

Observe the input-output pair and the correlations between the
input and the output given below.

Input: {input}
Output: {output}

Correlations:
{correlations}

Which correlations are logically inconsistent with the
input-output pair and other correlations?

Please respond with correlation numbers as follows:
Inconsistent correlations: <number>, <number>, <number>, ...

Functional
Hypothesis
Generator

(w/o feedback)

Generate a rule that maps the given inputs to their corresponding
outputs.
Each input is a list of objects. Each output is either "on" or
"off", indicating the state of the light. The light turns "on"
only if at least one object in the input list is a trigger. For
each object, determine whether it triggers the light to turn on,
does not trigger it, or if it’s undetermined.

{examples}

Please format your rule as follows:

Rule: {{"object 1": <"on"/"off"/"undetermined">, "object 2":
<"on"/"off"/"undetermined">, ...}}

Below, we collect the patterns and correlations of several
input-output pairs mentioned above.

---

{examples_with_pattern_and_correlations}

---
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Table 8: continued

Agent Prompt

Functional
Hypothesis
Generator

(w feedback)

Based on your previous rule and the feedback, generate a revised
rule that maps the given inputs to their corresponding outputs.
Each input is a list of objects. Each output is either "on" or
"off", indicating the state of the light. The light turns "on"
only if at least one object in the input list is a trigger. For
each object, determine whether it triggers the light to turn on,
does not trigger it, or if it’s undetermined.

Your previous rule: {rule}

Feedback:
{feedback}

Please format your revised rule as follows:

Rule: {{"object 1": <"on"/"off"/"undetermined">, "object 2":
<"on"/"off"/"undetermined">, ...}}

Below, we collect the patterns and correlations of several
input-output pairs mentioned above.

---

{feedback_with_pattern_and_correlations}

---

Auxiliary
Confirmer /

Consistency
Validator

Is the target statement logically consistent with the input-output
pairs and their patterns and correlations?

Target statement: {rule}

---

{examples_with_pattern_and_correlations}

---

Please respond with Yes or No.
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Table 9: The prompts used for MiniARC.

Agent Prompt

Object
Hypothesis
Generator

Observe the data below. Systematically analyze its patterns.

Data: {data}

Please format your analysis as follows:

1.
2.
3.
...

Object
Hypothesis

Inconsistency
Eliminator

Observe the data and its patterns below.

Data: {data}

Patterns:
{patterns}

Which patterns are logically inconsistent with the data and
other patterns?

Please respond with pattern numbers as follows:
Inconsistent patterns: <number>, <number>, <number>, ...

Relational
Hypothesis
Generator

Observe the input-output pair and its patterns below.
Systematically analyze the correlations between the input and
the output.

Input: {input}
Output: {output}

Patterns of the input:
{input_pattern}

Patterns of the output:
{output_pattern}

Please format your analysis as follows:

1.
2.
3.
...

Relational
Hypothesis

Inconsistency
Eliminator

Observe the input-output pair and the correlations between the
input and the output given below.

Input: {input}
Output: {output}

Correlations:
{correlations}

Which correlations are logically inconsistent with the
input-output pair and other correlations?

Please respond with correlation numbers as follows:
Inconsistent correlations: <number>, <number>, <number>, ...
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Table 9: continued

Agent Prompt

Functional
Hypothesis
Generator

(w/o feedback)

Generate a transformation rule that converts each of the given
input matrices into their corresponding output matrices.

{examples}

Please format your rule as follows:
Rule: <Your rule>

Below, we collect the patterns and correlations of several
input-output pairs mentioned above.

---

{examples_with_pattern_and_correlations}

---

Functional
Hypothesis
Generator

(w feedback)

Based on your previous rule and the feedback, generate a revised
transformation rule that converts each of the given input matrices
into their corresponding output matrices.

Your previous rule: {rule}

Feedback:
{feedback}

Please format your rule as follows:
Rule: <Your rule>

Below, we collect the patterns and correlations of several
input-output pairs mentioned above.

---

{feedback_with_pattern_and_correlations}

---

Auxiliary
Confirmer

Write a Python function ‘fn‘ for the following rule, where the
input must be a nested list that represents a 2D grid of integers
and the output must also a nested list that represents a 2D grid
of integers.

Rule: {rule}

Consistency
Validator

Is the target statement logically consistent with the
input-output pairs and their patterns and correlations?

Target statement: {rule}

---

{examples_with_pattern_and_correlations}

---

Please respond with Yes or No.
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B.4 Prompt with human prior

The prompt with human prior for MiniARC (used in Section 5.4) is shown in Table 10.

Table 10: Prompt with human prior for MiniARC.

Agent Prompt

Functional
Hypothesis
Generator

(w/o feedback)

Generate a transformation rule that converts each of the given
input matrices into their corresponding output matrices.
Each input and output is a grid of numbers representing a 5x5
visual grid.
The transformation rule may involve counting or sorting objects
(e.g. sorting by size), comparing numbers (e.g. which shape or
symbol appears the most? Which is the largest object? Which
objects are the same size?), or repeating a pattern for a fixed
number of time.
There are other concepts that may be relevant.
- Lines, rectangular shapes
- Flipping objects
- Rotating objects
- Translating objects
- Shape upscaling or downscaling, elastic distortions.
- Containing / being contained / being inside or outside
of a perimeter.
- Drawing lines, connecting points, orthogonal projections.
- Copying, repeating objects.
- Pushing objects to a side

{examples}

Please format your rule as follows:
Rule: <Your rule>

Below, we collect the patterns and correlations of several
input-output pairs mentioned above.

---

{examples_with_pattern_and_similarities}

---

C More experimental results

This section includes DeepSeek-V3 results (C.1), more case study (C.2), and failure analysis (C.3).

C.1 Results on DeepSeek-V3

In addition to GPT-4, we include experimental results on DeepSeek-V3 in Table 11. We can draw
similar conclusions as from GPT-4 results.

C.2 More case study

Figure 4 shows a case of HypoBootstrap’s AuxiliaryConfirmer from List Functions. The
functional hypotheses overfit to certain observed evidence and are inconsistent with other ob-
served evidence. The partially correct generated functional hypotheses were evaluated by
AuxiliaryConfirmer but did not pass the unit test with observed evidence. The feedback contain-
ing the failure cases of observed evidence is collected for the FunctionalHypothesisGenerator
to generate revised functional hypotheses. Without AuxiliaryConfirmer, HypoBootstrap is in-
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Table 11: Results on DeepSeek-V3.

ACRE List Fns MiniSCAN MiniARC Avg.

T Met. Raw Task Raw Task Raw Task Raw Task Raw Task

1
HR 72.0 37.0 44.4 32.8 25.8 21.0 9.7 6.9 38.0 24.4
MoC 70.5 34.0 52.5 40.8 53.8 44.0 9.2 6.2 46.5(+8.5) 31.3(+6.9)
HB 74.5 47.0 55.6 42.0 69.8 47.0 16.7 10.0 54.2(+16.2) 36.5(+12.1)

3
HR 77.3 53.0 52.2 41.6 34.3 24.0 16.2 11.5 45.0 32.5
MoC 73.5 43.0 59.2 48.4 80.0 61.0 14.9 11.5 56.9(+11.9) 41(+8.5)
HB* 77.5 53.0 62.8 48.8 74.0 53.0 21.8 14.6 59.0(+14.0) 42.4(+9.9)

Functional
Hypothesis
Generator

Output: [5, 4]

Input: [7, 6, 3, 8, 5, 9, 0, 4, 1]

Object
Hypothesis
Generator

Object
Hypothesis

Inconsistency
Eliminator

Input: [7, 5, 4]

Output: [6, 3, 8]

E
v

id
e

n
c

e

Remove the first 
element from 
the input list.

Relational
Hypothesis
Generator

Relational
Hypothesis

Inconsistency
Eliminator

Feedback



```python
def fn(lst):

if len(lst) > 0:  return lst[1:]
else: return []

```

AuxiliaryConfirmer

F
e

e
d

b
a

c
k

Actual Output: [9, 4, 7, 6, 3]

Input: [7, 3, 5, 0, 2]

Expected Output: [9, 4, 7]

Expected Output: [3, 5, 0]

Actual Output: [3, 5, 0, 2]

Input: [1, 9, 4, 7, 6, 3]

Figure 4: A case for HypoBootstrap’s AuxiliaryConfirmer from List Functions.

capable of rectifying incorrect functional hypotheses since it cannot identify the failure cases from
observed evidence.

More real cases can be found in our codebase.

C.3 Failure analysis

An example of failure case when T = 3 from MiniSCAN shows that our method requires robust
long-context comprehension capabilities, which current LLMs still struggle to achieve. This results
in slightly inferior performance compared to HR [20] on MiniSCAN when T = 3. As shown in this
example, the generated rules did not follow the prompt’s format due to the long context.

User (Prompt for Functional Hypothesis Generation)

Generate grammar rules that map the following inputs to their corresponding
outputs. Your grammar rules should follow the format "<input > -> <output >". Use
the prefix "##" to denote a nonterminal symbol. For instance , "##A twice -> ##A ##
A", "##A swap ##B -> ##B ##A". The left -hand side cannot contain repetitive or
adjacent nonterminal symbols; i.e., rules like "##A ##A -> ##A twice" or "##A ##B
-> ##B ##A" are not allowed. Ensure that the number of unique nonterminal symbols
on the left -hand side matches that on the right -hand side in your rules.
For each rule , assign an integer as its priority. A higher priority indicates that
the rule should be considered first when generating parses. Ensure that

unnecessary colors are replaced by nonterminal symbols and that each rule has
pseudoword(s) in the left -hand side.
Try to make your rules as minimal as possible.

Input: "mccluiss"
Output: "RED"
Input: "szeaurt"
Output: "BLUE"
Input: "fioct"
Output: "GREEN"
Input: "cyclaiops"
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Output: "YELLOW"
Input: "szeaurt bingly"
Output: "BLUE BLUE BLUE"
Input: "mccluiss bingly"
Output: "RED RED RED"
Input: "szeaurt staioff fioct"
Output: "BLUE GREEN BLUE"
Input: "fioct staioff mccluiss"
Output: "GREEN RED GREEN"
Input: "szeaurt biouck fioct"
Output: "GREEN BLUE"
Input: "mccluiss biouck szeaurt"
Output: "BLUE RED"
Input: "szeaurt bingly biouck fioct"
Output: "GREEN BLUE BLUE BLUE"
Input: "fioct biouck mccluiss staioff szeaurt"
Output: "RED BLUE RED GREEN"
Input: "szeaurt biouck fioct bingly"
Output: "GREEN GREEN GREEN BLUE"
Input: "fioct staioff mccluiss biouck szeaurt"
Output: "BLUE GREEN RED GREEN"

Please format your rules as follows:

Rule 1: <input > -> <output >
Priority 1: <Your priority >
...

(Below , we collect the patterns and correlations of several input -output pairs
mentioned above.)

---

Pair 5
Input: "szeaurt bingly"
Output: "BLUE BLUE BLUE"

Patterns of the input:
1. The data consists of two separate pseudowords: "szeaurt" and "bingly ".
2. Both pseudowords are single words , not sentences or phrases.
3. There is a space separating the two pseudowords.

Patterns of the output:
1. The data consists of a single repeated element , which is a color.
2. The color repeated in the data is "BLUE".
3. The repetition occurs three times.

Correlations between input and output:
1. The output does not directly correspond to the individual pseudowords in the
input , suggesting that the transformation is not a simple one -to-one mapping.
2. The output is a repetition of a single color word , "BLUE", three times ,
regardless of the number of words in the input.
3. The specific color in the output does not seem to be influenced by the specific
pseudowords in the input , suggesting that the transformation might be independent
of the specific input content.

---

Pair 6
Input: "mccluiss bingly"
Output: "RED RED RED"

Patterns of the input:
1. The data consists of pseudowords , not colors.
2. There are two distinct pseudowords separated by a space.
3. Each pseudoword is a single , unbroken string of letters , suggesting they may
represent individual units or entities.

Patterns of the output:
1. The data consists of a single repeated element , which is a color.
2. The color repeated in the data is "RED".
3. The repetition occurs three times.

Correlations between input and output:
1. The input data , regardless of its content or structure , consistently results in
the output of the color "RED".
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2. The number of words in the input does not affect the number of times "RED" is
repeated in the output , which is always three.
3. The specific pseudowords used in the input do not seem to influence the color
output , suggesting that the system does not differentiate between different inputs
.

---

Pair 7
Input: "szeaurt staioff fioct"
Output: "BLUE GREEN BLUE"

Patterns of the input:
1. The data consists of pseudowords , not colors.
2. Each pseudoword is seven letters long.
3. All pseudowords are separated by a space.

Patterns of the output:
1. The data consists of colors , not pseudowords.
2. The sequence of colors is repetitive , with "BLUE" appearing twice and "GREEN"
once.
3. The pattern of the data is "BLUE", "GREEN", "BLUE".

Correlations between input and output:
1. Each pseudoword in the input corresponds to a color in the output. The first
and third pseudowords correspond to "BLUE", while the second pseudoword
corresponds to "GREEN".
2. The pseudowords do not seem to have a direct phonetic or alphabetic correlation
to the colors they represent. The correlation might be based on a predefined or

coded system.
3. The repetition of the color "BLUE" in the output corresponds to the repetition
of the first pseudoword in the input , suggesting a consistent one -to -one mapping
between specific pseudowords and colors.

---

Pair 8
Input: "fioct staioff mccluiss"
Output: "GREEN RED GREEN"

Patterns of the input:
1. The data consists of pseudowords , not colors.
2. Each pseudoword is separated by a space.
3. The pseudowords vary in length , ranging from 5 to 8 characters.

Patterns of the output:
1. The data consists of colors , not pseudowords.
2. The sequence of colors is repetitive , with "GREEN" appearing twice and "RED"
appearing once in between.
3. The data does not show any progression or gradient in terms of color shades or
hues.

Correlations between input and output:
1. Each pseudoword in the input corresponds to a color in the output , suggesting a
mapping between pseudowords and colors.

2. The pseudoword "fioct" and "mccluiss" both map to the color "GREEN", indicating
that different pseudowords can correspond to the same color.

3. The pseudoword "staioff" maps to the color "RED", showing that each pseudoword
is associated with a specific color.

---

Pair 9
Input: "szeaurt biouck fioct"
Output: "GREEN BLUE"

Patterns of the input:
1. The data consists of pseudowords , not colors.
2. Each pseudoword is separated by a space.
3. There are three pseudowords in the data.

Patterns of the output:
1. The data consists of two distinct elements separated by a space.
2. Both elements in the data are colors.
3. The colors represented are primary (blue) and secondary (green) colors.

Correlations between input and output:
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1. Each pseudoword in the input corresponds to a color in the output. The first
and second pseudowords correspond to "GREEN" and "BLUE" respectively. The third
pseudoword does not have a corresponding color in the output.
2. The pseudowords in the input do not seem to have a direct phonetic or
alphabetic correlation to the colors in the output. The correlation might be based
on a hidden or coded system.

---

Pair 10
Input: "mccluiss biouck szeaurt"
Output: "BLUE RED"

Patterns of the input:
1. The data consists of pseudowords , not colors.
2. All pseudowords are single words , not separated by hyphens or other punctuation
.
3. Each pseudoword is unique , with no repetition of the same pseudoword.

Patterns of the output:
1. The data consists of two distinct elements separated by a space.
2. Both elements in the data are colors , specifically "BLUE" and "RED".
3. The data does not contain any pseudowords.

Correlations between input and output:
1. The output colors "BLUE" and "RED" are derived from the letters present in the
pseudowords of the input. The pseudoword "biouck" contains all the letters for "
BLUE" and "mccluiss" contains all the letters for "RED".
2. The order of the colors in the output does not correspond to the order of the
pseudowords in the input. The first pseudoword "mccluiss" corresponds to the
second color "RED", and the second pseudoword "biouck" corresponds to the first
color "BLUE".
3. The pseudoword "szeaurt" does not contribute to the output , suggesting that not
all input pseudowords are used to generate the output.

---

Pair 11
Input: "szeaurt bingly biouck fioct"
Output: "GREEN BLUE BLUE BLUE"

Patterns of the input:
1. The data consists entirely of pseudowords , not colors.
2. Each pseudoword is separated by a space , indicating distinct units.
3. All pseudowords are of varying lengths , ranging from 5 to 7 letters.

Patterns of the output:
1. The data consists of colors.
2. The color "BLUE" is repeated three times.
3. The sequence starts with the color "GREEN" followed by three "BLUE".

Correlations between input and output:
1. Each pseudoword in the input corresponds to a color in the output , indicating a
one -to -one mapping between pseudowords and colors.

2. The pseudoword "szeaurt" corresponds to the color "GREEN", while "bingly", "
biouck", and "fioct" all correspond to the color "BLUE".
3. The repetition of the color "BLUE" in the output suggests that different
pseudowords can correspond to the same color in the output.

---

Pair 12
Input: "fioct biouck mccluiss staioff szeaurt"
Output: "RED BLUE RED GREEN"

Patterns of the input:
1. All entries in the data set are pseudowords , not colors.
2. Each pseudoword in the data set consists of seven letters.
3. The pseudowords do not follow a consistent pattern in terms of vowel and
consonant placement.

Patterns of the output:
1. The color "RED" is repeated twice in the data set.
2. The sequence of colors does not follow a standard color spectrum or any
discernible pattern based on color properties.

Correlations between input and output:
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1. The output colors seem to be determined by the third and fourth letters in each
pseudoword of the input. If the third and fourth letters are ’oc ’, the output is

’RED ’. If they are ’ou’, the output is ’BLUE ’. If they are ’ai’, the output is ’
GREEN ’.
2. The number of pseudowords in the input matches the number of colors in the
output , suggesting a one -to -one correspondence between pseudowords and colors.
3. The order of the colors in the output matches the order of the pseudowords in
the input , suggesting that the sequence of pseudowords determines the sequence of
colors.

---

Pair 13
Input: "szeaurt biouck fioct bingly"
Output: "GREEN GREEN GREEN BLUE"

Patterns of the input:
1. The data consists of pseudowords , not colors.
2. Each pseudoword is separated by a space.
3. The pseudowords vary in length , ranging from 5 to 7 letters.

Patterns of the output:
1. The data primarily consists of the repetition of the word "GREEN" three times
consecutively.
2. The word "BLUE" appears only once and it is at the end of the sequence.
3. All data points are colors.

Correlations between input and output:
1. The first three pseudowords in the input correspond to the color "GREEN" in the
output , while the last pseudoword corresponds to "BLUE". This suggests a one -to-

one mapping between pseudowords and colors.

---

Pair 14
Input: "fioct staioff mccluiss biouck szeaurt"
Output: "BLUE GREEN RED GREEN"

Patterns of the input:
1. The data consists entirely of pseudowords , not colors.
2. All pseudowords in the data set are composed of a combination of consonants and
vowels.

3. The pseudowords vary in length , ranging from 5 to 8 characters.

Patterns of the output:
1. The data consists of colors , not pseudowords.
2. The colors are repeated , specifically "GREEN" appears twice.
3. The sequence of colors does not follow a standard color spectrum or rainbow
order.

Correlations between input and output:
1. Each pseudoword in the input corresponds to a color in the output. The
pseudoword "fioct" corresponds to "BLUE", "staioff" and "szeaurt" correspond to "
GREEN", and "mccluiss" corresponds to "RED".
2. The pseudowords do not seem to have a direct phonetic or spelling correlation
to the colors they represent. Instead , the correlation seems to be based on a
predefined mapping.
3. The order of the pseudowords in the input determines the order of the colors in
the output. The first pseudoword corresponds to the first color , the second

pseudoword to the second color , and so on.

---

Assistant (Response from Functional Hypothesis Generation)

Based on the patterns and correlations identified , the following grammar rules can
be proposed:

Rule 1: "mccluiss" -> "RED"
Priority: 1

Rule 2: "szeaurt" -> "BLUE"
Priority: 1

Rule 3: "fioct" -> "GREEN"
Priority: 1
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Rule 4: "cyclaiops" -> "YELLOW"
Priority: 1

Rule 5: "##A bingly" -> "##A ##A ##A"
Priority: 2

Rule 6: "##A staioff ##B" -> "##A ##B ##A"
Priority: 3

Rule 7: "##A biouck ##B" -> "##B ##A"
Priority: 4

Rule 8: "##A bingly biouck ##B" -> "##B ##A ##A ##A"
Priority: 5

Rule 9: "##A biouck ##B staioff ##C" -> "##B ##A ##B ##C"
Priority: 6

Rule 10: "##A biouck ##B bingly" -> "##B ##B ##B ##A"
Priority: 7

Rule 11: "##A staioff ##B biouck ##C" -> "##C ##A ##B ##C"
Priority: 8

Note: The nonterminal symbol "##A", "##B", "##C" represent any pseudoword that can
be replaced by a color according to the rules 1-4. The priority of the rules is

set based on the complexity of the rule , with more complex rules having higher
priority.

D Converting natural-language rules into first-order languages

This section gives examples to convert natural-language statements into first-order languages as in
Figure 1. The natural-language statements are related to our used datasets.

MiniARC Fill the output grid with the number of non-zero elements in the input can be converted
into the following first-order statement

5,5∧
i=1,j=1

elem(y, i, j) ≡ g(x)

where elem(y, i, j) is the element of the output y in the i-th row and j-th column, g(x) is a function
that counts the number of non-zero elements in the input x.

List Functions See Figure 1.

ACRE The red cylinder can trigger the machine, but the black cube cannot trigger the machine can
be converted into the following first-order statement

trigger(a) ∧ ¬trigger(b)

where a refers to the object red cylinder, b refers to the object back cube, and trigger(c) asserts
whether the object c can trigger the machine.

MiniSCAN The symbol gsecua swaps its adjacent two words can be converted into the following
first-order statement

elem(x, i) ≡ gsecua→ elem(y, i− 1) ≡ elem(x, i+ 1) ∧ elem(y, i+ 1) ≡ elem(x, i− 1)

where elem(x, i) is the i-th element of the input sequence x and y is the output sequence. This
example is simplified since we don’t consider the influence of other words in the sequence and retain
the symbol gsecua in the output.
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E Broader impacts

In real-world applications, our method can contribute to scientific hypothesis proposing, daily-
life inductive reasoning, etc. If properly used, HypoBootstrap can enhance the inductive reasoning
performance. However, we emphasize that using HypoBootstrap must consider the potential fallacious
rules it produces and that one shouldn’t completely believe in the results produced by HypoBootstrap.
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